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Abstract

Two dimensional hydraulic models are useful to reconstruct maximum discharges and uncertainties of historic
flood events. Since many model runs are needed to include the effects of uncertain input parameters, a
sophisticated 2D model is not applicable due to computational time. Therefore, this papers studies whether
a lower-fidelity model can be used instead. The presented methodological framework shows that a 1D-2D
coupled model is capable of simulating maximum discharges with high accuracy in only a fraction of the
calculation time needed for the high-fidelity model. Therefore, the lower-fidelity model is used to perform
the sensitivity analysis. Multiple Linear Regression analysis and the computation of the Sobol’ indices are
used to apportion the model output variance to the most influential input parameters. We used the 1926
flood of the Rhine river as a case study and found that the roughness of grassland areas was by far the most
influential parameter.

Keywords: lower-fidelity model, Sensitivity analysis, Uncertainty, Historic flood

reconstruction

1. Introduction

Currently, the Dutch water policy is changing
from a probability exceedance approach towards a
risk based approach. In addition to the probabil-
ities of floods due to multiple failure mechanisms,5

this new approach also considers the consequences
of a flood. The risk based approach results in a sig-
nificant increase in the safety levels in areas where
the consequences are large (Dutch Ministry of In-
frastructure and the Environment and Ministry of10

Economic Affairs, 2014). A maximum return pe-
riod of 1,250 years was defined for the river areas
in the probability exceedance approach, while the
risk based approach has maximum return periods of
100,000 years. The prediction of design discharges15

corresponding to such rare events is highly uncer-
tain. These predictions are most often based on
relatively short data sets of measured weather con-
ditions or discharges. Therefore, the data set does
not include the natural phenomena characterised20

by a very low frequency (Barriendos et al., 2003).

The confidence interval of large design dis-
charges can be reduced by extending the data set of
measured discharges with historical and paleo data
of extreme flood events (Neppel et al., 2010; Shef-25

fer et al., 2003). Many studies have reconstructed
historic floods to expand the data set of measured
discharges (e.g Herget et al. (2015); Herget and
Meurs (2010); Llasat et al. (2005); Neppel et al.
(2010); O’Connell et al. (2002); Sheffer et al. (2003);30

Toonen et al. (2015); Zhou et al. (2002)). Herget
et al. (2015) and Herget and Meurs (2010) recon-
structed historic discharges in the city of Cologne,
Germany, based on historical documents. They pre-
dicted mean flow velocities at the time of the his-35

toric flood events with the use of a reconstructed
river channel and floodplain bathymetry. The em-
pirical Manning’s equation was used to estimate the
historic discharges of a specific cross section near
the city of Cologne. Neppel et al. (2010) used hy-40
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draulic modelling of a reach of about two kilometres
length to account for geomorphological changes.
With this model, present and historic rating curves
were constructed and applied to determine flood
discharge series (Neppel et al., 2010). O’Connell45

et al. (2002) used Bayesian statistics to create pa-
leohydrologic bound data for flood frequency anal-
ysis. Paleohydrologic bound data represent stages
and discharges that have not been exceeded since
the geomorphic surface stabilized (O’Connell et al.,50

2002). These bounds are not actual floods, but are
limits on flood stage over a measured time interval.
O’Connell et al. (2002) found that paleohydrologic
bounds reduce the uncertainties of the flood distri-
bution curve by placing large observed discharges55

in their proper long-term contexts. Toonen et al.
(2015) reconstructed Lower Rhine historical flood
magnitudes of the last 450 years with the use of
grain-size measurements of flood deposits at two
separate research locations. They made use of lin-60

ear regression plots between various grain-size de-
scriptors and measured discharges to determine the
discharges of the historic events.

Above mentioned studies tried to gain insight in
the maximum discharge of a historic flood. How-65

ever, none of these studies used hydraulic models to
describe maximum discharges and its uncertainties
along a long stretch of a river including possible bi-
furcations during the historic events. However, the
use of hydraulic models may decrease the confidence70

intervals of the predicted maximum discharges of
the reconstructed flood events. Furthermore, hy-
draulic models provide insight in the flow patterns
and inundation extents of the historic events. For
these reasons, hydraulic models will be used for his-75

toric flood reconstructions in this study.
Hydraulic models require a reconstruction of the

historical geometry as input data. In addition,
they require proper boundary conditions to deter-
mine the flood wave propagation along the model80

domain. However, the data available to recon-
struct historic flood events is limited. Measured dis-
charges or water levels are generally not available.
Also, the geometry of the river, its floodplains and
the hinterland may be uncertain. This uncertainty85

is reflected in the uncertainty of the model input pa-
rameters, affecting the maximum discharges during
a flood event. For this reason, a sensitivity anal-
ysis on the maximum discharge will be necessary
to find the input parameter that mostly influences90

the model output. This analysis will also gain in-
sight in the confidence interval of the reconstructed

maximum discharge. This insight provides us with
useful information for other historical geometry re-
constructions, since parameter prioritization can be95

used during the reconstruction.
Commonly, sophisticated two dimensional (2D)

hydraulic models (in this context also called a high-
fidelity model, see Section 2.1) are used for hy-
draulic modelling. This is because they are capable100

of describing maximum discharges, flood extent and
inundation patterns with high accuracy. However,
they have the disadvantage that a single run of a
discharge wave usually takes at least several hours.
Since sensitivity analyses require many model runs,105

2D models are not suitable for this purpose. To re-
duce computational time, a surrogate model will
be set up. A lower-fidelity model is developed since
this type of surrogate model does not lose many
physical processes of the original system. There-110

fore, the objective of this paper is to study whether
a lower-fidelity hydraulic model can be used for his-
toric flood reconstructions.

Lower-fidelity surrogate modelling has just re-
cently started to gain popularity in the water re-115

sources literature (Razavi et al., 2012b). The mod-
elling approach has been applied to groundwater
models to reduce model complexity for optimiza-
tion and calibration purposes (e.g. Maschler and
Savic (1999); McPhee and Yeh (2008); Ulanicki120

et al. (1996)). It has also been applied in combi-
nation with the Monte Carlo framework for uncer-
tainty analysis (e.g. Efendiev et al. (2005); Keating
et al. (2010)). However, almost no studies have ap-
plied a lower-fidelity surrogate model for hydraulic125

modelling purposes. These models may have great
benefits in this field since computational time can
be reduced significantly while model accuracy re-
mains sufficient. For an elaborated review on surro-
gate models in environmental modelling, see Razavi130

et al. (2012b).
Razavi et al. (2012b) argue that the response

patterns of a lower-fidelity model and of a sophis-
ticated 2D model can differ, even if both models
are based on the same input data. Therefore, the135

results of a 2D model will be used for validation
purposes. If the model output of the lower-fidelity
model is close to those predicted by the 2D model,
the lower-fidelity model is capable of accurately
simulating the system behaviour. Hence, the lower-140

fidelity model can be used to perform the sensitivity
analysis. For future work, the lower-fidelity model
can be treated as a high-fidelity model. The pro-
posed method (Fig. 1) will answer the following
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three research questions:145

• Under what circumstances can a lower-fidelity
model be used to simulate a historic flood
event?

• How can we apply a lower-fidelity model to
compute the maximum discharge and its un-150

certainty of a historic flood event?

• Which uncertain input parameter contributes
most to the uncertainty of the maximum dis-
charge?

We apply the proposed method to the 1926 flood155

of the Rhine river. Sufficient information is avail-
able to reconstruct the 1926 geometry. In addition,
water levels were measured during the event. Due
to high rainfall intensities in the Lower Rhine catch-
ment area and increased amount of melting water as160

a result of relatively high temperatures in Switzer-
land, the 1926 discharge resulted in the highest dis-
charge at Lobith since measurements have been per-
formed.

The outline of the paper is as follows. Firstly,165

the high-fidelity (2D) model is described in Sec-
tion 2.1, after which the surrogate model is set up
(Section 2.2). Then, the 1926 case is provided and
the methodology of the sensitivity analysis is given
in Section 2.3 and Section 3, respectively. Subse-170

quently, the calibration results of the high-fidelity
model (Section 4.1) and the validation results of the
surrogate model (Section 4.2) are provided. Finally,
the results of the sensitivity analysis are elaborated
on Section 4.3. The paper ends with a discussion175

and the main conclusions in Section 5 and 6, re-
spectively.

2. Methodology of surrogate modelling

In this section, the model structure of a fully 2D
model is explained. This model represents the high-180

fidelity model in this study and is used to validate
the lower-fidelity model. Thereafter, the 2D model
is simplified to decrease computational time signif-
icantly. Many methods exist to simplify a high-
fidelity model to create a lower-fidelity model. Why185

a 1D-2D coupled model is used in this study, is ex-
plained in Section 2.2.

2.1. High-fidelity model

Most often, 2D flood models are used to get in-
sight in the consequences of high discharge stages.190

With 2D models, it is possible to get a high
detailed and accurate representation of potential
floods along a river. Up till now, the 2D Shal-
low Water equations are usually solved with the
use of a curvilinear grid (Fig. 2). The curvilin-195

ear grid cells are aligned with the flow direction
since flow variations in the channel length direc-
tion are often smaller than those in channel cross
direction (Kernkamp et al., 2011). This is conve-
nient in terms of computational time. However, a200

curvilinear grid has several disadvantages. Firstly,
grid lines are focused and sometimes even intersect
in sharp inner bends (Fig. 2, where the dashed
lines indicate the focused grid lines). The focused
grid lines result in unnecessarily small grid cells if205

the model domain is extended in the inner bend.
These small grid cells significantly increase compu-
tational time. Additionally, the grid will lead to
a staircase representation along closed boundaries
since the grid is not capable of following the smooth210

boundaries of the model domain (Kernkamp et al.,
2011). Finally, the grid is restrictive in represent-
ing a natural river system with different geometric
features such as main channels, junction points and
wide floodplains due to the curvilinear shape of the215

grid cells (Lai, 2010).
Due to the above mentioned shortcomings of a

curvilinear grid, a hybrid grid is used to solve the
2D Shallow Water equations in this study (Fig. 2).
The summer bed is discretized by curvilinear grid220

cells. These cells are aligned with the flow direc-
tion. The winter bed is discretized by triangular
grid cells such that each triangular grid cell is con-
nected to a single curvilinear grid cell. As a result,
a smooth transition exists between the curvilinear225

and triangular grid cells (Fig. 2). This hybrid grid
overcomes the shortcomings of a curvilinear grid.
It also reduces the computational time while model
accuracy stays sufficient (Bomers et al., 2019). Fig.
3 shows the hybrid grid and a typical example of230

model output. The open source software D-Flow
Flexible Mesh (FM) is used to set up the 2D model
(Deltares, 2016). In each grid cell, parameters such
as water level and flow velocity can be computed for
every time step. A variable time step is used based235

on the maximum Courant number. As a result, the
model stays stable during the simulation:

C =
u ∗∆t

∆x
(1)

where u represents the velocity magnitude [m/s],
∆t the time step [s] and ∆x the grid size in x-
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Figure 1: Methodology for historic flood reconstruction

Figure 2: An example of a curvilinear grid in which the dashed lines represent the focused grid lines (left figure) and a hybrid
grid (right figure) in a sharp meander bend

direction [m]. A maximum Courant number of 0.95240

is used and ∆t is adapted accordingly.

D-Flow FM allows multiple roughness defini-
tions to be implemented in a single model run, e.g.:
a Manning’s value, a Nikuradse value or a Van Rijn
predictor. In general, the land use classifications,245

and hence the roughness classes, are based on an
input database. A database provided by the Dutch
Ministry of Infrastructure and Water Management
is used. This database includes multiple roughness
definitions that coincide with the land use classifi-250

cation of the studied area.

Calibration of a 2D grid is required since each
2D grid has its own numerical friction caused by
the resolution of the grid cells (Caviedes-Voullième
et al., 2012). A coarser grid results in a somewhat255

dampened discharge wave. This effect can even
become larger than those generated by physical
friction (Caviedes-Voullième et al., 2012). During
calibration, this numerical grid generated friction
will be compensated such that reliable water levels260

are predicted. Hydraulic model calibration is most
commonly done by changing the roughness of the
summer bed until simulated water levels are close to

measured water levels (e.g Bomers et al. (2019) and
Caviedes-Voullième et al. (2012)). In this study, the265

same approach was used. The calibration procedure
was performed with the use of the open source soft-
ware OpenDA (http://www.openda.org/). The ba-
sic idea of the procedures of OpenDA is to find the
set of model parameters which minimizes the cost270

function measuring the distance between the mea-
sured water level and the model prediction (The
OpenDA Association, 2016). The Quadratic Cost
Function is used in combination with the Sparse
DUD (Does not Use Derivate) algorithm. For N275

calibration parameters (in this study N = 10), the
algorithm requires (N + 1) set of parameter esti-
mates. The cost function, based on the model pre-
dictions and measured data, is used to get a new
estimate. If the cost function does not produce280

a better estimate, the Sparse DUD algorithm will
search in opposite direction and/or decreases the
searching-step until a better estimate is found (The
OpenDA Association, 2016). In this study, the cal-
ibration procedure is stopped if the average RMSE285

of each measurement station is smaller than 0.05 m.
For more information on the calibration procedure
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Figure 3: Example of a hybrid grid of a 2D hydraulic model (left figure) and computed water depths as a result of an upstream
discharge wave (right figure). The red arrows indicate the flow direction

of OpenDA, see The OpenDA Association (2016).

2.2. Lower-fidelity physically based surrogate model

A hybrid 2D grid reduces computational time290

compared to a curvilinear grid. However, the com-
putational time of simulating a discharge wave of
approximately three weeks is still in the order of
many hours. For sensitivity analysis purposes,
many model runs (120 in this study) have to be295

performed. Therefore, a model with a computa-
tional time in the order of minutes is desirable. For
this reason, a surrogate model based on the high
detailed 2D model is developed. This model is ex-
plained in more detail in the next sections.300

2.2.1. Types of surrogate modelling

Surrogate models approximate the response pat-
tern of a high detailed and computationally in-
tensive simulation model (Razavi et al., 2012a).
Many methods to construct a surrogate model ex-305

ist in literature. These methods can be divided into
two classes, namely (1) response surface surrogates
which are statistical or empirical data-driven mod-
els emulating the original system, and (2) lower-
fidelity physically based surrogates which are sim-310

plified models of the high detailed model (Razavi
et al., 2012b).

Regardless of the type of response surface sur-
rogates, usually three steps are involved (Simpson
et al., 2001): (1) choosing a design of experiment315

for generating the training data, (2) choosing a sta-
tistical or empirical data-driven model (e.g. Ar-
tificial Neural Network, Support Vector Machine,

Gaussian Progress Regression model) to represent
the data, and (3) fitting the surrogate model to320

the training data. Response surface surrogates are
commonly used for automatic model calibration
(Razavi et al., 2012b). To fit the response sur-
face surrogate, training data is required. There-
fore, the high-fidelity model still needs to be run325

multiple times. Because of the relatively long sim-
ulation time of this model, the methods based on
response surface surrogates are not desirable. For
this reason, the high-fidelity model is simplified
using method (2): creating a lower-fidelity physi-330

cally based surrogate model. Lower-fidelity surro-
gate models are set up based on the original in-
put data. Therefore, for lower-fidelity modelling,
only a single run with the high-fidelity model is re-
quired for validation purposes. Moreover, lower-335

fidelity models are more reliable in predicting the
output of the high-fidelity model in unexplored re-
gions of the input space since they predict model
output based on the original input data (Razavi
et al., 2012b). Different methods exist to simplify340

the original model, e.g. larger grid size, less strict
numerical convergence tolerances or, ignoring or ap-
proximation physics of the original system (Razavi
et al., 2012b). Those methods were not sufficient to
reduce the computational time of the high-fidelity345

model significantly. Therefore, it was decided to
approximate several physical processes of the orig-
inal system by: (1) lowering the dimension of the
model, (2) increasing the computational time step,
and (3) simplifying the Shallow Water equations of350
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Figure 4: Set-up of the 1D-2D coupled model (left figure) in which the yellow lines indicate the 1D profiles and the grey areas
the 2D embanked areas, and a close-up of the 2D grid which clearly shows the flexible grid shapes along the boundaries of the
model domain (right figure)

the fully 2D model. The set-up of the lower-fidelity
model is explained in the next section.

2.2.2. Set-up lower-fidelity model

The surrogate model developed represents a 1D-
2D coupled model to combine the advantages of355

both a fully 2D and a fully 1D model. 1D profiles
give an accurate representation of flood wave prop-
agation in case of in-channel flows (Tayefi et al.,
2007). Additionally, the computational cost is rel-
atively low compared to a fully 2D model. How-360

ever, the use of 1D profiles may be insufficient for
more complex flow patterns because of the simpli-
fied assumptions in the computational schemes. In
the embanked areas rapidly changes in flow velocity
and direction may occur. For this reason, 1D pro-365

files are solely used for the flow between the winter
dikes, i.e. the summer bed and winter bed. The 1D
profiles are coupled with 2D embanked areas that
are possible to inundate. The embanked areas refer
to the areas protected by dikes and are therefore370

not part of the river system. The embanked areas
are discretized with a rectangular 2D grid. Flexible
grid shapes are used along the boundaries of the
model domain such that the 2D grid cells follow
these boundaries. The flexible grid cells along the375

boundaries can have a maximum of eight boundary
edges. Fig. 4 shows an example in which the 1D
profiles of the rivers and the 2D embanked areas are
given by yellow lines and grey areas, respectively. A
close-up of the 2D grid and its flexible grid shapes380

along the grid boundaries is also provided.

HEC-RAS (v. 5.0.3), developed by the Hydro-
logic Engineering Centre (HEC) of the US Army
Corps of Engineers, is used for the 1D-2D flood
modelling. HEC-RAS is well known for its 1D flood385

modelling applications. Horritt and Bates (2002)
even showed that HEC-RAS produces flood extents
more accurately than the 2D models of LISFLOOD-
FP and TELEMAC-2D in cases of a confined and
relatively narrow river. In 2016, HEC-RAS 5.0 was390

officially released. With this version, it is possible
to perform 1D-2D coupled computations.

Several studies have shown the applicability of
1D-2D flood modelling. Most software programs
(e.g. Mike-11, HEC-RAS) that allow 1D-2D cou-395

pling are based on mass-conservation. The conser-
vation of momentum is often neglected. Bladé et al.
(2012) argue that neglecting the momentum in the
coupling of a 1D profile and the 2D grid cells affects
flow patterns in the floodplains in most cases. The400

more connected the river and the floodplains are,
e.g. in case of overland flows, the more important
momentum becomes since an increase in flow veloc-
ity results in an increase in momentum (Bladé et al.,
2012). Conservation of momentum can only be ne-405

glected if the 1D profiles are coupled with 2D grid
cells by a weir/embankment since the hypothesis
of the Shallow Water equations are not fulfilled for
this specific case (Bladé et al., 2012). With HEC-
RAS, the weir-equation can be used to compute the410

flow over the embankment using the results of the
1D and 2D solution algorithms on a time step by
time step basis. This allows for direct feedback at
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each time step between the 1D profiles and 2D grid
cells (Brunner, 2014). Neglecting conservation of415

momentum is justified for this modelling purpose
since the 1D profiles are coupled with the 2D grid
cells by an embankment. Hence, the 1D-2D cou-
pling can be treated as a weir-type connection.

420

2.2.3. Differences between the high-fidelity and
lower-fidelity model

A 1D-2D coupled model requires the same in-
put data as a fully 2D model. Therefore, we use
the same input data of the high-fidelity model to425

set up the 1D-2D coupled model. The Digital El-
evation model (DEM) of the 2D model is used to
establish the 1D profiles and 2D grid cells of the
1D-2D coupled model. Also, the boundary condi-
tions consisting of measured discharges and water430

levels, as well as the land use classification for both
models are identical. Therefore, we can conclude
that the differences in the representations of the
input parameters of the high-fidelity and the lower-
fidelity model are solely caused by the level of detail435

of the two models itself and the different settings of
D-Flow FM and HEC-RAS. These differences are
explained in more detail below and are summarized
in Table 1.

Firstly, the 2D Shallow Water equations of the440

high-fidelity model are simplified to the Diffusive
Wave equations. The Diffusive Wave equations are
applicable if flow separation and turbulence eddies
can be neglected. This is the case if the inertial
terms are much smaller than the gravity, friction445

and pressure terms. Test runs showed that neglect-
ing the inertial terms of the momentum equations
did not result in a change in model results. On the
other hand, the use of the Diffusive Wave equations
resulted in a significant reduction of the computa-450

tional time. Therefore, the Diffusive Wave equa-
tions are used to compute the flow characteristics at
each 1D profile and 2D grid cell. The applicability
of the Diffusive Wave equations for flood modelling
purposes has also been shown by e.g. Moya Quiroga455

et al. (2016), Moussa and Bocquillon (2009) and Le-
andro et al. (2014).

Secondly, the computational time step of the
lower-fidelity model is increased compared to the
fully 2D model to speed-up computational time. In460

a 2D model, the river is usually the time step lim-
iting factor since the depths and velocities in the
main channel are larger than in the embanked ar-
eas (Bladé et al., 2012) (see equation 1). The high-

fidelity model had an average time step of 3.9 sec-465

onds, based on the maximum Courant number. A
fixed time step of five minutes can be used for the
lower-fidelity model. This time step is based on a
convergence argument: reducing the time step fur-
ther did not result in a reasonable improvement of470

the model accuracy.

The land use classification of the high-fidelity
model is used as input for the lower-fidelity model.
D-Flow FM allows multiple roughness definitions to
be implemented in a single model. However, HEC-475

RAS only allows a Manning’s roughness coefficient
for the various land use classes. Therefore, the
roughness classes as used in the high-fidelity model
were transformed towards Manning’s roughness val-
ues based on Table 5-6: ”Values of the roughness480

coefficient n” of Chow (1959).

We recall that it is necessary to calibrate the
summer bed roughness of the high-fidelity model,
since each 2D grid has its own numerical friction.
On the other hand, it is decided to not calibrate the485

lower-fidelity model. As a result, the summer bed
roughness can be included in the sensitivity analysis
as a random parameter. This is justified since no
inundations along the Lower Rhine occurred dur-
ing the 1926 flood event. Therefore, correct pre-490

diction of the water levels becomes irrelevant. The
lower-fidelity model is set up to accurately predict
maximum discharges at Lobith during flood events
instead. During the simulation, the entire discharge
wave flows in downstream direction independent of495

simulated water levels, since inundations are not
possible to occur. Consequently, it is expected that
simulated maximum discharges of the uncalibrated
surrogate model are close to those predicted by the
calibrated high-fidelity model. However, validation500

is recommended to study whether the lower-fidelity
model is capable of simulating the system behaviour
sufficiently.

2.2.4. Validation lower-fidelity model505

Razavi et al. (2012b) argue that, even though
the lower-fidelity model may be based on the same
input parameters as the high-fidelity model, the
response pattern can differ somewhat. This was
also shown by Thokala and Martins (2007). They510

neglected the fluid viscosity in the Navier-Stokes
equations to set up a lower-fidelity model. This
resulted in less accurate results compared to the
high-fidelity model. The discrepancies between the
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Table 1: Overview of the differences between the high and lower-fidelity model

High-fidelity model Lower-fidelity model
Software D-Flow FM HEC-RAS
Dimension Fully 2D 1D cross sections in summer bed and winter bed,

2D in the embanked areas
Nature Shallow Water equations Diffusive Wave equations
Time step Variable time step based on Fixed time step

maximum Courant number
Roughness Different roughness definitions Manning’s roughness coefficient
Calibration Calibrated summer bed roughness Uncalibrated

response patterns of the lower-fidelity and high-515

fidelity models mostly influence the local and global
minimum and maximum of the system (Razavi
et al., 2012b). Since this study tries to predict max-
imum discharges during a historic flood event, it is
of high importance that the global maximum of the520

system is correctly modelled by the lower-fidelity
model. If this is not the case, the discrepancies
between the lower-fidelity and high-fidelity model
can be addressed with a correction function (Razavi
et al., 2012b). These kind of functions correct the525

response of the lower-fidelity model and align it
with the response pattern of the high-fidelity model.
It is thus of high importance to validate the lower-
fidelity model to study whether a correction func-
tion is required to tune the model results.530

If the response pattern of the lower-fidelity
model is close to that of the high-fidelity model,
the lower-fidelity model can be treated as the high-
fidelity representation of the underlying system.
Consequently, the lower-fidelity model can replace535

the sophisticated 2D model (Razavi et al., 2012b).
The sensitivity analysis can then be safely per-
formed with the lower-fidelity model since the input
parameters of the lower-fidelity model are based on
the input parameters of the high-fidelity model.540

2.3. The 1926 casus

The 1926 flood event of the Rhine river is used
to examine the methodology of developing a lower-
fidelity model for historic flood reconstruction. The545

study area stretches from the areas downstream of
Andernach in Germany to the three Rhine river
branches in the Netherlands (Fig. 5). In this pa-
per, the German part of the river is referred to as
the Lower Rhine. The river enters the Netherlands550

at Lobith, where it bifurcates into the Waal river

and Pannerdensch Canal. Subsequently, the Pan-
nerdensch Canal bifurcates into the Nederrijn and
IJssel rivers. Only the summer bed, its floodplains
and two embanked areas that are connected by an555

inlet (Ooijpolder and Rijnstrangen area, (Fig. 5))
are captured in the model domain. The term in-
let is used for a dike section with a relatively low
crest level. Due to this low crest level, a part of
the discharge wave will enter the lower-lying area560

behind the inlet as soon as a certain water level is
exceeded. As a result, the maximum discharge fur-
ther downstream decreases. The dikes represent the
boundaries of the model domain and are assumed
not to overflow.565

2.3.1. Geographical situation

To reconstruct a historical geometry, the
changes in the river system between the current ge-
ometry and the historical period of interest must be
defined. An existing data set representing the 1995570

geometry is made available by the Dutch Ministry
of Infrastructure and Water Management. This
data set is used as starting point and is adapted
such that it represents the historical geometry. The
following measures were taken to create the 1926575

situation (Fig. 5):

• Increase summer bed level due to ero-
sion. Measurements of the summer bed lev-
els were available for the entire model domain.
The changes in summer bed level between the580

1995 measurements and the oldest measure-
ments available at each location were used to
estimate the 1926 summer bed level by linear
extrapolation.

• Decrease winter bed level due to sed-585

imentation. No measured sedimentation
rates along the study area were available.
Therefore, the following sedimentation rates
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Figure 5: Boundaries of the study area and location of inflow (left figure) and location of artificial measures taken to change
the 1995 geometry into the 1926 situation (right figure)

were used to predict the 1926 winter bed level:
1 mm/year along the IJssel river, Pannerden-590

sch Canal and Lower Rhine, 3 mm/year along
the Waal river and 0.5 mm/year along the
Nederrijn river (Silva et al., 2001). A linear
decrease of the sedimentation rate in chan-
nel cross direction was assumed. As a re-595

sult, the sedimentation near the summer bed
equals the predicted sedimentation rates ac-
cording to Silva et al. (2001). The sedimenta-
tion near the outside border of the floodplain
equals zero.600

• Dike relocation. On the left side of the
Lower Rhine, close to the city of Emmerich,
Germany, the floodplains of the river were
much larger in 1926 than they are nowa-
days. The 1926 dike locations and hence605

the 1926 winter bed were based on old maps
dating back to 1895 (Fig. 5, Dike reloca-
tion), provided by the German Deichverband
Xanten-KleveDer Oberdeichinspektor Dussel-
dorf (1895).610

The current summer dikes along the Panner-
densch Canal close to the Pannerdensche Kop
were the 1926 winter dikes. Therefore, the
present floodplains were not part of the 1926

river system. The area outside the 1995 sum-615

mer dikes were removed from the geometry
(Fig. 5, Pannerdensche Kop).

• Restoration of inlets. In 1926, two reten-
tion areas were possible to inundate at high
discharge stages as a result of inlets. The620

Spijke inlet caused inundation of the Rijn-
strangen area when the water level exceeded
15m +NAP, equal to the crest level of the in-
let (Fig. 5, Rijnstrangen area).

In the Ooijpolder, three inlets were active.625

The total length of the inlets was 150 m. The
Ooijpolder started to inundate at a water level
of 12.5 m +NAP, equalling the height of the
three inlets. The location of the inlets was
based on historical 1926 maps (Fig. 5, Ooi-630

jpolder).

• Restoration of meander cut offs. In 1955
and 1969 two meanders near Doesburg and
Rheden were cut off (Fig. 5, Meander cut
offs). Due to these meander cut offs the to-635

tal length of the IJssel river decreased with
almost nine kilometres. The location of the
meander bends are based on historical 1926
maps.

9



2.3.2. Boundary conditions640

The 1926 flood event is simulated for a period of
approximately three weeks, starting on the 22nd of
December 1925 till the 8th of January 1926. From
the 26th of December onwards, the weather condi-
tions changed drastically. High rainfall intensities645

occurred in almost the entire catchment area of the
Rhine river (Dutch Ministry of Infrastructure and
the Environment, 1926). This resulted in a rapid
rise of the discharge wave, starting on the 27th of
December.650

Fig. 6 shows the discharge wave at Ander-
nach, representing the upstream boundary condi-
tion (Data source: German Federal Waterways and
Shipping Administration (WSV), communicated by
the German Federal Institute of Hydrology (BfG)).655

The downstream boundary conditions consist of
h(t)-relations based on daily measured water levels
available at http://waterinfo.rws.nl and provided
by the Dutch Ministry of Infrastructure and Wa-
ter Management. Three streams enter the Lower660

Rhine, namely the Lippe, Ruhr and Sieg rivers.
These streams were included in the model domain
by source points (discharge inflow, Fig. 5 and Fig.
6). The presented boundary conditions and source
points are used in both the high-fidelity as well as665

the lower-fidelity model to set up the models.

3. Methodology of Sensitivity Analysis

In this study uncertainty and sensitivity analy-
ses are performed. An uncertainty analysis is exe-
cuted to compute the maximum discharge at Lobith670

with its standard deviation as a result of the uncer-
tain input parameters. Next, a sensitivity analysis
is performed to study which parameter mostly in-
fluence the uncertainty of the model output. The
main objective of the sensitivity analysis is the so675

called factor prioritization. With this prioritiza-
tion, it becomes clear on which parameter to focus
during historical geometry reconstruction for flood
modelling purposes in order to reduce the potential
uncertainty in the model output.680

During the analyses, we only focus on the pa-
rameters that influence the maximum discharge
at Lobith. A test run was performed in which
all roughness parameters along the Dutch river
branches were increased with 20%. In this run, the685

roughness values are close to the upper bound of the
truncated normal distributions. The run showed
that the increase in roughness resulted in only a mi-
nor decrease of the maximum discharge at Lobith

of approximately 0.2%, from 12,402 to 12,373 m3/s.690

This minor decrease suggests that the Dutch river
branches are sufficiently downstream such that the
effects of different summer bed roughness on the
maximum discharge are negligible. Therefore, the
study only focuses on the uncertainties of the input695

parameters in the most upstream part of the model
domain: the city of Andernach until the location
where the Rhine river bifurcates into the Waal river
and Pannderdench Canal. The Dutch Rhine river
branches are seen as fixed boundary conditions of700

the model since they do not influence model re-
sponse. Therefore, they can be excluded from the
global sensitivity analysis.

3.1. Input parameters

The lower-fidelity model is used to establish the705

uncertainty and sensitivity of the 1926 discharge at
Lobith. Only the input parameters that are based
on an estimation, i.e. those that are uncertain, are
included in the analysis. In addition, parameters
that require the development of a new surrogate710

model when changed (e.g. a planometric change)
are excluded from the analysis for pragmatic rea-
sons. The following parameters are considered dur-
ing the sensitivity analysis: (1) roughness parame-
ters of the various types of land use classes and (2)715

the bed levels of the summer bed and winter bed. In
general, two kinds of uncertainties exist. The first
uncertainty is as a result of the randomness of varia-
tions in nature (inherent uncertainty). The second
uncertainty is caused by limited knowledge (epis-720

temic uncertainty) (Warmink et al., 2013). The un-
certainty of the different roughness classes is mainly
caused by inherent uncertainty since it depends
amongst others on the season (e.g. grass grows
faster during summer periods resulting in a larger725

roughness) as well as on maintenance (e.g. the fre-
quency of mowing grass fields). The uncertainty of
the summer bed and winter bed levels are caused by
epistemic uncertainty. No measured 1926 bed levels
are present. Therefore, the bed levels are based on730

extrapolation techniques and estimated sedimenta-
tion rates.

For all roughness parameters, we link the value
with the largest probability of occurrence as well as
its minimum and maximum bounds to the tables of735

Chow (1959). Truncated normal distributions are
used in this study since a normal distribution bet-
ter fits the data if some information about the in-
put parameters is available (tails of the distribution
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Figure 6: Discharge waves of the Rhine river at Andernach (left figure) and the three tributaries Sieg, Ruhr and Lippe (right
figure). Note: only daily discharge measurements are available resulting in the sharp peaks of the different discharge waves

and the expected value). Contrarily, a uniform dis-740

tribution assumes that there is no knowledge about
the value with the largest probability of occurrence.
Only a range of input values is known. Therefore,
we can conclude that for older historic events, the
distributions of the uncertain input parameters will745

shift towards uniform distributions since less and
less information is available.

The roughness parameters are divided into five
land use classes: summer bed, lakes, grasslands,
forest and urban areas. A smooth channel with no750

vegetation is assumed for the entire summer bed,
having a minimum Mannings roughness of 0.025, a
normal value of 0.028 which is used as the expected
value, and a maximum value of 0.033 (Chow, 1959).
These numbers are used to set up the truncated755

normal distribution. The same method was used
to define the truncated normal distributions of the
other roughness classes (Table 2).

A comparable method is used to set up the trun-
cated normal distributions of the summer bed levels760

and winter bed levels. The 1926 summer bed levels
were computed based on extrapolation of measured
bed level changes (see Section 2.3). The uncertainty
ranges of the summer bed levels were based on these
extrapolation values. The minimum change in bed765

level corresponds to no change compared to the old-
est measured bed value. Consequently, the 1926
bed level equals the oldest measured bed level. The

maximum change in bed level equals the extrap-
olation of the trend between 1995 and the latest770

measured bed level multiplied with a factor two.
A factor of two is chosen to include a large uncer-
tainty range. The summer bed is divided into three
classes:

1. From the most upstream location Andernach775

(river km 614) until Walsum (river km 789).
Here, almost no erosion has occurred between
1995 and 1926. Additionally, the bed level has
been compensated for bed level decrease due
to mining activities at several locations.780

2. From Walsum until the German-Dutch bor-
der (river km 857). Here, there is relatively
much uncertainty in the amount of erosion
since the oldest measured bed level dates back
to only 1960.785

3. From the German-Dutch border till the first
bifurcation point of the Rhine river (river km
867). Here, there is little uncertainty in the
1926 bed level since the oldest measurements
date back to 1934.790

The winter bed level consists of just one class
since no deviations in uncertainty along the Lower
Rhine exist. The estimated sedimentation rate of 1
mm/year is used to define the ranges of the winter
bed level in the Lower Rhine (Silva et al., 2001).795

The minimum value equals no change in bed level
compared to the 1995 situation. The maximum
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Table 2: Minimum, Maximum and Standard deviation of the different input parameters

Input parameter Minimum value Maximum value Standard deviation
Summer bed 0.025 0.033 0.002
Lakes 0.024 0.034 0.003
Graslands 0.037 0.075 0.009
Forest 0.098 0.178 0.020
Urban areas 0.029 0.039 0.003
St. Winter bed level -0.070 m 0.070 m 0.035 m
St. Summer bed level (1) -0.150 m 0.150 m 0.075 m
St. Summer bed level (2) -0.520 m 0.520 m 0.260 m
St. Summer bed level (3) -0.090 m 0.090 m 0.045 m

range equals the sedimentation rate of 1 mm/year
multiplied with a factor of two. Again a factor of
two is chosen to include a large uncertainty range800

since the 1 mm/year sedimentation rate is relatively
speculative. Since the summer bed and winter bed
levels vary along the study area, their truncated
normal distributions and corresponding minimum
and maximum values are given as change from its805

1926 reference value (Table 2). These values will
be referred to as Standardized (St.) bed levels from
now on. A value equal to zero correspond with the
reconstructed 1926 geometry.

3.2. Design of Experiment810

Before a sensitivity analysis can be performed,
a Design of Experiment (DoE) has to be defined.
DoEs employ different space filling strategies to
capture the behaviour of the underlying system
over limited ranges of the input parameters (Razavi815

et al., 2012b). A DoE results in a sample in which
the boundary values of the input parameters are
based on physical conditions. This sample can
be used in a Monte Carlo analysis. Most com-
monly used DoE methods in literature appear to820

be full factorial design, fractional factorial design,
central composite design and latin hypercube sam-
pling (LHS) (Razavi et al., 2012b). In general, a full
factorial design, a fractional factorial design and a
central composite design require a relatively large825

number of simulations to generate all combinations
to represent the corners of the input space (Razavi
et al., 2012b; Saltelli et al., 2008). Contrarily, LHS
can easily scale to different numbers of input pa-
rameters without the need for extra simulation runs830

(Razavi et al., 2012b). Thus, a stratified LHS sam-
ple has as advantage that less model runs are re-
quried since a stratified sample achieves a better
coverage of the sample space of the input parame-

ters (Saltelli et al., 2000). For this reason, a LHS835

design is used in this study.

The nine input parameters are divided into eight
levels. Each level has an equal probability of occur-
rence of 12.5%, based on the determined truncated
normal distributions in Section 3.1. For each run,840

each level is randomly selected, constraining that
if a level is already selected it cannot be selected
again. This results in a set of eight simulations in
which all eight levels of the nine input parameters
are present.845

No clear guidelines exist concerning the minimal
number of runs required in a Monte Carlo analysis.
This number depends on the number and range
of the input parameters and on the shape of the
response surface. Theses features are largely un-850

known in advance (Pappenberger et al., 2005). In
this study convergence of the uncertainty of the dis-
charge at Lobith, expressed as standard deviation,
is used as stopping-criteria, following the method of
Pappenberger et al. (2005). If an additional run re-855

sults in a change of the standard deviation smaller
than 0.05 m3/s, it is assumed that the sample suffi-
ciently represents the input space of the different in-
put parameters. This criteria resulted in 120 model
runs, corresponding with 15 latin hypercube sets.860

To check whether the input space is sufficiently
captured by the sample, two additional model runs
were performed with the most extreme situations.
These scenarios represent the limits of the probabil-
ity distribution functions of the input parameters.865

Table 3 and Fig. 7 show the range of maximum
discharges at Lobith modelled in the 120 Monte
Carlo runs and the range found with the two most
extreme cases. Note that all runs are performed
with the lower-fidelity surrogate model. The mini-870

mum and maximum values of the sample are close
to the predicted values of the two most extreme
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Table 3: Minimum and Maximum discharge at Lobith (Qmin,Lobith/Qmax,Lobith) as a result of the two most extreme model
runs and the 120 runs within the Monte Carlo (MC) analysis

Extreme case MC runs Difference
Qmin,Lobith [m3/s] 12,285 12,293 17
Qmax,Lobith [m3/s] 12,548 12,531 8

Figure 7: Input space of the LHS representing the maximum discharges at Lobith modelled during each model run. The grey
lines indicate the results of the two most extreme model runs

runs. Therefore, we can conclude that the input
space is sufficiently captured by the sampling data
set.875

3.3. Stratified Monte Carlo analysis

The results of the Monte Carlo analysis are used
to determine the uncertainty in model predictions.
Additionally, the results are used to apportion this
uncertainty to the contribution of the individual in-880

put parameters. Two sensitivity analysis methods
are used, namely Multiple Linear Regression anal-
ysis and Sobol’ indices explained in Sections 3.3.1
and 3.3.2 respectively.

3.3.1. Multiple Linear Regression Analysis885

If the number of simulations is much larger than
the number of input parameters, a LHS can be very
effective in revealing the influence of each parame-
ter using a regression analysis (Saltelli et al., 2008).
If the model does not contain any interactions be-890

tween the input parameters (i.e. the model is addi-
tive), the linear regression function can be given as
(Scheidt et al., 2018):

y = β0 +

N∑
i=1

βixi (2)

where y represents the model output (in this study
the maximum discharge at Lobith) and xi the differ-895

ent input parameters. The coefficients β0 and βi are
determined by the least-square computation, based
on the squared differences between the model out-
put produced by the regression model and the ac-
tual model output produced by the surrogate model900

(Saltelli et al., 2008).

The coefficient βi is used to determine the im-
portance of each parameter xi with respect to the
model output. If the input parameters are inde-
pendent, the absolute standardized regression coef-905

ficient β̂i can be used as a measure of sensitivity
(Scheidt et al., 2018):

β̂i = |βi
σi

σy
| (3)

where β̂i represents the standardized regression co-
efficient, and σi and σy represent the standard de-
viations for the input parameter xi and the model910

output respectively.

However, the applicability of a linear regression
analysis depends on the degree of linearity of the
model (Saltelli et al., 2008). A measure for linear-
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Figure 8: Bootstrap method for resampling in which CI stands for confidence intervals

ity is expressed by (Saltelli et al., 2008):915

R2 =

N∑
i=1

(β̂i)
2 (4)

where R2 represents the model coefficient of deter-
mination. This value is equal to the fraction of the
variance of the original data that is explained by
the regression model. A value of R2 equal to one
indicates that the model is linear (Saltelli et al.,920

2008) and that the multiple linear regression model
is capable of expressing all variance of the original
data.

3.3.2. Sobol’ indices

If the model is not linear, Sobol’ indices can be925

used to determine the sensitivity of the input pa-
rameters. Sobol’ indices are widely used as global
sensitivity analysis method in literature. We are
specifically interested in the first-order indices, i.e.
the effect without interactions of input parameters,930

since the sensitivity analysis is used for factor pri-
oritization purposes (Saltelli et al., 2008). Li and
Mahadevan (2016) present an effective method to
estimate the first-order Sobol’ indices analytically.
This method can be applied to any kind of data set935

and is not restricted to a specific sampling strategy.
Furthermore, the method can be applied to models
with correlated input parameters. Li and Mahade-
van (2016) found that the method is highly efficient
and that it is especially useful in ranking and iden-940

tifying important parameters. The formula used is

as follow (Li and Mahadevan, 2016):

Si = 1− Exi(V x-i(y|xi))
V y

(5)

where Si represents the Sobol’ first-order index,
V x-i(y|xxi) indicates the conditional variance of y
caused by all input parameters other than x i, Exi945

represents the expected value as a result of fixing
input parameter x i, and V y represents the variance
of y.

The Monte Carlo sample has a relatively small
size. Therefore, the 95% confidence intervals of the950

Sobol’ indices are computed based on a resampling
strategy. The MATLAB Statistics Toolbox is used
to perform the computation. The method to com-
pute the 95% confidence intervals is based on the
work of Dubreuil et al. (2014) in which a bootstrap955

resampling strategy is used. Computation of con-
fidence intervals by bootstrap resampling is widely
used in global sensitivity analysis and has been used
in combination with surrogate models by Gayton
et al. (2003) and Janon et al. (2011). Bootstrap960

resampling aims at determining confidence inter-
vals of a parameter of interest using only one de-
sign of experiment (Efron and Tibshirani, 1993).
The method consists of the creation of new designs
of experiment by drawing with replacement in the965

original design.
The method used is presented in Fig. 8. The

LHS sample consisting of 120 model runs is resam-
pled, after which the confidence intervals of the
first-order Sobol’ indices are computed. If these970

confidence intervals have not reached a specific con-
vergence criterion yet, more bootstrap resamples
are drawn. The computation is repeated until the
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convergence criterion is met. The criterion as sug-
gested by Dubreuil et al. (2014) is used. They sug-975

gested to stop the procedure at the iteration for
which all confidence interval sizes have reached a
range which is less than x percent of the maxi-
mum bootstrap mean of the sensitivity indices. The
choice of parameter x depends on the goal of the980

sensitivity analysis. If the goal is only determining
the most dominant input parameter, a relatively
large value of x in the order of 30% can be used.
However, if the model has many variables of equal
sensitivity indices, it is better to look at the con-985

vergence graph at each bootstrap iteration and de-
cide manually when to stop the procedure (Dubreuil
et al., 2014). The first convergence criteria (30%) is
used which will be evaluated by checking the con-
vergence graphs of the Sobol’ indices as suggested990

by Dubreuil et al. (2014).

4. Results

4.1. Calibration high-fidelity model

The river branches Lower Rhine, Waal river and
Pannerdensch Canal were calibrated with the use of995

measured water levels. The discharge partitioning
along the Dutch river branches was based on the re-
port of the Dutch Ministry of Infrastructure and the
Environment (1952). During the calibration pro-
cedure, this discharge partitioning had to be met.1000

The IJssel and Nederrijn rivers were excluded from
the calibration procedure since many inundations
along the IJssel river have occurred during the 1926
flood event. These inundations influence the water
levels at both river branches. Even a very low sum-1005

mer bed roughness near the locations of the inun-
dations did not result in the correct water levels.
For this study purpose, it is accepted that the wa-
ter levels along the IJssel and Nederrijn rivers were
not calibrated correctly. These branches are located1010

more than 15 km downstream of Lobith such that
backwater effects has vanished at Lobith. The IJs-
sel and Nederrijn rivers have thus no effect on the
maximum discharge at this location.

In the data set, only daily measured water levels1015

are available. Hence, the maximum measured wa-
ter level may be lower than the occurred maximum
water level. Therefore, we calibrated on the three
days with the highest water levels for each measure-
ment station present along the river branches. If the1020

model is capable of predicting the correct shape and
correct water levels at three moments in time near

the peak discharge, it is likely that also the correct
maximum water level is predicted by the model.

The 1926 discharge wave was simulated. Maxi-1025

mum water levels at 10 measurement stations were
validated after model calibration. It was found
that simulated maximum water levels only deviated
2 cm on average compared to the measurements.
Therefore, it can be concluded that the high-fidelity1030

model is capable of simulating maximum water lev-
els with high accuracy after calibration of the sum-
mer bed roughness.

4.2. Validation and uncertainty of the lower-fidelity
model1035

The model output was compared with the model
output of the high-fidelity model to study whether
it is justified to use the lower-fidelity model to
perform the sensitivity analysis. We found that
the high-fidelity model simulates a maximum dis-1040

charge at Lobith of 12,282 m3/s with the 1926 mea-
sured discharge wave at Andernach as upstream
boundary condition. The lower-fidelity model, with
all random input parameters set to their expected
value, predicts a maximum discharge of 12,4021045

m3/s. This deviates less than 1.0% compared to the
high-fidelity model. Although, correct prediction of
the maximum discharge at Lobith has the focus in
this study, it is also desirable that the lower-fidelity
predicts correct discharge stages at other locations.1050

Table 4 shows that the lower-fidelity model pre-
dicts maximum discharges along the Lower Rhine
with high accuracy, having a maximum deviation
of 2.1% compared to the high-fidelity model. In
addition, the lower-fidelity model is capable of ac-1055

curately predicting the discharge partitioning along
the Dutch Rhine river branches (Table 4). These
values indicate that the surrogate model is capable
of representing the system behaviour of the high-
fidelity model. Therefore, no correction-function1060

is needed to tune the model results of the lower-
fidelity model. We can thus conclude that the
lower-fidelity model can be treated as a high-fidelity
model from now on. Hence, the sensitivity analysis
can be performed with the 1D-2D coupled model.1065

The results of the uncertainty analysis show
that the average maximum discharge at Lobith as
a result of the Monte Carlo sample equals 12,424
m3/s. This value has a standard deviation of 49
m3/s caused by the uncertainty in the input pa-1070

rameters. This relatively low standard deviation
shows that uncertainties in the input parameters
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Table 4: Maximum discharges along the Lower Rhine and discharge partitioning along the Dutch Rhine river branches predicted
by the high-fidelity and lower-fidelity model, where Qmax represents the maximum discharge at the specific location

High-fidelity Lower-fidelity Difference [%]
model model

Qmax Bonn [m3/s] 11,509 11,580 0.6
Qmax Cologne [m3/s] 11,632 11,715 0.7
Qmax Dusseldorf [m3/s] 11,365 11,598 2.1
Qmax Rees [m3/s] 12,351 12,572 1.8
Qmax Emmerich [m3/s] 12,297 12,453 1.3
Qmax Lobith [m3/s] 12,282 12,402 1.0
Waal river [%] 70.3 71.9 1.5
Pannerdensch Canal [%] 29.7 28.0 1.7
Nederrijn river [%] 58.7 56.2 2.4
IJssel river [%] 41.4 43.8 2.4

Table 5: Results Multiple Linear Regression analysis in which the most influential parameter has a ranking equal to 1 and the
most non-influential parameter a ranking equal to 9

Input parameter βi σi [m3/s] β̂i Ranking Surface
area [%]

Roughness class Summer bed -3.65 x 103 1.97 x 10-3 0.15 2 13.3
Lakes -1.81 x 103 2.68 x 10-3 0.10 5 13.2
Grasslands -4.81 x 103 8.71 x 10-3 0.86 1 55.6
Forest -2.83 x 102 1.95 x 10-2 0.11 4 6.4
Urban areas -2.29 x 102 2.73 x 10-3 0.01 7 11.4

Bed level Winter bed -70.3 3.18 x 10-2 0.05 6
Summer bed (1) 1.2 7.00 x 10-2 0.00 9
Summer bed (2) 27.5 0.25 0.13 3
Summer bed (3) 8.3 0.04 0.01 8

only have a limited effect on the maximum dis-
charge at Lobith during the 1926 flood event.

4.3. Sensitivity analysis1075

4.3.1. Multiple linear regression analysis

A multiple linear regression analysis was per-
formed in which it was assumed that the model
response as a result of the varying input param-
eters was linear. This is not the case since the1080

model coefficient of determination R2 (equation 4)
equals 0.81. This value means that the regression
model is capable of explaining 81% of the variance
of the surrogate output. The remaining 19% is
ignored by the regression model. However, Table1085

5 clearly shows that the roughness of grasslands
highly influences the maximum discharge at Lobith
because of its high sensitivity measure β̂i (equation

3). The high standardized regression coefficient of
the roughness of grasslands can be explained by the1090

fact that grassland is the most dominant land cover
in the model domain with a surface area of 55.6%
(Table 5). In addition, the uncertainty within the
class itself is relatively large (Table 2) since grass-
lands most often have a higher roughness during1095

summer periods due to growing season compared
to the winter periods. Only the roughness of for-
est has a larger uncertainty range. However, the
surface area covered by forest is much less (6.4%).

4.3.2. Sobol’ indices1100

In the previous section it was shown that with
the Multiple Linear Regression analysis only 81%
of the variance of the surrogate model output could
be explained. In order to check the results of the
Multiple Linear Regression analysis, the Sobol’ in-1105
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Figure 9: First-order Sobol’ indices and its 95% confidence intervals based on the bootstrap resamples

dices are computed. These indices are independent
of model linearity. The results show that the rough-
ness of grasslands is dominant with respect to influ-
encing the uncertainty of the maximum discharge
at Lobith (Table 6). This is in line with the results1110

of the Multiple Linear Regression analysis.

If
r∑

i=1

Si = 1, the variance of the model output

is solely caused by the variance of the input param-
eters itself. In that case, there are no interactions
between the different input parameters resulting in1115

an increase in the variance of the model output.

In other words, the model is additive. The results
show that the first-order Sobol’ indices are approxi-
mately 1 indicating that the model does not include
any interactions of the input parameters.1120

In principle
r∑

i=1

Si cannot be larger than 1. In

addition, the first-order Sobol’ index computed for
each uncertain input parameter cannot be lower
than 0 (Saltelli et al., 2008). In this study, the

computed
r∑

i=1

Si is slightly larger than 1 and the1125

Sobol’ index for the roughness of urban areas is

Table 6: Computed Sobol’ indices with the method of Li and Mahadevan (2016) in which the most influential parameter has
a ranking equal to 1 and the most non-influential parameter a ranking equal to 9

Input parameter Si Ranking Surface
area [%]

Roughness class Summer bed 0.10 2 13.3
Lakes 0.01 7 13.2
Grasslands 0.77 1 55.6
Forest 0.05 5 6.4
Urban areas -0.03 9 11.4

Bed level Winter bed 0.09 3
Summer bed (1) 0.01 8
Summer bed (2) 0.06 4
Summer bed (3) 0.03 6
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smaller than 0. This is caused by the relatively lit-
tle sample size of only 120 runs. To overcome this
problem, we resampled the 120 runs as explained
in Section 3.3. With this resampled data set, the1130

95% confidence intervals of the first-order Sobol’ in-
dices are computed (Fig. 9). Fig. 10 shows that
the first-order Sobol’ indices have converged after
approximately 700 bootstrap resamples. This re-
sults in a data set of 700 x 120 model runs. The1135

outcomes then show that the roughness of grass-
lands remains the most dominant input parameter.
The lower bound of its confidence interval is un-
der any condition larger than the sensitivity index
of the other input parameters. Therefore, we can1140

conclude that for this specific case, most attention
must be paid to the roughness class with the largest
surface area and which has a relatively large uncer-
tainty range. Correct prediction of this parameter
will result in a significant reduction of the output1145

variance. It must be noted that the uncertainty of
the model output was small in this study. In gen-
eral, the output variance depends on the probability
distribution functions of the uncertain input param-
eters. It can be expected that the output variance1150

will increase for older historic events. Hence, a sig-
nificant reduction in model output variance can be
reached if the most influential input parameter is
correctly predicted. This influential input parame-
ter can be found by applying the method for factor1155

prioritization as presented in this study.

5. Discussion

In this study, a methodology was developed to
reconstruct historic flood events with the use of a
lower-fidelity model. The maximum discharge is1160

predicted as well as its uncertainty as a result of
the uncertain input parameter. General problems
that arose were mostly related to the choice of the
surrogate model type and the characteristics of the
flood event. Therefore, another historic event may1165

ask for a different approach since the assumptions
made for the 1926 event may not apply. To put
things into perspective, an overview and discussion
are presented of the problems that may arise during
historic flood reconstruction and resulting sensitiv-1170

ity analysis.

1. To predict a historic discharge, an associated
geometry should be reconstructed. The ge-
ometry during the 1926 event was well known
since maps of this time period are available.1175

However, for events further in the past the
geometry might be more uncertain. These
spatial uncertainties must be included in the
analyses. A major drawback is that for
each (uncertain) geometric situation a sepa-1180

rate model must be set up. Consequently, for
each model, the sensitivity analysis must be
performed separately. This significantly in-
creases the total number of simulations. Fur-
thermore, for older events the uncertainties1185

in the input parameters may become larger.
Hence, the shape of their probability distri-
butions may change. We assumed that the
uncertain input parameters of the 1926 flood
event could be described by truncated normal1190

distributions. These distributions will shift
towards uniform distributions for older events
if less information is available.

2. A lower-fidelity based surrogate model was
developed to reduce computational time.1195

Many other methods exist to set up a sur-
rogate model, each with their own benefits
and drawbacks. A different study approach
may lead to the need of another type of sur-
rogate model. In general, a 1D-2D coupled1200

model is capable of simulating any kind of
flood event. The 1D profiles enable correct
prediction of discharge stages below bankfull
conditions (Horritt and Bates, 2002). These
1D profiles can be coupled by 2D grid cells to1205

include the possibility of simulating overland
flows if the discharge exceeds the bankfull dis-
charge, referring to the situation in which the
discharge is larger than the main channel and
floodplain capacity. Therefore, this type of1210

lower-fidelity model can be used to accurately
simulate flood wave propagation for both dis-
charges below as well as above bankfull con-
ditions.

3. The 1D-2D coupled model was not calibrated1215

on maximum water levels. The objective
of the surrogate model was accurate predic-
tion of maximum discharges at Lobith. How-
ever, calibration on maximum water levels
is required if dike breaches and/or overtop-1220

ping have evolved during the flood event.
For such a case, correct prediction of max-
imum water levels becomes important since
this value indicates whether overtopping oc-
curs. This influences the maximum discharge1225

further downstream. Therefore, it is recom-
mended to use the summer bed roughness of

18



Figure 10: Convergence of the first-order Sobol’ indices based on the bootstrap resamples

the lower-fidelity model as calibration param-
eter to correctly predict water levels in case
of discharges exceeding bankfull conditions.1230

4. To perform the sensitivity analysis, a deci-
sion had to be made about the range of the
truncated normal distributions of the input
parameters. The ranges of the roughness pa-
rameters were based on the tables of Chow1235

(1959). A smooth channel with no vegeta-
tion was assumed to determine the rough-
ness of the summer bed. This results in a
relatively low expected Mannings roughness
value of 0.028, with a total range of between1240

0.023 to 0.033. It is expected that the dimen-
sions of sand dunes during flood events are
highly uncertain. This uncertainty may influ-
ence summer bed roughness significantly. The
measured Mannings roughness of the summer1245

bed during the 1998 event with a maximum
discharge of 9,464 m3/s at Lobith ranges of
between 0.030 to 0.035 (Julien et al., 2002).
These values are higher than the values that
we used. Paarlberg et al. (2010) found a clear1250

dependency between increase in the discharge
and increase in the dune heights. However, it
is still unclear to what extent dune heights

increase during flood events. Some literature
even suggest that the dunes are washed out1255

under extreme conditions (e.g. Best (2005)
and Naqshband et al. (2014)), resulting in
much lower values of the roughness param-
eter. It is not the roughness value itself that
influences the uncertainty of the maximum1260

discharge, but rather the uncertainty range
of the summer bed roughness. Therefore, the
relatively broad roughness range for the sum-
mer bed used in this study is considered ap-
propriate for the 1926 flood event. In this1265

study, only geometrical uncertainties in the
input parameters are included in the sensi-
tivity analyses. These parameters are the
bed levels of the summer bed and winter bed
and the roughness of the various land use1270

classes. However, much more uncertainties
exist which can be related to the model struc-
ture, model parameters and boundary condi-
tions. These inherent uncertainties can be
considered in the sensitivity analysis by in-1275

cluding them as random input parameters in
the LHS. This will result in more insight in
the most dominant type of uncertainty, i.e.
uncertainty as a result of the input parame-
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ters, model parameters or model set-up. This1280

study is recommended for future work since
here, we only focused on the uncertainties of
the geometrical input parameters to illustrate
our method.

6. Conclusions1285

The objective of this paper was to study
whether a lower-fidelity hydraulic model can be
used for historic flood reconstruction. In this pa-
per, a general framework is presented that shows
which problems have to be tackled in order to en-1290

able historic flood reconstruction with the use of a
surrogate model.

A 1D-2D coupled model was developed as lower-
fidelity model that is capable of simulating flood
wave propagation with high accuracy. It was found1295

that model results predicted by the lower-fidelity
model were close to those predicted by the high-
fidelity model. The lower-fidelity model is thus ca-
pable of accurately predicting system behaviour.
In addition, the proposed 1D-2D coupled model1300

can be applied to any type of historic flood event.
This is because it is capable of accurately simulat-
ing flood wave propagation for both discharges be-
low as above bankfull conditions. However, if the
simulated discharges exceed the bankfull discharge,1305

model calibration is recommended since correct pre-
diction of water levels becomes highly relevant for
these cases.

A sensitivity analysis is required to determine
the parameters that mostly influence the uncer-1310

tainty in the model output. The lower-fidelity
model could be used to perform this analysis. This
significantly decreased computational time com-
pared to the use of a fully 2D model. For fu-
ture work, we propose that a 1D-2D coupled model1315

can be treated as a high-fidelity model in general.
Therefore, setting up a sophisticated 2D model for
validation will not be needed.

The proposed methodology was tested with the
use of the 1926 flood event of the Rhine river. The1320

lower-fidelity model predicts a maximum discharge
at Lobith of 12,402 m3/s for this historic event,
deviating only 1.0% compared to the high-fidelity
model (12,282 m3/s). The uncertainty of this max-
imum discharge at Lobith equals 49 m3/s. The un-1325

certainty in model output is relatively small because
a large amount of data of the 1926 flood event was
available. Reconstruction of an older flood event
will probably result in larger uncertainties of the

input parameters since less information is available.1330

As a result, the truncated normal distributions used
to describe the uncertainty of the various input pa-
rameters will shift towards uniform distributions.
This will have a negative effect on the model out-
put uncertainty.1335

The sensitivity analysis showed that the model
output was most sensitive to the roughness class
with the largest share in surface area (in this case
the roughness of the grassland areas). Moreover,
the location of the roughness class was important1340

since areas close to the river have a relatively large
impact on model results. These two aspects in com-
bination with the uncertainty range of the input
parameter itself determined the influence on model
response.1345
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