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Port-Based Asymptotic Curve Tracking for Mechanical Systems

Vincent Duindam and Stefano Stramigioli�
Control Laboratory, Faculty of EEMCS, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

We examine the control problem of curve-tracking for
a fully actuated mechanical system. Using a coordinate
transformation on the momentum variables, we split
the kinetic energy of the system in a desired and an
undesired part, and then design an (intrinsically
passive) controller as an interconnection of port-
Hamiltonian subsystems, in such a way that asymptotic
convergence to the desired curve is obtained. We
illustrate the performance in a simulation.
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1. Introduction

Traditional robot motion control tries to make a
robot follow a reference point as closely as possible, as
this reference point moves in space over time.
Although this approach is a very sensible choice for
many applications, there are also applications (e.g.
contour following) for which the time aspect of the
task is not so important, and the task is much more to
stay on a certain curve at all times; the exact position
in time is not directly important, as long as it is
somewhere on this desired curve.

For this task, traditional controllers like PID
cannot be applied directly, since there is no clearly
defined error signal between the actual and desired
position. Instead, a very elegant approach (a form

of stiffness/impedance control as presented in
Refs [6,11,16]) is to build a virtual potential field
around the desired curve, such that the potential
energy is minimal everywhere on the desired curve,
and increases as the deviation from the desired curve
increases (Fig. 1). The gradient of the potential field
then gives the control torque to be applied to the
robot, such that the robot moves as if a spring is
pulling it in the direction of the desired curve.

Although this approach to curve tracking is very
elegant and features many desirable properties like
passivity, intuitive interpretation, and intuitive tuning,
the performance is not so spectacular. The reason is
that centrifugal and Coriolis forces drive the robot
away from the minimum, and the potential field only
produces a correcting torque after the robot has
already deviated from the desired curve.

In this paper, we extend this potential field con-
troller and improve the performance, without
destroying the features like passivity and intuitive
interpretation. We add control terms that are power-
continuous (i.e. they do not change the energy) but
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Fig. 1. The desired curve and a potential field U with gradient
towards the desired curve.



change the distribution of kinetic energy over the
various (desired and undesired) directions to obtain
asymptotic convergence.

The control law in this paper is based on the con-
troller described in Ref. [3] and partially in Ref. [5],
but the results have been completely reformulated in
terms of an interconnection of port-Hamiltonian
systems. The main advantage of this formulation is
that the structure of the equations directly reveals
energy storage and possible energy flows inside the
system. Furthermore, the approach is suitable for
modular controller design; we construct the total
controller as a port-interconnection of subcontrollers
for specific subtasks.

The control idea in this paper is also related to the
passive velocity field control (PVFC) strategy descri-
bed in Refs [8,9], but the main differences are (1)
PVFC uses temporal energy storage in the form of a
virtual flywheel whereas our approach is power-
continuous, and (2) PVFC uses a cleverly chosen
vector field to obtain convergence to a single curve
where we use the potential field and extra power-
continuous terms to obtain this convergence.

This paper is organized as follows. Section 2 gives
the necessary mathematical preliminaries for the rest
of the paper. Section 3 presents a derivation of the
port-based control law, the main result of this paper.
Section 4 then shows the behavior of the controller in
a simulation. Finally, Section 5 gives the main con-
clusions and a discussion on possible directions for
future research.

2. Preliminaries

In this section, we discuss the mathematical back-
ground knowledge necessary for the rest of the paper.

2.1. Manifolds and Tensors

We denote a differentiable manifold by Q, its points
by q, and its dimension by n 2 N. The tangent bundle
TQ of Q is the union of the tangent spaces TqQ at all
points q 2 Q. Similarly, the cotangent bundle T �Q of
Q is the union of all cotangent spaces T �

qQ. The
intrinsic dual product between an element v 2 TqQ
and an element � 2 T �

qQ is denoted by hvj�i 2 R.
A C1 tensor field T

ðkÞ
ðlÞ is a C1 mapping which

assigns to each point q 2 Q a tensor of order k contra-
variant and order l co-variant (a type (k, l ) tensor)
such that the mapping

TðqÞ : TqQ� � � � �TqQ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
l times

�T�
qQ� � � � �T�

qQ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k times

! R

is linear in all its arguments at all q 2 Q. Tensor
fields can locally be expressed using coordinates, for
example, Txy

vw expresses the value of T acting on the
basis vectors @v, @w 2 TQ and dx, dy 2 T �Q. We use
the Einstein summation convention, which means that
repetition of an index (once upper, once lower) implies
summation over that index. Furthermore, we denote
the partial derivative of a tensor T

ðkÞ
ðlÞ to qi by T

ðkÞ
ðlÞ;i.

A Riemannian metric tensor field (denoted by g or
in coordinates by gij) assigns to each point a sym-
metric positive-definite two-covariant tensor. A
manifold endowed with such a structure is called a
Riemannian manifold. Using the metric, we denote
the inner product of two tangent vectors as

hv,wig ¼ gijv
iw j 2 R v,w 2 TqQ:

The inverse of the metric defines a metric g�1 acting on
elements of T �

qQ as

h�,�ig�1 ¼ gij�i�j 2 R �,� 2 T �
q Q:

2.2. Port-Hamiltonian Systems

A general explicit port-Hamiltonian system is a
dynamical system that can be represented by a set of
differential equations of the following form

_xx ¼ ðJðxÞ � RðxÞÞ @HðxÞ
@x

þ gðxÞu,

y ¼ gTðxÞ @HðxÞ
@x

þ ðKðxÞ þ SðxÞÞu
ð1Þ

in which x 2 X is the state, H : X ! R is the
(differentiable) energy function, J(x) and K(x) are
skew-symmetric matrices (to model power-continuous
elements), R(x) and S(x) are positive semi-definite
matrices (to model dissipative elements), and ðu, yÞ 2
U � U � is the port through which the system can
interact with, for example, a controller. For systems of
this form it is straightforward to show that _HH � hujyi,
that is, the system is passive with respect to the port
(u, y) with storage function H. Several generalizations
for this kind of systems exist, for example, implicit
formulations, and we refer the interested reader to
Refs [1,12].

In this paper, we consider the subclass of mechan-
ical systems (with H the mechanical energy) and we
start from a conservative simple mechanical system (a
system for which the total energy is the sum of kinetic
and potential energy). If we take the state to be an
element of the cotangent bundle T �Q, the dynamics
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can be described by a port-Hamiltonian system of the
form

d

dt

q

p

� �
¼ 0 I

�I 0

� � @H

@q

@H

@p

2
664

3
775þ 0

B

� �
u,

y ¼ 0 BT
� � @H

@q

@H

@p

2
664

3
775,

ð2Þ

where (q, p) are canonical coordinates on the cotan-
gent bundle (generalized positions and momenta), and
H equals

Hðq, pÞ ¼ 1

2
hp, pig�1 þ VðqÞ: ð3Þ

The first term of H is the kinetic energy, the second
term is the potential energy. Systems described in
these coordinates (q, p) with J as shown are called
symplectic systems.

2.3. Bond Graphs

Though not commonly known, bond graphs (intro-
duced by Paynter [10]) can be very useful to analyze
energy aspects of physical systems. We give a rough
guide how to read and use a bond graph like the ones
in Figs 2–7; interested readers are referred to Ref. [7]
for a more accurate and complete introduction to
bond graphs, and to [15] for the use of bond graphs in
robotics.

The half-arrows called bonds represent energy
connections between subparts, carrying dual variables
(called effort and flow, for mechanical systems force
and velocity) where the dual product between the two
represents the power flowing in the direction of the
arrow. The stroke on either side of the arrow indicates
the signal direction of the effort (force); the signal
direction of the flow (velocity) is then in the opposite
direction. A single arrow represents a one-dimen-
sional bond, a double arrow represents a multi-
dimensional bond.

The Is are inertial elements, which integrate the
incoming effort (force) to get the internal state
(momentum), and output the partial derivative of the
energy function to the state (i.e. the velocity). Simi-
larly, a C-element represents an elastic element, inte-
grating the incoming flow (velocity) to get the internal
state (displacement), and output the partial derivative
of the energy function to the state (i.e. elastic force).

Both an modulated transformer (MTF)-element
and an modulated gyrator (MGY)-element establish a
power-connection between two bonds, the coupling

strength of which can be modulated by some external
(matrix) signal X. For the MTF we have the relations
f2 ¼ Xf1 and e1 ¼ XTe2, while for the MGY we have
the relations e2 ¼ Xf1 and e1 ¼ XTf2 (which auto-
matically makes both elements power-continuous; the
total power flowing in on one bond is always instan-
taneously equal to the total power flowing out on the
other bond). Furthermore, an MGY with only one
bond represents an element for which e1 ¼ Xf1 with X
skew-symmetric, such that the total instantaneous
power on that bond is always zero.

Finally, 0- and 1-junctions represent generalized
Kirchhoff laws, that is, all connecting bonds on a
0-junction have equal effort, all connecting bonds on
a 1-junction have equal flow, and the (signed) sum
of the power on the bonds equals zero.

Throughout this paper, we use bond graphs to give
a graphical illustration of the various equations; even
though the equations contain all the results, it can be
very helpful to look at the corresponding bond graph
to get a direct intuitive physical idea of what is going
on in terms of energy flows.

3. Controller Derivation

As stated in Section 1, the control goal is to make a
certain simple mechanical system follow a prescribed
curve in joint space, denoted by a submanifold
Qd � Q. In this section we develop a port-based con-
troller that accomplishes this goal. The controller
itself is again the port-interconnection of several parts,
each of which has its own purpose that can be
described in terms of energy flows.

Instead of immediately trying to tackle the problem
of convergence to Qd, we first relax the control goal as
follows: we replace the single desired curve by a family
of non-intersecting curves (one of which is Qd), one
through each point of Q, in the form of a smooth
non-zero vector field on Q, which we denote by w.
This automatically implies that we will take a local
approach, since the topology of the configuration
space as well as the shape of the specified desired curve
can make it impossible to define such a vector field
globally (e.g. on S

2n this is the famous ‘hairy-ball
theorem’).

Since we have a positive-definite metric g on Q, we
can also equivalently look at this family of curves as a
(local) smooth submanifold of T �Q by transforming
the vector field of each point into a covector at
that point and considering these covectors as elements
of T �Q.

The initial goal is now for the system to converge to
this submanifold, that is, to build a controller that
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forces all kinetic energy in the direction of the desired
vector field. The main goal, convergence to the desired
curve Qd, is then obtained by introducing a suitable
potential field, that is, by a form of classical energy
shaping.

3.1. Change of Coordinates

The first step is to represent the system of the form (9)
in different coordinates ðq,�Þ instead of (q, p). So in
other words, we use the same coordinates q for the
configuration, but different coordinates � for the
momenta. The first1 coordinate represents the desired
momentum direction, and the other coordinates
represent the other directions. We choose a new set of
basis vectors haðqÞ for T �

q Q such that2

1. Every element p 2 T �
q Q can be written as a linear

combination of haðqÞ (i.e. it is a basis).
2. For all a 2 f2, . . . , ng we have hhajwðqÞi ¼ 0.
3. The set of fhagðqÞ defines a (local) diffeomorphism

between R
n and T �

q Q. In coordinates, the mapping
hai relates p 2 T �

q Q and � 2 R
n as

pi ¼ hai �a,

�a ¼ ðh�1Þ japj ¼ ĥh j
apj,

ð4Þ

where we defined ĥh :¼ h�1 for ease of notation.
4. The metric �gg on R

n induced by g and h, that is,

�ggabðqÞ ¼ hai ðqÞgijðqÞhbj ðqÞ ð5Þ

is diagonal and independent of q.

Note that properties 1, 2, and 4 together imply that

gijðqÞwjðqÞ ¼ �ðqÞh1i ðqÞ ð6Þ
for some �ðqÞ 6¼ 0, and hence also that h1ðqÞ is a
(scalar) multiple of g(q)w(q).

This choice of coordinates means that we will
(locally) write T �Q as the product Q� R

n with coor-
dinates ðq,�Þ, and the energy �HH in these new coordi-
nates can be written as

�HHðq,�Þ :¼Hðq,ha�aÞ ¼ 1

2
hha�a,h

b�big�1 þVðqÞ

¼ 1

2
�ggab�a�bþVðqÞ ¼ 1

2
h�,�i�gg�1 þVðqÞ,

which is just the sum of the potential energy and the
kinetic energies of the components � in the directions
defined by h. Furthermore, the first coordinate �1

represents the momentum in the desired direction (and
thus the corresponding energy 1

2
�gg11ð�1Þ2 is the energy

in the desired direction) while the other coordinates �
represent the momentum (and corresponding energy)
in the undesired directions. This splitting relies on the
induced metric �gg being diagonal, and hence the basis
vectors ha being orthogonal in the metric g�1.

Given a certain choice of h satisfying the criteria
(there are many choices, since there are many choices
of orthogonal basis vectors with constant norm),
we can rewrite the dynamic equations in the new
coordinates as presented in the following theorem.
The results and derivation are similar to the ones
in Ref. [4], but now with an invertible mapping h.
They are also highly related to Ref. [13], as discussed
in Ref. [2].

Theorem 1. The mechanical system (the plant) defined
by (2) with coordinate transformation defined by h as
before can be written as

d

dt

qi

�a

� �
¼ �JJ

@ �HH

@q j

@ �HH

@�b

2
6664

3
7775þ 0

ĥh
j

aB
k
j

" #
uk,

yi ¼ 0 Bi
jĥh

j

b

h i @ �HH

@q j

@ �HH

@�b

2
6664

3
7775,

ð7Þ

where �HHðq,�Þ :¼ 1
2h�,�i�gg�1 þ VðqÞ and

�JJ :¼ 0 ĥh
i

b

�ĥh
j

a ĥh
j

a hck;j � hcj;k

� �
�cĥh

k

b

2
4

3
5:

Proof. We want to transform the dynamic equations
in terms of (q, p) coordinates to ðq,�Þ coordinates.
First note that from (4) we have

@�a

@qi
¼ �ĥh

j

ah
c
j;i�c,

@�a

@pi
¼ ĥh

i

a

and hence

_��a ¼ �ĥh
j

ah
c
j;i�c _qq

i þ ĥh
i

a _ppi:

On T �Q, we should have �HHðq,�Þ ¼ Hðq, pÞ and
hence also

@H

@qi
¼ @ �HH

@qi
þ @ �HH

@�b

@�b

@qi
,

@H

@pi
¼ @ �HH

@�b

@�b

@pi
:

1We restrict the derivation to convergence to a (one-dimensional)
curve. The results can be easily generalized to convergence to
higher-dimensional submanifolds.
2See also the remark at the end of this section.
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Combining these results, we obtain

_qqi ¼ @H

@pi
¼ @ �HH

@�b

@�b

@pi
¼ @ �HH

@�b
ĥh
i

b,

_��a ¼ �ĥh
j

ah
c
j;k�c ĥh

k

b

@ �HH

@�b

	 


þ ĥh
j

a � @ �HH

@q j
þ @ �HH

@�b
ĥh
k

bh
c
k;j�c þ Bk

j uk

	 

,

yi ¼ Bi
j

@ �HH

@�b

@�b

@pj
¼ Bi

j

@ �HH

@�b
ĥh
j

b:

These equations can be expressed in matrix form as in
the theorem. &

Before we continue, let us structure the equations
(7) in matrix form as follows:

d

dt

q

�1

�2

2
4

3
5¼

0 ĥh
T

1 ĥh
T

2

�ĥh1 0 X

�ĥh2 �XT Y

2
64

3
75

@ �HH

@q

@ �HH

@�1

@ �HH

@�2

2
66666664

3
77777775
þ

0

ĥh1B

ĥh2B

2
4

3
5u,

y¼ 0 BTĥh
T

1 BTĥh
T

2

h i
@ �HH

@q

@ �HH

@�1

@ �HH

@�2

2
66666664

3
77777775
,

where Y is skew-symmetric, subscripts 1 and 2 denote
the first (desired) and other (undesired) components,
respectively, and where the energy can be written as

�HHðq,�1,�2Þ ¼ 1
2�

T
1 �gg

�1
1 �1 þ 1

2�
T
2 �gg

�1
2 �2 þ VðqÞ,

since �gg is diagonal. When written in this form, the
equations can be represented by the bond graph of
Fig. 2. The kinetic energy in the system is now
represented by two I-elements: one (corresponding to
�gg1) representing the energy in the direction of the
desired vector field w, and one (corresponding to �gg2)

representing the energy in the other directions. There
is still an energy coupling between the two storage
elements through the modulated gyrator X and the C
(the potential energy), and furthermore the energy
supplied through the port (u, y) can still flow to both
storage elements. The first purpose of the controller
to be developed is to break the power connection
between the two storage elements and ensure that all
energy eventually flows to the �gg1 storage element
(which corresponds exactly to converge to motion in
the desired direction).

Remark. Readers familiar with the concepts of
Riemannian geometry may wonder whether it is
always possible to find a basis h that induces a con-
stant diagonal metric g. Indeed, in Riemannian geo-
metry it is shown how coordinate transformations can
give such an induced metric only if the original metric
is differentially flat, which is in general not the case.
However, in this case we use a transformation h only
on the momenta variables, that is, it is not induced by
a transformation on the q variables as is the case in the
aforementioned Riemannian context. In our case, we
just want to find a transformation h (smoothly varying
in q) that transforms a symmetric positive-definite
matrix g (smoothly varying in q) to a constant diag-
onal matrix, which is indeed always possible.

3.2. Nominal Control

With the system in new coordinates, we now derive the
first controller part, the nominal controller, with the
goal to remove the energy-coupling between the two
energy storages (desired and undesired). From this
point, we will assume the potential energy (repre-
sented by the C in Fig. 2) to have been compensated
for, so the only energy in the plant is the kinetic
energy. We propose the following controller (shown
as a bond graph in Fig. 3).

Theorem 2. For the mechanical system (2) or in
transformed coordinates (7) with VðqÞ ¼ 0, the fol-
lowing controller is power-continuous and keeps the

Fig. 3. Bond graph representation of the nominal controller.Fig. 2. Bond graph of the plant model in coordinates ðq,�Þ.
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kinetic energy of the system separated in two storage
elements as defined by the mapping h.

u
�yy1
�yy2

2
4

3
5¼

K B�1h1 B�1h2
�hT1B

�T 0 0
�h2B

�T 0 0

2
4

3
5 �y

�uu1
�uu2

2
4

3
5 ð8Þ

where K is a skew-symmetric matrix defined as

K ¼ B�1 h1 h2½ � 0 X
�XT 0

� �
hT1
hT2

� �
B�T

and ð�uu1, �yy1Þ and ð�uu2, �yy2Þ are new control ports, one
connected to each energy storage elements.

Proof. To prove power-continuity, we compute the
power Pin going into the controller as well as the
power Pout coming out:

Pin ¼ �uuT1 �yy1 þ �uuT2 �yy2 ¼ �uuT1 h
T
1B

�Tyþ �uuT2 h
T
2B

�Ty,

Pout ¼ uTy ¼ yTKyþ �uuT1 h
T
1B

�Tyþ �uuT2 h
T
2B

�Ty,

which are clearly equal (by skew symmetry of K ),
proving power continuity.

To prove the energy separation property, we can
compute the interconnected system as

d

dt

q

�1

�2

2
64

3
75 ¼

0 ĥh
T

1 ĥh
T

2

�ĥh1 0 0

�ĥh2 0 Y

2
664

3
775

@ �HH

@q

@ �HH

@�1

@ �HH

@�2

2
66666664

3
77777775

þ
0 0

1 0

0 I

2
64

3
75 �uu1

�uu2

� �
,

�yy1

�yy2

� �
¼ 0 1 0

0 0 I

� �
@ �HH

@q

@ �HH

@�1

@ �HH

@�2

2
66666664

3
77777775
:

Since VðqÞ ¼ 0, we have @ �HH=@q ¼ 0, so the equa-
tions for _��1;2 and �yy1;2 reduce to

_��1 ¼ �uu1,

_��2 ¼ Y�gg�1
2 �2 þ �uu2,

�yy1 ¼ �gg�1
1 �1,

�yy2 ¼ �gg�1
2 �2,

which shows that indeed the two storage elements �1

and �2 are decoupled, and the two ports ð�uu1, �yy1Þ and
ð�uu2, �yy2Þ act separately on the two storage elements.

3.3. Asymptotic Control

The interconnection of the plant with the nominal
controller of the previous section results in two
decoupled systems, one of which represents the
desired motion, whereas the other represents the
undesired motions. To obtain asymptotic con-
vergence, we just need to reduce the energy in the
undesired direction to zero.

We present two approaches to accomplish this goal:
the first one uses straightforward dissipation, the
second one uses a power-continuous interconnection.

3.3.1. Using Dissipation

The most straightforward way to reduce the energy in
the �2 subsystem is to dissipate it, that is, to apply the
controller

�uu1
�uu2
~yy1
~yy2

2
664

3
775 ¼

0 0 1 0
0 R 0 I
�1 0 0 0
0 �I 0 0

2
664

3
775

��yy1
��yy2
~uu1
~uu2

2
664

3
775

with R a positive-definite matrix. The controller is
represented as a bond graph in Fig. 4. The power
balance for this controller is

Pin ¼ ~uuT1 ~yy1 þ ~uuT2 ~yy2 ¼ ~uuT1 �yy1 þ ~uuT2 �yy2,

Pout ¼ �uuT1 �yy1 þ �uuT2 �yy2 ¼ ~uuT1 �yy1 þ ~uuT2 �yy2 � �yyT2R�yy2,

which shows that Pout � Pin, so this controller is
passive. Furthermore, if ~uu2 ¼ 0 (i.e. no forces/torques
are applied to the second port), then since R > 0, the
kinetic energy in the second storage element (the
undesired energy) decreases monotonically to zero,
thus providing asymptotic convergence to the desired
vector field.

3.3.2. Using Power-Continuous Control

Instead of dissipating the undesired energy as
was done in the previous section, we can reuse the

Fig. 4. Bond graph representation of the dissipative asymptotic
controller.
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undesired energy by pumping it to the desired direc-
tion. An example of such a controller is the following
(with corresponding bond graph in Fig. 5).

�uu1

�uu2

~yy1
~yy2

2
6664

3
7775¼

0 �a�1�
T
2 1 0

a�2�
T
1 0 0 I

�1 0 0 0

0 �I 0 0

2
6664

3
7775

��yy1

��yy2
~uu1

~uu2

2
6664

3
7775 ð9Þ

with a > 0 a parameter. The power balance for this
controller can be shown to give Pin ¼ Pout, proving
that this controller is power-continuous. More inter-
estingly, we can compute the change of the kinetic
energy in the two storage elements when this controller
is connected (and both inputs ~uu1;2 are set to zero).

d

dt

1

2
h�1,�1i�gg�1

1

	 

¼ ah�1,�1i�gg�1

1
h�2,�2i�gg�1

2
,

d

dt

1

2
h�2,�2i�gg�1

2

	 

¼ �ah�2,�2i�gg�1

2
h�1,�1i�gg�1

2
,

which shows that whenever both �1 and �2 are non-
zero, the undesired energy will decrease and the
desired energy will increase. So, if the initial desired
energy is nonzero (i.e. the system is moving at least a
little bit in the desired direction), then the system will
again converge to the desired vector field.

Remark. This particular choice of controller gives
slow convergence because it is quadratic in �2, so as �2

approaches zero, the control force approaches zero
even faster. This can be improved, for example, by
replacing the parameter a by the expression

a ! affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�2,�2i�gg�1

2
þ �

q
for some small � > 0. We use this controller for the
simulations of Section 4.

3.4. Potential Energy

The interconnection of the two power-continuous
controllers of the previous section establishes

asymptotic convergence to motion along the desired
vector field w. So depending on the initial conditions,
the system converges to motion along one of the
integral curves of the vector field.

In this section, we add an artificial potential field
�VVð�qqÞ (with �qq 2 Q) to the controller to obtain con-
vergence to one specific integral curve, that is,Qd. The
function �VV has to satisfy the following properties

1. �VV is radially unbounded.
2. hd �VVjwi ¼ 0 for all q 2 Q (with w the desired vector

defined in Section 3).
3. �VVðqÞ 	 0 with equality if and only if q 2 Qd.

Given such a �VV, we are ready to derive the final
controller.

Theorem 3. Given the mechanical system (2 or in
transformed coordinates (7) with VðqÞ ¼ 0, and define
a new controller as the interconnection of the nominal
controller (8) with the asymptotic controller (9) and
extend the nominal controller to become

d

dt
�qq ¼ �B�T 0 0

� � �y

�uu1

�uu2

2
64

3
75

u

�yy1

�yy2

2
64

3
75 ¼

K B�1h1 B�1h2

�hT1B
�T 0 0

�h2B
�T 0 0

2
64

3
75

�y

�uu1

�uu2

2
64

3
75

þ
�B�1

0

0

2
64

3
75 @ �VV

@�qq

with �VV satisfying the properties discussed above. Let
the initial conditions be such that �qqð0Þ ¼ qð0Þ,
�1ð0Þ 6¼ 0, and that

�HHðqð0Þ,�ð0ÞÞ þ �VVð�qqð0ÞÞ < �VVðqxÞ

for all qx in fq 2 QjdVðqÞ ¼ 0, q =2 Qdg. Then the
closed loop system converges asymptotically to Qd,
while the total energy �HHðq,�Þ þ �VVð�qqÞ is constant.

Proof. Figure 6 shows a bond graph of the total
controller, and it can be seen that the extended version
of the nominal controller just means the addition of a
C element (with state �qq and energy function �VVð�qqÞ).
From (2) we can see that ðd=dÞt�qq ¼ _qq, so if �qqð0Þ ¼ qð0Þ,
then �qq ¼ q at all times.3 In the following, we assume
�qq ¼ q and write �VV as a function of q accordingly.

Fig. 5. Bond graph representation of the power continuous
asymptotic controller.

3This means that q � �qq will be a Casimir function of the closed-loop
system.
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The closed-loop equations of the controller inter-
connected to the plant can be computed as

d

dt

q

�1

�2

2
4

3
5 ¼

0 ĥh
T

1 ĥh
T

2

�ĥh1 0 a�1�
T
2

�ĥh2 �a�2�
T
1 Y

2
664

3
775

@ �VV

@q

@ �HH

@�1

@ �HH

@�2

2
66666664

3
77777775
,

which again can be represented as a bond graph,
shown in Fig. 7. It can be seen that if �qq ¼ q, then both
bonds connected to the MTF-element labeled ĥh

T

1 have
zero power flowing through them (and hence
ĥh1d �VV ¼ 0).

The fact that the closed-loop system is Hamiltonian
immediately proves energy conservation. To
prove asymptotic convergence to the desired curve, we
propose the following candidate Lyapunov function
L:

Lðq,�Þ :¼ 1
2 h�2,�2i�gg�1

2
þ �VVðqÞ,

so the Lyapunov function precisely equals the unde-
sired kinetic energy (associated with deviation from
motion along the vector field) plus the virtual poten-
tial energy (associated with deviation from the desired
curve), and it is positive definite. We compute its time
derivative as

d

dt
Lðq,�Þ ¼ @T �VV

@q
_qqþ �T

2 �gg
�1
2 _��2

¼ @T �VV

@q
ĥh
T

1 �gg
�1
1 �1 þ ĥh

T

2 �gg
�1
2 �2

� �
þ �T

2 �gg
�1
2 Y�gg�1

2 �2 � ĥh2
@ �VV

@q
� a�2�

T
1 �gg

�1
1 �1

	 

¼ �ah�1,�1i�gg�1

1
h�2,�2i�gg�1

2
,

where we used the second property of �VV and skew-
symmetry of Y. Thus, ðd=dtÞL is negative everywhere
except in the set

E :¼ fðq,�1,�2Þj�1 ¼ 0 and=or �2 ¼ 0g:

We now look for the largest invariant set in E. For
�1 ¼ 0 and/or �2 ¼ 0 we can compute

_��1 ¼ ĥh1dV ¼ 0,

_��2 ¼ ĥh2dVþ YT�gg�1
2 �2,

which shows that the largest invariant set M in E is

M¼ fðq,�1,�2Þj�1 ¼ 0 or ð�2 ¼ 0 and dV¼ 0Þg:
Now first consider the first part; �1 ¼ 0. By energy
conservation and the fact that L is decreasing, we have
that the desired kinetic energy increases over time,
implying that also h�1,�1i can only increase over
time. So once �1 6¼ 0, it will never become zero again.
In other words, if initially the system has (even a very
slight) motion in the desired direction, then the con-
dition �1 ¼ 0 will never be satisfied and the system will
never get stuck in that condition.

So given this (mild) restriction on initial conditions,
the only invariant set in E left is the one where d �VV ¼ 0
and �2 ¼ 0. Given furthermore the condition that the
total (initial) energy is less than �VVðqxÞ for all qx in the
given set, it follows thatQd is the only reachable set for
which d �VV ¼ 0. So indeed, the only invariant set in E is
the one for which �2 ¼ 0 and q 2 Qd. Hence, by the
Local Invariant Set Theorem [14], the system con-
verges asymptotically to the desired curve, which was
to be proved.

Remark. The extra state �qq for the controller is only
introduced for the theoretical proof of passivity.
Computing this state by integrating the measured
velocity in open loop is clearly very sensitive to drift,
and hence in practice �qq will be estimated by directly
measuring q, in which case the initial condition on �qq is
void. Still, as in most proofs based on passivity, per-
fect transfer of port-variables between plant and
controller is assumed, that is, perfect velocity sensors
and perfect force actuators.

Fig. 7. Bond graph representation of the closed-loop system.

Fig. 6. Bond graph representation of the complete controller.
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4. Simulation Results

We demonstrate the behavior of the controller on a
simple planar manipulator with two unit-length links,
shown in Fig. 8. The goal is to make the end-effector
trace the unit circle, which in joint space corresponds
to the set of configurations with q2 ¼ 2

3� and q1 arbi-
trary (we do not consider the second solution of q2 ¼
�2

3� and q1 arbitrary). As desired family of curves, we
take all circles around the origin, which corresponds
to the desired vector field wðqÞ ¼ 1 0½ �T. We also
choose the virtual potential field to be �VVðqÞ ¼
1
2kðq2 � 2

3�Þ2. With these given, we apply the control
algorithms from Section 3 (we choose the power-
continuous asymptotic controller of Section 3.3.2) and
simulate the behavior of the closed-loop system.

Figure 9 shows the resulting time-evolution of the
various energies involved: the sum of virtual potential
and undesired kinetic energy decreases monotonously,
whereas the total (kinetic plus virtual potential)
energy is constant at all times. Figure 10 shows the
trace of the end-effector; starting from some initial
configuration, it indeed converges to motion along the
desired curve.

5. Conclusions and Future Work

5.1. Conclusions

In this paper, we used a port-based Hamiltonian
approach to derive a controller that makes a

mechanical system move along a reference trajectory.
We first used a coordinates transformation to separate
explicitly the desired and undesired motion. We then
interconnected the system with two power-continuous
controllers: one to decouple the desired energy flows
from the undesired energy flows, and one to establish
a unidirectional flow from the undesired energy sto-
rage element to the desired energy storage element,
obtaining asymptotic convergence to motion along
the integral curves of a vector field. Finally, we added
an artificial potential field to obtain convergence to
the one specified curve.

The controller was formulated as an interconnec-
tion of port-Hamiltonian subsystems; this repre-
sentation directly exposed properties like passivity of
the subsystems, and also showedwhere energy is stored
and how energy can flow inside the system. Further-
more, the modularity of the port-based approach

Fig. 10. Trajectory as traced by the end effector of the manip-
ulator. It converges to motion along the unit circle, as desired.

Fig. 8. Schematic view of the 2DoF manipulator that needs to be
controlled to follow the unit circle.

Fig. 9. Time-evolution of the various energies defined in Section 3;
the undesired energy decreases to zero, while the total energy is
constant.
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allowed for example to design two sub-controllers for
asymptotic convergence and just plug one of them
into the total controller without altering the other
parts.

5.2. Future Work

Future work is possible in several directions. First, the
splitting in different desired and undesired directions
can be directly generalized from desired curves to
desired submanifolds, for example, to obtain con-
vergence to a surface instead of a curve.

Second, the simplification was made here to have
constant energy along the curve. An extension could
be made to have a certain varying energy along
the curve, the variations of which could then be
stored temporarily in the controller, for example, in a
C-element or an I-element (the latter would corre-
spond to the virtual flywheel used in Ref. [8]).

Third, practical applications always suffer from
friction which drains energy from the system. There-
fore, a useful (non-passive) extension would be an
additional control term that carefully adds or removes
energy to or from the system, depending on the cur-
rent and desired energy level. Passivity will be lost in
this case, but energy balancing can still be taken into
account carefully.

Fourth, we want to apply the results from this paper
to the control of walking machines, in particular
bipeds. This means that the approach should be
extended to include impacts and state jumps, which
occur when the feet of the robot come in contact with
the ground.

Finally, several extensions can be made to account
for systems which do not have full actuation or full
state measurement. The results of this paper can also
be combined with the results in Ref. [4] to include
nonholonomic constraints.
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