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Chapter 1

Education is changing, in the Netherlands as well as elsewhere around the
world. Many of these changes have been initiated because of a perceived need
for new learning outcomes. An example is the reform of science education that
emphasizes a general shift toward realistic tasks and higher-order learning
goals, such as the acquisition of scientific literacy, inquiry skills, and a hands-on
and minds-on mentality (van Driel, Beijaard, & Verloop, 2001). For each
element of this reform, critics have been eager to deny that the intended
outcomes have been, or even could have been achieved. Unfortunately, the
debate between reformers and their critics all too often remains undecided, due
to a lack of rigorous evidence to convince the other side. Apparently, higher-
order learning outcomes can be very hard to assess.

Inquiry learning provides an example of a newly introduced educational
means for achieving the new learning outcomes. In inquiry learning, students
are expected to increase their scientific literacy by engaging in activities such as
experimenting and constructing knowledge 'like scientists do' (Van Joolingen,
De Jong, & Dimitrakopoulou, 2007). On the one hand, there is research
suggesting that inquiry learning provides a motivating and engaging method of
learning (Hanauer et al, 2006, Kuhn, Black, Keselman, & Kaplan, 2000;
Lederman, Lederman, Wickman, & Lager-Nyqvist, 2007, Linn, Lee, Tinker,
Husic, & Chiu, 2006, Schwartz, Lederman, & Crawford, 2004). On the other
hand, there are also researchers and educators who maintain that direct
instruction would be a much more effective approach (e.g., Kirschner, Sweller,
& Clark, 2006). Klahr and Nigam (2004) compared ‘learning from direct
instruction’ with ‘discovery learning’, using a learning task about experimental
design, and found higher learning gains for the direct instruction learners.
However, it must be noted that the implementation of direct instruction in
Klahr and Nigam's research could equally well be regarded as scaffolded or
guided inquiry learning. Interpreted in this way, the finding by Klahr and
Nigam is a confirmation of the well-known finding that guided discovery is
more effective than pure discovery (Mayer, 2004).

Although such terminological confusion must certainly be resolved
before any meaningful comparisons can be made, the more pressing problem is
the lack of suitable assessment tools for higher-order learning outcomes. Insofar
as inquiry learning aims at new learning outcomes, such as generating
hypotheses and evaluating experimental data, these outcomes won’t be
detected by a traditional test aimed at reproducing and applying facts and
formulae. It is quite plausible that the direct instruction approach will lead to
better learning outcomes on such traditional tests, whereas the inquiry
approach might do better on a test specifically aiming at the kinds of
knowledge that are targeted by inquiry learning, e.g. intuitive knowledge
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(Swaak & de Jong, 1996). In the context of today’s quest for an evidence-based
(Davies, 1999) choice between different forms of education, this leads to the
conclusion that the development of appropriate assessment tools is vital.

A central aspect of inquiry learning is that the learners must develop their own
models. In the Netherlands, one aspect of the reform in secondary science
education is a larger curricular focus on the development of students'
knowledge and abilities in the field of models and inquiry modeling (van Driel
& Verloop, 2002). Here, we find similar problems with respect to how to
instruct and how to assess the learning outcomes. Therefore, the focus of this
dissertation is the assessment of learning outcomes of computer modeling in
upper secondary education in the educational context of a modeling task. We
limit ourselves in this to modeling dynamic systems, i.e. systems that
autonomously change over time, as computer modeling is especially suitable
for such domains.

1.1  Computer modeling of dynamic systems in education

When learning about a science topic, say, thermodynamics, a ‘traditional’
approach would involve the presentation of central concepts (heat,
temperature, energy, entropy) and relations between concepts in the form of
formulae (e.g., temperature = energy / heat capacity). Students are provided
with exercises, which involve solving standard domain problems by applying
these formulae and computing outcomes. Computer modeling offers an
alternative form of instruction that asks learners to construct executable models of
thermodynamic systems based on the central concepts and principles of the
domain. Learners specify their models using a dedicated language and the
computer can simulate the behavior of the modeled system as defined by the
learners” models. So, instead of solving standard domain problems in a more or
less algorithmic way, students’ attention is shifted toward analyzing the
domain itself in terms of its constituent concepts and using these concepts to
construct a model.

In this dissertation, the construction and/or modification of executable
computer models of dynamic phenomena (following Lohner, 2005) is taken as a
defining characteristic of computer modeling. Learners in this context perform a
scientific inquiry task that involves scientific reasoning processes, such as causal
reasoning, considering implications of conditions or options (Jonassen, Carr, &
Yueh, 1998), interpreting data, evaluating models, predicting, and explaining
(Schwarz & White, 2005). Learners are assisted in these processes by the
capability of the computer-based modeling tool to simulate the behavior of their
models. Defining modeling in this way distinguishes it from other uses of the
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term that include working with a model that is given, for example in the form
of a simulation or a formula (cf. exploratory modeling in Bliss et al., 1992). In so
doing, we adopt the definitions used in earlier research on computer modeling
in secondary education (e.g., Alessi, 2005; Bliss et al, 1992; Lohner, van
Joolingen, Savelsbergh, & van Hout-Wolters, 2005; Manlove, Lazonder, & De
Jong, 2006; Sins, 2006; Stratford, 1997).

Modeling is a form of active, generative learning in which knowledge
construction is supported by creating and adapting a model (Forrester, 1994).
This process is expected to lead to learning outcomes such as the ability to
create and revise a model. Moreover, one may expect outcomes with regard to
the learners’ mental representation of the domain. In modeling complex
systems the learner creates a model by translating internal ideas into an external
representation. By confrontation with this external representation, or as an
effect of evaluating the model, the learners’ internal ideas, their mental model
of the domain, may be adapted, leading to a cycle of revisions and tests of both
the internal and external models.

Such learning outcomes from modeling are qualitatively different from the
knowledge and skills developed in traditional instruction (Hestenes, 1996).
Computer modeling may also reveal distinctive learning outcomes in
comparison to the more closely related simulation-based learning, in which the
simulation of a given model is used (De Jong & Van Joolingen, 1998), in the
sense that modeling fosters the ability to create a model (Papert & Harel, 1991).
Like modeling, simulation-based learning requires the design, performance,
and interpretation of experiments, but no artifact is created.

Scientific reasoning, especially with dynamic systems, is difficult for a
high school student (Jacobson & Wilensky, 2006) and even for university
students (Hmelo-Silver, Nagarajan, & Day, 2002). For example, in the modeling
of ocean waves students may have difficulty understanding that the energy of
the wave moves and not the constituent parts of the water molecules (Wilensky
& Resnick, 1999). In a complex dynamic system the behavior of the system as a
whole may be different than the sum of the behavior of its parts. Other
difficulties occur in the learning of scientific reasoning, such as problems in
learning causal reasoning (Cronin & Gonzalez, 2007), systems thinking (Booth
Sweeney & Sterman, 2000), and the effects of nonlinear relations over time
(Milrad, Spector, & Davidson, 2003).

Scientific reasoning in modeling tasks is also complicated for students
by the fact that modeling does not provide a standard procedure with
determined outcomes. In modeling there can be multiple right answers and
many ways to reach a solution, making it difficult to learn what to do and how
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to create a model. The possibility of multiple solutions introduces uncertainty
and difficulty, because, in general, students want to know the ‘right answer’ or
some kind of rule for getting the answer (Skemp, 2006). Despite the apparent
difficulties of computer modeling, research has shown that students are able to
overcome the problems in a modeling task (Stratford, Krajcik, & Soloway, 1998).
It is claimed that through modeling, students acquire model-based scientific
reasoning skills (Milrad et al., 2003), learn about the domain (Schecker, 1998),
and gain insight into the behavior of (complex) dynamic systems in general
(Forbus, 1996, Hogan & Thomas, 2001; Stratford et al, 1998; Wilensky &
Resnick, 1999).

The above findings and claims are based mainly on observations and case
studies, and different studies investigating these claims are not objectively
comparable. To make a useful contribution to the development of effective
modeling-based education, it is therefore necessary to clearly define the
learning goals of modeling and to develop instruments to assess whether such
learning goals are achieved. With such clearly defined learning goals and
appropriate assessment instruments, one may demonstrate evidence for the
specific effects of different modes of instruction (Davies, 1999). Unfortunately,
many studies of the effects of modeling do not define the expected learning
outcomes of modeling and lack appropriate measurement tools for modeling
learning outcomes (Spector, 2000). This situation calls for a systematic
investigation into learning outcomes of modeling. In this dissertation we aim to
contribute to knowledge of computer modeling learning outcomes by
performing such an investigation and by developing appropriate assessment
methods. This leads to the following questions to be addressed: 1. what specific
learning outcomes can be expected from modeling; 2. how can the specific
learning outcomes be measured; and 3. what specific differences and
similarities can be expected between the learning outcomes of modeling and of
other modes of instruction?

1.2  Learning outcomes of computer modeling

The specific learning outcomes of a modeling task must be investigated in order
to develop an appropriate assessment instrument for modeling-based learning.
The analysis will focus on the types of outcomes that have been addressed by
previous research as potential learning outcomes of modeling: scientific
reasoning skills, conceptual knowledge of the domain involved, and insight
into dynamic systems. Beyond these three areas, learning outcomes of modeling
are also possible in the area of meta-knowledge such as ‘nature of science’,
epistemological knowledge, and self-regulation (Guttersrud, 2006; Hogan &
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Thomas, 2001; Manlove et al.,, 2006). Such learning outcomes are related to
broader themes that go beyond computer modeling and the specific learning
outcomes we are looking for in this research. Although these aspects of meta-
knowledge are important enough to deserve attention in educational research,
they are much more comprehensive than will emerge in a limited modeling
task. Therefore, we will set aside these broad themes and focus on analyzing the
cognitive learning outcomes of modeling. This analysis will enable us to derive
a framework for the different types of learning outcomes and to operationalize
the different types in test items.

121  Scientific reasoning skills

Computer modeling requires the performance of several processes of scientific
reasoning, such as the generation of hypotheses, designing experiments to test
them, and interpreting data. Therefore, performing a computer-based modeling
task will form a suitable practice arena for acquiring and improving scientific
reasoning skills. Scientific reasoning processes are considered to be higher-level
thinking performances that are normally out of reach but that can be learned
even at a lower secondary level with appropriate scaffolding (Fretz et al., 2002).

In defining the nature of these skills, Wells, Hestenes, and Swackhamer (1995)
distinguish the processes of creating, evaluating, and applying models in
concrete situations. A similar classification has been proposed by Lohner et al.
(2005), who describe the modeling cycle as an iterative process that can be
applied when developing and refining a model. The cycle is made up of the
steps of orienting, hypothesizing, experimenting, modeling, and evaluating. In
this terminology, the process of 'modeling’ corresponds to creating variables
and relations. Hypothesizing involves reasoning about the relations in the
model, which requires applying the rules of a model. Experimenting is a
process steered by the goal of evaluating the model and can be covered by the
reasoning process of evaluating.

Stratford, Krajcik, and Soloway (1998) studied the thinking strategies
that are best fostered by dynamic modeling and distinguish the processes of
analyzing, relational reasoning, synthesizing, testing and debugging, and
making explanations. More specifically, in Stratford et al.'s typology of thinking
strategies, the scientific reasoning processes in which students engage during
dynamic modeling are specified by the following aspects: identifying and
creating factors or objects, making judgments, interpreting a model's behavior,
drawing conclusions, creating and discussing relationships, predicting what
should happen, viewing and evaluating the model as a whole, explaining
relationships, stating evidence, and justifying an argument.
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Overall, the processes for applying knowledge, creating variables and
relations, and evaluating hypotheses and models appear to be central factors in
scientific reasoning. These processes not only play a role in the modeling of
dynamic systems, but also reflect a broader relevance as described by Bloom's
Taxonomy (Bloom, 1956). This framework was developed to classify
educational objectives in general; in the revision by Anderson and Krathwohl
(2001) the cognitive processes of applying, creating, and evaluating are
distinguished as higher-order learning gains.

International studies have reported on the assessment of scientific reasoning
skills. For example, scientific reasoning is part of the scientific literacy
assessment in the Programme for International Student Assessment (PISA)
study (Harlen, 2001). In the PISA assessment, scientific literacy has been
broadly defined by 'being 'at ease’ with scientific ways of understanding things'.
Scientific reasoning processes can be identified in the assessment of this
generally defined ability, such as explaining relations, making predictions,
identifying factors that influence a given outcome, and drawing and evaluating
conclusions.

Scientific reasoning is also part of the assessment in the Trends in
Mathematics and Science Study (TIMSS) (Mullis, Martin, Ruddock, Arora, &
Erberber, 2005). In this study knowledge of science is assessed in the cognitive
domains of knowing, applying, and reasoning. These domains cover processes
such as recalling, relating, interpreting, explaining, predicting, evaluating, and
drawing conclusions.

These examples of the assessment of scientific reasoning include
scientific reasoning processes; however, these processes are assessed implicitly
and integrated into a broader context, and lack a model-based context.

122 Conceptual domain knowledge

Apart from the acquisition of scientific reasoning skills, modeling promotes
understanding of the science content (Stratford et al., 1998). Modeling has been
studied as a means of learning in many domains, including water flow (Booth
Sweeney & Sterman, 2000; Kainz & Ossimitz, 2002), thermodynamics (Forbus,
Carney, Sherin, & Ureel, 2005; Lohner et al., 2005; Schecker & Einhaus, 2007),
and ecosystems (Papaevripidou, Constantinou, & Zacharia, 2007; Stratford et
al., 1998); biological topics such as plant growth (Ergazaki, Komis, & Zogza,
2005) and health and diet (Bliss et al., 1992); and logistics topics such as traffic
(Bliss et al.,, 1992). These examples, covering a wide range of scientific
disciplines, have in common that they represent dynamic phenomena and that
the conceptual structure is crucial in understanding the domain. As computer
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modeling explicitly represents such structures, learners engaging in computer
modeling are expected to be better able to acquire knowledge about them.

Domain knowledge can be both an input to and an output of the modeling
process. In building a model the concepts in the domain get connected, both in
the external model representation, and, as may be assumed, in the learner’s
mind. Thus, building an external model is assumed to support integrating
information into mental models (Nersessian, 1999). The created computer
model scaffolds and externalizes internal, mental models (Jonassen, Strobel, &
Gottdenker, 2005). The process of expressing internal mental models in external
models leads to better understanding by requiring a precise definition of ideas
and by providing opportunities to test the mental model (Doerr, 1996).

Conceptual domain knowledge involves not only isolated facts and relations,
but also how these basic entities are connected. This means that the focus
should be divided when assessing domain knowledge between the basic
concepts and the way they compose the domain as a whole. Traditionally,
conceptual knowledge is measured by knowledge tests asking for definitions of
concepts and relations between them (Archbald & Newmann, 1988; Royer,
Cisero, & Carlo, 1993). One potentially interesting enhancement of such
assessment could be testing whether larger knowledge structures can be used in
domain specific reasoning processes.

1.2.3 Insight into dynamic systems

By the nature of computer modeling, the dynamics of systems have a central
focus in modeling tasks. Dynamic systems change over time autonomously,
due to the fact that one or more components of the system are not in
equilibrium. For instance, the weather above the Netherlands changes
continuously due to differences in temperature and pressure, causing
phenomena such as clouds, wind, and rain. A formal description of system
components, their states and their relations, in the form of a computer model
can help to gain insight into the structure and behavior of the system over time.
In particular, simulating the model can demonstrate the system's dynamics and
thereby support insight into dynamic behavior.

Dynamic behavior must be understood at two levels. On the level of the
variables and relations, the dynamic aspects must be specifically defined in
terms of the way variables change over time under the influence of other
variables. The identification and naming of variables plays an important role in
defining the model in a formal sense, for it determines the possibility of using
the variables in formal relational causal reasoning. Reasoning with a relation
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between two variables has a form such as 'the greater the value of variable X,
the greater will be the value of variable Y'. In this way, a concrete situation is
converted into abstract variables and relations and intuitive reasoning is
transformed into formal reasoning. For example, in everyday life one can say
'the greenhouse effect will be enhanced in the coming decades', but in a
dynamic formal model the statement must be made specific by stating clearly
defined variables and relations, for example 'the greater the amount of
greenhouse gases in the atmosphere, the higher the temperature will be.'

At the level of the system, the behavior over time may be difficult to
predict. The behavior of a dynamic system is determined by the constituent
parts of the relations, but the behavior is not always a simple addition of effects.
A system with even just a few variables can already show complex dynamic
behavior. Step by step reasoning such as ‘a higher temperature of the Earth
leads to greater outgoing radiation which leads to lower energy of the Earth,
leading to a decrease of the Earth's temperature', is clearly not enough to
understand what the state of the system will be in the end. For example, the
occurrence of an equilibrium temperature is hard to derive in this way. For that
derivation, the relative contributions of the different effects must be taken into
account, in order to predict if and how they will level out (Lohner, 2005). The
computer simulation of the model can show the behavior of the system in the
long term. Combining reasoning and predicting with interpreting the simulated
data gives the learner insight into the different levels of the dynamic system
(Wilensky & Resnick, 1999), from simple direct relations that can be reasoned
with easily to complex relations that are composed of multiple steps that are
more difficult to arrive at by reasoning with the constituent parts. When a
complex composite model is difficult to reason with, a 'synthesizing' thinking
strategy can be applied in which the model is viewed and evaluated as a whole
(Stratford et al., 1998).

By observing the mechanisms that emerge from the composite structure
of the model, underlying mechanisms may be discovered. (Wilensky & Resnick,
1999). Reasoning with single relations can be combined with reasoning at a
composite level. For example, one can reason about the energy flowing out of
the Earth's energy system and at the same time reason about the Earth's
temperature rising. Research has shown that modelers of causal networks learn
about complex systems by first learning the different fragments of a causal
model and later integrating the different pieces in an interconnected complex
causal model (Hagmayer & Waldmann, 2000). Mental simulation of the system
plays an important role in learning about complex dynamic systems (Sterman,
1994). It appears that understanding the complex causal structures is supported
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by generating predictions based on mental simulation (Hagmayer &
Waldmann, 2000).

An assessment that measures insight into dynamic systems has been developed
by Booth Sweeney and Sterman (2000) in their systems thinking inventory. In
their view thinking systemically means understanding systems concepts such
as feedback, delays, and stocks and flows. In an empirical study in which highly
educated students had to perform an 'extremely simple' task for 20 minutes, the
learning of these basic systems thinking skills appeared to be a demanding task.
The assessment was limited in time and did not require the creation of a model.

In summary, our exploration of the different aspects of computer modeling
distinguishes three main components: scientific reasoning skills, conceptual
domain knowledge, and insight into dynamic systems. In order to assess these
components of the learning outcomes of computer modeling in a test, the
assessment must meet several criteria: it must be valid and reliable; the items
must be able to measure specific aspects within the components; and the items'
scoring method must be reliable. In the next section, we discuss aspects of test
theory that are relevant to these criteria.

1.3  The assessment of modeling-based learning outcomes

Answering the question of how to measure the specific learning outcomes of
modeling is the core issue of this dissertation. Our goal is to develop, with the
help of test theory, a standardized test, covering the wide spectrum of expected
learning outcomes of modeling applied in a model-based context. In order to
develop an 'ideal' test instrument, each scale of the instrument needs to be
relevant, accurate, unbiased, sensitive, unidimensional, and efficient (Polit &
Hungler, 1991). Though most instruments will not match this ideal, there are a
number of techniques to evaluate the quality of the measurement instrument or,
in other words, to validate the instrument. In Chapter 2 we will present the test
as we developed it. In this section we will describe the evaluation techniques
that were relevant in our research.

131  Validity

An important criterion in evaluating the quality of a test instrument is validity.
In test theory, validity has been described in many ways, all having to do with
the degree in which a test is a correct operationalization of the intended
construct. Whether the test results can be interpreted as representing the
construct is called the validity of the test (Stouthard, 1998). A general definition
is posed by Messick (1989) who writes: 'Validity is the integrated evaluative
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judgment of the degree to which empirical evidence and theoretical rationales
support the adequacy and appropriateness of inferences and actions based on test
scores or other modes of assessment' [emphasis in original] (p. 13). In our work
we have assessed the validity of our test in two ways.

First, we used a “bottom-up approach” by making a detailed analysis of
psychometric characteristics of our items in relation to the theoretical aspects of
model-based reasoning outcomes that we distinguished. We used item
response theory for this, which helped us to find evidence of the structure of the
theoretical framework. As item response models are theory driven, developing
a valid test based on item response theory starts with a clear definition of the
constructs to be measured (Liu & Boone, 2006). The constructs can then be
tested by fitting the test data to the item response model.

Second, we investigated the discriminative power of the test with
respect to groups of students who are expected to perform differently on the
test based on their personal characteristics or on experimental conditions they
are in. This is also called the known-groups technique, an approach to analyze
construct validity (Polit & Hungler, 1991). This technique administers the test to
groups who are expected to perform differently on the test.

The many different forms of validity indicate the versatility of the
concept of validity and the fact that it is not an 'all-or-nothing' characteristic of
an instrument. Validity is a question of degree: it is not 'proved' or 'established’,
but instead supported by several forms of evidence (Polit & Hungler, 1991).

1.3.2  Reliability

Besides validity, the quality of a measurement instrument is determined by the
reliability of the instrument. Reliability can be defined by the degree of
consistency in the test outcomes (Polit & Hungler, 1991).

An initial requirement for a consistent test is a well-defined scoring
procedure that classifies the test responses into a set of standard scoring
categories. A scoring mechanism with sufficient detail is required to facilitate
consistent scoring by different raters and improves interrater reliability or
reproducibility. There are a number of interrater reliability measures, for
example Cohen's kappa (Cohen, 1960) and Krippendorff's alpha (Hayes &
Krippendorff, 2007).

One way to analyze the degree of consistency of test scores is to analyze
the internal consistency. The most common measure for estimating internal
consistency is the coefficient Cronbach's alpha (Cronbach, 1951). Generally,
alpha will increase when the inter-item correlations increase. Furthermore,
Cronbach's alpha is a function of the number of items. In our case, where we are
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developing a composite test based on a framework with many aspects, the
reliability of each of the constituent parts is important.

Similar to the concept of validity, reliability is not a fixed characteristic
of a test. Reliability might be investigated for a specific set of response data
collected in a specific context and under specific conditions.

14  Purpose of our research

In the previous sections, we have argued that, in spite of its many acclaimed
advantages, there is little rigorous evidence about the specific learning
outcomes of modeling. This lack of evidence forms a serious impediment to the
decision to accept and further implement modeling approaches in secondary
education. Therefore, in this dissertation we will investigate the specific
learning outcomes of computer modeling in the context of a high school
modeling activity. We develop a framework to describe and measure the
specific learning outcomes. As noted above, our main research question is:
What specific learning outcomes can be expected from computer modeling and
how can they be measured?

In Chapter 2 the expected learning outcomes of modeling are defined in
detail. We introduce the ACE framework for modeling knowledge, describe its
components, and present a test that is based on this framework, called the ACE
test.

In Chapter 3, we report on a validation study that investigates the
validity of the ACE test. We analyzed the response data of students with
different levels of modeling proficiency to find evidence for the validity of the
test. Furthermore, we investigated the power of the test to discriminate on the
main aspects of the framework between groups of students with different
backgrounds in modeling.

In two comparative studies, the ACE test was used to investigate the
differences and similarities between different modes of instruction. We chose
modes of instruction that were progressively more closely related and thereby
provided an increasingly rigorous evaluation of the discriminative power of the
test.

In Chapter 4, we describe the first comparative study, in which we
investigate the discriminative power of the test with respect to the comparison
of expository instruction with modeling-based instruction. We expected to see
differences in performance on the typical modeling aspects of the test
concerning the construction of models and experimentation on the one hand,
and the more 'traditional' aspect of reproducing knowledge on the other hand.

In the second comparative study we further investigated the
discriminative power of the test with respect to the comparison of two modes of
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instruction that are more similar than the two modes of instruction in the first
comparative study. In Chapter 5, this second comparative study is described in
which we compared modeling with simulation-based instruction. These
conditions differ only on the aspect of learners’ construction of models, and are
similar with respect to exploration and evaluation of a model. As in the first
comparative study, we expected the construction of a model to lead to
constructive skills. Furthermore, we expected no differences on test items
related to performing experiments and evaluating data, because
experimentation is involved in both modes of learning.

Chapter 6 presents an additional combined analysis of the data of the
two comparative studies. This allows comparison of the modes of instructions
over both studies.

In Chapter 7 the results and conclusions of the separate studies are
recapped and discussed. The combined analysis is reviewed and implications
for future research are presented.
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Chapter 2 A framework for the assessment of learning
by modeling!

Abstract

Learning by computer modeling is claimed to yield learning gains in the fields
of knowledge of dynamic systems, higher-order reasoning, and domain-specific
knowledge. However, it is hard to substantiate these claims with objective test
measures. It is our aim to develop a test for these knowledge types that is able
to detect differential learning outcomes between different modes of instruction
(e.g. modeling, learning with simulation, and expository teaching). We present
a framework to distinguish learning outcomes on three dimensions: type of
reasoning process, complexity of knowledge elements, and domain-specificity.
Based on this framework, we propose a test with specific items for each of the
resulting combinations.

1 This chapter is adapted from Van Borkulo, S. P., Van Joolingen, W. R,
Savelsbergh, E. R., & De Jong, T. (2008). A framework for the assessment of
learning by modeling. In P. Blumschein, J. Stroebel, W. Hung & D. Jonassen
(Eds.), Model-based approaches to learning. Rotterdam, Netherlands: Sense
Publishers.



Chapter 2

2.1 Introduction

Current trends in secondary science education stress the importance of
knowledge construction by students through active interaction with the
learning environment (Blake & Scanlon, 2007, Gomez, 2005; Quintana et al.,
2004; Tobin & Tippins, 1993). In science education, scientific reasoning and
critical thinking play an important role as part of such knowledge construction
(Fretz et al,, 2002; Jacobson & Wilensky, 2006). This has led to an interest in
computer modeling of dynamic phenomena, in which one acquires an
understanding of the domain at hand by building, using, and testing computer
models (De Jong & Van Joolingen, 2007; Lohner, 2005; Sabelli, 2006). Dynamic
phenomena are defined as phenomena that reveal autonomous behavior as a
function of time and often feature interactions between variables, feedback
loops, nonlinear behavior, and time delays. The behavior of such phenomena is
hard to predict or understand by reasoning alone (Hmelo-Silver & Azevedo,
2006; Kuhn, 2007). In the natural sciences this has led to the emergence of the
tield of computational science, in which the understanding of complex systems is
based on building and simulating computer models. This has been applied to
many kinds of complex systems, such as the weather system, global warming,
molecular dynamics, and population biology. Computer simulation and
modeling gradually became more than just a useful tool, as it opened up new
fields of research and new methodological approaches in many fields of science.
As the chief of the British Natural Environment Research Council put it, we
need “a ‘new breed’ of scientist, and new ways of problem solving that cut
across traditional disciplines” (Masood, 1998).

It would be desirable to have some of these developments reflected in
the classroom. Computational science in secondary education became feasible
through the introduction of computer modeling tools such as STELLA (Steed,
1992), Modellt (Jackson, Stratford, Krajcik, & Soloway, 1996) and the Co-Lab
modeling tool (van Joolingen, de Jong, Lazonder, Savelsbergh, & Manlove,
2005) (see Figure 2-1). Using such tools students create models to represent their
ideas about a domain, in terms of variables and relations. The model can be run,
to compute the values of the variables as they develop over time. This allows
the modeler to see the course of events predicted by the model. The modeler
evaluates the calculated values by comparing them to his or her predictions or
to data collected in an experiment, and consequently, may accept the model, or
decide to revise the model and start the cycle over again.

Students’” modeling activities, as they bear close parallels to ‘real’
science, can become an integrated part of science education, and will partly
define the learners’ scientific ways of thinking. The focus of the current chapter
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is the occurrence of modelers’ scientific knowledge and reasoning under the
influence of a modeling task. In other words, what is learnt from computer
modeling. In an overview of modeling research, Lohner (2005) distinguishes
several expected effects of modeling on learning outcomes. These include a
better understanding of the behavior of dynamic systems in general (Forbus,
1996; Hogan & Thomas, 2001; Stratford et al., 1998; Wilensky & Resnick, 1999),
the development of specific (scientific) reasoning skills (Milrad et al., 2003), and
domain-specific knowledge.
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Figure 2-1 The learning environment of Co-Lab with its modeling tool

A number of studies have investigated the processes of modeling as a learning
activity. For instance, Lohn er, Van Joolingen, Savelsbergh, and Van Hout-
Wolters (2005) and Sins, Savelsbergh, and van Joolingen (2005) studied
students’ reasoning during the modeling process by analyzing students’
conversations during a collaborative task; Hogan and Thomas (2001) focused on
students’ cognitive behavior while modeling, for example students” focusing on
the output of a model or deciding to use either variables or constants. Less
focus has been directed to the specific learning outcomes of modeling as a
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learning activity (Lohner, 2005). Spector, Christensen, Sioutine, and McCormack
(2001) found that most researchers think the standard measures of learning are
not adequate for a serious evaluation of learning in these learner-centered
modeling environments for complex domains. This calls for the design of more
adequate instruments that are able to measure the specific types of knowledge
that are built by learners as a result of a modeling activity. An appropriate test
for knowledge and skills related to modeling will not only contribute to a better
research in the subject of modeling, but is also necessary for a full acceptation of
modeling in educational practice.

In order to develop such an instrument at secondary education level,
we need a precise operationalization of the knowledge and skills involved in
utilizing models for understanding scientific phenomena. Such an
operationalization provides a basis for designing instruments to detect the
development of specific modeling knowledge. These considerations result in
two questions:

What specific learning outcomes can be expected from computer modeling of dynamic
systems?

How can these learning outcomes be measured?

Based on an analysis of the processes of computer modeling and
reasoning with models we present a framework that serves as a model for
modeling knowledge.

2.2  Modeling modeling knowledge

In describing modeling knowledge, we focus on the reasoning activities taking
place in the modeling process (Lohner et al., 2005; Sins et al., 2005). Our basic
assumption is that the core of modeling knowledge is (1) the ability to use
models in reasoning about scientific phenomena and (2) the ability to perform
the relevant reasoning processes that lead to new models. Both aspects of
modeling knowledge include the model construct as a source of student
behavior and can be considered to be essential for the development of modeling
proficiency.

In the current section we therefore investigate the reasoning processes
involved with using models in scientific domains and describe the influence of
complexity and the domain on these reasoning processes.

221  Dynamic systems and scientific reasoning

Dynamic systems are characterized by an autonomous change over time of the
system’s state. The variables in the system determine the process underlying
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this autonomous change. A simple example of a dynamic system is a bucket,
filled with water, with a hole in it (see Figure 2-2 and Figure 2-3). Water will
flow out through the hole and the system’s state, represented by the water level,
will change over time. The diameter of the hole is a parameter that determines
the rate of change of the water level. More complex examples, requiring more
variables to represent the state and to describe the change of the system are, for
instance, the weather above Europe, the population of foxes and rabbits in a
specific area, or the air conditioning system in an office building.

Reasoning with dynamic systems is centered around the characteristics
of models of dynamic systems and is also called model-based reasoning (Magnani,
Nersessian, & Thagard, 1998). The models we are discussing here are theoretical
conceptualizations consisting of variables and relations that describe the
behavior of a phenomenon. Reasoning with these models means to construct
arguments using these variables and relations, for example explaining the
decrease of the water level in the water bucket by naming the outflow variable
or, in a more complex situation, referring to a feedback loop to argue the
presence of equilibrium.

In the theories of scientific reasoning of Klahr and Dunbar (1988) and
van Joolingen and de Jong (1997), scientific reasoning is seen as searching a
hypothesis space and an experiment space. The hypothesis space represents all
possible hypotheses about the domain, whereas the experiment space
represents all experiments that can be performed in the domain. In this
description a model would be an element of hypothesis space with the relations
in the model and the characteristics of the dynamic system representing
hypotheses, whereas the data evaluating the model, would originate from
experiment space.

KO

water_level

leak

outflow rate

Figure 2-2 A system dynamics model of a leaking water bucket
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Figure 2-3 Simulation of a leaking water bucket

In reasoning with models it is essential to be able to move within and between
these spaces. In using the model to predict or explain behavior of the
investigated phenomenon, one makes a relation between the two spaces,
linking the model to experimental outcomes. Moves within the hypothesis
space represent changes in the model. Moves within the experiment space
represent the search for empirical evidence for a model.

In the following we will argue that there are three basic reasoning
processes in modeling: Applying a model, Creating a model, and Evaluating a
model. Hence we will refer to our framework as the ACE framework. The basic
processes are elaborated below.

2211 Apply

Applying a model refers to using the model to generate outcome. The dynamic
nature of the models in our focus implies that time-dependent behavior is an
essential element in reasoning. With respect to time-dependent behavior we
distinguish prediction and explanation as core reasoning processes (Lohner et al.,
2005; Sins et al., 2005). Predicting means to infer the future behavior of the
system from a given state, yielding propositions as: “the temperature will
increase”, or “the water level will reach equilibrium”. This also includes
predicting changes in behavior as a consequence of changes in parameters.
Predictions can be supported by arguments, such as “... because the inflow will
reach the same value as the outflow”. Explaining can best be described as ‘post-
dicting’, i.e. supporting the observed behavior by properties of the model, such
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as: “The water level has increased because the inflow has increased. This leads
to rising water level which increases the outflow. When the outflow equals the
inflow equilibrium is reached.” Both predicting and explaining are based on a
given model, classifying them as kinds of applying a model to a given situation.
Predicting generates experimental data, and can be supported by using a
simulation of the computer model. Explanation links the model to experimental
data by focusing on the causes of observed behavior. Applying thus represents
the relation between experiment and hypothesis space.

In applying knowledge of a dynamic system one must use the
characteristics of a model to (mentally) simulate it. Mental simulation is executed
by step by step thinking through causes and their effects. Using such mental
simulation, applying models can lead to predictions of future model (or system)
behavior, as well as explanations of observed behavior in reality. For prediction,
the focus is on the result of the mental simulation (in terms of a description of
the system’s state and/or its development over time). For explanation, focus is
on under what circumstances a certain behavior occurs. In the water bucket
example, a prediction using a mental simulation could be: “Suppose the inflow
from the tap increases, this would increase the water level, which will in its turn
increase the outflow, which will decrease the water level, which will decrease
the outflow, ... etc. Equilibrium will occur when the outflow again is equal to
the new inflow. This equilibrium will be higher than its current value, because
the outflow is positively related to the water level”. An explanation of a water
inflow increase could use the same mental simulation, but now after the fact.
Therefore the reasoning is almost the same, but the focus of an explanation is
not on the outcome but on the possible causes of an observed change in
systems’ state. This means explanation and prediction can be seen as two ends
of the same process, with mental simulation of the model as the main reasoning
mechanism.

22.1.2 Create

Predicting and explaining require a model being present. When this is not the
case or when a given model is not adequate a model needs to be created, either
from scratch or by modifying an existing model. This means searching
hypothesis space for relations and variables that can represent the relevant
parts of the phenomena being modeled. For instance when a system of a
leaking bucket is extended with an extra bucket that collects the water flowing
out of the first bucket, modelers need to add a second state variable
representing the level in the new bucket and a relation connecting it to the first
one. In doing so, besides phenomenon-related knowledge (for example
knowledge of fluid dynamics), general conceptual modeling knowledge is
involved. One needs to know how to define a new variable, how to use the
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different types of variables, and how to relate all components into an effective
model.

2.2.1.3  Evaluate

Finally, by searching experiment space, modelers can evaluate a model by
checking predictions that are generated based on the model against the actual
behavior of the system that is being modeled. When students evaluate a model,
they engage in scientific reasoning (Lohner et al., 2005). This basically means
testing the hypothesis that (part of) the model is adequately describing the
system that is modeled, considering prior knowledge of the domain or by
comparing to reality or a simulation of reality. This involves designing and
performing experiments, evaluating the results, and drawing conclusions, with
respect to the model that has been created. For example, given the situation of a
water bucket represented by a model with the state variable ‘water level’, and a
flow which is specified by the relation: ‘the higher the water level in the bucket,
the faster the water will flow out’, the student should be able to set values for
the water level to test this hypothesis. This means, that the student should be
able to observe the results and draw a conclusion on the correctness of the
hypothesis.

The three ACE processes described here define the basic reasoning
processes of modeling. The performance in these processes can be moderated
by characteristics of the system that is being modeled. We consider two of these
factors: the complexity of the modeled system and domain-specific knowledge.

22.2  Complexity of Dynamic Systems

Models are especially suitable for the managing and understanding of systems
that have a certain complexity (Forrester, 1994). When the number of variables
and relations becomes larger, a point will be reached in which it becomes
impossible to infer system’s behavior by reasoning alone. New behavior may
emerge from the combinations of effects of individual relations. For instance, in
the example of the leaking water bucket, the process of outflow is the only
process in the system, whereas in an example of population dynamics,
processes of birth, predation, and natural death may interact with each other
such that either the population reaches equilibrium or an oscillatory system
emerges. Dynamic modeling tools allow for individual specification of parts of
the complex system, e.g. in terms of individual relations and variables.
Simulation of these models makes clear what the effects are of all processes
taken together on the system’s state.

The complexity of a model depends on the number of relations that
determine a variable (e.g. in a population model birth rate may depend on
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many factors), the ‘length of the chain’ of intermediate variables in a step by
step reasoning, the presence of feedback, and the presence of counteracting
effects. Indirect relations are complex and computationally demanding
(Glymour & Cooper, 1999). Moreover, in a complex structure it may be difficult
to derive the behavior of the complete system from the behavior of the
individual relations. In systems consisting of many interconnected subsystems,
one may need to reason in terms of global behavior that is not explicitly
represented in a model, e.g. equilibrium (Wilensky & Resnick, 1999).

It is clear that for complex systems mental simulation becomes
impossible. However, computer simulation can help understanding such
systems. As emergent behavior (Holland, 2000) is displayed, the modeler can
start to reason in a more abstract way about the system. This abstraction entails
describing system behavior in terms of behavioral and time-independent terms
such as “equilibrium”, “oscillation”, and properties that qualify these terms,
such as “equilibrium value”, “amplitude”. This means that the level of
description changes from pure causal reasoning for “simple” systems (“if A
increases, then B decreases”) to more holistic descriptions like the ones
presented.

The consequence is that the reasoning processes that we introduced in
the previous section change as a result of implications of complexity. The
mental simulation of the model will be more difficult, the reasoning more
abstract, and global behavior needs to be taken into account. Therefore,
whenever assessing learning outcomes of modeling, complexity needs to be
taken into account.

2.2.3  Domain-specific knowledge

Model-based reasoning to a high extent depends on domain-specific
knowledge. Although in principle the behavior of the model can be studied at
an abstract level (e.g., a model’s behavior does not change when we change the
names of the variables) and reasoning can take place at the abstract level as
well, domain-specific knowledge will interact with the reasoning as soon as the
model has a domain-specific interpretation (Fiddick, Cosmides, & Tooby, 2000;
Westbrook, 2006). In fact, content-specific reasoning relies on links between
declarative knowledge about the domain and procedural knowledge, in this
case about modeling (Evans, 1989).

As an example, consider the leaking bucket model. An isomorphic
model can be made of a discharging capacitor (with Q, the charge on the
capacitor replacing the water level and 1/R, the inverted resistance in the
discharging circuit being the ‘leak size’). People not familiar with electronics
will probably display different reasoning behavior for this model than for the
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bucket model, as for the bucket model they will be able to bring up a mental
representation of the modeled system.

Prior domain knowledge influences the reasoning processes. Experts
have ‘chunked knowledge’ (Chase & Simon, 1973), which means that larger
blocks of knowledge form a whole. This enables experts to quickly establish a
relation between the presented context and their mental models (Chi, Feltovich,
& Glaser, 1981). The chunks enable a more efficient reasoning, which means
that reasoning steps will be different, steps in between will be skipped, and
shortcuts in reasoning will be taken.

Domain knowledge could also lead to disadvantages, such as biases
induced by previous observations and beliefs about the domain. Moreover,
prior knowledge may contain naive conceptions or preconceptions, and
alternative conceptions or misconceptions (Chi & Roscoe, 2002).

As a consequence, general and domain-specific knowledge are hard to
disentangle. Reasoning with a model for which domain knowledge is available
will partly invoke general reasoning skills and partly be based on stored
domain-specific knowledge, which may facilitate or contaminate the modeling
process. The corollary to this is that assessment of general modeling skills
should take place outside the context of known domains.

2.3 The ACE Framework

Based on the preceding observations, we developed a framework to describe
modeling knowledge more formally. The purpose of the framework is to be
able to structure the types of knowledge that can be gained from learning by
modeling. The framework can then be used to construct tests or observation
schemes to assess students’” modeling performance. As such we hope the
framework will help the field in studying the development of knowledge under
varying conditions of modeling.

The framework will be built on three dimensions: 1) reasoning process,
2) complexity, and 3) domain-specificity. Each will be briefly described below.

The first dimension, reasoning processes, entails the extent to which
someone can perform the reasoning processes related to modeling: apply,
create, and evaluate models. This dimension covers the basic reasoning
processes of modeling as was described by the ACE model: applying
knowledge of a model (predicting and explaining), creating (or modifying) new
models, and evaluating models and data generated by models.

The second dimension, complexity, concerns the complexity of the
systems to which the knowledge element applies. A model has complexity due
to its behavior and due to its structure and this influences the reasoning
processes. We found behavioral, ‘holistic’ aspects, for instance the occurrence of
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equilibrium and oscillation, and structural aspects, for instance the number of
variables and relations, the number of steps in a step by step reasoning. To cope
with these aspects of complexity, we define simple as the smallest meaningful
unit of a model, with one dependent variable and direct relations to that
variable only (see Figure 2-4), and complex as a larger chunk that contains
indirect relations and maybe (multiple) loops (see Figure 2-5). An important
aspect in complexity is the length of the paths that can be followed in the
reasoning with a model.

inflow rate

Figure 2-4 Example of a simple model

water] level

nflow rate ouflow rate

level in tank

flow from tap hole section

out velocity
Figure 2-5 Example of a complex model

Finally, the third dimension, domain-specificity, relates to whether a
knowledge element is specific for a domain or has a more general, transferable
nature. Domain-specific and general reasoning skills are interwoven and
function in reciprocal interaction. Therefore, general reasoning skills might best
be articulated in a domain without prior domain-specific knowledge, for
example in a domain about a fantasy topic.
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Combining the three dimensions now yields the complete ‘ACE framework’
with twelve cells: each of the three types of reasoning can be applied to simple
and complex models, and can be related to a specific domain or be of a general
nature.

24  Applying the framework

In this section, we will apply the framework to an introductory model in the
domain of global warming, in order to illustrate how the framework can be
used to describe the relevant modeling-related knowledge in this particular
domain and how it can be used as a guideline to construct test items directed at
measuring specific aspects of this knowledge.

241  Domain: global warming

We chose a topic that is part of the curriculum of pre-university students and in
which it is possible to create a simplified model: global warming. In the basic
energy model of the earth, a central concept is the radiation of the sun, providing
energy to the earth, the earth losing energy because of the outgoing radiation.
Other influencing variables are the degree of reflection of the surface of the
earth, represented by the variable albedo, the temperature of the earth surface,
and the heat capacity of the earth.

The underlying model should not be too simple or too complex. In our
basic energy model there is one state variable, the energy in the earth, being the
central variable. There are 6 auxiliaries: radiation of the sun, albedo, inflow of
energy, temperature, heat capacity, and outgoing radiation (see Figure 2-6). The
model shows a longest path length of 5, an inflow and outflow part, and one
negative feedback loop in the outflow. This gives opportunities to develop both
simple and complex items using direct and indirect relations, and using the
feedback loop. The feedback loop represents the presence of equilibrium. In the
system of global warming the temperature will be in balance with specific
values of the variables in the long term.
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Figure 2-6 A basic global warming model

242 From framework to test items

We will describe items for the three types of reasoning: apply, create, and
evaluate, and in two types of complexity: simple and complex. For this domain,
global warming, the difference between simple and complex is made by using
direct and indirect relations in the items. Furthermore, complex items include
reasoning with equilibrium. To assess domain-specific knowledge, additional
items on the reproduction of domain-specific knowledge were constructed.

2.42.1  Apply - simple

In the category ‘apply - simple’, the ability to reason with a direct relation is
addressed. The sample item below assesses the understanding of the causal
relation between albedo and the inflow of energy to the earth (see Figure 2-7).
The relation between the two variables is represented in the given model as a
direct relation. In addition to the multiple choice question, an explanation is
requested to assess the understanding in more detail.

Choose the correct statement.

A. The higher the albedo, the larger the inflow of energy to the
earth.

B. The higher the albedo, the smaller the inflow of energy to the
earth.

C. The albedo does not influence the inflow of energy to the
earth.
Explain your answer.
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Figure 2-7 Example of an apply - simple item

Other possible operationalizations in the category ‘apply - simple’ are: applying
a formula to deduce the value of a variable, or an open question that asks the
student to explain a direct relation between two variables.

24.2.2  Apply - complex

In the category ‘apply - complex’, the ability to reason with indirect and
composite relations is addressed. In the basic energy model of the earth the
feedback loop is causing the occurrence of equilibrium. Similar to the ‘simple’
segment of the apply category, the ability to reason with complex structures can
be assessed by a multiple choice item or an open question. The item below
shows an example of an open question about the development of temperature
in the given basic energy model (see Figure 2-8). The item asks the student to
express understanding of equilibrium in both a sketch and an explanation.

We performed an experiment with a computer simulation. The values in
the table show that the temperature on earth increased to 30 °C after
three years.

Starting temperature 10 °C
Heat capacity 50 J/K
Inflowing radiation 3 W
Albedo 20 %
End values (after 3 years):

Temperature 30 °C
Outgoing radiation 2.4 W

In a graph, sketch the development of the temperature between start
time and end time of the computer simulation. Explain your sketch.
Also, describe what happens with the temperature after a longer period
of time.

Figure 2-8 Example of an apply - complex item
2.4.2.3  Evaluate - simple

The evaluation of models and data is addressed in the ‘evaluate’
category. In the ‘simple’ segment, items ask to evaluate a direct relation in a
model or to evaluate specific data from an experiment with respect to a direct
relation. In the sample item below, the causal relation between inflow of energy
and albedo is asked to be evaluated (see Figure 2-9).

Is it correct that a high inflow of energy causes a low albedo? Explain
why or why not.

Figure 2-9 Example of an evaluate - simple item
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2424  Evaluate - complex

In the ‘complex’ segment, the evaluation of a larger part of a model or
the evaluation of experimental data with respect to an indirect relation is
addressed. In the sample item below, an experiment is described in which the
indirect relation between the inflow of energy and temperature is investigated
(see Figure 2-10). The item asks the student to evaluate a conclusion based on
the presented experimental data .
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André performed two experiments with the simulation to investigate the
relation between inflowing radiation and temperature.

experiment 1: experiment 2:
Starting temperature 10 °oC Starting temperature 10 °oC
Heat capacity 50 J/K Heat capacity 50 J/K
Inflowing radiation 2.5 W Inflowing radiation 1.5 W
Albedo 0 % Albedo 30 %
End values (after 3 End values (after 3
years): years):
Temperature 33 °C Temperature -25 °C
Outgoing radiation 2.5 W Outgoing radiation 1.1 W
°C 40 -

30 +

20 +

10 -

——experiment 1

experiment 2

time (years)

From these data, André concludes that, the higher the inflowing
radiation, the higher the temperature on earth. Is it correct for André
to draw this conclusion? Explain your answer.

Figure 2-10 Example of an evaluate - complex item
2425  Create - simple

In the ‘create’ category, the ability to create, modify or extend models is
addressed. Creating at the simple level includes defining new variables, adding
direct relations, and creating models consisting of only one dependent variable
and direct relations with this variable. In the example below, the basic energy
model is expanded with the concept of atmosphere (see Figure 2-11). The item
asks the student to extract a relevant new variable from the context that models
the presented situation.
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In our model, outgoing radiation is dependent on the temperature on
earth. We did not take into account the fact that part of the outgoing
radiation is not flowing out, but is reflected by the atmosphere around
the earth.

Describe which new variable(s) you need to model this situation.

Figure 2-11 Example of a create - simple item
2.42.6  Create - complex

Creating at the complex level includes creating larger model structures with
indirect relations and feedback loops. In the sample item below, a situation is
described of a watch running on solar energy with several functions and one of
the functions, the display’s lighting, giving information about the battery’s
energy (see Figure 2-12). The student has to draw a model of this situation. The
purpose of the model is predicting the empty time of the battery.

Suppose you have a watch running on solar cells. Just like a solar
collector, the solar cells pick up the visible light of the sun,
convert it to electricity, and store the electricity in the watch"s
battery. If you often use the watch"s stopwatch function, the battery
will empty earlier. Also, the intensity of the display®s lighting is
adjusted to the amount of energy in the battery. When the lighting is
weak, you know the battery is almost empty.

Draw a model of this situation in order to be able to predict the empty
time of the battery. Explain your drawing.

Figure 2-12 Example of a create - complex item

The example items presented here demonstrate how all types of modeling
knowledge distinguished in our framework can be operationalized based on a
single introductory model in the domain of the energy of the earth.

For reliable use in an experimental study, each type of item needs a
standardized scoring method. We designed a scoring method based on scoring
correct and incorrect answer elements. Basis for the scoring method is the
central element of a relation between two variables (Bravo, Van Joolingen, & De
Jong, 2006; Lohner, Van Joolingen, & Savelsbergh, 2003). We divided the
element of a relation into three parts: the existence, the direction, and the
quality of the relation. Other answer elements are statements related to
experimentation in the evaluate category items. Furthermore, answer elements
strongly depend on the domain.

31



Chapter 2

2.5 Discussion

In this chapter, we presented the ACE-framework for modeling knowledge,
based on three dimensions: type of reasoning process (apply, create, and
evaluate), complexity, and domain-specificity (general and specific). We
demonstrated how the modeling knowledge framework enables the systematic
design of an assessment instrument. For the domain of global warming, we
applied the framework in the development of a test with items in the twelve
cells of the framework. An important factor in knowledge building and mental
models is prior domain-specific knowledge (Westbrook, 2006). Therefore, we
added items to the test that accounted for conceptual knowledge in the domain
of global warming.

By specifying the framework we categorized the learning outcomes that
can be expected from the computer modeling of dynamic systems. This
categorization supports the investigation of modeling knowledge in the
different components of a modeling activity. The development of the test in the
sample domain of global warming showed that the framework could be
operationalized in a systematic way. The item construction in this domain gave
a valuable and useful indication for systematic item development based on the
framework.

Further research will need to focus on several aspects. First, the validity
of tests based on the framework needs to be investigated. As a first step, we
developed a test in the domain of global warming. The content covered by the
test was checked by experts in the field of modeling to be representational
within the domain. Hand in hand with the item development, we developed a
systematic scoring method to ensure reliable scoring. In the scoring method, not
only the correct elements are of interest, but also the occurrence of common
mistakes and misconceptions within the domain. Further empirical studies
need to focus on the psychometric validity and discriminative validity of the
developed test.

Second, after having developed a test for one domain with promising
results, the framework needs to be applied to other domains. Especially, the
development of a test in a ‘fantasy’ domain in which students have no prior
knowledge may give valuable additional information about the role of the
domain dimension in the framework and give insight in the general reasoning
skills related to modeling.
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Chapter 3 Assessing students” model-based reasoning
skills in the domain of dynamic systems: a validation
of the ACE-test

Abstract

Computer modeling of dynamic systems is an emerging topic in science
education. The assessment of computer modeling learning outcomes, however,
still has some limitations to overcome. In this study, we validate a test about the
specific reasoning skills in a pre-university level modeling task. The test is
based on a modeling knowledge framework to distinguish between different
types of reasoning (Apply, Create, and Evaluate), at different levels of
complexity, and at different levels of domain-specificity. Test data of students
with different levels of modeling experience were analyzed using a
standardized scoring method with an acceptable interrater reliability. Construct
validity was examined for the three types of reasoning (Apply, Create, and
Evaluate) and additionally for Reproducing conceptual knowledge, using item
response models. The analysis yielded evidence of the four unidimensional
item scales. Significant differences in test scores were found as an effect of
modeling experience and trends were found for domain knowledge. The results
of this study suggest that the framework is suitable for developing a
multifaceted test of modeling related knowledge and skills with discriminative
power with respect to modeling experience. The ACE test appears to be suitable
to distinguish between the specific model-based reasoning skills. Modeling
reasoning abilities seem to relate to domain knowledge and might not simply
be learned hand in hand with general academic reasoning abilities.
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3.1 Introduction

Knowledge construction by students through active interaction with the
learning material is gaining attention in current views on science education
(Baggott La Velle, McFarlane, & Brawn, 2003; Kruckeberg, 2006; Park, 2008).
Scientific reasoning and critical thinking play an important role as part of such
knowledge construction and this has led to an interest in computer modeling of
dynamic phenomena. In modeling, learners acquire an understanding of the
domain at hand by building, using, and testing computer models (cf., Forbus,
1996; Lohner et al, 2003). Computer modeling allows moving beyond
reproducing and applying knowledge as a learning goal towards goals related
to creating and evaluating knowledge in domains that involve more or less
complex dynamic phenomena.

Dynamic phenomena reveal autonomous behavior as a function of time
and often feature interactions between variables, feedback loops, nonlinear
behavior, and time delays. The behavior of such phenomena is hard to predict
or understand by reasoning alone (Gentner & Stevens, 1983). Building and
simulating computer models has helped to gain insight into many kinds of
complex dynamic systems, such as the weather system, global warming,
molecular dynamics, and population biology. Given the broad usefulness and
the widespread application of these systems it is worthwhile for a student to be
knowledgeable about computer models and gain insight in their dynamic
nature.

Computer modeling tools such as STELLA (Steed, 1992) or Model-It
(Jackson et al., 1996) provide the opportunity to introduce computational science
in the upper secondary education classroom. Using such tools students create
models to represent their ideas about a domain, in terms of entities, variables,
and relations. When executing the model, the tool computes the values of the
variables as they develop over time. This allows the learner to see the course of
events predicted by the model. The modeler evaluates the computed values by
comparing them to his or her predictions and, consequently, the modeler may
decide to modify the model and start the cycle over again. Thus, computer
modeling can become a valuable part of science education, just as it has become
part of 'real’science.

Several beneficial effects of computer modeling on learning outcomes
have been predicted (Lohner, 2005). These include a better understanding of the
behavior of dynamic systems in general (Forbus, 1996; Hogan & Thomas, 2001;
Stratford et al., 1998; Wilensky & Resnick, 1999) as well as the development of
scientific reasoning skills (Milrad et al.,, 2003). Also, modeling can help the
acquisition of domain-specific knowledge by learners (Schecker, 1998).
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However, despite all these expectations, few claims have been substantiated
(Lohner, 2005). A possible explanation for this lack of evidence may be that
standard measures of learning are not adequate to assess the specific learning
outcomes that can be expected in a modeling environment (Spector, 2001).
Traditional forms of assessment in science education focus on reproduction and
knowledge application to solve well-defined problems, mainly about static and
simple dynamic situations. However, the added value of computer modeling
education can be found in learning activities requiring dynamic reasoning
about more complex dynamic phenomena. In these activities one develops
abilities in defining relevant variables and relations, and in evaluating the
created model by judging the individual relations, the structure of the model,
and the data that is produced by the model.

Earlier attempts have been made to assess the learning outcomes of
modeling, but these attempts suffer from several limitations in relation to
science education research. For example, Booth Sweeney and Sterman (2000)
concentrated on one aspect of modeling, systems thinking skills, learned in an
‘extremely simple task’ that lasted only 20 minutes. When students are learning
to model for a longer period of time, more aspects of modeling will come into
play and at a more elaborate level. At the other extreme some studies
concentrate on themes that go beyond computer modeling such as ‘nature of
science’, epistemological knowledge, and self-regulation (Guttersrud, 2006;
Hogan & Thomas, 2001). Although computer modeling activities can contribute
to these aims, this goes beyond the specific learning outcomes we are looking
for in this study. Another limitation in previous research is the efficiency of the
modeling assessment. Some studies assess modeling proficiency by means of
information-poor students’ log files (Ergazaki et al., 2005; Forbus et al., 2005) or
use labor-intensive and subjective assessment methods such as interviews and
videos (Forbus et al., 2005). In both cases the assessment is not useful in larger
scale research and educational practice, and it is worthwhile to find more
efficient methods.

These limitations call for the design of more adequate instruments to
measure the different types of knowledge and skills learners develop as a result
of a modeling activity. An appropriate test for knowledge and skills related to
modeling will not only contribute to better research in the subject of modeling,
but is also necessary for a full acceptation of modeling in educational practice.

In order to be able to detect differences in learning outcomes between
traditional and modeling education on these specific aspects, we have
developed a test that incorporates both traditional learning merits such as
reproducing, and modeling merits such as applying, creating, and evaluating.
Based on the ACE framework we developed an assessment instrument with
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subscales for each type of learning outcome we distinguished (Van Borkulo,
Van Joolingen, Savelsbergh, & De Jong, 2008). The current study aims to
validate the instrument by using the instrument to assess the modeling
knowledge of a diverse sample of students, who could be expected to differ in
modeling proficiency.

3.2 The ACE Modeling Knowledge Framework

As follows from the description above, modeling knowledge involves the
ability to perform specific reasoning processes in a domain, beyond
reproducing domain facts and formulae and applying knowledge in the form of
solving problems. This results in the ACE dimension, for apply (A), create (C),
and evaluate (E) (Van Borkulo et al., 2008). Measuring these reasoning processes
should reveal learners’ knowledge about modeling and its underlying process.

Each of these ACE reasoning processes can be mastered in situations at
different levels of complexity and in a domain-specific or a domain-general
way. Both complexity and domain characteristics may modify the way the
reasoning processes operate. Therefore these two aspects form a second and
third dimension of the framework (see Figure 3-1).

Types of reasoning

Complexity Apply Create Evaluate
Mental simulation Build or extend amodel Scientific regsoning

Simple Predict or explain the Create a partofa Test a direct relation
Srllest consequences of a model

meaningful unit direct relation
Low level

Part

Complex Predict or explain the Createamodelasa  Testan indirect
Composite behavior of a global solution relation or model
High level structure, indirect

Conglomerate relation or loop

\Domain—specific ADomain—general

Figure 3-1 The ACE modeling knowledge framework with samples of modeling
actions
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3.2.1  First Dimension: Types of Reasoning (ACE)

The reasoning dimension describes the specific reasoning processes involved in
the process of reasoning activities related to modeling. The relevant processes
can be inferred from the theories of scientific inquiry (De Jong, 2006; Van
Joolingen & De Jong, 1997; Klahr & Dunbar, 1988), where scientific reasoning is
regarded as searching a hypothesis space and an experiment space. The
hypothesis space represents all possible hypotheses about the domain, whereas
the experiment space represents all experiments that can be performed in the
domain. We distilled three types of reasoning, apply (A), create (C), and evaluate
(E) models that constitute the core of modeling. First, apply refers to applying
the rules of a model in order to infer predictions and explanations. In the case of
dynamic systems, applying may involve the (mental) simulation of the evolution
of the system over time. Both prediction and explanation are part of searching
hypothesis space and relating the hypotheses found to experiment space.
Second, creating a model is building a new model or expanding an existing
model, by adding or modifying variables and relations in the model. Creation
processes represent moving in and expanding the hypothesis space. Finally,
evaluating a model represents a search in experiment space and the mapping of
its results to the predictions made by the model.

Although our focus is on the role of these reasoning processes in
dynamic systems modeling, their relevance goes beyond that, and in fact it
should be noted that the reasoning processes involved in modeling bear strong
resemblance to the higher order learning aims in Bloom’s (revised) taxonomy
(Anderson & Krathwohl, 2001).

3.22  Second Dimension: Complexity

Each of the reasoning processes described above can be mastered either with
simple models or also with complex models. Model complexity depends on
structure and behavior. Structural aspects relate to the number of variables and
relations, the number of steps in a step by step reasoning using the model, and
the occurrence of circular structures, such as feedback loops (Gentner &
Stevens, 1983; Johnson-Laird, 2001). Behavioral aspects include, for instance, the
occurrence of equilibrium and oscillation.

Reasoning about a simple model structure is qualitatively different
from reasoning about a more complex structure for each of the three ACE
processes. For instance, applying knowledge of a simple model structure
involves local reasoning such as “what are the direct consequences of a change
in variable value using the relation ‘the higher X, the lower Y’”. When applying
knowledge of a complex model structure, it is not sufficient to trace all direct
relations. One also needs to take the overall structure into account, recognize
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the structure as a negative feedback loop, and weigh the parallel influence of
several factors in the model. A prediction of the value of a variable (for
example, ‘variable X will approach a constant value’) requires a step by step
explanation of influences of factors (in the example, ‘the higher X, the higher Y;
but the higher Y, the lower X; and therefore the lower Y, etc...”) and insight in
the system’s behavior (in the example, ‘it is a feedback loop that causes
equilibrium and therefore will reach a balanced value of X’). The qualitative
difference between simple and complex reasoning is related to difficulty, and
represents the fact that reasoning with complex structures requires higher-level
thinking.

In the case of evaluation of a model or output data, the same distinction
can be made between reasoning with simple and complex model structures.
The evaluation of a simple model structure involves comparing experimental
data produced by the model related to direct relations to reality or to one’s own
expectations and draw conclusions. The evaluation of a model with a more
complex structure involves examining experimental data produced by parallel
influences and system behavior or assessing a model structure.

In the case of creating a model, creating simple elements means
defining new variables and direct relations between them. Creating complex
structures involves more variables and relations to be added in a single
coherent set of actions, for instance adding a substructure to a model that
represents a complete feedback loop.

To cope with these aspects of complexity, we define simple as the
smallest meaningful unit of a model, with one dependent variable and direct
relations to that variable only, and complex as a larger chunk that contains
indirect relations and possibly (multiple) loops and complex behavior,
requiring more complex reasoning (see Figure 3-2).
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hole section
flow from tap

Complex

Figure 3-2 Example of a simple and a complex model structure

3.2.3  Third Dimension: Domain-Specificity

Each of the reasoning processes can be mastered in a domain-dependent or in a
domain-general way. In many cases reasoning is domain-dependent (e.g.,
Wason, 1968). Reasoning with models is no exception. In case of an abstract
model, the student can only reason with the rules in the model, whereas in the
case of a model framed in a concrete domain, the student’s inferences will also
be influenced by prior knowledge about the phenomenon (Sterman, 2002), for
instance by retrieving known behavior of a system to support the generation of
a prediction. Moreover, also at the strategic level, students’ decisions and
approaches will be steered by ideas and expectations derived from domain-
specific knowledge (Chi & Roscoe, 2002). Domain-specific knowledge manifests
itself in the ability to reproduce facts, formulae, and definitions that play a role
in the domain.

3.3  Assessing modeling knowledge, the ACE test

In this section we describe the operationalization of the dimensions in the
framework into test items. In order for the test to make a useful research
instrument in secondary education settings, there are several requirements.
First, the test should be easy to administrate, preferably without a need for
specific software. Second, the test items must be described in a generic notation
that can be understood by all learners without extensive training. Third, to give
insight in reasoning used, the test items must also require an argumentation
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from the learner. Finally, in order to allow future usage in other domains, the
item construction format must preferably be suitable for different domains and
incorporate generic construction rules.

3.3.1 Types of Reasoning

The type of reasoning ‘apply’. The ability to apply the rules of a model is
expressed by translating the formal representation of the model into
meaningful reasoning. This reasoning ability can be addressed by asking for
explanations or predictions of model behavior, for example the influence of one
variable on another (direct or indirect) or the occurrence of equilibrium. The
explanation can be given by a step by step reasoning, using variables and
relations in the model. Predictions can be given in words (e.g. “the temperature
will increase”, or in visual form, such as by drawing a graph representing the
development of temperature over time.

The type of reasoning ‘create’. The ability to create a model is composed of
extracting relevant information from the context and translating the
information into specific, computable variables and defining the relations
between them. The context presented in a create item must use clear language
in describing the context realistically, so that the student can show his or her
ability to translate common language into the formal language of a model. The
description of a realistic phenomenon usually contains more information than
necessary for a formal model and is formulated less exactly. Therefore, create
items need context descriptions that on the one hand give enough freedom in
the translation from words to a model, but on the other hand are not too
laborious in order to avoid too large an influence of linguistic competences.

The type of reasoning ‘evaluate’. When evaluating a model or data, the
focus must be put on a specific part of the model or specific data. For the
specific part of the model that needs to be evaluated, the student is asked to
argue whether the model adequately describes specific behavior. For example,
‘Is it correct that a high value of X causes a low value of Y? Explain your
answer.” When evaluating data produced by a model, the student needs to
relate the data represented by a graph or a table to the representation of a model
relation or hypothesis. These evaluating skills are evoked by questions such as
‘Is it correct that conclusion Z follows from the presented data? Explain your
answer.”

3.3.2  Complexity

In order to measure the effects of complexity for each reasoning type, items were
created at different levels of complexity. Simple items involve direct relations
with a limited amount of variables. Complex items refer to structures in the
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domain, involving multiple variables, indirect relations, and feedback loops.
Complex items require reasoning beyond singular cause-effect relations and
may involve global properties such as equilibrium.

3.3.3  Domain-specificity

In order to determine the effect of domain knowledge on reasoning, test items
were created for both a real domain (in our case on the earth’s greenhouse
effect) and a fantasy domain (called harmony of the spheres). The models
underlying both types of items are isomorphic. The fantasy domain is used to
invoke reasoning processes on a model outside the context of available domain
knowledge.

In order to control for the available domain knowledge it is worthwhile
to assess the ability to reproduce conceptual knowledge (i.e. facts that can be
known about the domain). Reproducing conceptual knowledge is evoked with
questions such as ‘What is concept X?" or ‘What is the relation between concept
X and Y? Describe the role of concept Z.” The possibility to construct reproduce
items strongly depend on the concepts in the domain. Items on reproducing
conceptual knowledge can only be created for the real domain.

3.3.4  Test Characteristics

The whole test was administrated in a paper-and-pencil format. As a notation
to present the models in the test, we used the directed causal concept map
(Novak, 1990). This format was understandable for all students after a short
explanation. Variables are represented by circles labeled with a variable name,
causal relations are represented by arrows, and the nature of the relation is
expressed by a plus or minus sign. An advantage of using this format is that it
is independent of specific modeling syntax used in the various modeling tools.

The entire test falls apart in a domain-specific part and a domain
general part. Each part has an introduction in which the central model is
introduced (see Figure 3-3), and is followed by the questions. The questions in
the domain-specific part are about the greenhouse effect. In the model that
precedes these question the Earth is treated as a “Black Sphere”, which is the
reason why this subtest was labeled “Black Sphere”. This subtest includes 29
test-questions, including 6 questions about conceptual knowledge (examples
are presented in Figure 3-4). The domain-general part concerning the fantasy
domain “Harmony of the Spheres” is about the model presented in Figure 3-5,
and consists of 23 questions (see figure 3-6 for examples). Table 3-1 presents the
distribution of test items over types of reasoning processes.
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Table 3-1 Distribution of the number of items for the black sphere domain and
the harmony domain

Number of items Black sphere domain Harmony domain
simple complex simple complex
Reproduce items 3 3 n.a. n.a.
Apply items 3 4 3 4
Create items 3 6 3 6
Evaluate items 3 4 3 4
Total 12 17 9 14
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Figure 3-3 The introduction model of the black sphere that was given in the test

Reproduce - simple
What is albedo (or reflectivity) of a substance?

Reproduce - complex
What is the relation between energy in the earth and the temperature on
earth? Describe the role of heat capacity.

Figure 3-4 Eight black sphere test items
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Apply - simple
Choose the right statement.
A. The higher the albedo, the larger the inflow of energy to the

earth.

B. The higher the albedo, the smaller the inflow of energy to the
earth.

C. The albedo does not influence the inflow of energy to the
earth.

Explain your answer.

Apply - complex

We performed an experiment with a computer simulation. The values in
the table show that the temperature on earth increased to 30 °C after
three years.

Starting temperature 10 °C
Heat capacity 50 J/K
Inflowing radiation 3 W
Albedo 20 %
End values (after 3 years):

Temperature 30 °C
Outgoing radiation 2.4 W

In a graph, sketch the development of the temperature between start
time and end time of the computer simulation. Explain your sketch.
Also, describe what happens with the temperature after a longer period
of time.

Create - simple

In our model, outgoing radiation is dependent on the temperature on
earth. We did not take into account the fact that part of the outgoing
radiation is not flowing out, but is reflected by the atmosphere around
the earth.

Describe which new variable(s) you need to model this situation.

Create - complex

Suppose you have a watch running on solar cells. Just like a solar
collector, the solar cells pick up the visible light of the sun,
convert it to electricity, and store the electricity in the watch"s
battery. If you often use the watch®"s stopwatch function, the battery
will empty earlier. Also, the intensity of the display"s lighting is
adjusted to the amount of energy in the battery. When the lighting is
weak, you know the battery is almost empty.

Draw a model of this situation in order to be able to predict the empty
time of the battery. Explain your drawing.

Figure 3-4 Continued
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Evaluate - simple
Is it correct that a high inflow of energy causes a low albedo? Explain
why or why not.

Evaluate - complex
André performed two experiments with the simulation to investigate the
relation

between inflowing radiation and temperature.

experiment 1:

experiment 2:

Starting Starting 10 oC
temperature temperature

Heat capacity Heat capacity 50 J/K
Inflowing Inflowing 1.5 W
radiation radiation

Albedo Albedo 30 %
End values (after End values (after

3 years): 3 years):

Temperature Temperature -25 oc

Outgoing radiation

Outgoing radiation 1.1 W

°C

40

30

20

—experiment 1
experiment 2

time (years)

From these data, André concludes that, the higher the inflowing
radiation, the higher the temperature on earth. Is it correct for André
to draw this conclusion? Explain your answer.

Figure 3-4 Continued
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( gravity Mercury ) ( B
o = S s
o - o S 2 :
4 : \
/
/+ + \
,u~—~%¢“' + e - '“%WN~J~H
[ level increase ) [ harmony level | [ level decline )
/+ -

( radiation of the™, ( mass Earth |
\ / - -

sun J

Figure 3-5 The introduction model of the harmony of the spheres that was
given in the test

Apply - simple

Choose the right statement.
A. The higher Mercury’s gravity, the smaller the volume.
B. The higher Mercury’s gravity, the larger the volume.
C. Mercury’s gravity does not influence the volume.

Explain your answer.

Apply - complex
We performed an experiment with a computer simulation. The values in
the table show that the volume increased to 30 °C after three years.

Starting volume 15 dB
Mercury’s gravity 375 Gals
Inflowing radiation 2.5 W
Earth’s mass 75000 Et
End values (after 3 years):

Volume 25 dB
Level decrease 2 hw

In a graph, sketch the development of the volume between start time and
end time of the computer simulation. Explain your sketch. Also,
describe what happens with the volume after a longer period of time.

Figure 3-6 Six harmony test items
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Create - simple

Pluto’s orbit around the sun is very long and oval. Therefore, the
distance between Pluto and the sun is not always the same, but varies
from 4 to 7 billion kilometers. If Pluto is located far from the sun,
the volume turns out to be low.

Describe which new variable(s) you need to model this situation.

Create - complex
Add the phenomenon of Pluto to the following model.

( gravity Mercury ) [ volume
= - o~ N
(level increase ) (' harmony level ) fieveldechnef
o : =
/+ -
(radiation of the"‘-\: i._. mass Earth

sun

Evaluate - simple

Is it correct that level increase influences the Earth’s mass? Explain
why or why not.

Evaluate - complex

Is it correct that the harmony of the spheres will become deafeningly
loud after some time for a certain large amount of radiation of the
sun? Explain your answer.

Figure 3-6 Continued
34  Purpose of the Study

The purpose of this study is to validate the modeling test, in order to ensure its
usefulness for classroom research. A first requirement is a reliable scoring
method that enables multiple raters to agree on the judgment. For a test to be
valid, it is necessary that test discriminates between the different reasoning
abilities identified in the framework and between participants with different
backgrounds with respect to the different dimensions.

In this study, we first examined the interrater reliability of the scoring
method. Second, we analyzed construct validity of the test by looking at the
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structure of item responses in order to find evidence of the subskills identified
in the framework. First, we expected distinguishable scales for the reasoning
processes apply, create and evaluate and, in the case of realistic domain,
reproduce conceptual knowledge. Second, the dimension of complexity may
distinguish between simple and complex reasoning. In our analysis we focused
on the overall effect of complexity on reasoning performance. Although this
distinction may recur in the subscales for each of the reasoning processes, our
analysis was limited to the overall effect, because the number of items for each
reasoning process did not permit a more detailed analysis within each type of
reasoning . Likewise, the effect of domain-specificity was assessed at the overall
level. However, in this case, the effect of conceptual knowledge was taken into
account because we expect an influence of domain knowledge on the domain-
specific items.

Finally, we investigated the power of the test to discriminate between
students with and without modeling experience, and between students with
and without prior domain knowledge. We expected both experienced and non-
experienced students and students with and without prior domain knowledge
to provide a large variety in the answers. Our hypothesis is that the experienced
students will perform better than the non-experienced students on all aspects of
the test. Overall, we expected the group with relevant prior domain knowledge
to perform better than the group without prior knowledge on the domain-
specific part of the test. Furthermore, we expected students with more
developed academic reasoning skills to perform better than students with
limited academic reasoning skills on the domain-general part of the test.

3.5 Methods

3.5.1 Participants

The test was administered to 131 participants of three different backgrounds: 43
eleventh grade students in secondary school with a science major (12 female, 31
male; between 15 and 19 years old), 31 first-year university students of
psychology (18 female, 13 male; between 18 and 25 years old), and 57 first-year
university students of engineering physics who had completed the course
Dynamic Modeling and Simulation prior to participating in our study (7 female,
50 male; between 18 and 21 years old). The participants were rewarded for their
participation. The eleventh grade students were awarded a gift voucher worth
€7,50; the first-year psychology students received course credits; and the
physics students could earn bonus points for their regular exam.
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352  Test
3.5.2.1  Scoring Method

For the scoring of items we identified typically correct and incorrect answer
elements. In order to achieve a systematic scoring key, we searched for
recurring patterns in the answer elements. A central element that occurs in all
types of test items is the relation. A relation can be described at different levels:
first, it can be mentioned that a relation between two particular variables exists;
second, the causal direction of the relation can be specified; and finally, the
nature of the relation (positive or negative) can be specified. For example, the
textual expression 'the greater the radiation of the sun, the greater the amount
of energy flowing to the earth' contains all three aspects of the relation between
the variables ‘radiation of the sun’ and ‘inflow of energy to the earth’. The
expression 'energy in the earth is needed for the temperature' is less specific and
only contains the first two aspects, namely the existence and the direction of the
relation, but not the third aspect of quality. See the Appendix for on overview
of the standardized correct answer elements in the domain of the energy of the
earth.

For each item in both subtests a participant received 0 to m points,
where m + 1 was the number of answer categories. The number of answer
categories varied from 2 for the least elaborate item to 5 for the most elaborate
items. The incorrect answer elements reflect several types of errors: general,
definitional, relational, evaluative, and creational. Figure 3-7 shows an example
of the scoring method for a simple create item.

3.5.3 Procedure

The data was collected at three secondary schools and a university. All
participants were given two hours to complete the test.

Before starting the test, participants were informed about the study.
The eleventh grade students and the psychology students were asked not to
worry about the items that were too difficult, to answer to their best ability, to
keep track of time, to try to finish all items, and to work in silence. The first-year
physics students were informed that the test was meant for novice modelers
and that the test used the notation of a causal concept map that was more
informal than they were used to in the course of dynamic modeling and
simulation. The physics students completed the test immediately after the
regular exam for their course.
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Create - simple

Suppose, the watch has besides solar cells a kinetic mechanism that can
produce energy. Movements of the arm and wrist will cause the kinetic
mechanism to charge the battery.

Describe which new variable(s) you need to model this situation.

Answer elements:
correct
1) Kkinetic energy
2) number of movements

incorrect
1) non-specific variable name (good intention but unclear, for
example “kinetic mechanism®)
2) non-relevant or redundant variable

Credits:
full credit
correct element 1 or correct element 2
partial credit
incorrect element 1
no credit
other responses

Figure 3-7 Example of the scoring method for a simple create item with 3
answer categories

The modeling test started with a short introduction to the topic of global
warming and a short introduction to the notation of causal concept maps. After
completing the black sphere subtest, participants continued with the harmony
subtest. The black sphere subtest was taken away immediately after
completion, to avoid looking back at similar items in the other domain.

3.5.3.1  Data Analysis

Interrater reliability was analyzed by calculating Krippendorff's alpha, a
reliability measure that is robust with respect to the number of observers,
sample size, and presence or absence of missing data (Hayes & Krippendorff,
2007). Krippendorff’s alpha is interpreted in the same way as Cronbach’s alpha.

The test was intended to assess students’ proficiency in four different
thinking processes: the three types of reasoning apply, create, and evaluate, and
reproducing conceptual knowledge. A first requirement is that the items within
a single scale assess the same underlying ability. In order to investigate this
aspect of construct validity, we used item response models for each of the
reasoning processes (Embretson & Reise, 2000). The data consisted of 52 item
responses of 131 students. Because the test items are polytomous with
maximum scores ranging from 2 to 5, the item scores cannot be assumed to
follow a normal distribution. These qualifications make the data less suitable

49



Chapter 3

for a factor analysis for which the data must be (near) normally distributed.
Item response models are more flexible with respect to the distribution of item
values, it can handle categorical data, and it is less restrictive to the number of
items.

Item response theory provides a way to test the assumption that a set of
items measures a latent ability (a so-called latent trait). Item response theory
makes the assumption that the differences in item responses among the
participants are explained by a different level of the latent ability. The theory
uses probabilistic models that describe the mathematical relationship between
an ability (latent trait) and item responses. An item response model describes
one or more latent traits and gives information about the goodness of fit of the
individual items that are supposed to measure the latent trait, for example the
reasoning ability of evaluating.

Several parameters are estimated in an item response model, for
example difficulty, discrimination or guessing parameters. If a set of test items
assesses a single latent trait indeed, the model will provide a good fit with
actual student scores. If the set of items draws on multiple underlying abilities,
the fit will be poor and, given sufficient statistical power, the model can be
rejected. Once the item parameters have been determined from the model, the
model can be used to compute an ability score (theta) for each individual
student. The advantage of using this ability score over the more usual sum of
item scores is that the theta scores potentially are more differentiating. The
estimation of theta may not have a linear relationship with the sum score.

In the one-parameter Rasch model only one parameter will be
estimated for each item, namely item difficulty. The chance of a particular
answer is related to the ability of a student and to the item difficulty described
by the difficulty parameter. The Rasch model is a relatively simple item
response model and in its simplicity it has proven to be sufficient for producing
measures (Liu & Boone, 2006). Therefore, to find evidence of the structure of
our modeling knowledge framework and to scale the items for the three types
of reasoning and for reproducing conceptual knowledge items, we made use of
the one parameter logistic model (OPLM), a polytomous extension of the Rasch
model (Verhelst, Glas, & Verstralen, 1995), for each of the scales.

To investigate the discriminative power of the test with respect to
participants of different levels of ability, we analyzed the variance of the scores
of the three groups of participants. We used estimated thetas in the analysis of
variance of the scores in the different segments of the framework and sum
scores for the other (sub)parts of the framework for which no theta estimates
were available. The sum scores were calculated by awarding each item with a
maximum of 1 point. This means each item is given the same weight and
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thereby the same importance in the sum score. Partial credit was given for
partly correct answers according to the item's answer categories. Therefore, in
the sum score analysis the maximum score on the black sphere subtest was 29
and on the harmony subtest 23.

3.6 Results

3.6.1 Interrater Reliability

Part of the test data, 21 out of 131 tests equally distributed among the groups of
students and randomly chosen, was scored by the first author and a second
independent rater who was trained in using the coding scheme. Interrater
agreement was examined at the level of answer elements and resulted in an
acceptable interrater reliability of Krippendorff's alpha .77. The remaining test
data was coded by the first author alone.

3.6.2  Construct Validity of the Scales
3.6.2.1  Item response models

We analyzed the items for the subscales of the three types of reasoning and
reproducing conceptual knowledge with one-parameter item response models
(Verhelst & Glas, 1995) as implemented in the software package OPLM
(Verhelst et al., 1995). We first checked whether all items together could be said
to assess a single underlying ability. Although the reliability of the combined
scale is high (alpha = .85), this model could clearly be rejected (R1c = 457.810, df
= 384, p = .0052). Thus, although the combined scales could serve as a reliable
instrument to assess overall modeling ability, the OPLM-analysis indicates that
all items together do not represent a unidimensional construct and that there
are multiple underlying abilities. Therefore, as a next step, we used four
models, one for reproducing conceptual knowledge, and one for each type of
reasoning process (still taking domain-specific and domain-general items
together). This way, the resulting models could not be rejected (see Table 3-2),
thus indicating that the results can be explained in terms of four one-
dimensional latent abilities. Reliabilities are Cronbach’s alpha of .64 (Apply), .78
(Create), .45 (Evaluate), and .36 (Reproducing conceptual knowledge) (see Table
3-2).
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Table 3-2 Statistics of the one-parameter item response models for the three
types of reasoning and reproducing conceptual knowledge

Type of mean (SD) max number alpha Rlc dft  p
reasoning of items

Reproduce 779 (2.64) 13 6 36 2024 24 68
Apply 14.71 (5.73) 37 14 64 11999 108 .20
Create 27.44 (8.00) 48 18 78 138.65 141 .54
Evaluate 13.78 (4.06) 31 14 45 8148 90 .73

To investigate the construct validity for the framework dimension of
complexity, we analyzed the difficulty of the test items for the two levels of
simple and complex. The item difficulty was estimated by ConstructMap
software (Kennedy, Wilson, Draney, Tutunciyan, & Vorp, 2008) that estimates
item difficulty on the scale of estimated ability. The simple items had a smaller
mean item difficulty of -.371 (SD = .898). The complex items had a larger mean
item difficulty of .251 (SD = .840). Analysis of variance (ANOVA) of the mean
item difficulty for the simple and complex items showed significant differences,
F(2,50) = 6.493, p = .014, effect size d =.72.

3.6.3 Comparing Group Scores
3.6.3.1  The effect of the variables gender and age

To ensure that the variables gender and age did not have effect on the test
performance we performed the following tests. To test for gender effects, we
ran a one-way ANOVA on the overall scores, F(1, 129) = 1.53, p = .22. Because
this test revealed no gender differences, the gender variable could be omitted
from the further analyses. To test for the effect of age, we examined the
correlation between the overall test score and age. The Pearson correlation was -
.15 and was nonsignificant.

3.6.3.2  Differences for the Types of Reasoning using Estimated Thetas

The OPLM item response models provided estimated thetas for each
participant for Reproducing conceptual knowledge and for each of the types of
reasoning (Apply, Create, and Evaluate). We performed analyses of variance
with the estimated thetas to check the discriminative power of these scales with
respect to participants with different levels of modeling proficiency. Significant
differences between groups were found for all four scales (see Table 3-3).

For the Reproduce items (F(2, 128) = 20.145, p = .000), intergroup
comparisons using the Scheffé post hoc criterion for significance indicated that
the physics students scored significantly higher than both the eleventh grade
and psychology students (p = .001, effect size d = .83; p = .000, effect size d = 1.31
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resp.). There was a marginally significant difference between the eleventh grade
students and the psychology students, where the eleventh grade students had
the higher scores (p = .051, effect size d = 0.50).

For the Apply (F(2, 128) =9.013, p = .000), intergroup comparisons using
the Scheffé post hoc criterion for significance indicated that the physics students
scored significantly higher than both the eleventh grade and psychology
students (p = .035, effect size d = .53; p = .000, effect size d = .95 resp.). No
difference was found between the eleventh grade students and the psychology
students.

For the Create items (F(2, 128) = 6.526, p = .002), intergroup comparisons
using the Scheffé post hoc criterion for significance indicated that the physics
students scored significantly higher than both the eleventh grade and
psychology students (p = .015, effect size d = .61; p = .010, effect size d = .68 resp.).
No difference was found between the eleventh grade students and the
psychology students.

For the Evaluate items (F(2, 128) = 3.751, p = .026), intergroup
comparisons using the Scheffé post hoc criterion for significance indicated that
the physics students scored significantly higher at p <0.1 than both the eleventh
grade and psychology students (p = .076, effect size d = .48; p = .080, effect size d
= .48 resp.). No difference was found between the eleventh grade students and
the psychology students.

Table 3-3 Means and standard deviations of the estimated thetas for the three
groups of students

Condition

Secondary Psychology Physics students
education (n=43) students (n=31) (n=57)

Mean 6 (SD) Mean 6 (SD) Mean 6 (SD)

reproduce score 0.146.*  (0.510) -0.148* (0.597)  0.546. (0.450)

apply score -0.344.  (0.518) -0.523.  (0.491) -0.097s  (0.407)
create score 0.020. (0.575) -0.071.  (0.614) 0313  (0.514)
evaluate score -0.595.* (0.390) -0.614.* (0.476) -0.388v*  (0.469)

Note. Means in the same row with different subscripts differ at p < .05 in the
analysis of variance.
*»<0.1.

3.6.3.3  Differences between the domain-specific and domain-general subtests
To investigate differences between the domain-specific and domain-

general subtests, we analyzed the performance of the three groups by
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comparing the sum (sub)scores for the two subtests separately (see Table 3-4).
Because the thetas estimated the ability based on items in both subtests, we
used sum scores in this analysis. The results of the group comparisons are in
line with the above described results of the theta analyses. Additionally, some
trends were found in the comparison of eleventh grade students and
psychology students; the eleventh grade student performed better on the items
for reproducing conceptual knowledge.

We analyzed the total sum scores for the subtest in the black sphere
domain. A test of homogeneity of variances indicated that the variances of the
three groups were not equal. Therefore, we performed a Mann-Whitney test
that showed that physics students scored significantly higher than both
eleventh grade and psychology students (U = 756, p = .001, effect size d =.76; U =
304.500, p = .000, effect size d = 1.33 resp.). In line with expectations, a trend was
found in favor of the eleventh grade students compared to the psychology
students.

An analysis of variance of the mean sum score for the black sphere
apply items of the three groups of students showed significant differences (F(2,
128) = 12.68, p = .000). Intergroup comparisons using the Scheffé post hoc
criterion for significance indicated that the physics students scored significantly
higher than both the eleventh grade and psychology students (p = .029, effect
size d = .54; p = .000, effect size d = 1.15 resp.). Again, a trend was found in favor
of the eleventh grade students compared to the psychology students. The
eleventh grade student (95% confidence interval [2.94, 3.69]) performed better
than the psychology students (95% confidence interval [2.25, 3.06]).
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Table 3-4 Means and standard deviations of the sum scores on subparts of the
domain-specific black sphere and domain-general harmony test for the three
groups of students

Condition
Secondary Psychology Physics students
education (n =43) students (n=31) (n=57)
Mean (SD) Mean (SD) Mean (SD)
total score 25.06a (6.50) 22.74. (6.71)  29.36v (5.03)
black sphere score  14.49. (3.93) 12.37a (4.10) 1711 (2.92)
harmony score 10.57a (3.41) 10.37a (3.43) 12.24p (3.20)
black sphere
reproduce score 3.39 (1.19) 2.67v (1.21) 4.25. (0.93)
apply score 3.31a (1.22)  2.66a (1.10) 3.95p (1.15)
create score 4.99 (1.99)  4.49. (2.16) 5.77v (1.61)
evaluate score 2.80 (0.93) 2.55a (1.21) 3.15p (1.05)
harmony
apply score 2.50 (1.43) 219 (1.32) 3.01b (1.36)
create score 5.00a (1.60)  5.09 (1.70) 5.88b (1.42)
evaluate score 3.07 (1.31) 3.20 (1.38) 3.65 (1.16)

Note. Means in the same row with different subscripts differ at p < .05 in the
analysis of variance.

3.7  Conclusion and Discussion

In this study we investigated the validity of a modeling knowledge test based
on the ACE framework of modeling knowledge. Using item response models,
we found evidence of four distinguishable abilities, corresponding with the
reasoning processes proposed in the ACE-framework. Reliabilities of the Create
and Apply scales were acceptable, whereas the reliabilities of the Reproduce
and Evaluate scales were low. Although, the low reliabilities on parts of the test
limit its power to detect small differences, the differences between the groups in
our study could still be detected.

The results of the analysis of variance show differences between the
students with and without modeling experience as expected. The physics
students performed significantly better than the other two groups on almost all
parts of the test. Moreover, domain knowledge seemed to play a role in the test
performance. In the black sphere subtest, comparing the eleventh grade and
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psychology students we found a trend in favor of the eleventh grade students.
The difference between these groups on the Reproduce items was significant. In
the harmony subtest the scores of eleventh grade students and psychology
students show no differences. The high performance of eleventh grade students
on the black sphere subtest can be explained by the actual presence of domain
knowledge whereas the psychology students did not have domain knowledge.
We expected the psychology students to perform better than the eleventh grade
students on the domain-general items based on a better development of general
reasoning skills. However, the results show no significant differences on the
harmony test. This may suggest that model-based reasoning abilities are not
simply developed hand in hand with general academic reasoning abilities.
Another explanation may be that the test is not sensitive enough to detect
differences between eleventh grade students and first-year psychology
students. Further study should clarify this.

Our study has some limitations. First, two of the four scales appeared to
have a low reliability. This makes these scales less suitable to be used as single
tests standing on their own and to detect individual differences. Second, there is
a tension between the research goal of validating the test and educational
practice. To validate each single cell in the framework, we need to develop
more items in each cell. In this study, we first focused on the main dimension of
the types of reasoning and on the dimension of complexity. The dimension of
domain-specificity still needs to be further investigated and will especially
become relevant when after a larger amount of modeling experience the model-
based reasoning skills are generalized to other domains.

For assessment purposes in educational practice, the research
instrument can be made more efficient. If there is no need to assess all subscales
independently, the test length could be reduced considerably, while
maintaining a balanced distribution of test items over the different aspects of
model-based reasoning. Furthermore, if the test is only used as a posttest, it
could be adapted to use the model representations that have been taught in
class.

In conclusion, the framework proved to be a useful tool to
operationalize the specific aspects of modeling knowledge in a test in the
domain of global warming. This study provided evidence that apply, create,
and evaluate are distinguishable processes in model-based learning outcomes.
The ACE test operationalized the processes and made it possible to develop
instruction according to the specific reasoning processes. Future research may
use the test in an experimental setting using the tests in the two different
domains as pre and posttests. Another important result is that the framework
enables the development of test items in other domains. Generic guidelines
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followed from the test item development in the domain we described in this
study and these guidelines can be applied in other domains provided the
domain structure contains a sufficient level of complexity. Furthermore, the
framework may also be used for designing an observation scheme to interpret
students’” modeling performance. As such we think the framework will be an
adequate tool to evaluate the learning of computer modeling skills and help the
field in studying the development of knowledge under varying conditions of
modeling.
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Chapter 4 What can be learned from computer
modeling? Comparing expository and modeling
approaches to learning dynamic systems behavior

Abstract

In this chapter, we compare the learning outcomes of two instructional
approaches, expository teaching and computer modeling. For this we use the
ACE test, an assessment instrument specifically aimed at the knowledge and
skills that should be acquired using computer modeling. A group of students
who performed a computer modeling task in the domain of global warming
was compared with a group who was taught traditionally. The assessment
aimed to discriminate between different types of learning outcomes based on
the ACE modeling knowledge framework. We found differences in learning
outcomes between the two instructional approaches on several scales of the test.
While both groups performed equally well on simple problems, the modeling
group outperformed the expository group on complex problems. More
specifically, the modeling group outperformed the expository group on
problems that required them to reproduce complex conceptual knowledge and
evaluate complex models and data. No differences were found for items that
required the application of knowledge or the creation of models. These results
show that the ACE test is sensitive in revealing differences for specific parts of
the ACE framework between the two instructional approaches and has
discriminative power with respect to the two instructional approaches.
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41 Introduction

Computer modeling is an emerging topic in secondary science education, in
which students construct or modify models of dynamic systems that can be
simulated. Through the construction of models and experimentation with the
resulting simulations, learners are supported in building understanding about
complex dynamic systems. Despite the fact that modeling of dynamic systems
appears to be very difficult for secondary education students (Cronin &
Gonzalez, 2007; Fretz et al., 2002; Hmelo, Holton, & Kolodner, 2000; Sins et al.,
2005; Sterman, 2002; Wilensky & Resnick, 1999), its expected benefits make it a
worthwhile activity in the science curriculum (Magnani et al., 1998; Mandinach,
1989; Stratford et al, 1998). Modeling dynamic systems invokes specific
learning outcomes compared to other modes of learning and these learning
outcomes need to be specified in order to make them measurable.

Computer modeling finds a place in approaches that see learners as
active constructors of knowledge, in which case the construction of knowledge
is materialized as the construction of an interactive external representation.
Learners investigate and experiment with a phenomenon from the real world in
order to create a model. Also, they investigate and experiment with the model
they constructed (Doerr, 1997; Hennessy et al., 2007). Models constructed by
learners can play a role in the process of inquiry as explicit representations of
learners’ ideas. For instance, parts of a model under construction may represent
a learner’s hypothesis about (a fragment of) the observed phenomenon (Van
Joolingen & De Jong, 1997). An example of a computer modeling environment
is shown in Figure 4-1. This modeling environment Co-Lab provides a
modeling, table and graph tool and will be used in this study.

60



E Ca-Lab Solo, in Full room

0| © (@

Comparing expository and modeling approaches

% Editor ©

2| & |o[=@

Ze 2|

g 'I:l Table [

Elﬂl@“ Model: EUCKET

S BECER

m- - o p—— o0l p {2 Cutflow_rate | (o] water_volume | |
%‘E‘@lﬂl@‘ e l}‘lm’l«l =— ||| &= model 0.000622] 0.03927| 4|
N [ Flow_fram_tap 0.000629, 0.040144] |
% [ Hole_Diameter 0.000636 0.041012)
1, ’: - 0.000643 0.041872|
[T Hole_section 0.000643) 0042726/
=] [] tnflaw_rate 0.000656 0043574
@] h Initisl_tank_level [7] nitial_tank_level 0000662 0.044415]
Inflom_rate; Hole_=eglion 0.000668, 0.04525,
& g Outtlon_ta1e oD Taste [ Level_in_zank 0.000674] 0.046079]
[] our_velocity 000068 0,046902
; 4 Ourflon_rate 0.00066, 0.047713
b H 0.000632 0.04853]
Ol
oy Out_velacity [ Cuerlow 0,000698] 0,049335]
Tank_Height [ Tenk_Diameter 0.000703 0.050135
ank_alume e er iR arie [] Tank_Height 0.000709 0.050929
- 0.000714 0051718
[ Tank_Section
0.00072] 0.052501
[0 Tank_velume 0.000725, 0,.053279)
] Water2valuma 0.00073 0.054051
TLanic.5 otiony T sime 0.000735 0054818
Flow_from_tap 0.00074) 0.055581
T Circuit Lab 0.000745, 0056338
L RCLab 1 0.00075 005709
P, hd 0.000755) 0,057837]
EEeph S ) ()
m | - |
EIEEIEY - ]
uertical 1
1 Qutflow_rate
léd) 000100
[ Flaw_from_tap
D Haole_Diameter il Tl
[ Hole_gection TR
[ 1nflow_rate
[ tnitial_tank_level BT S
[ Lewel_in_tank IR
[ out_velocity
v Gt rats RIS
[ overflew 0.00070
[ Tank_Dizmeter
[ Tank_Height - D0oED
harizantsl
R 0 25 S0 75 100 125 150 175 200 225 250 278 300
(&g time time

Figure 4-1 The learning environment Co-Lab with its modeling tool (top left
window)

Recently, the debate about the effectiveness of constructivist and in particular
inquiry approaches to learning has gained attention (Kirschner et al., 2006;
Klahr & Nigam, 2004; Rittle-Johnson & Star, 2007). The tendency of the criticism
regarding inquiry learning is that in experimental studies “unguided
instruction” has shown no benefits when compared with “direct instruction”.
For example, in a larger scale international study Lederman, Lederman,
Wickman, and Lager-Nyqvist (2007) compared inquiry learning with direct
instruction and found no difference in learning gains for the two contrasting
methods of instruction. The best instructional method might be a mix of inquiry
learning and direct instruction (see also Mayer, 2004). In a study by Star and
Rittle-Johnson (2008), discovery learning in which prompts were given about
possible strategies and direct instruction about the different strategies were
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compared in the learning of solving linear equations. On the one hand, it
appeared that both modes of instruction led to learning gains, i.e., an
improvement of flexibility in problem solving, and that both instructional
approaches were compatible. On the other hand, studies show the benefits of
inquiry learning on inquiry-specific learning outcomes such as process skills
(Geier et al., 2008), 'more sophisticated reasoning abilities' involved in solving
complex, realistic problems (Hickey, Kindfield, Horwitz, & Christie, 1999), and
scientific thinking skills in guided inquiry (Lynch, Kuipers, Pyke, & Szesze,
2005). Benefits of inquiry learning have also been found with respect to learning
goals that are similarly covered by direct instruction such as understanding of
science content (Geier et al., 2008).

The claim that inquiry instruction has no added-value compared to
direct instruction can be challenged at various points. Learning gains are
involved in both inquiry and expository approaches of teaching, but the specific
differences and similarities are hard to measure and require a specific test
instrument. Moreover, the modes of instruction can be implemented in various
ways: inquiry learning can be guided by more or less support and direct
instruction can be implemented with more or less opportunity for discovery.

In the current chapter, we address the important issue when comparing
different modes of instruction: how to measure the learning outcomes of
computer modeling. In comparing two approaches to learning one should
devise a test for learning that does right to the claims of these approaches. For
instance, when evaluating an approach that claims to improve the ability to
solve calculus problems, one should evaluate learners’ calculus problem solving
ability. Therefore, in order to evaluate computer modeling, it is important to
investigate its claims with respect to learning outcomes and then to create
instruments to test these outcomes.

Various benefits of computer modeling have been claimed in the
literature. First, modeling is a method for understanding the behavior and
characteristics of complex dynamic systems (Booth Sweeney & Sterman, 2007;
Sterman, 1994). Second, modeling is assumed to enhance the acquisition of
conceptual knowledge of the domain involved (Clement, 2000). Modeling has
the potential to help learners develop high-level cognitive processes and
thereby to facilitate conceptual change (Doerr, 1997). Third, modeling is
assumed to be especially helpful for the learning of scientific reasoning skills
(Buckley et al., 2004, Mandinach & Cline, 1996). Key model-based scientific
reasoning processes are described by creating, evaluating, and applying models in
concrete situations (Wells et al., 1995).

In order to assess the model-based learning outcomes we developed the
ACE (Apply Create Evaluate) test based on the ACE framework, that provides a
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precise operationalization of different types of modeling knowledge and skills
(Van Borkulo et al., 2008). The ACE framework served as the basis for the
development of the model-based reasoning test that was validated in a previous
study .

In the current chapter, we present a comparative study with two
contrasting modes of instruction: expository instruction and computer
modeling. As described previously, several studies argue that there is no
added-value of inquiry instruction over direct instruction. Yet, we claim that
modeling-based learning involves heterogeneous activities that are partly
uniquely related to a modeling task and should be assessed accordingly, and
that are partly also involved in expository teaching. Therefore, we expect
specific differences on the model-based reasoning processes of applying,
creating, and evaluating models when comparing modeling and expository
teaching, but also similarities. In the view of this study, the expository mode of
instruction directly exposes the information to the learners in textual format,
providing guidance in the form of assignments, but without any dynamic tools
such as simulations or concept maps and without explicit model building. The
modeling mode of instruction comprises a guided inquiry approach supported
by modeling and simulation tools. The two modes of instruction were
compared using the ACE test, a test that is dedicated to detect specific
knowledge gained by modeling activities. Before describing the details of the
study, we will briefly summarize the ACE framework.

4.2  Modeling knowledge: ACE framework

The ACE framework, as described in van Borkulo et al. (Van Borkulo et al.,
2008), distinguishes three dimensions of knowledge: 1) types of reasoning, 2)
complexity, and 3) domain-specificity (see Figure 4-2). The first dimension
comprises the core reasoning activities of a modeling activity: applying (A)
knowledge of relations in a model by making predictions and giving
explanations, creating (C) variables and relations between variables into a
model, and evaluating (E) models and experimental data produced by a model.
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Figure 4-2 Modeling knowledge ACE framework

The second dimension concerns the aspect of complexity. Modeling is typically
used to understand complex dynamic systems and understanding complex
systems is fundamental to understand science (Assaraf & Orion, 2005;
Hagmayer & Waldmann, 2000; Hmelo-Silver, Marathe, & Liu, 2007; Hogan &
Thomas, 2001; Jacobson & Wilensky, 2006). In the framework we distinguish
simple and complex model units based on the number of variables and relations
involved. A simple unit is the smallest meaningful unit of a model, with one
dependent variable and direct relations to that variable only, and a complex unit
is a larger chunk that contains indirect relations and possibly (multiple) loops
and complex behavior (see Figure 4-3). Since the derivation of indirect relations
in a causal network is often complex and computationally more demanding
(Glymour & Cooper, 1999), a test item about indirect relations will invoke more
complex reasoning.
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Figure 4-3 Example of a simple and a complex model part

The third dimension covers the aspect of domain-specificity. Modeling invokes
the acquisition of domain knowledge. By creating a model and experimenting
with the model, learners gain insight in the concepts and structures within the
domain. Furthermore, reasoning with the created model is influenced by the
availability of relevant prior domain knowledge (Fiddick et al, 2000).
Therefore, reasoning may be different in a familiar than in an unfamiliar
domain. In an unfamiliar domain, the only information learners have is the
model itself. Reasoning must take place following the relations in the model in a
step-by step way, building a reasoning chain. In a familiar domain, learners
may bypass part of these reasoning chains because they remember the outcome
of the chain as a whole. For instance, in a model that includes a capacitor, a
person with knowledge of electronics will be able to reason that the voltage
over the capacitor will increase as a consequence of a charging current, stepping
over the charge as an intermediate variable. In an unfamiliar domain such a
reasoning shortcut will not be possible.
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4.3  Research question

In this chapter, the two contrasting instructional approaches of modeling and
expository teaching are compared and the differences are investigated in the
specific model-based learning outcomes between the groups related to the
dimensions in the ACE framework.

We expected differences in learning outcomes on several aspects.
Because the modelers had tools that supported the creation and exploration of
conceptual structures with a concrete artifact, we expected the modelers to
display better reasoning with the complex models. The runnability of their own
models and the availability of a simulation tool enabled the modelers to
perform experiments and to evaluate experimental data. Moreover, a large part
of evaluating experiments is making predictions and thereby applying the rules
of system dynamics by reasoning with the relations. Therefore, we expected the
modelers to perform better on the subscales that measure the reasoning
processes evaluate and apply. Furthermore, a substantial amount of time will be
spent on constructive activities such as translating concepts into functional
variables and creating relations between variables. Thus, we expected
differences in favor of the modelers on the create scale. Finally, the expository
learners are more directly and explicitly exposed to the concepts in the domain.
Therefore, we expected the expository learners to be more efficient in
reproducing conceptual domain knowledge.

44  Method

441  Participants

Participants were eleventh grade students from two schools. The participants
were between 16 and 19 years old (M = 17.20, SD = .55) and all followed a
science major. In total 74 participants completed the instruction; 68.9 % were
male, 31.1 % were female.

442  Materials
4.4.2.1  Co-Lab learning environment

The Co-Lab software (van Joolingen et al, 2005) provided a learning
environment for each of the two conditions to learn about global warming. One
environment was designed for modeling-based instruction and consisted of a
simulation of the basic energy model of the Earth, a modeling editor to create
and simulate models, graphs and tables to evaluate the data produced by the
model, and textual information about the domain. A different environment was
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designed for expository instruction and consisted only of the textual
information.

All participants used worksheets with assignments about the factors in
global warming. The work was subdivided in three parts. The first part was
about climate models in general and included questions about the quality and
accuracy of using models to make global warming predictions. The second part
discussed the factors albedo and heat capacity, provided information, and
included questions about the influence of these factors on the temperature on
Earth. This was implemented in different ways for the modelers (who created a
model to support their reasoning) and the learners in the expository mode of
instruction (who could only use the information provided). For example, an
assignment about the influence of the albedo on the equilibrium temperature
asked both groups to predict what would happen with the equilibrium
temperature if the albedo was high or low respectively. Subsequently, the
modelers were asked to investigate their hypotheses with their model. The third
part was about evaluating one's understanding of the domain structure. The
modelers were asked to compare their own model's behavior with the model of
the given simulation of the phenomenon. The learners in the expository mode
of instruction were asked to compare their findings about the influencing
factors with given global warming scenarios. The scenarios specified a number
of plausible future climates under the assumption of different values of future
emissions of greenhouse gasses. As a final product the expository learners
wrote a report about the factors influencing the temperature on Earth as
opposed to the modelers who created a model.

443  The Modeling ACE Test

Based on the ACE framework, we developed the ACE test consisting of a
domain-general and a domain-specific part (Van Borkulo et al., 2008). We used
the domain-general part of the ACE test as a pretest and the domain-specific
part as a posttest. The domain-general fantasy harmony' test assessed domain-
general modeling skills before the intervention and the domain-specific global
warming 'black sphere' test was used as a posttest to assess model-based
reasoning skills in the instructed domain. For reasons of time constraints we
chose to focus on the domain-specific reasoning processes. Therefore, in this
study we analyzed the domain-specific part of the ACE test and used the
domain-general ACE test as a covariate to control for individual differences in
prior modeling skills.

The domain-general test was about the fictitious phenomenon of the
"harmony of the spheres”. Because it was about a fictitious phenomenon,
students would not have any relevant domain knowledge, or experiential
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knowledge to rely on. The domain-specific test was about the domain of global
warming, where students would have relevant domain knowledge after the
intervention. The model structures for both tests were isomorphic.

In a previous study (see Chapter 3), the test was validated with
students of different levels of modeling proficiency. The data analysis
confirmed the existence of four subscales: the types of reasoning apply, create,
and evaluate, and the reproduction of conceptual knowledge. Furthermore, the
test showed discriminative power with respect to groups of students of
different modeling experience and suggested a positive influence of domain
knowledge on the test scores.

The outcomes of the validation study have led to some changes of the
ACE test. Also time constraints on the current experimental setting limited the
total number of items. Two apply and three evaluate items were textually
modified, one apply and one evaluate item were removed, because the original
version appeared to be ambiguous in its formulation, leading to bad
performance in our analysis.

Also, some items appeared to be too difficult or too easy. For this
reason, three create items and one evaluate item were removed because they
were too difficult. Three create items were removed because they were too easy.
One apply item and one evaluate item were modified because they were too
easy. Finally, for reason of dependency between items three create items were
removed and in one apply item variable names have been replaced by others.

In the current study, the harmony test consists of 19 items in the core
ACE types of model-based reasoning in an unfamiliar domain (see Table 4-1).
Additionally, to be able to control for students' prior knowledge about the
modeling formalism six items were added about core elements in the modeling
language: stocks, flows, and feedback: 3 simple and 3 complex items. Figure 4-4
shows the introduction model that was given in the pretest. Figure 4-5 shows
examples of a simple apply item and a complex evaluate item.
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Table 4-1 Distribution of the number of items in pre- and posttest among the
framework dimensions

Number of items Pretest Posttest
Harmony Black sphere
Simple complex simple complex

Reproduce items* 3 3 3 3
Apply items 3 4 3 3
Create items 2 4 3 3
Evaluate items 3 3 3 3

11 14 12 12
Total 25 24

*The test items about the modeling formalism are classified under “reproduce
harmony”, although this is technically incorrect.
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Figure 4-4 The model of the harmony of the spheres that was given in the
fantasy pretest
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Apply - simple

Choose the right statement.
A. The lower Mercury’s gravity, the smaller the volume.
B. The lower Mercury’s gravity, the larger the volume.
C. Mercury’s gravity does not influence the volume.

Explain your answer.

Evaluate - complex

Is it correct that a higher Mercury’s gravity will cause a faster
decrease of the harmony of the spheres? Explain your answer.

Figure 4-5 Two examples of fantasy pretest items

The “black sphere’ test concerns modeling global warming and hence involves
the domain of energy of the sun and the Earth. The black sphere test consists of
in total 24 items and includes 18 items in the core ACE types of model-based
reasoning (see Table 4-1). Additionally, six domain-specific items covered the
reproducing of conceptual knowledge in the black sphere domain: 3 simple and
3 complex items. Figure 4-6 shows the introduction model that was given in the
posttest. Figure 4-7 shows examples of a simple reproduce item and a complex
create item.

In this study students' performance on parts of the black sphere test is
analyzed. We are specifically interested in effects on the level of simple and
complex items. Because no theta estimates are available on this level, sum
scores are used in the analysis. For each item a participant received 0 to 1
points. Partial credit was given for partly correct answers. The maximum score
on the harmony test was 25. The maximum score on the black sphere test was
24.

The notation used in the test was a causal concept map notation.
Variables are represented by circles labeled with a variable name, causal
relations are represented by arrows, and the quality of the relation is expressed
by a plus or minus sign (see Figure 4-4 and Figure 4-6).

The test was offered as a paper-and-pencil test. In order to assess
learners’ prior modeling ability, the harmony subtest on the fictitious domain
was used as a pretest. The domain-specific black sphere subtest was used as a
posttest after the instruction about global warming. The scores on the domain-
generic harmony pretest were used to match participants in the experimental
groups.
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Figure 4-6 The black sphere model that was given in the global warming
posttest

Reproduce - simple

What is albedo (or reflectivity) of a substance?

Create - complex

Suppose you have a watch running on solar cells. Just like a solar
collector, the solar cells pick up the visible light of the sun,
convert it to electricity, and store the electricity in the watch"s
battery. If you often use the watch®s stopwatch function, the battery
will empty earlier. Also, the intensity of the display®s lighting is
adjusted to the amount of energy in the battery. When the lighting is
weak, you know the battery is almost empty.

Draw a model of this situation in order to be able to predict the empty
time of the battery. Explain your drawing.

Figure 4-7 Two examples of black sphere posttest items

4.4.3.1  Scoring method

In the previous validation study (see Chapter 3) we developed a scoring scheme
based on an analysis of the item responses of students of different levels of
modeling proficiency. For each item, an answer model was derived with the
elements defining the correct answer and elements representing common
errors.

A frequently recurring group of elements in all subscales of the
framework is the group of three elements belonging to a relation. These three
elements are: an expression that indicates the existence of a relation, the direction
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of a relation (causality), and the quality of a relation (positive or negative
influence). A relation can be expressed not only textually in a written
explanation, but also schematically in the drawing of a model. The threefold
scoring of a relation provides a detailed view of the elaborateness of students'
reasoning.

444  Procedure

The experiments were held at two secondary schools. The experiment consisted
of two sessions of 200 minutes each with an interval of two to four weeks
depending on the school. The lessons were led by the experimenter and were
additional to the regular curriculum and compulsory for each student.
Participants from one school could earn extra points that were added to their
regular physics grade.

All participants first attended a session in which modeling was
introduced, using an example on the spreading of diseases and a leaking water
bucket. After 150 minutes of introduction, the participants had 50 minutes to
complete the harmony test. For the second session, the students were separated
in two conditions based on equal distribution of the pretest harmony scores. For
both conditions we included all combinations of school, teacher, class, and
gender. In the second session, both conditions were given information and
assignments about the factors influencing the temperature on Earth. In addition
to the assignments, the students in the modeling condition (N = 38) performed
an elaborated modeling task. The students in the expository condition (N = 36)
wrote a report on the factors in global warming. After 150 minutes, all
participants completed the black sphere posttest which took 50 minutes.

4.5 Results

To test our hypotheses, we computed analyses of variance with the pretest
subscore as a covariate, although the scores of the participants in the two
instruction modes did not differ significantly (see Table 4-2). In the analysis of
black sphere subscores, pretest subscores were used as a covariate. For example,
in the analysis of the scores on the simple create subtest we used the scores on
the pretest simple create subtest as a covariate. For the ‘reproduce’ items this
was impossible, and no covariate was used.
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Table 4-2 Means and standard deviations of the pretest (sub)scores for the two
conditions

Harmony pretest

Expository (n = 36) Modeling (n = 38) max

Overall simple 5.11 (1.39) 501 (1.45) 11
complex 5.89 (2.27) 6.08 (246) 14
total 11.00 (3.29) 11.09 (3.67) 25
Reproduce simple 0.38 (0.61) 0.31 (0.52) 3
complex 091 (0.60) 075  (047) 3
total 1.29 (0.91) 1.06  (0.81) 6
Apply simple 1.30 (0.50) 1.18  (0.65) 3
complex 2.21 (1.22) 236 (1.14) 4
total 3.51 (1.56) 3.54  (1.58) 7
Create simple 1.68 (0.57) 1.70  (0.48) 2
complex 1.54 (0.79) 1.51  (0.99) 4
total 3.23 (1.18) 321 (1.26) 6
Evaluate simple 1.75 (0.71) 1.82  (0.59) 3
complex 1.24 (0.92) 146  (0.95) 3
total 2.99 (1.37) 328 (1.24) 6

45.1 Harmony test and black sphere test

In line with our expectations, we found no significant main effect of condition
on learning outcome, although there was a trend in favor of the modeling
condition (F(1, 72) =2.972, p = .089).

However, we expected differences on the subscales. When looking at
the complex items overall, we found a significant difference in favor of the
modeling condition (F(1, 72) = 8.780, p = .004, partial n? = .110). More
specifically, students in the modeling condition performed significantly better
on both the complex reproduce items (F(1, 72) = 7.065, p = .010, partial n2 = .089)
and the complex evaluate items (F(1, 72) = 3.966, p = .050, partial n? = .053).

For the other subscales in the framework no significant differences were found
(see Table 4-3). No significant differences were found on the create subscale;
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neither on the total create scores, nor on the simple create items, nor on the

complex create items.

Table 4-3 Means and standard deviations of the black sphere posttest

(sub)scores for the two conditions

Black sphere posttest
Expository (n=36) Modeling (1 = 38) max
Overall simple 6.59 (1.38) 6.58 (1.68) 12
complex 3.67* (1.50) 4.72*  (1.72) 12
Total 10.26 (2.48) 11.30  (3.10) 24
Reproduce simple 2.00 (0.80) 1.74  (0.84) 3
complex 1.06* (0.71) 1.50%  (0.69) 3
total 3.06 (1.09) 323  (1.28) 6
Apply simple 1.04 (0.69) 121  (0.70) 3
complex 0.90 (0.69) 112 (0.71) 3
total 1.95 (1.16) 233 (1.18) 6
Create simple 2.09 (0.69) 2.07 (0.85) 3
complex 1.16 (0.74) 1.26 (0.76) 3
total 3.24 (1.34) 333  (1.48) 6
Evaluate simple 1.46 (0.59) 1.56 (0.66) 3
complex 0.54* (0.53) 0.85*  (0.63) 3
total 2.00 (0.79) 241 (0.99) 6

* Means differ at p < .05 in the analysis of variance.

4.6 Discussion

The aim of this study was to investigate the specific learning outcomes of
computer modeling in comparison to expository instruction. The learning
outcomes were examined using the domain-specific part of the ACE modeling

test.

On the overall posttest score the modeling condition scored higher, but
the difference was not significant. Clear differences were found with respect to
the complex items. The modeling condition performed significantly better on
the overall complex items. It seemed that the modelers had better strategies to

74



Comparing expository and modeling approaches

cope with complex structures. More specifically, the learning gain concerned
the complex evaluate items and the complex reproduce items. On the simple
items in both evaluate and reproduce categories the groups performed equally
well. The simple items seemed to invoke knowledge that had been acquired in
equal level for both groups.

Unexpected was the difference on the complex reproduce items which
was in favor of the modelers. Because the expository learners were more
explicitly exposed to the domain concepts, we expected them to perform better
on the reproduce items. A possible explanation is that complex conceptual
knowledge to a large extent depends on structural reasoning skills and is not
simply reproduced.

The simple items showed no differences between the two conditions.
For the individual items in the black sphere posttest, the mean proportion
correct difficulty p value for the simple items was .54 (SD = .22) and for the
complex items .34 (SD = .12). Although there is no ceiling effect in the test
scores, the results suggest that the reasoning with a model on a simple level
with direct relations is equally mastered by modelers and non-modelers and
that modeling training does not contribute in particular to learning gains in this
field.

Against our expectations, we found no differences related to the
application and creation of models. The create items in the posttest asked to
model phenomena that were similar to the phenomena they practiced with.
One create item presented a context that asked for transfer to a more elaborate
situation. We expected the modelers to be able to perform well on the items
with similar model structures. Explanations for this unexpected lack of
difference include that the limited amount available for the modeling activity
was too short for a difference to emerge, or that the actual behavior by students
engaged in the modeling was ineffective. For instance this could be the case
when instead of creating models from scratch, learners merely copied their
models from given examples. For instance, during the second session a
common error for the modelers was to leave out the temperature variable from
the models they created. Apparently, the modelers superficially copied the
familiar model structures instead of reasoning and experimenting with the
model and discovering mistakes with respect to the new context. Ideally, the
modelers had the opportunity to learn from their mistakes by receiving
feedback from the simulation of their model as opposed to the expository
learners who did not receive feedback. Thereby, the modelers had the
opportunity to learn in a feedback loop: one step forward leading to another
step forward. However, the feedback loop seemed to work in the reversed way:
one mistake leading to another mistake.
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In conclusion, the domain-specific part of the ACE test appeared to be
able to detect differences in specific learning outcomes between a modeling and
expository instruction concerning complex knowledge structures, with respect
to reproducing complex conceptual knowledge and evaluating models.
Thereby, the ACE modeling test instrument that was based on the ACE
modeling knowledge framework showed discriminative power and contributes
to an evidence-based discussion about the effectiveness of different modes of
instruction. Moreover, the test classifies the learning outcomes of modeling in a
systematic way and clarifies the learning goals of modeling and how they can
be measured. However, not for all expected areas differences arose. The create
test items seemed to represent achievable modeling assignments with a
bounded context having a structure similar to the basic model in the
instruction. Yet, the modeling condition appeared to be unable to apply the
basic modeling actions they studied in the instruction in creating a model by
themselves in a similar but new context. In combination with the low scores on
the apply items, this suggests that the students are not used to reason every
part of their model in creating and checking the functionality of the model, and
that the overall modeling proficiency can be improved.

Relational reasoning seems to be an important factor in creating and
evaluating a model. Applying knowledge of a model is not obviously involved
in creating a relation. In this study, the participants were creating relations, but
seemed not to learn how to reason. It is worthwhile to further investigate how
the acquisition of create skills can be supported and how the support for the
different parts of create skills can be implemented in the instruction. Future
research will need to focus on an effective implementation.
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Chapter 5 In search of computer modeling learning
gains: comparing modeling and simulation inquiry
learning

Abstract

In this chapter we compare the learning outcomes of two closely related
instructional approaches: computer modeling and simulation-based instruction.
The ACE test is used to compare the performance in model-based reasoning
processes of a group of students who performed a computer modeling task to a
group who performed assignments using a ‘ready-made’ simulation. The aim of
the study was to investigate the discriminative power of the ACE test with
regard to the different types of learning outcomes as described in the ACE
modeling knowledge framework. We found differences in learning outcomes
between the two instructional approaches on several aspects of the test. The
modeling group outperformed the simulation inquiry group on complex
problems and both groups performed equally well on simple problems. In
particular, students in the modeling group outperformed the simulation inquiry
group on problems that required them to apply reasoning in complex model
structures as well as in problems requiring them to create simple models. The
simulation inquiry group performed significantly better on reproducing simple
conceptual knowledge. No differences were found for items that required
evaluation of models and data. These results show that the ACE test is sensitive
in revealing differences for specific parts of the ACE framework between two
closely related instructional approaches. As expected, evaluating skills are
equally developed in both approaches. The test appears to have discriminative
power not only with respect to contrasting instructional approaches (see
Chapter 4) but also with respect to closer related approaches.
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5.1 Introduction

Despite the growing interest in modeling-based instruction, there has been
relatively little analysis of the specific cognitive learning outcomes of modeling.
From the studies that have investigated such outcomes (Booth Sweeney &
Sterman, 2000; Kainz & Ossimitz, 2002; Komis, Ergazaki, & Zogza, 2007;
Schwarz & White, 2005; Wilensky & Resnick, 1999), we have learned about the
aspects of modeling. However, the various theories about the cognitive learning
outcomes are developed in different contexts and the experimental results of
the studies are difficult to compare. What is lacking is a comprehensive
framework for classifying cognitive learning outcomes that combines multiple
aspects of model-based learning and that provides enough fine-grained detail
to make a distinction between closely related modes of instruction.

To fulfill the need of a framework that describes the cognitive learning
outcomes of modeling, we developed the ACE framework (see Figure 5-1),
focusing on the reasoning activities of applying (A), creating C), and evaluating
(E). The framework contains three dimensions: first, types of reasoning, i.e.,
apply, create, and evaluate; second, complexity, i.e., simple and complex; and,
third, domain-specificity, i.e., domain-dependent and domain-general. For an
expanded definition of this framework, see Chapter 2.

In the previous chapter we used a test based on the ACE framework to
compare modeling with expository instruction, with as a main result that
modelers scored best on items measuring knowledge about complex structures.
In the current chapter we zoom in on the differences between modeling-based
and simulation-based inquiry learning. Computer modeling and learning with
simulations are closely related (Doerr, 1997), meaning that this will provide a
more rigorous test for our framework. A ‘ready-made’ simulation of a
phenomenon can be used to experiment and to evaluate the underlying model.
The similarities of modeling and simulation learning are grounded in the fact
that a computer model is runnable and therefore can be used to simulate the
modeled phenomenon. In fact, computer modeling is a self-made simulation, in
which the variables and relations are defined by the modeler. The added value
of modeling over learning from a ready-made simulation of a phenomenon is
that students have to make a concrete and active representation of concepts
which helps to create a mental model and to gain insight into the structure of
the domain (Hestenes, 1987; Spector, 2000). Therefore, modeling can be said to
be expressive as opposed to explorative for simulation based learning, following
Bliss et al. (1992). The activity of creating a model is combined with the
evaluation of the model by doing experiments and by reasoning with the
relations between variables. The created model becomes an artifact students can
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manipulate to express evolving knowledge. Since modeling-based and
simulation-based learning are so closely related, the difference between the two
may reveal typical characteristics of modeling knowledge.

Types o f reasoning
Apply

Create

Evaluate
\\ Complexity .
k\\ complex

Domain-specificity
general

specific

Figure 5-1 The modeling knowledge ACE framework

In a previous study we developed and validated a test about the modeling of
dynamic systems based on the ACE framework (see Chapter 3). In a subsequent
experimental study, the differences in learning outcomes between modeling-
based learning and expository teaching were examined using the domain-
specific part of the ACE modeling test as posttest (see Chapter 4). The domain-
general ACE subtest was used as a pretest to control for a priori individual
differences. The test revealed a difference on the complex items in favor of the
modeling group. More specifically, it was found that the modeling group
performed significantly better on the complex evaluate items and on the
complex reproduce items. Apparently, the modelers were better able to
evaluate complex models and to reproduce complex conceptual knowledge.
However, no differences were found between the groups on the create scores
and on the apply scores. We assumed that the lack of difference was caused by
the limited modeling proficiency achievement level in general by the modeling
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students. This could have been caused by the restricted amount of time that was
available for the modeling activity. Another possible reason may be found in
the instruction which may have invited students to copy given models instead
of creating them from scratch. This may have led them to working superficially
with the models. The basic building blocks of modeling appeared to be hard to
understand, which is in line with the findings of Cronin and Gonzalez (2007).
For example, many students created a model without the key variable (in this
case 'temperature’), possibly because the models presented to them in the
instruction had a structure without such a key variable. As a result, the students
were not able to create models of phenomena that significantly deviated from
the phenomena they had practiced with. Therefore, we changed the modeling
instruction and put more emphasis on creating models from their basic
components.

5.2  Purpose of the study and hypotheses

The aim of the current study was to examine the differences between modeling
and simulation-based instruction. Two groups of students worked with either a
modeling-based or a simulation-based approach on the energy household of the
Earth. It is hypothesized that modeling students will develop more structural
knowledge working with the artifact of a model and therefore will be more
proficient in assignments about complex structures. In general, we assume that
the types of reasoning represent processes of an increasingly higher level and
we expect the modelers to be more proficient in the higher-order processes. As
opposed to the complex items, we expect that the simple items overall will
invoke knowledge that is equally mastered in both modes of learning and will
show no differences.

According to the increasing complexity of the types of reasoning from
elementary to higher-order, we have the following hypotheses. We expect the
learners in the simulation-based mode of instruction to spend more time
learning about the definitions of the domain concepts (as opposed to creating a
model) and therefore to be more proficient and extensive in reproducing domain
knowledge. Furthermore, we expect the modeling students to be more
proficient in applying knowledge of relations, i.e., giving explanations and
predictions of complex system's behavior. The modeling students may use their
model for concrete step by step relation reasoning in their explanations, while
the learners in the simulation-based mode of instruction only receive feedback
from the simulation about the end values of an experiment and are offered no
insights about the steps in between. Furthermore, because the instruction is
more focused on the building blocks of creating models we expect the modeling
students to be more proficient in creating models at both levels of complexity.
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We expect the two groups to perform equally on evaluating models and
relations, since evaluating models is involved in both experimenting with a
model and with a simulation.

5.3 Method

53.1 Participants

Participants were eleventh grade students following a science track from two
secondary education schools. From the 85 students who started the experiment
76 completed both sessions. Students' age was in the range of 16-19 (M = 16.97,
SD = .60); 40.8 % were male and 59.2 % were female.

5.3.2  Materials
5.3.2.1  Co-Lab learning environment

The Co-Lab software provided a learning environment for each of the two
conditions to learn about global warming. One environment was designed for
modeling inquiry and contained a simulation of the basic energy model of the
Earth, a modeling editor to create and simulate models, graphs and tables to
evaluate the data produced by the model, and textual information about the
domain. A second environment was designed for simulation learning and
contained the same tools except for the modeling editor.

Worksheets with assignments helped the participants to understand the
factors in global warming. The assignments contained four parts. The first part
was about climate models in general. The modelers practiced creating and
reasoning about the basic building blocks of modeling. In comparison with the
instruction used in the previous chapter, in order to stimulate higher levels of
reasoning while modeling and a more profound modeling behavior, students
were explicitly made aware of the different functional parts of a model (stock,
inflow, and outflow) and were asked to check their models by reasoning about
each part of the model, relating the model at hand to previous examples. They
were asked to work with a limited set of predefined situations and also to create
models for multiple situations and to reason with the created models. The
learners in the simulation-based mode of instruction answered questions about
the quality and accuracy of using models to make global warming predictions.

The second part discussed the factors albedo and heat capacity,
provided information, and included questions about reasoning with the
influence of these factors on the temperature on Earth. This was implemented
in different ways for the modelers (who created a model to support the
reasoning) and the learners in the simulation-based mode of instruction (who
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used the simulation). For example, an assignment about the influence of the
albedo on the equilibrium temperature asked both groups to predict what
would happen with the equilibrium temperature if the albedo was high or low
respectively. Subsequently, the modelers were asked to investigate their
hypotheses with their model and the learners in the simulation-based mode of
instruction with the simulation. The third part was about the equilibrium of
temperature. The modelers were asked to reason about equilibrium and connect
the reasoning steps to the specific parts of their models. The learners in the
simulation-based mode of instruction were asked to reason about equilibrium
without connecting to an artifact. The fourth part was about evaluating one's
understanding of the domain structure. The modelers were asked to compare
their own model's behavior with the external model of the simulation of the
phenomenon. The learners in the simulation-based mode of instruction were
asked to write a report about the factors influencing the temperature on Earth.

5.3.2.2  Pre- and posttest

Based on the ACE framework, we developed the ACE test consisting of a
domain-general and a domain-specific part (see Chapter 4). This same test was
used in the current study. We used the domain-general part of the ACE test as a
pretest and the domain-specific part as a posttest. The pretest assessed domain-
general modeling skills and did not require prior knowledge. The posttest was
about the domain the students had learned about in the instruction. The pre-
and posttest were paper-and-pencil tests which used a causal concept map
notation to represent the dynamic models. The pretest consisted of 25 items
about a dynamic system in the fantasy topic of the 'Harmony of the spheres'.
The posttest consisted of 24 items in the domain of the 'Black sphere' about the
energy of the earth. The distribution among the different dimensions of the
framework is shown in Table 5-1. Reproducing conceptual knowledge
concerned facts and relation in the domain-dependent test and general
modeling concepts in the domain-independent subtest. The latter were added
to be able to control for prior knowledge on the modeling formalism used, but
does not represent the counterpart of the domain-dependent part of the test.
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Table 5-1 Distribution of the number of items in pre- and posttest among the
framework dimensions

Number of items Pretest Posttest
Harmony Black sphere
Simple complex simple complex

Reproduce items* 3 3 3 3
Apply items 3 4 3 3
Create items 2 4 3 3
Evaluate items 3 3 3 3

11 14 12 12
Total 25 24

*The test items about the modeling formalism are classified under “reproduce
harmony”, although this is technically incorrect.

5.3.3 Procedure

The experiment consisted of two sessions of approximately 200 minutes each.
The first session was the same for all participants and included an introduction
to dynamic systems and to the computer environment that lasted 50 minutes.
All participants worked through a technical manual of the model editor for 50
minutes and conducted exercises with a given model of a leaking bucket for
again 50 minutes. In the last 50 minutes of the first session the pretest was
administered. For the second session, the participants were divided into two
conditions based on the pretest scores such that student groups in both
conditions had a similar mean and standard deviation on the pretest. Each
combination of school, teacher, class, and gender was included in both
conditions. The second session took place three weeks after the first session. The
modeling condition worked on a model about the energy of the earth in an
environment with a simulation of the phenomenon and with a model editor in
which they could create runnable models. The simulation condition worked on
similar assignments about the energy of the earth using only the simulation.
Finally, in approximately 50 minutes the black sphere posttest was
administered.

534  Analysis

The test responses were scored using a coding scheme with an interrater
reliability of .77 (see Chapter 3). We analyzed the sum scores of the two
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experimental groups with an analysis of variance with the pretest score as a
covariate. Pretest subscores were used as a covariate in the analysis of black
sphere subscores. For example, in the analysis of the scores on the simple apply
subtest we used the scores on the pretest simple apply subtest as a covariate.
The exception is conceptual knowledge for which no domain-independent
counterpart exists and therefore no covariate was used.

In addition to the analysis of sum scores, we analyzed the occurrence of
specific content elements in the item responses. The content elements were
analyzed with respect to domain knowledge and create errors respectively and
were counted in both simple and complex items, because we were interested in
an indication of the overall prevalence of the elements.

5.4 Results

Due to the experimental design (see under Procedure) both conditions had
equivalent scores on the pretest. There were no significant differences on the
pretest total score and on the scores for the subscales (see Table 5-2).

We compared the mean black sphere (sub) scores of the two conditions
using analyses of variance (see Table 5-3). In order to account for individual
differences on prior modeling skills, we used the pretest (sub)score as a
covariate. As expected we found no significant difference between the
conditions on the total black sphere score. Also, we did not find a significant
difference on the simple items overall. In line with our expectations, we found
that the modelers performed significantly better on the complex items overall
(F(1, 74) =7.036, p = .010, partial n2=.088).

We found significant differences on the subscales of the ACE black
sphere test. As hypothesized, the modelers were more proficient in applying
knowledge of relations and performed significantly better on the apply items
(FQ1, 74) = 7.949, p = .006, partial n2? = .098). More specifically, a difference was
found for explaining and predicting system's behavior on a complex level, i.e.,
for the complex apply items (F(1, 74) = 19.619, p = .000, partial n? = .212).

As expected, the modelers were more proficient in creating models. A
significant difference was found in favor of the modelers for the simple items
(F(1, 74) = 6.679, p = .012, partial n? = .084). No significant difference was found
for the complex items. As our modified instruction put more focus on the basic
elements of models, this did not come unexpected.
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Table 5-2 Means and standard deviations of the pretest (sub)scores for the two
conditions

Harmony pretest

Simulation (n=39) Modeling (n=37)  max

Overall simple 5.54 (1.67) 5.27 (149 11
complex 6.36 (2.55) 6.29 (2.50) 14
total 11.91 (3.97) 11.56 (3.32) 25
Reproduce  simple 0.54 (0.76) 0.52 (0.61) 3
complex 1.28 (0.45) 1.36 (0.50) 3
total 1.81 (0.96) 1.89 (0.90) 6
Apply simple 1.34 (0.55) 1.20 (0.58) 3
complex 2.25 (1.14) 1.89 (1.12) 4
total 3.60 (1.48) 3.09 (1.37) 7
Create simple 1.68 (0.58) 1.64 (0.64) 3
complex 1.49 (1.05) 1.62 (1.10) 3
total 3.16 (1.44) 3.26 (1.51) 6
Evaluate simple 1.99 (0.67) 1.91 (0.83) 2
complex 1.35 (0.85) 1.42 (0.88) 4
total 3.33 (1.30) 3.32 (1.24) 6

A further analysis of the students’ answers with respect to create errors
revealed an overall significant difference between the conditions. We counted
the following errors: non-specific variable name, non-relevant variable name,
error in using an extra variable (outside of the context), drawing a direct
relation that is indirectly already present, and drawing an alternative
representation. In both simple and complex create items the modelers made
significantly less errors than the learners in the simulation-based mode of
instruction (F(1, 74) = 8.687, p = .004, partial n? = .105), indicating that their
modeling ability indeed increased.

As expected, no difference was found on the evaluate items.
Furthermore, as hypothesized, the learners in the simulation-based mode of
instruction gained more domain knowledge and performed better on
reproducing conceptual knowledge, however, only on the simple items (F(1, 74) =
11.799, p = .001, partial n=.138).
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Table 5-3 Means and standard deviations of the posttest black sphere
(sub)scores for the two conditions

Black sphere posttest
Simulation (n=39) Modeling (1=37) max
Overall simple 6.45 (2.10) 6.07 (1.72) 12
complex 4.71% (2.13) 572* (1.97) 12
total 11.16 (3.78) 11.79  (3.31) 24
Reproduce simple 2.05 (0.97) 1.29* (097) 3
complex 1.60 (0.82) 1.79 0.86) 3
total 3.65 (1.37) 3.08 (143) o6
Apply simple 1.26 (0.80) 1.26 0.76) 3
complex 1.07* (0.77) 1.64* (0.76) 3
total 2.33* (1.33) 290* (1.30) 6
Create simple 1.71% (0.74) 2.06* (042) 3
complex 1.24 (0.73) 1.38 059 3
total 2.95 (1.36) 343 (0.88) 6
Evaluate simple 1.43 (0.53) 1.46 (0.58) 3
complex 0.80 (0.61) 092 (0.66) 3
total 2.23 (0.85) 238 (096) 6

* Means differ at p < .05 in the analysis of variance.

To get an impression of the extent to which students referred to domain
knowledge, we counted the occurrences of referring to a definition (albedo, heat
capacity), the reasoning with 'shortcuts' (as opposed to step by step reasoning),
and the use of extra variables in creating a model. Over all items other than the
items on reproducing conceptual knowledge, the simulation condition used this
type of prior domain knowledge significantly more than the modeling

condition (F(1, 74) = 4.485, p = .038, partial n2? =.057) (see Table 5-4).
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Table 5-4 Number of references to domain knowledge and number of create
errors in the posttest black sphere items for the two conditions

Black sphere posttest
Simulation (n = 39) Modeling (n=37)  max
Prior knowledge 3.62* (1.87) 2.70* (1.88) 23
Create errors 2.15* (0.96) 1.51% (0.93) 15

* Means differ at p < .05 in the analysis of variance.
5.5  Discussion

The current study extends our understanding of the specific learning gains of
computer modeling by using a test about modeling in a comparative study with
two modes of instruction. We compared two groups of students in a learning
activity about the energy of the earth, one using a computer environment
including both a simulation and a model editor for creating runnable models,
and one group with an environment including only the simulation. We used the
modeling ACE test to reveal the specific differences and similarities between
the two groups of learners. We expected to find differences in favor of the
modeling students for the complex items and, more specifically, for the apply
and the create types of reasoning. Differences in favor of the simulation-only
students were expected for the reproduce type of reasoning. We expected no
differences in learning outcomes for the evaluate type of reasoning since both
groups equally were performing experiments, with a self-made model and with
the simulation respectively.

The results show that our hypotheses were confirmed. It was found
that the modelers performed significantly better on the complex items overall.
These results are in line with the previous comparative study described in
Chapter 4 in which modelers performed significantly better on complex items
compared to students in an expository mode of instruction. With respect to the
types of reasoning, significant differences were found for reproduce, apply, and
create and these differences occurred on only one particular level of complexity.
The learners in the simulation-based mode of instruction were significantly
better reproducers of simple knowledge. Moreover, the learners in the
simulation-based mode of instruction used significantly more prior knowledge
in the items overall. The modelers were significantly better in applying complex
knowledge of a model and in simple create items. No differences were found for
the complex create items. As the modified instruction focused more on the
basics of modeling this is not unexpected. As expected, no differences were
found for evaluate items, neither simple nor complex.
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It was hypothesized that the learners in the simulation-based
instruction would be more proficient in reproducing knowledge. As described
above, only for the simple reproduce items a difference was found. An
explanation of the lack of difference in performance on the complex reproduce
items may be that reproducing complex conceptual knowledge to a larger
extent relates to more complex reasoning. As the modelers perform better on
the complex apply items, they are more likely to use this reasoning ability in the
complex reproduce items, concealing a possible smaller learning gain than the
learners in the simulation-based mode of instruction. The simple apply items
are equally well performed by both groups, suggesting that these items cover
an ability acquired in both learning conditions.

With respect to reproducing conceptual knowledge, a difference arose
between the current and the previous study. In the previous study (see Chapter
4) we compared modeling with expository instruction. We expected that the
learners in the expository mode of instruction would perform better on
reproducing knowledge since they spent more time on working with the
definitions of the domain concepts. Nonetheless, in that study the modelers
performed significantly better on the complex reproduce items than the learners
in the expository mode of instruction. However, in the present study we found
a difference on reproducing simple conceptual knowledge between the
modelers and the learners in the simulation-based mode of instruction in favor
of the latter. Moreover, the learners in the simulation-based mode of instruction
used significantly more prior knowledge elements in the items other than the
reproduce items. This raises the question what caused the contrast in outcomes
between the expository and simulation-based mode of instruction. Learners in
both expository and simulation-based modes of instruction completed the
learning activity by writing a report about what they had learned in the energy
of the earth assignments. An explanation may be that the learners in the
simulation-based mode of instruction worked with the concepts and definitions
in a more engaging activity in which they received feedback from the
simulation and therefore the factual knowledge was better understood and
easier to recall.

It must be noted that in both the previous (see Chapter 4) and the
current study the evaluate scores on the complex items were rather low. In the
previous study the modelers scored significantly better than the learners in the
expository mode of instruction (though still low) on these particular items, but
in the current study there were no differences between the two conditions. This
comparative result is logical, but the low scores indicate that the complex
evaluate items are rather difficult for the students. One explanation of the low
scores may be that the test's scoring method by design is aiming at a slightly
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higher level to avoid losing information in a 'ceiling effect'. Another explanation
may be that the learners in both modeling-based and simulation-based modes
of instruction are implicitly learning about evaluating models and relations, but
that they are not able to make the knowledge explicit on the test. A possible
solution to improve this explicitness is to add cues to the instruction to make
students aware of the steps in evaluating.

A general pattern that arose from this study is the difference in
'instructional benefit' with respect to simple and complex items and processes.
The types of reasoning represent processes that are increasingly more
demanding, from the straightforward reproducing conceptual knowledge to the
higher-order processes of applying, creating, and evaluating. The findings of this
study indicate a benefit for the learners in the simulation-based instruction on
the simplest process of reproducing conceptual knowledge. Progressively, the
modelers benefited more on the complex items and the more demanding
processes. However, neither of both groups reached a high level for the process
of evaluating.

We can draw conclusions both related to the test and to the instruction.
First, the test reveals significant differences within the subscales of the types of
reasoning and thereby appears to be sensitive enough to detect significant
differences between modeling-based and simulation-based learning on these
specific cognitive areas. Finding differences on particular levels of complexity,
suggests that the complexity dimension makes an effective distinction within
the dimension of the types of reasoning. Second, the modeling-based
instruction seems to enhance measurable learning gains. The knowledge gain in
the apply category shows that the modelers are able to reason with their model
and to give explanations of complex relations within a model. The modelers
succeeded to achieve well-reasoned effective modeling behavior, albeit for the
creation of models at the simple level. The effect of stepwise practice of the
creation and meaning of a model seems to be useful and seems to cause fine-
grained differences in model-based reasoning skills.
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Chapter 6 Combined analysis

Abstract

In this chapter a combined analysis is presented regarding the data of the two
comparative studies described in Chapter 4 and 5. Besides the pairwise
comparisons that have been performed in each comparative study, a combined
analysis would allow for a comparison of conditions across the studies, for
example the modeling students in the first comparative study and the modelers
in the revised instruction. The results of this combined analysis show that the
revised modeling instruction had a positive effect on the performance for
applying, but not for creating. Additionally, a more detailed analysis of content
elements suggests that the strategy to use domain knowledge might hinder the
application of reasoning skills. Altogether, the results indicate that different
modes of instruction enhance different types of knowledge. A general pattern
arises with respect to simple and complex items and types of reasoning: the
more complex the learning outcomes, the more benefit a learner experiences
from modeling-based instruction.



Chapter 6

6.1 Introduction

The studies presented in the two previous chapters provide
information about the comparison of instruction based on computer modeling
with other modes of instruction. In the first comparative study described in
Chapter 4, we compared modeling with expository instruction. This
comparison revealed differences with regard to the processes of reproducing
and evaluating for complex items (see Figure 6-1). Against our expectations, no
differences were found for the core modeling processes of applying and
creating. In the second comparative study described in Chapter 5, we revised
the modeling instruction to put more emphasis on reasoning with the building
blocks of modeling and compared modeling with simulation-based instruction.
The results of the second study showed differences with regard to the processes
of reproducing, apply, and create, and, as expected, not with respect to
evaluating (Figure 6-2).

Types of reasoning
Reproduce

——— Apply

Create
/ _ Evaluate

Complexity

simple

complex *

N

Note. Green indicates that the modeling condition performed
significantly better than the expository condition.

* The modeling condition performed significantly better on the complex
items overall.

Figure 6-1 Differences in the domain-specific posttest subscores between the
expository and the modeling conditions in the first comparative study
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Types of reasoning
Reproduce

Apply
Create

Evaluate
Complexit
omplexity L
*
complex

Note. Red indicates that the modeling condition performed significantly
lower than the simulation condition; green indicates that the modeling
condition performed significantly better.

* The modeling condition performed significantly better on the complex
items overall.

Figure 6-2 Differences in the domain-specific posttest subscores between the
simulation and the modeling conditions in the second comparative study

In total four modes of instruction have been examined, among which
two versions of modeling instruction. Apart from the two pairwise comparisons
we have presented in the earlier chapters, a combined analysis of the data from
the two comparative studies would also allow for the examination of
differences across studies. For instance, it is of interest to examine whether our
modification of the modeling instruction indeed led to an improvement. Also,
comparing simulation-based instruction with expository instruction is
interesting with respect to scientific reasoning skills.

In this chapter we present such a combined analysis of the response
data of the two comparative studies together (n = 150). We could do this after
having checked that the groups were indeed comparable The two comparative
studies were conducted at the same two schools, at the same period of the
school year. The students were following the same physics classes taught by the
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same teachers, except for 24 out of 76 students in the second comparative study
who had a different teacher. Furthermore, all students completed the same pre-
test allowing us to check for any differences between groups. Because the two
studies have been conducted in these comparable circumstances, we could
combine the data and perform an analysis of variance of the sum scores of the
conditions in both studies. We will analyze the differences with respect to the
simple and complex parts of the subscales of the ACE framework and
additionally of reproducing conceptual knowledge. To gain insight into
strategies used in the responses a more detailed analysis of specific content
elements in the responses were analyzed.

6.2  Research question

The findings of the two comparative studies each show differences and
similarities between two experimental conditions (see Figures 6-1 and 6-2). An
analysis of the combined data may reveal differences and similarities
comparing the conditions of the different studies. Our research questions is:

How do all four conditions over both studies perform in relation to each other on the
domain-specific simple and complex parts of the subscales of the ACE framework?

And, more in particular:
Can effects be found of the revision of the modeling instruction in the second
comparative study with respect to the apply and create items?

6.3  Results of combined analysis of experimental data

The pretest scores for the four experimental groups in the two comparative
studies did not differ significantly (see Table 6-1).

Table 6-1 Means and standard deviations of the pretest scores of the
experimental groups

Condition

Expository Modeling 1 Simulation Modeling 2
(n=236) (n=238) (n=239) (n=237)

Pretestscore  11.01 (3.29) 11.09 (3.67) 1191 (3.98) 11.56 (3.32)
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Table 6-2 Means and standard deviations of the black sphere (sub)scores for the
types of reasoning of the experimental groups

Condition

Expository Modeling 1 Simulation Modeling 2

(n=236) (n=238) (n=239) (n=237)

Overall

simple 659 (1.38) 658 (1.68) 645 (2.10) 6.07 (1.72)

complex 3.67. (1.50) 472 (1.72) 471 (213) 572 (1.97)

total 10.26 (2.48) 11.30 (3.10) 11.16 (3.78) 11.79 (3.31)
Reproduce

simple 2.00. (0.80) 1.74 (0.84) 2.05. (0.97) 1.2% (0.97)

complex 1.07. (0.71) 150 (0.69) 1.60> (0.82) 1.79 (0.86)

total 3.07 (1.09) 323 (1.28) 3.65 (1.37) 3.08 (1.43)
Apply

simple 1.05 (0.69) 122 (0.70) 126 (0.80) 1.26 (0.76)

complex 090. (0.69) 1.12. (0.71) 1.07a (0.78) 1.64» (0.76)

total 1.95. (1.16) 233 (1.18) 233 (1.33) 290 (1.30)
Create

simple 209 (0.69) 207 (085 171 (0.74) 206 (0.42)

complex 1.16 (0.74) 126 (0.76) 124 (0.73) 1.38 (0.59)

total 324 (1.34) 333 (148) 295 (1.36) 344 (0.88)
Evaluate

simple 146 (0.59) 156 (0.66) 143 (0.53) 146 (0.58)

complex 054 (0.53) 085 (0.63) 0.80 (0.61) 092 (0.66)
total 200 (0.79) 241 (0.99) 223 (0.85) 238 (0.96)

Note. Means in the same row with different subscripts differ at p < .05 in the
Scheffé post-hoc test.
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6.3.1  Comparing performance for the types of reasoning and complexity for
the black sphere domain

We performed an analysis of variance for the sum scores on the black sphere
subtests for each of the types of reasoning and complexity with the pretest
subscore as a covariate. Using the Scheffé post hoc criterion for significance the
results show significant differences for the complex items overall and for
reproduce simple, reproduce complex, and apply complex (see Table 6-2). The
learners in the revised modeling-based instruction (‘'modeling 2') performed
significantly better on the complex items overall than the learners in the
expository mode of instruction. The learners in the revised modeling-based
instruction performed significantly worse on the reproduce simple subtest than
in the expository and simulation mode of instruction. The learners in the
expository mode of instruction performed significantly worse on the reproduce
complex subtest than in the revised modeling-based (‘'modeling 2') and
simulation mode of instruction. For the apply complex subtest the intergroup
comparisons indicated that the modelers in the second study perform
significantly better than the students in the three other conditions.

6.3.2  Response content analysis

An analysis of variance of the amount of prior domain knowledge used in the
students” answers showed that the learners in the simulation-based mode of
instruction significantly used more domain knowledge than in the two
conditions in the first study. The learners in the simulation-based mode of
instruction made significantly more create errors than the modeling students in
the first study (see Table 6-3).

Table 6-3 Number of references to domain knowledge and number of create
errors in the posttest black sphere items for the two conditions

Condition

Expository Modeling 1 Simulation =~ Modeling 2
(n=36) (n=38) (n=39) (n=237)

Domain
knowledge

Create errors  1.67 (1.29) 134 (1.24) 215 (0.96) 1.51 (0.93)

Note. Means in the same row with different subscripts differ at p <.05 in the
Scheffé post-hoc test.

244, (1.38) 2.00. (149) 3.6 (1.87) 270 (1.88)
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6.4 Conclusion

The analysis of the combined data of the two comparative studies
presented in Chapters 4 and 5 showed differences between conditions we could
not compare before and provided us with additional insight into the effects of
the different modes of instruction.

Differences were found for the complex items overall and for several
parts of the subscales for the types of reasoning. First, for the complex items
overall the modelers in the revised condition performed better than the learners
in the expository mode of instruction. No differences were found between other
pairs of conditions. Though the pairwise comparisons in both comparative
studies showed significant differences in favor of the modeling condition, these
differences were not large enough to remain significant in the combined
analysis with four groups. The Scheffé post hoc test corrects for the type I error,
the probability of a false rejection of the null hypothesis regarding all of the six
comparisons being made and therefore requires a lower significance level for
the single comparisons (Sato, 1996). Nevertheless, the results for the complex
items overall suggest the trend that the modes of expository, simulation-based,
and modeling-based instruction progressively enhance the acquisition of
reasoning skills for complex situations.

Second, the expository condition performed significantly better on
reproducing simple conceptual knowledge than the modeling condition in the
second comparative study. This finding suggests that simple conceptual
knowledge is best acquired without the task of creating a model in an
expository or a simulation-based mode of instruction. Third, the modeling
condition in the second study performed significantly better on applying complex
knowledge than all of the other conditions. This finding suggests that the
revised instruction seems successful in focusing on profound and well-reasoned
modeling behavior resulting in higher applying reasoning skills. Fourth, the
expository condition performed significantly worse on the complex evaluate
subscale than the revised modeling condition. The mean scores of the other two
conditions suggest a trend that complex evaluate skills are acquired equally
well in both a modeling-based and a simulation-based mode of instruction.
Fifth, with respect to creating simple models, no significant differences were
found. The pairwise comparison of the simulation condition and the modeling
condition in the second study showed significant differences in favor of the
modeling condition, but this difference was not large enough to remain
significant in the combined analysis with four groups.

The more detailed analysis of the learners’ responses indicates that the
simulation condition in the revised instruction used more domain knowledge in
their answers and made more create errors than the other conditions. The
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pairwise comparison of the modes of instruction in the second comparative
study showed significant differences with respect to the frequency of the use of
domain knowledge and the number of create errors. These differences were not
large enough to remain significant in the combined analysis. Nevertheless, the
differences suggest that using domain knowledge might be a strategy that
hinders the application of reasoning skills.

With respect to the more specific second question about the effect of the
revised instruction, a salient effect was found for the complex apply test. The
modelers who receive the revised instruction performed significantly better
than the other conditions. However, the revised instruction did not appear to
have an effect on the create performance.

In conclusion, different modes of instruction seem to enhance different
types of knowledge. The acquisition of simple conceptual knowledge seems to
be best realized in a mode of instruction that does not involve the construction
of a model. Applying complex knowledge seems to be best mastered in a
modeling-based mode of instruction. Evaluating complex data seems to be best
mastered in a modeling-based mode of instruction, but might equally well be
learned in a simulation-based mode of instruction. A general pattern arises with
respect to simple and complex items and types of reasoning. The types of
reasoning are increasingly more demanding, from the straightforward
reproducing conceptual knowledge to the higher-order processes of applying,
creating, and evaluating. The more complex the learning outcomes, the more
benefit a learner experiences from modeling-based instruction.
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7.1 Introduction

In the introductory chapter to this dissertation, we argued that the ongoing
debates about the effectiveness of new modes of instruction would be well-
served by a theoretically grounded and evidence-based view of the learning
outcomes that can be expected from such modes of instruction. In this
dissertation we focused specifically on the learning outcomes of computer
modeling. Computer modeling has as a defining characteristic that students
construct and/or modify executable computer models of dynamic phenomena
(following Lohner, 2005). The main research question in this dissertation was:

What specific learning outcomes can be expected from computer modeling and how can
they be measured?

To answer the research question, we developed the ACE framework, which was
described in Chapter 2. This framework distinguishes learning outcomes on
three dimensions: 'type of reasoning', 'complexity', and 'domain-specificity'.
This framework was used as a basis for the creation of the ACE test, which
measures learners’ knowledge along these three dimensions. We created the
ACE test for the domain of global warming and a parallel ‘fantasy domain” and
subsequently validated this test in three empirical studies. The first of these
studies explored construct validity, whereas the discriminative validity of the
test was investigated in the other two studies.

7.2  Construction of the ACE test

The three dimensions of the ACE framework describe kinds and levels of
learners” knowledge. The 'type of reasoning' dimension takes values that
describe the processes of reasoning: applying concepts and relations to given
situations, creating new variables and relations in a model, and evaluating a
model. Complexity refers to whether learners are able to exert these processes
in either complex or simple situations. Finally, domain-specificity concerns
whether the knowledge is bound to a specific domain or is domain-
independent.

The ACE framework results in a 3x2x2 matrix, with cells that represent
processes of a given type that are either domain-specific or domain-
independent and either simple or complex. In order to use the framework to
create a test that can measure knowledge along these dimensions, items must be
created for each of the resulting twelve cells. We did so for the domain of global
warming by constructing Apply, Create and Evaluate items for single variables
and relations in the domain as well as for more complex substructures of a
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model of the domain. All of these items were domain-specific. In order to create
domain-independent items, we developed a parallel fantasy domain with the
same conceptual structure as the global warming domain, but with no relation
to any reality.

We also created domain-specific items at both simple and complex levels for
reproducing conceptual knowledge. By its nature, reproducing knowledge in a
domain-independent way is impossible. This yields two additional cells on top
of the twelve described above. Two more cells were added to the test by
including items on factual knowledge about the modeling formalism, again at
two levels: simple and complex.

7.3  Validation of the ACE test

The validity of the ACE test was examined in an initial empirical study among
131 participants with varying levels of modeling experience and background
knowledge. We collected test responses and analyzed the responses to find
evidence for the existence of these dimensions in the response data. The
findings of this study confirmed that the composite skill of model-based
reasoning can be decomposed into four unidimensional subscales, namely,
Apply, Create, Evaluate, and Reproduce, thus confirming the validity of the
main dimension of 'type of reasoning' of the ACE framework.

With respect to the dimension of complexity, we found that the items
about complex situations were significantly more difficult than the items about
simple situations. This finding confirmed the validity of the dimension of
complexity. The validation of the third dimension, domain-specificity, falls
beyond the scope of this dissertation work, because generalizing domain-
specific reasoning skills to a domain-general context is particularly likely to
occur after much more substantial modeling experience.

Next, we performed two comparative studies to contrast the learning
outcomes of different modes of instruction. In the first study, we compared
computer modeling with expository instruction. In the second comparative
study, modeling was compared with simulation-based inquiry instruction. In
this second study, we used a revised version of the modeling condition that
emphasized reasoning with the basic building blocks of a model. In both
studies, prior modeling knowledge was measured using the domain-
independent section of the ACE test, while learning outcomes were assessed
using the domain-specific subtest of the ACE test about global warming. By
comparing modeling with a mode of instruction offering quite a contrast in the
first study and with a mode that had more in common with modeling in the
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second study, the ACE test was 'put to the test' in a gradually more rigorous
way.

In both studies, the modelers scored significantly higher on the
complex items, summed over all reasoning types, than the students in the
alternative mode of instruction (expository and simulation-based instruction
respectively). This salient benefit for the modeling condition on the complex
part of the subscales suggests that modeling contributes especially to reasoning
with complex structures. Moreover, within the dimension of complexity specific
differences between conditions were found for the reasoning types. In the first
comparative study, the modelers performed significantly better on the complex
evaluate and complex reproduce items than the students in the expository mode
of instruction. In the complex evaluate items, the modelers showed a greater
ability to judge the differences and similarities of complex models and to judge
conclusions based on experimental data. In the complex reproduce items, the
modelers were better able to reproduce the concepts in the domain in relation to
each other.

In the second comparative study, a different picture emerged: the
modelers performed significantly better on the complex apply and simple create
items than the students in the simulation-based mode of instruction and
significantly worse on the simple reproduce items. This finding suggests that
students who explicitly practiced reasoning with the different basic building
blocks of a model (stock, inflow, and outflow) performed significantly better on
applying knowledge of complex model structures and on creating simple
model structures. Moreover, for the complex apply items the modeling students
in the revised mode of instruction performed better than the modelers from the
first study who received instruction without the explicit reasoning practice. No
difference was found when comparing the performance of these two modeling
groups on the simple create items. It seems that the revision of instruction
affects higher-order reasoning skills, but does not induce create abilities. It can
be noted that the create items asked for modeling of a phenomenon that was
slightly different from the models in the instruction. It might be possible that
this required a level of ability that had not yet been attained.

The differences and similarities observed provide evidence of the
discriminative validity of the ACE test. Finding differences on particular levels
of complexity within a subscale suggests that the complexity dimension makes
an effective distinction and that the ACE test is able to detect these differences.
In the case of a lack of difference the question is whether the test items are not
sensitive enough to reveal differences on a specific part of the test or whether
there were no differences. Because we expected benefits of modeling mainly for
items about complex structures, we conclude that the simple items overall
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invoke knowledge that can be equally well acquired in the expository,
modeling-based, and simulation-based modes of learning.

A more detailed analysis of the answer elements with respect to the use of
domain knowledge revealed a possible relation between references to domain
knowledge and the acquired level of modeling proficiency. In the first
comparative study, the students in the expository mode of instruction
frequently used domain knowledge as expected, but unexpectedly, also the
modelers used domain knowledge frequently. In the second study, the learners
in the simulation-based mode of instruction expressed significantly more
domain knowledge in the item responses overall than the modeling-based
learners. This result might suggest that there is a higher tendency to use domain
knowledge in cases of lower reasoning abilities. The test requires the students
to use their model-based reasoning skills. Apparently, when students are able
to apply these skills, there is less urge to use domain knowledge. Conversely,
students lacking model-based reasoning skills more often try to fall back on
their existing domain knowledge.

7.4  Effects of instruction

Apart from validating the test, the studies presented in this dissertation
contribute to insight into the effects of the different modes of instruction. The
modeling-based, simulation-based, and expository modes of instruction each
affected specific learning outcomes that we distinguish in the ACE framework.
Specific kinds of instruction appear to be related to learning outcomes as
measured by specific parts of the ACE test. This would mean that specific
modes of instruction might be used to stimulate the development of specific
reasoning skills. After having examined the differences and similarities in
performance in each comparative study, we now try to distill an overall picture
from the results.

A general pattern that arose from the two comparative studies is the
difference in performance between the groups with respect to simple and
complex items and processes. Overall, the students in the modeling-based
mode of instruction performed better on the complex items. With regard to the
types of reasoning, the processes are increasingly more demanding, from the
straightforward reproducing conceptual knowledge to the higher-order
processes of applying, creating, and evaluating. The findings indicate a benefit for
the learners in the expository and simulation-based instruction on the simplest
process of reproducing conceptual knowledge. The modelers in the second
comparative study benefited progressively more on the complex items and the
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more demanding processes of applying and creating. However, neither group
reached a high level for the process of evaluating in this study.

Based on the combined analysis of the data from both comparative studies,
presented in Chapter 6, recommendations can be made for the most effective
mode of instruction with respect to a particular learning effect. First, in order to
learn simple conceptual domain knowledge, creating a model seems to be
disadvantageous. The best performance appears to be realized in an expository
or a simulation-based mode of instruction.

Second, in order to learn reasoning with complex structures, modeling
seems to be most effective. Students using the second version of the modeling
instruction were superior on complex apply items compared to all other
conditions.

Third, with respect to create abilities no differences were found
between the conditions. In the revised instruction the modeling-based learners
performed better than the learners in the simulation-based mode of instruction
on the simple create items. However, when comparing the performance of the
modelers in the second and first study, there is no significant difference. It was
assumed that additional practice in reasoning with basic model building blocks
would improve create abilities, but this appeared not to be the case. This
suggests that practicing reasoning with parts of a model does not automatically
lead to the acquisition of basic create abilities and well-reasoned modeling
behavior.

Finally, evaluating skills appear to be equally well acquired in both
simulation-based and modeling-based modes of instruction. To develop these
skills it does not seem to make a difference whether experiments are performed
using a simulation or a self-created model. An expository mode of instruction
appears to be less effective.

7.5 Competing frameworks

As we began our research, there were virtually no studies providing systematic
descriptions of modeling knowledge. During the time frame of our studies
other frameworks have been developed that specifically focus on modeling
competences or inquiry reasoning skills in science. The multitude of studies
illustrates the relevance of the topic and the more general need for an
assessment approach to modeling skills. A description of these frameworks is
given in the following paragraphs. The fact that other researchers identified
similar aspects of modeling learning outcomes, especially the main dimension
of the types of reasoning, provides additional justification for the choices made
in composing our modeling knowledge framework.
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In order to facilitate the development of assessment instruments,
Kauertz and Fischer (2006) constructed a framework for the content structure of
physics. Their framework describes multiple levels of complexity in order to be
able to assess students’ scientific competence in the context of physics for
students ranging from grades 7 to 10. From this perspective, their framework
contains a hierarchical structure describing six levels of complexity and three
kinds of cognitive activities. The cognitive activities are remembering, structuring,
and exploring. By investigating a test based on their framework, Kauertz and
Fischer found evidence that levels of complexity defined in the model
corresponded with item difficulty. Though not specifically designed for
modeling, Kauertz and Fischer’s cognitive activities bear strong resemblance
with the ACE types of reasoning. However, although they also define a
dimension of complexity, their dimension of complexity is directly related to
item difficulty, reflecting their consideration of complexity as a gradual scale,
whereas the ACE framework considers simple and complex reasoning as
qualitatively different processes.

Maal} (2006) described competencies in the context of mathematical
modeling. The basic competencies related to the process of modeling in her
framework are divided in five groups of subcompetencies: first, understanding
the real problem and creating a model based on reality; second, setting up a
mathematical model from the real model; third, solving mathematical questions within
this mathematical model; fourth, interpreting mathematical results in a real situation;
and, fifth, validating the solution. The first two of these groups of competencies
form a more detailed account of our ‘create’ process, including a strong
emphasis on mathematical skills. In the context of Maa' framework, validating
the solution is more directed at mathematical structure rather than evaluating
by reasoning with empirical data, as is the case in our context.

Schecker and Einhaus (2007) developed a framework for the systematic
description  of science  competencies. Their = Bremen-Oldenburger
Kompetenzmodell for science competence (BOIKo) comprises the following five
dimensions: content area or basic concepts, processes, context, expertise, and cognitive
demand. The dimension of 'content area or basic concepts' defines the subject
matter in which the science competence is to be applied. The dimension of
‘processes’ defines the different ways in which science competencies can be
applied, for example use factual and conceptual knowledge, apply methods in
experimentation and modeling, communicate, and judge. The dimension of
'context’ defines the framing of the modeling problem, for example a didactic
situation within a school subject or a problem posed in a professional
environment. The dimension of 'expertise' reflects the type of demand on
science competence, i.e., can the problem be solved with everyday life expertise,
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by reproducing content knowledge, by applying knowledge in a familiar
situation, or by transferring to a new situation. The dimension of 'cognitive
demand' defines the two components of analytical thinking and creativity or
productivity. In an empirical study with 26 experts and 680 students from
grades 9 to 13, Schecker and Einhaus investigated the validity of a test based on
their framework; one of their conclusions is that the framework needs a
complexity dimension that differentiates in a more detailed way between
students with different levels of science competencies. The BOIKo framework
with its five dimensions is less focused on students’ reasoning processes and
gives more attention to the educational context of the science curriculum. This
makes it difficult to compare with the ACE framework, although certainly
similarities exist, for example, in the dimension of 'expertise'.

Lopes and Costa (2007) perceive modeling as a process for the
construction and use of science concepts that mobilize various specific
competences. They regard modeling in a general sense and not as the computer
modeling of dynamic systems specifically. In their framework for evaluating
competencies with respect to this general definition of modeling they identified
the following dimensions: way of facing, conceptualization, and operative work. The
dimension of 'way of facing' addresses the use of certain properties or relations
of the concepts and analysis of the problem-situation. The dimension of
‘conceptualization' applies to objects and events in a specific context and
whether objects and events are coherent and suitable for the context. The
dimension of 'operative work' includes dealing with relations between the
variables, types of relations, physical quantities, predictive capacity, clarity of
certain operations (for example the choice of a coordinate system), and
symbolic language. Although the dimensions reflect a more general view on
modeling competencies, they describe processes related to model-based
reasoning, such as defining the concepts to be used, predicting, explaining, and
evaluating relations. Though posed at a more general level, these processes are
similar to our processes of applying, creating, and evaluating. In proposing
their framework, Lopes and Costa stress the importance of creating a
methodology to systematically evaluate modeling competences. Lopes and
Costa validated the framework in a study with a diverse group of students
ranging from 9% graders to PhD students and concluded that despite the
complexity of the involved modeling competencies involved, it is possible to
evaluate the various types of information using only written information.

The competing frameworks we discussed in this section provide
different viewpoints on the competencies associated with modeling. Most of
these frameworks are designed for broader contexts than computer modeling.
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On the flip side of this broader view is that they tend to describe reasoning
processes less precisely.

7.6 Implications for practice and future research

The ACE framework developed in this research provides a classification of
learning outcomes of computer modeling that appears to be useful for
developing a practical test instrument. The ACE test is able to reveal differential
effects for the specific model-based reasoning skills that can be acquired by
instruction based on computer modeling. Thereby, the ACE framework
implements a feasible path from theory about model-based reasoning to a
practical operationalization of the main model-based reasoning processes into
test items.

Although the ACE test that we presented in this dissertation was
developed for a specific domain, the ACE framework enables the development
of test items in other domains. The development of test items for our ACE test
exemplifies how this can be done in other domains as well. This means that by
applying similar item formats, parallel test item sets can be constructed. For the
type of reasoning 'apply’, one of the item construction formats involved
mentally simulating the effect of two different values of a variable on another
variable connected by means of two intermediary variables. This construction
format is easily applied in another domain that has an appropriate domain
structure containing variables that are connected in two intermediate steps.

Application of the ACE framework to develop a test in another domain
requires the following steps. First, a model of the target domain must be
available or must be developed by a domain expert. This model must provide a
sufficient number of variables and relations as well as sufficiently complex
structures to allow for distinguishing levels of complexity. Second, a parallel
domain-general model must be developed. This can be done by replacing all
variables in the domain model by abstract names and developing a ‘cover story’
about a fantasy subject in which these variables play a role, as was done in
developing the harmony of the spheres model. Finally, the test items must be
constructed for all cells in the ACE framework, for which our test can serve as
an example.

Using the ACE framework to develop tests in multiple domains could
provide additional evidence for the validity of the framework and, more
importantly, could provide practical instruments allowing educators to assess
important aspects of the scientific competencies of their students.

We conclude with directions for future research. First, the domain-
general ACE subtest needs further validation. In this study we performed
comparative studies with the domain-specific ACE subtest. Overall, the
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performance level of the learners in all modes of instruction was moderate on
the domain-specific subtest, indicating a moderate level of modeling
proficiency. It can be expected that modeling proficiency may grow with
greater experience. At that point, as modeling proficiency grows, the domain-
specific reasoning skills may be generalized to other domains and it might
become relevant to assess domain-general reasoning skills in a posttest. Future
research should validate the dimension of domain-specificity.

Second, future research may further investigate the difference between
the domain-specific and domain-general subtest. With item construction
formats that can be applied to both domain-specific and domain-general
situations, the characteristics of parallel items might be compared. An
interesting research question is how domain-general and domain-specific skills
are related and how the domain-general skills develop after domain-specific
instruction.

A third suggestion for future research can be found in the development
of instruction. Modeling is a method of inquiring about phenomena that
invokes the acquisition of scientific reasoning skills. The different aspects of
scientific reasoning skills are trained by modeling instruction. More specifically,
the aspects of scientific reasoning can be acquired through different modes of
instruction (e.g., simulation-based inquiry and modeling). However, some
aspects of modeling are not easily learned. The revised instruction in study 3
resulted in an improvement in reasoning with the relations in a model, but the
create skills did not improve. Therefore, future research should investigate
methods to acquire a higher level of modeling proficiency. The findings of the
comparative studies showed that students did not easily acquire modeling
skills at the highest level and that the modelers had relatively low create
abilities. A limiting factor might have been the restricted amount of time that
was available in the experiments. In order to achieve a higher level of modeling
proficiency, it may be necessary to take the development of modeling
instruction to the curriculum level, developing dedicated programs to acquire
modeling competency, allowing students to spend more time on creating
models and on applying models in various contexts.

In sum, the research presented in this dissertation took a promising step toward
the clarification of the learning goals of modeling and the assessment of
modeling skills. By classifying and measuring the learning outcomes of
modeling, the ACE framework and assessment instrument contribute to an
evidence-based discussion about the effectiveness of modeling-based inquiry.
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Introduction

The topic of this thesis is computer modeling. A defining characteristic of
computer modeling is the construction and exploration of executable computer
models of dynamic systems. Modeling is a topic that aligns well with the
current trend in secondary science education to actively involve students in
their knowledge construction, give room for inquiry, and offer realistic tasks. It
connects to the current reform in science education that stresses new learning
outcomes such as scientific literacy, inquiry learning, and a hands-on and
minds-on mentality (van Driel et al., 2001).

The effectiveness of new modes of instruction that aim at new learning
outcomes has been debated by many researchers and educators. An example of
a means for achieving new learning outcomes is inquiry learning. There are
researchers who state that this form of learning is ineffective and that direct
instruction would be a more effective approach (e.g., Kirschner et al., 2006;
Mayer, 2004). It must be noted that this criticism concerns mainly unguided
inquiry learning. There is evidence that learning by inquiry, especially in a
guided way, provides a motivating and engaging form of learning (e.g., Kuhn
et al., 2000).

The debate between educational reformers and their critics all too often
remains undecided, due to a lack of rigorous evidence. Claims by either side are
based mainly on studies that are hard to compare objectively due to a lack of
standardized assessment. There is a need for a clear definition of the desired
learning outcomes and suitable assessment tools. With such definitions and
valid measurement instruments it is possible to assess and compare the
effectiveness of different modes of instruction.

There are several claims with respect to the learning outcomes of
computer modeling. It has been claimed that modeling contributes to the
acquisition of scientific reasoning skills (Doerr, 1997; Van Joolingen & De Jong,
1997; Lohner et al., 2005; Stratford et al.,, 1998; Wells et al., 1995), conceptual
knowledge (Jonassen et al., 2005; Nersessian, 1999; Stratford et al., 1998), and
improves insight into dynamic systems (Booth Sweeney & Sterman, 2000;
Hagmayer & Waldmann, 2000; Hmelo-Silver et al.,, 2007; Sterman, 1994;
Wilensky & Resnick, 1999).

In this thesis the learning outcomes of computer modeling are defined
and an assessment instrument is developed and validated.

Research question

The main research question in this dissertation was:
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What specific learning outcomes can be expected from computer modeling and how can
they be measured?

To answer this question, the reasoning processes involved in computer
modeling were investigated. The findings of this exploration were systematized
as what is called here the ‘ACE framework’ that describes modeling knowledge
in three dimensions: 'type of reasoning’, 'complexity’, and 'domain-specificity".
The dimension of ‘types of reasoning’ includes applying (A), creating (C), and
evaluating (E). The dimension of complexity distinguishes between reasoning
with simple and complex situations. The dimension of domain-specificity
describes the extent to which reasoning is dependent on the domain and
distinguishes between domain-specific and domain-general.

The ACE test was developed based on the ACE framework with test
items for each of the types of reasoning as applied in simple and complex
situations. In addition, the ACE test contains items that assess conceptual
knowledge about the domain. The dimension of domain-specificity was
implemented in the specific domain of global warming. The question of how to
validly measure the learning outcomes was addressed in a validation study that
investigated construct validity. Validity was further explored by analyzing the
discriminative power of the test in two studies comparing computer modeling
with another mode of instruction. Finally, the data of these comparative studies
were analyzed in a combined analysis to compare the modes of instruction
across the studies.

Studies

Validation study

In the validation study (see Chapter 3) the ACE test was validated by
administering the test to 131 students with different levels of modeling
proficiency (eleventh grade students, first-year psychology students, and first-
year students of engineering physics who had completed a course about
modeling). An analysis of the responses with item response models yielded
evidence that the reasoning skills are composed of four unidimensional
subscales, namely Applying, Creating, Evaluating, and Reproducing conceptual
knowledge. The first three subscales are the reasoning processes as described in
the ACE framework. The fourth subscale, Reproducing, concerns the test items
about conceptual knowledge of the domain. With regard to the dimension of
complexity it was found that the test items about complex situations were
significantly more difficult than the items about simple situations. The test
appeared to discriminate between students with and without modeling
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experience and a trend was found with respect to the domain-specific subtest in
favor of students with domain knowledge.

In order to further investigate the discriminative power of the test, two
comparative studies were performed in which a modeling-based mode of
instruction was compared with another mode of instruction. The main question
is whether the test is sensitive enough to detect differences in learning
outcomes between the modes of instruction. First, we compared modeling to an
expository mode of instruction offering quite a contrast. Second, modeling was
compared with simulation-based instruction that had more in common with
modeling.

The first comparative study

In the first comparative study (see Chapter 4) we compared modeling to
expository instruction. In both conditions students worked independently on
assignments about global warming during two sessions. Students in the
expository mode of instruction were directly exposed to the domain concepts.
Students in the modeling condition worked with the concepts by creating a
model of the domain. The performance on the domain-specific test was
analyzed with the domain-general pretest scores as a covariate.

The principal finding of this study was that the modeling students
performed better on problems for complex situations. More specifically, the
learners in the modeling condition performed better on reproducing complex
conceptual knowledge and on evaluating complex models and data. No
differences were found for applying knowledge and creating models. These
results indicate that the ACE test is able to measure differences between groups
with respect to processes described in the ACE framework. As a consequence of
the lack of difference for applying and creating along with the low performance
for these processes the modeling instruction was revised.

The second comparative study

In the second comparative study (see Chapter 5) we compared modeling to
simulation-based instruction. The modeling instruction was revised to put more
emphasis on reasoning with the basic building blocks of modeling. Similar to
the previous comparative study, students worked independently on
assignments about global warming. The students in the simulation-based mode
of instruction answered questions using a given simulation in which they could
change parameters and observe the consequences. The students in the modeling
mode of instruction constructed and explored a model.

As in the first comparative study the modeling group performed better
on complex problems. Test performance across the conditions in this study
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showed differences for the processes of reproducing, applying, and creating.
The students in the simulation-based mode of instruction performed better on
reproducing simple conceptual knowledge. The modeling group performed
better on applying complex knowledge and creating simple models. No
differences were found for evaluating models and data. This result was
consistent with our expectations, because both a model and a simulation can be
used for experimentation and can support the acquisition of evaluating skills.

Combined analysis

The two comparative studies each compared two modes of instruction and
provided detailed information about the differences in performance between
two groups. The data of the two comparative studies were analyzed in a
combined analysis (see Chapter 6) to further explore the advantages and
disadvantages of the different modes of instruction. The question that is
addressed is how the four conditions performed in relation to each other, such
as the simulation-based condition compared with the expository condition. We
are particularly interested in the difference between the two modeling
conditions; in other words, whether the revised modeling instruction had been
effective. The purpose of the revised instruction was to offer the modeling
students more exercise in reasoning with the building blocks of a model. Our
assumption was that the exercises would result in better reasoning skills and a
higher level of modeling proficiency.

The studies were comparable because they had been conducted in
comparable circumstances. The students were from the same two schools and
the same three teachers. In the second comparative study, a fourth teacher's
class participated in the experiment (with 24 out of 76 students). The
comparability was confirmed by the fact that there were no significant
differences for the pretest scores between the conditions in both studies.

The combined analysis revealed differences between the conditions
with regard to several types of reasoning. First, students in both the expository
and simulation-based modes of instruction performed significantly better on
reproducing simple conceptual knowledge than those in the modeling
condition in the second comparative study. This finding suggests that simple
conceptual knowledge is best acquired without the task of creating a model.
Second, the students in the revised modeling condition performed better on
applying complex knowledge than all other conditions. This finding suggests
that the revised instruction successfully focused on profound and well-
reasoned modeling behavior resulting in better applying reasoning skills. Third,
students in the expository mode of instruction performed significantly worse on
the complex evaluate subscale than those in the modeling condition with the
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revised instruction. The performance of the other conditions suggests a trend
that complex evaluate skills are acquired equally well in both a modeling-based
and a simulation-based mode of instruction. Finally, no significant differences
were found for the subscale of creating models.

A more detailed analysis of the answer elements with respect to the use
of domain knowledge and the occurrence of errors in creating revealed a
possible relation between references to domain knowledge and the acquired
level of modeling proficiency. In general, domain knowledge is useful in
effective problem solving, but in the current task setting using domain
knowledge might also possibly be a strategy that hinders the application of
reasoning skills. The analysis of these elements indicates that the students in the
simulation-based mode of instruction referred significantly more to domain
knowledge and made more errors in creating than the other conditions. This
result might suggest that there is a higher tendency to use domain knowledge
in cases of lower reasoning abilities. In other words, students lacking model-
based reasoning skills more often try to fall back on their existing domain
knowledge.

With respect to the effect of the revised instruction a salient difference
was found for the complex apply items: the modelers who received the revised
instruction performed significantly better than the modelers in the first
comparative study and than students in the other conditions.

General conclusion

The main question in the research was: What specific learning outcomes can be
expected from computer modeling and how can these be measured? The results
of the three studies show that the core reasoning processes of modeling are
validly described by the processes of applying, creating, evaluating, and
reproducing. A general pattern that arose from the two comparative studies is
the difference in performance between the groups with respect to simple and
complex items and processes. Overall, the students in the modeling-based
mode of instruction performed better on the complex items. The modeling
processes are progressively more demanding with regard to the types of
reasoning involved, from the straightforward reproducing of conceptual
knowledge to the higher-order processes of applying, creating, and evaluating.
The findings indicate a benefit for the learners in the expository and simulation-
based instruction on the simplest process of reproducing conceptual
knowledge. The modelers in the second comparative study benefited
progressively more on the complex items and the more demanding processes of
applying and creating. However, neither group reached a high level for the
process of evaluating.

114



Summary

The following recommendations can be made for the most effective
mode of instruction with respect to a particular learning effect. In order to learn
simple conceptual domain knowledge, creating a model seems to be
disadvantageous. The best performance appears to be realized in an expository
or a simulation-based mode of instruction. However, in order to learn
reasoning with complex structures, modeling seems to be most effective.
Evaluating skills appear to be equally well acquired in both simulation-based
and modeling-based modes of instruction. An expository mode of instruction
appears to be less effective for these. Finally, with respect to create abilities no
differences were found between the different modes of instruction. The lack of
difference between the conditions with respect to create skills calls for future
research. The revised instruction in the second comparative study resulted in an
improvement in reasoning with complex relations in a model, but the create
skills did not improve. Future research should investigate the design and
evaluation of methods for acquiring a higher level of modeling proficiency.
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Samenvatting

Introductie

Het onderwerp van dit proefschrift is computermodelleren. Modelleren is
hierbij gedefinieerd als het met behulp van de computer construeren van
modellen van dynamische systemen. Het onderwerp modelleren sluit nauw
aan bij de huidige trend in het middelbaar natuurwetenschappelijk onderwijs
om leerlingen waar mogelijk zelf te laten ontdekken, actief te betrekken bij
kennisconstructie en leeromgevingen aan te bieden die aansluiten bij de
beroepspraktijk van wetenschappers. Het sluit tevens aan bij nieuwe leerdoelen
zoals wetenschappelijke geletterdheid, onderzoekend leren en een actieve
betrokkenheid.

De effectiviteit van de manier waarop deze nieuwe leerdoelen in de
onderwijspraktijk gebracht worden, is onderwerp van discussie onder
wetenschappers en in het publieke domein. Een voorbeeld van een actieve
leermethode in het middelbaar onderwijs is onderzoekend leren. Er zijn
stemmen die beweren dat dit per definitie een ineffectieve leermethode is
(Kirschner et al., 2006). Daarbij moet wel opgemerkt worden dat deze kritiek
vooral betrekking heeft op onbegeleid onderzoekend leren. Er is evidentie dat
begeleid onderzoekend leren juist een effectieve leermethode is die meer
leerwinst oplevert dan "‘puur' onderzoekend leren (Mayer, 2004).

De claims die in deze discussie naar voren worden gebracht, zijn veelal
gebaseerd op studies die moeilijk te vergelijken zijn door gebrek aan
gestandaardiseerde toetsen. Het ontbreekt vaak aan duidelijkheid over de
gewenste leeruitkomsten en aan meetmethoden om die te meten. Als de
leeruitkomsten helder zijn gedefinieerd en meetbaar gemaakt door middel van
valide meetinstrumenten, is het mogelijk om de effectiviteit van verschillende
leermethoden te toetsen en te vergelijken.

Wat betreft modelleren zijn er leeruitkomsten geclaimd op
verschillende gebieden. Er wordt geclaimd dat modelleren bijdraagt aan
vaardigheid in het wetenschappelijk redeneren (Doerr, 1997; Van Joolingen & De
Jong, 1997; Lohner et al., 2005; Stratford et al.,, 1998; Wells et al., 1995), aan
domeinkennis (Jonassen et al., 2005; Nersessian, 1999; Stratford et al., 1998) en
aan inzicht in dynamische systemen (Booth Sweeney & Sterman, 2000; Hagmayer
& Waldmann, 2000; Hmelo-Silver et al.,, 2007; Sterman, 1994; Wilensky &
Resnick, 1999).

In dit proefschrift zijn de leeruitkomsten van modelleren in kaart
gebracht en is een toetsinstrument ontwikkeld en gevalideerd.

Onderzoeksvraag
De hoofdvraag in dit onderzoek was:
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Welke specifieke leeruitkomsten kunnen verwacht worden van computermodelleren en
hoe kunnen deze gemeten worden?

Om deze vraag te beantwoorden, werden de redeneerprocessen bestudeerd die
optreden bij modelleren. De bevindingen werden samengevat in het
zogenaamde ACE-raamwerk dat leeruitkomsten van modelleren beschrijft in
drie dimensies: 'type redeneren’, 'complexiteit' en 'domeinspecificiteit'. In het
type redeneren onderscheiden we: toepassen ('Apply', A), creéren ('Create’, C)
en evalueren ('Evaluate’, E). Binnen de dimensie complexiteit wordt redeneren
met enkelvoudige en complexe situaties onderscheiden. De dimensie
domeinspecificiteit beschrijft de mate waarin de redeneervaardigheid gebonden
is aan het domein en onderscheidt domeinspecifiek en domeinonafhankelijk.

Op basis van het ACE-raamwerk werd de ACE-toets ontwikkeld met
toetsvragen voor iedere combinatie van dimensies. Bovendien bevat de ACE-
toets vragen naar conceptuele kennis over het domein. De dimensie van
domeinspecificiteit was geimplementeerd voor het specifieke domein van de
opwarming van de aarde. De vraag hoe de leeruitkomsten valide gemeten
kunnen worden, werd beantwoord in een validatiestudie waarin
constructvaliditeit werd onderzocht. Vervolgens werd de validiteit verder
onderzocht door het discriminerend vermogen van de toets te analyseren in
twee studies waarin telkens twee manieren van instructie werden vergeleken.
De gegevens van de twee vergelijkende studies werden tot slot naast elkaar
gelegd om de condities tussen de twee studies te kunnen vergelijken.

Studies

Validatiestudie

In de validatiestudie (zie hoofdstuk 3) werd de ACE-toets gevalideerd door
hem af te nemen bij 131 leerlingen en studenten die een verschillend niveau van
modelleerervaring hadden 6] VWO scholieren, eerstejaars
psychologiestudenten en eerstejaars natuurkundestudenten die een cursus
modelleren hadden gevolgd). Een analyse van de antwoorden met item-
responsemodellen toonde aan dat de redeneervaardigheden, kunnen worden
onderverdeeld in vier eendimensionale subschalen, namelijk Toepassen,
Creéren, Evalueren en Reproduceren van conceptuele kennis. De eerste drie
subschalen zijn de redeneerprocessen beschreven in het ACE-raamwerk. De
vierde subschaal, Reproduceren, heeft betrekking op de toetsvragen over
conceptuele kennis van het domein. Met betrekking tot de dimensie
complexiteit bleek dat de toetsvragen over de complexe situaties significant
moeilijker waren dan de vragen over enkelvoudige situaties. De toets bleek te
onderscheiden tussen de leerlingen met en zonder modelleerervaring en voor
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de scores op de domeinspecifieke toets was een trend te zien ten gunste van
leerlingen met domeinkennis.

Om het onderscheidend vermogen van de toets verder te onderzoeken,
zijn twee vergelijkende studies uitgevoerd waarin een op modelleren
gebaseerde instructie is vergeleken met andere vormen van instructie. De
hoofdvraag is of de toets in staat is verschillen in leeropbrengst tussen de
instructiemethoden te detecteren. We vergeleken modelleren eerst met een
instructievorm die sterk verschilt, namelijk directe instructie. Daarna
vergeleken we modelleren met de verwante simulatiegebaseerde instructie.

De eerste vergelijkende studie

In de eerste vergelijkende studie (zie hoofdstuk 4) vergeleken we een
modelleerinstructie met directe instructie. De leerlingen in beide condities
werkten in twee sessies zelfstandig aan opdrachten over het klimaat. De
leerlingen die directe instructie ontvingen, kregen de concepten op een directe
manier aangeboden. De leerlingen in de modelleerconditie werkten met de
concepten door middel van het maken van een model. De prestaties op de
domeinspecifieke toets werden vergeleken waarbij de voortoetsscores voor de
domeinonafhankelijke toets als covariaat werden gebruikt.

De belangrijkste bevinding van deze studie was dat de leerlingen in de
modelleergroep beter presteerden op de complexe problemen. Preciezer, de
modelleerders presteerden beter op het reproduceren van complexe
conceptuele kennis en op het evalueren van complexe modellen en gegevens. Er
werden geen verschillen gevonden voor het toepassen van kennis en het
creéren van modellen. Deze resultaten tonen aan dat de ACE-toets in staat is
om verschillen tussen groepen te meten met betrekking tot een aantal processen
beschreven in het ACE-raamwerk. Het feit dat de processen toepassen en
creéren geen verschillen lieten zien en dat beide groepen laag presteerden, was
aanleiding om de instructie te reviseren.

De tweede vergelijkende studie

In de tweede vergelijkende studie (zie hoofdstuk 5) vergeleken we een
modelleerinstructie met simulatiegebaseerd leren. De modelleerinstructie in
deze studie legde meer nadruk op het redeneren met een model en op de
basisbouwstenen van een model. Net als in de vorige vergelijkende studie
werkten de leerlingen zelfstandig aan opdrachten over het klimaat. De
leerlingen in de simulatiegebaseerde instructie maakten de opdrachten
gebruikmakend van een gegeven simulatie waarvan ze parameters konden
veranderen en de gevolgen daarvan konden observeren. De leerlingen in de op
modelleren gebaseerde instructie construeerden zelf een model.
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Net als in de eerste vergelijkende studie presteerde de modelleergroep
beter op de complexe problemen. De toetsresultaten van beide condities laten
ditmaal verschillen zien voor de processen reproduceren, toepassen en creéren.
De leerlingen in de simulatiegroep presteerden beter op het reproduceren van
enkelvoudige conceptuele kennis. De modelleergroep presteerde beter op het
toepassen van complexe kennis en het creéren van simpele modellen. Voor de
toetsvragen over het evalueren van modellen en experimentele data werden
geen verschillen gevonden. Dit resultaat was in overeenstemming met onze
verwachtingen, omdat zowel met een model als met een simulatie kan worden
geéxperimenteerd en evalueervaardigheden kunnen worden verworven.

Gecombineerde analyse

De twee afzonderlijke studies vergeleken telkens twee condities en gaven
gedetailleerde informatie over de prestatieverschillen tussen de groepen. Om
een vollediger beeld te krijgen van de voor- en nadelen van de verschillende
manieren van instructie voegden we de gegevens van de twee vergelijkende
studies samen en voeren een gecombineerde analyse uit (zie hoofdstuk 6). De
vraag die hiermee beantwoord kan worden, is hoe alle vier condities
gepresteerd hebben ten opzichte van elkaar, bijvoorbeeld de simulatieconditie
ten opzichte van de leerlingen die directe instructie ontvingen. In het bijzonder
zijn we geinteresseerd in het verschil tussen de twee modelleercondities, met
andere woorden of de aanpassingen in de modelleerinstructie effect hebben
gehad. De aangepaste instructie had vooral ten doel dat de modelleerders meer
oefening zouden krijgen in het redeneren met de bouwstenen van een model.
De aanname was dat deze oefening zou resulteren in betere
redeneervaardigheden en een hoger algemeen modelleerniveau.

De studies konden vergeleken worden omdat de twee studies in
overeenkomstige omstandigheden zijn uitgevoerd. De leerlingen kwamen van
dezelfde twee scholen. Klassen van dezelfde drie docenten namen deel aan het
onderzoek. In de tweede vergelijkende studie was nog een vierde docent
betrokken bij het onderzoek (met 24 van de 76 leerlingen). De vergelijkbaarheid
werd bevestigd door het feit dat de voortoetsscores geen significante verschillen
lieten zien tussen de leerlingen van beide studies.

Verschillen tussen de condities werden gevonden met betrekking tot
diverse typen redeneren. Ten eerste, voor het reproduceren van simpele
conceptuele kennis bleken zowel de leerlingen die directe instructie als de
leerlingen die simulatiegebaseerde instructie ontvingen significant beter te
presteren dan de modelleerconditie in de tweede vergelijkende studie. Deze
bevinding suggereert dat simpele conceptuele kennis het best geleerd wordt in
een leeromgeving zonder de taak om een model te construeren. Ten tweede,
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wat betreft het toepassen van complexe kennis presteerden de leerlingen in de
gereviseerde modelleerinstructie beter dan alle andere condities. Dit resultaat
suggereert dat de gereviseerde instructie op een succesvolle manier meer
nadruk legt op weldoordacht en beredeneerd modelleergedrag en leidt tot
betere redeneervaardigheden op het gebied van het toepassen van kennis. Ten
derde, voor de redeneervaardigheden met betrekking tot complex evalueren
bleken de leerlingen die directe instructie ontvingen significant minder te
presteren dan de modelleergroep in de gereviseerde instructie. De prestaties
van de andere condities suggereren de trend dat evalueervaardigheden het best
verworven kunnen worden in zowel een op modelleren gebaseerde als een
simulatiegebaseerde instructie. Tot slot, voor de subschaal van het creéren van
modellen werden onder de vier condities geen significante verschillen
gevonden.

Naast het vergelijken van de prestaties op de deeltoetsen is ook een
frequentie-analyse uitgevoerd van elementen in de toetsantwoorden die een
indicatie zouden kunnen geven van het algemene modelleerniveau, namelijk
het refereren aan domeinkennis en het maken van creéerfouten. Domeinkennis
is in het algemeen weliswaar noodzakelijk voor een effectieve probleemaanpak,
maar in de huidige taaksetting zou het gebruik van domeinkennis er ook toe
kunnen leiden dat Ileerlingen minder gebruik maken van hun
redeneervaardigheden. De analyse van deze elementen laat de trend zien dat de
leerlingen in de simulatiegebaseerde conditie significant meer aan
domeinkennis refereerden in hun antwoorden en meer creéerfouten maakten
dan andere condities. Dit resultaat zou erop kunnen duiden dat leerlingen die
in staat zijn om redeneervaardigheden toe te passen minder neiging hebben om
domeinkennis te gebruiken en dat, omgekeerd, leerlingen met minder
redeneervaardigheden vaker terugvallen op domeinkennis.

Met betrekking tot het effect van de revisie van de modelleerinstructie
werd een opvallend verschil gevonden voor het toepassen van complexe
kennis: de modelleergroep in de gereviseerde instructie haalde significant
betere toetsresultaten dan de modelleergroep uit de eerste vergelijkende studie
en ook dan de overige groepen.

Algemene conclusie

De hoofdvraag van dit onderzoek was: Welke specifieke leeruitkomsten
kunnen verwacht worden van computer modelleren en hoe kunnen deze
gemeten worden? De resultaten van de drie studies laten zien dat de
kernprocessen van computermodelleren valide beschreven worden door de
processen toepassen, creéren, evalueren en reproduceren. De vergelijking van
verschillende manieren van instructie laat een patroon zien van verschillen wat
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betreft simpele en complexe toetsvragen en redeneerprocessen. De
modelleergroep presteerde in beide vergelijkende studies beter op de complexe
toetsvragen. Ook bij de redeneerprocessen is de trend zichtbaar dat modelleren
vooral leerwinst oplevert voor de complexere processen. De redeneerprocessen
hebben een oplopende graad van complexiteit, van het eenvoudige reproduceren
van conceptuele kennis tot de steeds complexere processen foepassen, creéren en
evalueren. De leerlingen in de directe en simulatiegebaseerde instructie
presteerden het best op toetsvragen over het reproduceren van simpele
conceptuele kennis. De modelleerders daarentegen hadden meer profijt voor de
complexe toetsvragen en voor de complexere processen toepassen en creéren.
Geen van beide groepen behaalde een hoog niveau voor het proces van
evalueren.

De volgende aanbevelingen kunnen gedaan worden voor de meest
effectieve manier van instructie met betrekking tot specifieke leerwinsten. Voor
het leren van simpele conceptuele kennis lijkt het maken van een model
nadelig. De hoogste leerwinst lijkt te worden gerealiseerd met directe of
simulatiegebaseerde instructie. Echter, voor het leren toepassen van complexe
modelstructuren lijkt modelleren de meest geschikte manier van instructie.
Evalueervaardigheden worden in gelijke mate geleerd in zowel een op
modelleren gebaseerde als een simulatiegebaseerde instructie. Directe instructie
lijkt voor deze vaardigheden minder effectief. Tenslotte, met betrekking tot
creéervaardigheden werden geen verschillen gevonden voor de verschillende
manieren van instructie. Het gebrek aan verschillen tussen condities voor
creéervaardigheden nodigt uit tot vervolgonderzoek. De gereviseerde instructie
in de tweede vergelijkende studie resulteerde in een hoger redeneerniveau voor
het toepassen van complexe modelstructuren, maar niet in betere
creéervaardigheden. Het ontwerpen en evalueren van methoden waarmee een
hoger modelleerniveau kan worden verworven, is een interessant onderwerp
voor vervolgstudies.
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Appendix
The standardized correct answer elements in the domain of the energy of the
earth
Definitional
e albedo is the part of the radiation that is reflected
e depends on the color of the surface
e heat capacity is the amount of heat required to raise the temperature
e .. ofabody
e .. by one degree Celsius
e reference to the definition of heat capacity
e reference to the definition of albedo
e reference to formula temperature = energy / heat capacity
e aconstant temperature means inflow = outflow
e aconstant temperature means equilibrium
e elaborate explanation of albedo (the higher albedo, the more reflection;
black isn’t reflecting anything, albedo = 0%, white is reflecting all
radiation, albedo = 100%)
e elaborate description of equilibrium
Relational
e existence of the relation between variable 1 and variable 2
e direction of the relation from variable 1 to variable 2
e quality of the relation between variable 1 and variable 2
e shortcut reasoning: expressing a correct indirect relation but leaving out
steps in between
e apply a formula in a calculation (15000 J) /(50 J/K)
e temperature is increasing
e theincrease is fast in the beginning and slow in the end
e explicit statement that temperature is reaching equilibrium
e equilibrium is reached within 3 years
e reference to the term ‘negative feedback’
¢ explaining negative feedback
e less energy is reaching the earth
e energy in the battery generates heat
e albedo will decrease
e there are too many factors involved to say something reasonable
Evaluative

the conclusion is (not) supported by the data in the graph or table
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(posing concrete evidence)

o all other variables must be the same in both experiments

e two variables have been changed at the same time

e two experiments is too little to draw any conclusion

e one variable has been changed

o reference to the data in the graph or table

¢ in the long term the relation is less strong

e temperature in both experiments reaches the same value

e temperature increases less fast when heat capacity is higher

e vary the settings of temperature

e vary the settings of heat capacity

e vary the settings of the radiation of the sun

e observe outgoing radiation, temperature or the results

e draw a conclusion

e the beginning of the graph line matches with the graph line of our
model

e other variable(s) play a role

e .. from 2002

o description of a possible additional variable

o the oscillation need to be explained

e variable heat capacity is missing in the model

e variable energy is missing in the model

e outgoing radiation has an indirect relation with temperature

o inflow of energy has an indirect relation with temperature

e take the goal of the model into account

e there is no relation

e the relation is the other way round

Creational

e creation of an additional variable describing the new phenomenon

e creation of an additional relation between variable 1 and variable 2
(existence of the relation)

e creation of the direction of the relation from variable 1 to variable 2

e creation of the type of the relation between variable 1 and variable 2

e creation of an additional variable describing part of the new
phenomenon

e creation of an extra additional variable for reasons of restructuring the
model

e creation of an additional variable not necessary but functional
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