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Roots, symmetry and contour integrals in

queueing systems

A. Oblakova, A. Al Hanbali, R.J. Boucherie,

J.C.W. van Ommeren, W.H.M. Zijm

Abstract

Many queueing systems are analysed using the probability-generating-
function (pgf) technique. This approach often leads to expressions in
terms of the (complex) roots of a certain equation. In this paper, we
show that it is not necessary to compute the roots in order to evaluate
these expressions. We focus on a certain class of pgfs with a rational form
and represent it explicitly using symmetric functions of the roots. These
functions can be computed using contour integrals.

We also study when the mean of the random variable corresponding
to the considered pgf is an additive function of the roots. In this case,
it may be found using one contour integral, which is more reliable than
the root-finding approach. We give a necessary and sufficient condition
for an additive mean. For example, the mean is an additive function
when the numerator of the pgf has a polynomial-like structure of a certain
degree, which means that the pgf can be represented in a special product
form. We also give a necessary and sufficient condition for the mean to
be independent of the roots.

1. Introduction

The analysis of many queueing systems involves finding roots of a characteristic
equation. This often occurs in discrete-time models such as the GD/GD/1
queue, [13], bulk-service queue, [1], and multi-server queue M/D/s, [7], but also
in continuous models, see, for example, [5], where authors consider general inter-
arrival times and a Markovian service process, or [12], where two interrelating
queues are analysed. In some special cases, there are formulas to compute the
roots (see, e.g, [7] for the case of Poisson and Binomial arrivals), but there
is no explicit formula in general. Moreover, the derived solution can be very
sensitive to the precision of the roots, which, in turn, can be poor even due to a
small mistake in the coefficients, see, e.g., the study of the so-called Wilkinson’s
polynomial [15]. For an example in queueing theory, we refer to [11], where
the authors consider the bulk-service queue and show that there are instances,
where the root-finding approach leads to a negative queue length.

In this paper, we consider a particular class of queueing systems, where the
probability generating function (pgf) of the queue length (or another important
value) has a rational form with several unknown variables qj , j = 0, . . . , n, in
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the numerator:

X(z) =

∑n

j=0
qjfj(z)

D(z)
(z − 1), (1)

An example of such systems is the bulk-service queue, see [1]. The classical
approach to find the unknowns in the numerator is to consider the analyticity
of the pgf in the unit disk and compute the zeroes of the denominator z̄0 =
1, z̄1, . . . , z̄n. Due to the analyticity of the pgf, the zeros of the denominator are
also zeros of the numerator. This yields n linear equations for the unknowns:

n
∑

j=0

qjfj(z̄i) = 0, i = 1, . . . , n. (2)

One more equation follows from the normalisation equation X(1) = 1:

n
∑

j=0

qjfj(1) = D′(1). (3)

This system of equations can be rewritten in a matrix form:

M(1, z̄1, . . . , z̄n)(q0, . . . , qn)
T = (D′(1), 0, . . . , 0)T , (4)

where

M(z, z1, . . . , zn) =









f0(z) f1(z) . . . fn(z)
f0(z1) f1(z1) . . . fn(z1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
f0(zn) f1(zn) . . . fn(zn)









. (5)

In this paper, we use the properties of the matrix M(z, z1, . . . , zn) and of sym-
metric polynomials to find the pgf without computing the roots. We represent
the pgf using a determinant of a certain matrix, where each entry is a symmet-
ric function of the roots, which can be computed using contour integrals. The
advantages of using contour integrals are that the results are generally more
reliable compared to the root-finding approach, see [11], and can be used as an
intermediate step for further results, see, e.g, [6].

We also study when the considered class of pgf can be represented in a spe-
cial product form, where each term of the product depends on not more than
one root. In this case, the mean of the corresponding random variable, e.g.,
the queue length, is an additive function of the roots and, under additional
conditions, can be found using one contour integral. We give a sufficient and
necessary condition for these properties to hold. The systems with such pgf
include the bulk-service queue, see [1], the multi-server M/D/s and Geo/D/s
queues, which are in some sense equivalent to the bulk-service queue with Pois-
son and Binomial arrivals, see [7] and [8], and the fixed-cycle traffic-light queue,
see [11].

The paper is structured as follows. In Section 2, we give the definitions and
required properties of symmetric polynomials and functions. In Section 3, we
obtain the pgf in terms of symmetric functions for a general case of numerator.
Then, we analyse a special sub-class of the pgfs in Section 4. Finally, we conclude
the paper in Section 5.
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2. Preliminaries

In this section, we give the required definitions and the preliminary results.
First, in Subsection 2.1, we define symmetric, skew-symmetric and additive
functions and alternant matrices. Then, we describe two types of symmetric
polynomials and their properties, see Subsection 2.2. In Subsection 2.3, we
analyse the determinant of an alternant matrix, which will be used later in Sec-
tion 3 to obtain the pgf as a symmetric function of roots. Afterwards, we analyse
linear dependency of functions in terms of singular matrices, see Subsection 2.4.
Finally, in Subsection 2.5, we relate values of symmetric functions and contour
integrals.

2.1. Definitions

Consider a function f(z1, . . . , zn) of n complex variables. We focus on two types
of functions: symmetric and skew-symmetric.

Definition 1. Function f(z1, . . . , zn) is called symmetric if

f(z1, . . . , zn) = f(zs(1), . . . , zs(n)) (6)

for any permutation s ∈ Sn, where Sn is the set of all permutations of set
{1, . . . , n}.

Definition 2. Function f(z1, . . . , zn) is called skew-symmetric if

f(z1, . . . , zn) = sgn(s)f(zs(1), . . . , zs(n)) (7)

for any permutation s ∈ Sn. Here, sgn(s) is the sign of permutation s and
is equal to (−1)ms , where ms denotes the number of transpositions, i.e., per-
mutations that interchange two elements, needed to construct s. The sign is
independent of the representation of s as a product of transpositions.

Skew-symmetric functions are sometimes called anti-symmetric. In the anal-
ysis of the following section, we also use a subtype of symmetric functions,
namely additive functions.

Definition 3. Function f(z1, . . . , zn) is called additive if

f(z1, . . . , zn) =
n
∑

k=1

g(zk), (8)

for some function g(z).

In the analysis of Sections 3 and 4, we mainly work with alternant matrices.

Definition 4. Consider functions f1(z), . . . , fn(z) and points z1, . . . , zn. Matrix

Λ(z1, . . . , zn) =





f1(z1) . . . fn(z1)
. . . . . . . . . . . . . . . . . . .

f1(zn) . . . fn(zn)



 (9)

is called an alternant matrix.
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An example of an alternant matrix is a Vandermonde matrix, where fk(z) =
zk−1. The determinant of the Vandermonde matrix is denoted by V (z1, . . . , zn) =∏

16i<j6n(zj − zi). Note that the determinant of an alternant matrix is a skew-
symmetric function of z1, . . . , zn. This follows immediately from the fact that if
one interchanges two rows (or columns) in a square matrix, such an operation
changes the sign of the determinant.

Remark 1. In what follows, we will work with rational functions of several
variables, i.e., f(z1, . . . , zn)/g(z1, . . . , zn). Suppose that both the numerator
and the denominator are analytic functions and g(z1, . . . , zn) is not identically
equal to 0. For the case of one variable, i.e., n = 1, there are not more than
a finite number of points where this rational function is not defined, namely
where g(z1) = 0. However, for n > 1 this is not true. For example, function
1/(z1+z2) is not defined on a line z1 = −z2. Suppose that functions f(z1, . . . , zn)
and g(z1, . . . , zn) are defined on the set Dn

1 = {(z1, . . . , zn) ∈ C
n : |zi| < 1, i =

1, . . . , n}, and there is at least one point in Dn
1 where g(z1, . . . , zn) 6= 0. Then,

one can prove that the function f(z1, . . . , zn)/g(z1, . . . , zn) is defined on a dense
open subset of Dn

1 . In what follows, when we say that two rational functions
are equal, we mean that they are equal on an open dense subset of Dn

1 , where
both of them are defined.

2.2. Symmetrical polynomials and their properties

In this subsection, we introduce two types of symmetric polynomials and their
properties. The elementary symmetric polynomials are given by

σm = σm(z1, . . . , zn) =
∑

16i1<...<im6n

zi1 · · · zim . (10)

The above formula is used for m = 1, . . . , n. For convenience, σ0 = 1, and
σm = 0 if either m > n or m < 0. The elementary symmetric polynomials
naturally arise in Vieta’s formulas that relate the coefficients of the polynomial
with its roots. Consider a polynomial

∑n

j=0
ajz

j with roots z1, . . . , zn, then it
can be written as

an

n∏

i=1

(z − zi) = an

n∑

j=0

(−1)jσj z
n−j . (11)

The proof of (11) requires the expansion of the left-hand side of (11), see [14].
We mainly use the complete homogeneous symmetric polynomials defined as

ζm = ζm(z1, . . . , zn) =
∑

16i16...6im6n

zi1 · · · zim . (12)

Note the difference in the definitions of the elementary and complete homoge-
neous symmetric polynomials: the indexes ik and ik+1 for the latter case may
coincide for some or all k. This allows us to use the above formula for m > n.
For m = 0, we define ζ0 = 1, and, for m < 0, ζm = 0.

The following property can be used to recursively find all complete homo-
geneous polynomials from the elementary symmetric polynomials. The proof is
given in Appendix A.
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Property 1. For m > 0, the following equality holds

ζm =

n∑

j=1

(−1)j−1σjζm−j . (13)

Note that for j > n, σj = 0 and for j > m, ζm−j = 0. Thus, the upper limit
of summation in (13) can be changed to any number that is at least min{n,m}.

In the case where z1, . . . , zn are roots of an equation, the value of complete
homogeneous and elementary symmetric polynomials can be found without ac-
tually knowing these roots, see Subsection 2.5. In the following Subsection 2.3,
for an analytic function of one variable, we construct a symmetric function of
n variables using complete homogeneous symmetric polynomials. Such func-
tions on Dn

1 are later used to rewrite the determinant of an alternant matrix
as a product of a skew-symmetric Vandermonde determinant and a symmetric
function.

2.3. Symmetric functions and alternant matrices

In this subsection, we write the determinant of the alternant matrix in terms
of the Vandermonde determinant and symmetric functions. We use such de-
terminants in Section 3 to give an alternative representation of the considered
type of pgfs. First, we define a transformation rule of an analytic function in
D1 = {z ∈ C : |z| < 1} to a symmetric function defined in Dk

1 ⊂ C
k. Then, we

give several properties of this transformation. The main result of this subsection
is presented in Lemma 1.

Consider an analytical function f(z), with Taylor expansion at 0 given by
f(z) =

∑
∞

i=0
αiz

i. Let

Fm
k = Fm

k (z1, . . . , zm) =
∞∑

i=k

αiζi−k(z1, . . . , zm), (14)

where m corresponds to the number of variables. We call Fm
k the (k,m)-

transformation of function f(z). The (k,m)-transformation of function fj(z)
is denoted by Fm

j,k. Note that function Fm
k (z1, . . . , zm) is a symmetric function

of z1, . . . , zm.
In the analysis of the following sections, we will use the following properties.

Property 2. Consider m 6 n. Then,

Fn
k (z1, . . . , zm, 0, . . . , 0) = Fm

k (z1, . . . , zm). (15)

The property follows from the definition of complete homogeneous symmetric
polynomials and only requires the observation that ζj(z1, . . . , zm, 0, . . . , 0) =
ζj(z1, . . . , zm).

Property 3. Consider the function f(z) =
∑

∞

i=0
αiz

i and its (l, n)-transformations

Fn
l , for l = k, . . . , k + n. Then,

Fn
k +

n∑

j=1

(−1)jσjF
n
k+j = αk. (16)
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This property follows from Property 1 and equality ζ0 = 1. In the following
lemma, we show that the determinant of an alternant matrix can be written as
the product of a Vandermonde determinant and a matrix composed from (k, n)-
transformations of the functions f1(z), . . . , fn(z) that are used in the alternant
matrix. The proof is given in Appendix B.

Lemma 1. Suppose functions f1(z), . . . , fn(z) are analytical in a neighbourhood

of 0. Then,

det









f1(z1) f2(z1) . . . fn(z1)
f1(z2) f2(z2) . . . fn(z2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

f1(zn) f2(zn) . . . fn(zn)









=

= V (z1, . . . , zn) det









Fn
1,0 Fn

2,0 . . . Fn
n,0

Fn
1,1 Fn

2,1 . . . Fn
n,1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fn
1,n−1

Fn
2,n−1

. . . Fn
n,n−1









, (17)

where V (z1, . . . , zn) is the Vandermonde determinant.

This lemma is an important result for our analysis in Sections 3 and 4.
The matrix on the right-hand side of (17) consists of symmetric functions of
z1, . . . , zn and, for example, can be non-singular for zi = zj , which will allow us
in Section 4 to give proofs using induction in the number of variables, n.

2.4. Singular matrices and linear independence

In this subsection, we give a sufficient condition for linear dependency between
(not necessarily analytic) functions. The proof is given in Appendix C.

Property 4. Consider numbers ai ∈ R, i = 0, . . . , n. Suppose matrix

Λa =









a0 . . . an
f0(z1) . . . fn(z1)
. . . . . . . . . . . . . . . . . . .

f0(zn) . . . fn(zn)









(18)

is singular for all z1, . . . , zn. If ai 6= 0 for some i, then the functions f0(z), . . . , fn(z)
are linearly dependent.

From this property it follows that if matrix Λa is singular for all z1, . . . , zn
and functions f0(z), . . . , fn(z) are linearly independent, then ai = 0 for i =
0, . . . , n.

2.5. Roots and contour integrals

In this subsection, we provide a way of computing the values of symmetric poly-
nomials at special points. Consider analytic functionD(z). Suppose 1, z̄1, . . . , z̄n
are the only roots of equation

D(z) = 0 (19)
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in the closed unit disk D̄1 = {z ∈ C : |z| 6 1}. Then, it is possible to com-
pute ζk(z̄1, . . . , z̄n) without finding the roots. The first step is to represent the
complete homogeneous symmetric polynomials in terms of the elementary sym-
metric polynomials, see Property 1. Then, we recursively use Newton’s formula,
see [9],

kσk =

k
∑

j=1

(−1)j−1σk−jηj , k = 1, . . . , n, (20)

to find the elementary symmetric polynomials in terms of the power sums ηj =

ηj(z1, . . . , zn) =
∑n

l=1
z
j
l , j = 1, . . . , n. The power sums, in turn, are found

using Cauchy’s residue theorem. Namely,

ηj(z̄1, . . . , z̄n) + 1 =
1

2πi

∮

S1+ε

D′(z)

D(z)
zjdz, (21)

where ε > 0 is defined so that there are no roots of equation (19) with 1 < |z| <
1 + ε, and S1+ε = {z ∈ C : |z| = 1 + ε}, for more details see [11].

Remark 2. If the equation (19) does not have a zero at 1, one needs to change
the left-hand side of (21) to just ηj(z̄1, . . . , z̄n). We explicitly consider the case
that 1 is a root since the denominator of the pgfs analysed in Section 3 has a
zero at 1.

Remark 3. If the function f(z) is a polynomial, then Fn
k (z̄1, . . . , z̄n) is a finite

sum of the complete homogeneous symmetric polynomials and can be found
using equations (21), (20) and (13). The application of the Cauchy residue
theorem, see (21), is a crucial step for going from the root-finding approach to
the contour-integral approach. If function f(z) is not a polynomial, one can
truncate the infinite summation in Fn

k (z̄1, . . . , z̄n) using the following bound:

∣

∣

∣

∣

∣

Fn
k (z̄1, . . . , z̄n)−

M
∑

k=0

αkζk(z̄1, . . . , z̄n)

∣

∣

∣

∣

∣

6 C

(

M + n

n− 1

)

(qr)M+1

(1− qr)n
, (22)

where |z̄k| 6 q for k = 1, . . . , n, |αl| 6 Crl for l = 0, 1 . . ., f(z) =
∑

∞

k=0
αkz

k;
and qr < 1, see proof in Appendix D. Therefore, the determinant of the matrix
in the right-hand side of (17) can be found without computing the roots.

Remark 4. For the sake of completeness, we also give a different way of finding
Fn
k at (z̄1, . . . , z̄n). Let Q(z) =

∏n

i=1
(z − z̄i) be the minimal polynomial, i.e.,

the polynomial of the lowest degree, with roots z̄1, . . . , z̄n. Due to (11), Q(z) =
∑n

j=0
(−1)jσj(z̄1, . . . , z̄n)z

n−j , which means that this polynomial can be found
without computing the roots, see equations (21) and (20). Then, see [2],

ζm(z̄1, . . . , z̄n) =

n
∑

l=1

z̄n+m−1

l

Q′(zl)
. (23)

By applying the Cauchy residue theorem, we get

ζm(z̄1, . . . , z̄n) =
1

2πi

∮

S1

zn+m−1

Q(z)
dz, (24)
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where S1 is the unit circle, i.e., S1 = {z ∈ C : |z| = 1}. Hence, we get

Fn
k (z̄1, . . . , z̄n) =

1

2πi

∮

S1

f(z)−
∑k−1

l=0
αlz

l

Q(z)
zn−k−1dz. (25)

Using this formula for each entry of the matrix in the right-hand side of (17),
i.e., n2 times, can be computationally demanding. Still, it can be useful in some
special cases.

Remark 5. Suppose function f(z1, . . . , zn) is an additive function, i.e.,
f(z1, . . . , zn) =

∑n

k=1
g(zk). If function g(z) is analytic in D1+ǫ \ {1}, then

the value of f(z̄1, . . . , z̄n) is given by one contour integral:

f(z̄1, . . . , z̄n) =
1

2πi

∮

S1+ε

D′(z)

D(z)
g(z)dz − r1, (26)

where ε < ǫ is defined as in (21), and r1 is the residue of the function
D′(z)g(z)/D(z) at 1.

3. Pgf as a symmetric function of roots

In this section, we consider pgfs of form (1), which occur, for example, in the
bulk-service queue [1], in the multi-server queue, see [7], and in traffic-light
queues, see [10] and [11]. Recall that such pgf has a rational form:

X(z) =

∑n

j=0
qjfj(z)

D(z)
(z − 1), (27)

where qj are unknown numbers, fj(z) are analytical functions, and D(z) is an
analytic function with n + 1 zeroes inside the unit disk including 1, which we
denote by z̄0 = 1, . . . , z̄n. The goal of this section is to represent the pgf X(z) as
a symmetrical function of roots z̄1, . . . , z̄n, see Theorem 1 below. Such a repre-
sentation together with Remark 3 allows us to find the pgf X(z) without finding
the roots. This is a computationally stable and reliable approach, see [11].

Remark 6. In the representation of the pgf, the term (z−1) is usually included
in functions fj(z). One can also rewrite (1) as

X(z) =

∑n

j=0
qjfj(z)

D̃(z)
, (28)

where D̃(z) = D(z)/(z − 1) is a function with n zeroes, z̄1, . . . , z̄n, inside the
unit disk. If function D(z) is analytical in some Dr with r > 1, then so is D̃(z).

As we showed in the introduction, the unknowns in the numerator can be
found using an alternant matrix

M(z, z1, . . . , zn) =









f0(z) f1(z) . . . fn(z)
f0(z1) f1(z1) . . . fn(z1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
f0(zn) f1(zn) . . . fn(zn)









. (29)
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In the following lemma, we represent the numerator of the pgf in terms of matrix
M(z, z1, . . . , zn). As a by-product of this representation, we get the following
interesting result: it is not necessary to know qj , j = 0, . . . , n to know the
numerator of (1). The solution (31) is given only for the proof.

Lemma 2. Suppose matrix M(1, z̄1, . . . , z̄n) is non-singular, and (q0, . . . , qn) is
a solution of (4), then

n
∑

j=0

qjfj(z) = D′(1)
detM(z, z̄1, . . . , z̄n)

detM(1, z̄1, . . . , z̄n)
, (30)

and

qj = (−1)jD′(1)
detMj(z̄1, . . . , z̄n)

detM(1, z̄1, . . . , z̄n)
, (31)

where Mj(z1, . . . , zn) is the matrix M(z, z1, . . . , zn) without the first row and the

(j + 1)st column.

Proof. Since matrix M(1, z̄1, . . . , z̄n) is non-singular there is a unique solution
for (4). Using the Laplace expansion, it is easy to check that (31) gives (30).
Plugging (30) in the left-hand side of (2) and (3) gives identical equalities.

Remark 7. The proof of Lemma 2 does not require the precise form of the
matrix M(z, z1, . . . , zn). We used the facts that only the first row depends
on z and the right-hand side is non-zero only in the first entry. Thus, matrix
M(z, z1, . . . , zn) can depend on z1, . . . , zn in a different way. For example, in-
stead of a row, a column may depend on one root. Such kind of systems also
occur in queueing theory, see, e.g., [5].

Remark 8. The determinant detM(z, z1, . . . , zn) is a skew-symmetrical func-
tion of roots. Hence, the right-hand side of (30), which is equal to the numerator
of (1), is a symmetrical function. However, form (30) does not show how to find
the value of the numerator without finding the roots. Therefore, we need an
equivalent representation, see Remark 1.

Consider the matrix

M̄(z, z1, . . . , zn) =









f0(z) f1(z) . . . fn(z)
Fn
0,0 Fn

1,0 . . . Fn
n,0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fn
0,n−1

Fn
1,n−1

. . . Fn
n,n−1









. (32)

From Lemma 1, we get that

detM(z, z1, . . . , zn) = V (z1, . . . , zn) det M̄(z, z1, . . . , zn). (33)

In particular,
detM(z, z1, . . . , zn)

detM(1, z1, . . . , zn)
=

h(z)

h(1)
, (34)

where
h(z) = h(z, z1, . . . , zn) = det M̄(z, z1, . . . , zn) (35)

is a symmetric function of the roots. Therefore, from Lemma 2, we get the
following theorem.
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Theorem 1. Suppose matrix M(1, z̄1, . . . , z̄n) is non-singular, and vector (q0, . . . , qn)
is a solution of (4), then

n
∑

k=0

qkfk(z) = D′(1)
h(z, z̄1, . . . , z̄n)

h(1, z̄1, . . . , z̄n)
, (36)

and

X(z) =
D′(1)h(z, z̄1, . . . , z̄n)

D(z)h(1, z̄1, . . . , z̄n)
(z − 1). (37)

Using Remark 3, we can find h(z, z̄1, . . . , z̄n) without knowing the roots by
computing n contour integrals. In Section 4, we consider a special case, in which
the mean, X ′(1), may be found using only one contour integral.

4. Factorisation of the pgf

In this section, we give sufficient and necessary conditions for the pgfX(z), given
by (1), to have some special properties. The first property is the factorisation

property, i.e., that the numerator of the pgf can be represented as a product,
where each of the terms depends on not more than one root:

X(z) = D′(1)
g(z)

∏

n

k=1
g(z, z̄k)

D(z)
(z − 1) (38)

for some functions g(z) and g(z, w). This representation of the sum as a product
is analogous to Vieta’s formulas, see (11). For an example of the numerator
that cannot be represented as such product, consider three functions f0(z) = 1,
f1(z) = z and f2(z) = z3. Then, the numerator has three roots: z1, z2 and
w = w(z1, z2). The third root (symmetrically) depends on both roots of the
denominator, thus making the product form impossible.

The second property is the additive-mean property, i.e., X ′(1), which rep-
resents the mean of the corresponding random variable, is an additive function
of the roots. One can easily see that the factorisation property implies the
additive-mean property. Indeed, from (38), L’Hospital’s rule gives us

1 = X(1) = g(1)

n
∏

k=1

g(1, z̄k), (39)

and the mean of the corresponding random variable is given by a symmetric
additive function of roots:

X ′(1) = −

D′′(1)

2D′(1)
+

g′(1)

g(1)
+

n
∑

k=1

∂

∂z

g(z, z̄k)

g(1, z̄k)

∣

∣

∣

∣

z=1

. (40)

To find the above equation, we took the derivative of (38) and used equality
(39). An additive form, as in (40), implies that under some conditions, the
mean value can be found using one contour integral, see Remark 5. Note that
for certain functions g(z, w), it is possible to represent the pgf as an exponent
of a contour integral, see [4].

The following theorem gives sufficient and necessary conditions for the pgf
to have the factorisation or additive-mean property.
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Theorem 2. Suppose the functions fk(z) are analytic in D1, the matrix
M(z, z1, . . . , zn) is defined by (5), and the function h(z) is given by (35). Con-
sider the following conditions:

(a) There exist a non-singular matrix

A =





a0,0 . . . a0,n
. . . . . . . . . . . . . . .

an,0 . . . an,n



 , (41)

an analytic function B(z) in D1 and a non-constant meromorphic function
C(z) in D1 such that fj(z) =

∑n

k=0
aj,kf̃k(z), where

f̃k(z) = B(z)C(z)k. (42)

(b) There exist meromorphic functions g(z) and g(z, w) such that

h(z)

h(1)
=

h(z, z1, . . . , zn)

h(1, z1, . . . , zn)
= g(z)

n
∏

k=1

g(z, zk). (43)

(c) There exist a constant c and a meromorphic function f(z) such that

h′(1)

h(1)
=

∂

∂z

h(z, z1, . . . , zn)

h(1, z1, . . . , zn)

∣

∣

∣

∣

z=1

= c+
n
∑

k=1

f(zk). (44)

If

(∗) the matrix M(1, ẑ1, . . . , ẑn) is non-singular for some ẑ1, . . . , ẑn,

then conditions (a) and (b) are equivalent and (c) follows from them. If, more-
over,

(∗∗) there are i and j such that
f ′

i(1)

fi(1)
6=

f ′

j(1)

fj(1)
,

then all three conditions are equivalent. Also, if the quotients in (∗∗) are equal
for all i and j, then (c) is satisfied for a constant function f(z). Furthermore,
if conditions (a) and (∗) hold, then one can choose

g(z) =
B(z)

B(1)
, g(z, w) =

C(z)− C(w)

C(1)− C(w)
, (45)

c =
B′(1)

B(1)
, f(w) =

C ′(1)

C(1)− C(w)
. (46)

In the following subsections, we will prove implications (a) ⇒ (b) (under (∗)),
(b) ⇒ (c), and (c) ⇒ (a) (under conditions (∗) and (∗∗)). Each part of the proof
is in a separate subsection with several concluding remarks in Subsection 4.4.
The proof of (b) ⇒ (a) under (∗) is almost identical to the proof of (c) ⇒ (a),
and, therefore, we omit it.
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4.1. From polynomials to factorised form

In this subsection, we prove that (a) ⇒ (b). Consider the matrixM(z, z1, . . . , zn)
at some point such that the matrix is non-singular. Given (a), we get that
M(z, z1, . . . , zn) is a linear transformation of an alternant matrix with func-
tions f̃k(z):

M(z, z1, . . . , zn)(A
T )−1 =





B(z) . . . B(z)C(z)n

. . . . . . . . . . . . . . . . . . . . . . . . . .
B(zn) . . . B(zn)C(zn)

n



 , (47)

which is almost a Vandermonde matrix. Hence, its determinant is equal to

det(M(z, z1, . . . , zn)(A
T )−1) = B(z)

n
∏

k=1

B(zk)VC(z, . . . , zn), (48)

where VC(z, . . . , zn) = V (C(z), C(z1), . . . , C(zn)) is the Vandermonde determi-
nant for variables C(z), C(z1), . . . , C(zn). Therefore, given the fact that matri-
ces A and M(1, z1, . . . , zn) are non-singular, we get

h(z)

h(1)
=

det(M(z, z1, . . . , zn)(A
T )−1)

det(M(1, z1, . . . , zn)(AT )−1)
=

B(z)

B(1)

n
∏

k=1

C(z)− C(zk)

C(1)− C(zk)
. (49)

This is exactly equation (43) with functions g(z) and g(z, w) defined as in (45).
Note that due to the continuity of the functions on the left-hand side and the
right-hand side of (49) in their support, the equality holds also when the matrix
M(z, z1, . . . , zn) is singular.

4.2. From factorised form to an additive function

In this subsection, we prove that (b) ⇒ (c). This implication does not require
(∗) or (∗∗). Note that from (43) it follows that g(1)

∏n

k=1
g(1, zk) = 1. Hence,

h′(1)

h(1)
=

∂

∂z

(

g(z)

g(1)

n
∏

k=1

g(z, zk)

g(1, zk)

)∣

∣

∣

∣

∣

z=1

=
g′(1)

g(1)
+

n
∑

k=1

∂

∂z

g(z, zk)

g(1, zk)

∣

∣

∣

∣

z=1

. (50)

Thus, one can choose c = g′(1)/g(1) and f(w) = ∂/∂z g(z, w)/g(1, w)|z=1. If
functions g(z) and g(z, w) are defined as in (45), then c and f(w) are defined
as in (46).

4.3. From an additive mean to a polynomial numerator

In this subsection, we prove that (c) ⇒ (a). This is the most difficult part. First,
we consider a linear transformation of functions fk(z), given by the following
lemma, see proof in Appendix E.

Lemma 3. If functions fk(z) are analytic in D1 and linearly independent, then

there exists point z∗ ∈ D1 and functions f̃j(z) such that fj(z) =
∑n

i=0
ãj,if̃i(z)

and

f̃i(z) = (z − z∗)i + o((z − z∗)i) as z → z∗. (51)

Moreover, z∗ can be any point in D1 except a finite set of points.1
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From the proof of the lemma, it follows that, given (∗), the function f̃n−1(z)
can be chosen such that f̃n−1(1) 6= 0 for all possible z∗ except a finite set of
points, see Remark 9 in Appendix E. In our case, we can apply Lemma 3, be-
cause matrixM(1, ẑ1, . . . , ẑn) is non-singular, and, therefore, functions f0(z), . . . ,
fn(z) are linearly independent. Since z∗ can be any point in the unit disk except
a finite number of points, we can assume, without loss of generality, that z∗ = 0,
ai,j = δij and f̃n−1(1) 6= 0, where δij is Kronecker delta.

Now, suppose that (44) holds. We will focus on determining fk+1(z)/fk(z).
For this, we will consider the cases where zk+1 = . . . = zn = 0 for k = 1, . . . , n.
The following lemma gives the value of h(z)/h(1) for each k. The proof is given
in Appendix F.

Lemma 4. For k > 0,

h(z, z1, . . . , zk, 0, . . . , 0)

h(1, z1, . . . , zk, 0, . . . , 0)
=

detΛk(z, z1, . . . , zk)

det Λk(1, z1, . . . , zk)
, (52)

where

Λk(z, z1, . . . , zk) =









fn−k(z) . . . fn(z)
fn−k(z1) . . . fn(z1)
. . . . . . . . . . . . . . . . . . . . . .
fn−k(zk) . . . fn(zk)









. (53)

To find function f(z) in (44), we consider k = 1. Using Lemma 4 gives us

h(z, z1, 0, . . . , 0)

h(1, z1, 0, . . . , 0)
=

fn(z1)fn−1(z)− fn(z)fn−1(z1)

fn(z1)fn−1(1)− fn(1)fn−1(z1)
. (54)

Let C(z) = fn(z)/fn−1(z). Then, we can rewrite (54) as

h(z, z1, 0, . . . , 0)

h(1, z1, 0, . . . , 0)
=

fn−1(z)

fn−1(1)

C(z)− C(z1)

C(1)− C(z1)
. (55)

Note that C(1) and the right-hand side of (55) are well-defined since fn−1(1) =
f̃n−1(1) 6= 0, see the choice of z∗. Taking the derivative gives us

∂

∂z

h(z, z1, 0, . . . , 0)

h(1, z1, 0, . . . , 0)

∣

∣

∣

∣

z=1

=
f ′

n−1(1)

fn−1(1)
+

C ′(1)

C(1)− C(z1)
. (56)

Equation (44) defines the constant c and the function f(w) up to a constant, i.e.,
constant c can be arbitrarily chosen. Therefore, we redefine f(w) as C ′(1)/(C(1)−
C(w)). This leads to c = f ′

n−1(1)/fn−1(1) − (n − 1)C ′(1)/C(1) since f(0) =
C ′(1)/C(1). Here, we used the fact that C(0) = limz→0 fn(z)/fn−1(z) =
limz→0 z

n/zn−1 = 0.
Now, it is left to prove that condition (a) follows from equation

∂

∂z

h(z, z1, . . . , zn)

h(1, z1, . . . , zn)

∣

∣

∣

∣

z=1

=
f ′

n−1(1)

fn−1(1)
− (n− 1)

C ′(1)

C(1)
+

n
∑

k=1

C ′(1)

C(1)− C(zk)
(57)

with B(z) = fn(z)/C(z)n.
Note that function C(z) is not a constant since functions fn(z) and fn−1(z)

are linearly independent. Now, it would be sufficient to prove that fk+1(z) =
C(z)fk(z) for k = 0, . . . , n − 2. However, it may be not true. For example,
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functions 1 + z, z and z2 satisfy conditions (a) - (c) and (51), but z/(1 + z) 6=
z = z2/z. Thus, we use the following lemma, recursive application of which
together with a linear transformation of functions fk(z) concludes the proof of
Theorem 2. The proof of Lemma 5 is given in Appendix G.

Lemma 5. Consider k > 2. Suppose that equation (57) holds for zk+1 = . . . =
zn = 0. Suppose also that fj+1(z)/fj(z) = C(z) for j = n − k + 1, . . . , n − 1.
Then, there exist coefficients βj, j = 0, . . . , k, such that

fn−k(z) = β0fn−k+1(z)/C(z) +

k
∑

j=1

βjfn−k+j(z). (58)

4.4. Some remarks

Theorem 2 was partially proven for a specific function C(z) in [11]. There the
focus was on proving (44) for certain systems such as the bulk-service queue and
the fixed-cycle traffic-light queue. This result allows to use contour integrals for
finding the average queue length. Theorem 2 generalises the result of [11] and
describes all systems for which (44) applies. However, it does not mean that
these are the only systems for which the mean value can be found using one
contour integral. In this paper, we have considered a special class of the pgf, see
(1). If one is able to find the pgf in a factorisation form, e.g., as in (38), then
the mean will be an additive function of the roots. For example, this result can
be applied to the GD/GD/1 queue considered in [13].

Concerning implication (b) ⇒ (a) under (∗), one can proceed from equation
(55) and define g(z, w) as in (45). Afterwards, one needs to prove an alternative
of Lemma 5, more precisely equation (58). In the proof of Lemma 5, we expand
an alternant matrix over the row that depends on z1. In this case, the result
requires an additional condition C ′(1) 6= 0, which follows from (∗∗). If we want
to prove implication (b) ⇒ (a), we can expand the similar matrix over the row
that depends on z (in implication (c) ⇒ (a) this is a constant row and we cannot
use such expansion). Then, we do not need an extra condition (∗∗).

Note that from definition (35) of the function h(z), it follows that if condition
(∗∗) does not hold, than (44) holds for f(z) = 0 and c = f ′

0(1)/f0(1). To
conclude this section, we give an example of a queueing system without condition
(∗∗). Consider a special bulk-service queue with vacations depending on the
queue size. The arrivals are Poisson with rate 1. The size of the batch is 3 and
the service time is deterministic and equal to some d ∈ (2, 3). If the server visits
the queue and finds at least three customers, it immediately starts serving the
first three customers. If upon a visit the server finds the queue with j customers,
j < 3, it takes a vacation of deterministic time vj with

v0 = −1 +
√

d2 − 4d+ 7, v1 = −1 +
√

d2 − 3d+ 3, (59)

v2 = d− 2. (60)

Note that for d > 2, time vj is positive, j = 0, 1, 2. It is possible to find the
pgf X(z) of the queue length at the times when the server visits the queue, i.e.,
after a service or a vacation,

X(z) =

∑2
j=0 πj f̂j(z)

z3 − ed(z−1)
, (61)
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where πj is the probability of finding j customers in the queue upon a visit, and

functions f̂j(z) = (z − 1)fj(z) are defined as follows:

f̂j(z) = evj(z−1)z3 − zjed(z−1). (62)

One can check that f ′

j(1) = f̂ ′′

j (1)/2 = 2fj(1) = f̂ ′

j(1) for all j = 0, 1, 2, which
means that (∗∗) does not hold, and, therefore, that (c) holds for f(z) = 0. Thus,
the mean queue length upon the server arrival is independent of the roots of the
characteristic equation z3 = ed(z−1):

X ′(1) =

(

z − 1

z3 − ed(z−1)

)

′

∣

∣

∣

∣

∣

z=1

(3− d) +

∑2
j=0 πjf

′

j(1)
∑2

j=0 πjfj(1)
= (63)

= −
6− d2

6− 2d
+ 2 =

d2 − 4d+ 6

6− 2d
. (64)

5. Conclusions

In this paper, we analysed the dependency of a certain type of pgfs on the roots
of the characteristic equation. We showed that such a pgf depends on the roots
in a symmetric way and gave an explicit matrix representation of the pgf. Our
representation allows one to use the roots that are close to each other without
encountering the corresponding sensitivity problems. Moreover, it is possible
to find the pgf without computing the roots, which can further improve the
accuracy.

We studied the cases where the pgf has a product form, and where the mean
value is an additive function of the roots. We showed that these properties are
equivalent under a non-degeneracy condition and gave a sufficient-and-necessary
condition for them. For systems with these properties, both the pgf at a point
and the mean may be found using one contour integral. If the non-degeneracy
condition does not hold, the mean is independent of the roots.

Appendix A Proof of Property 1

In this section, we prove Property 1. Recall that we need to prove that

n
∑

j=0

(−1)jσjζm−j = 0 (65)

for any m > 0. The proof will be done using generating functions. First, we
want to note that

∞
∑

m=0

ζmzm =

n−1
∏

i=1

∞
∑

k=0

(ziz)
k =

n−1
∏

i=1

1

1− ziz
. (66)

The above equality holds for sufficiently small z, i.e., for |z| < mini=1,...,n−1 1/|zi|.
Second, from (11), we get

n−1
∏

i=1

(1− ziz) = zn−1
n−1
∏

i=1

(z−1 − zi) =
n−1
∑

j=0

(−1)jσj z
j . (67)
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Hence,

1 =

n−1
∏

i=1

1− ziz

1− ziz
=

∞
∑

m=0

ζmzm
n−1
∑

j=0

(−1)jσj z
j . (68)

Note that the last equation is an equality of two analytical functions. Thus, the
coefficients at powers of z should coincide. Result (13) follows from considering
the coefficient at zm for m > 0.

Appendix B Proof of Lemma 1

In this section, we prove Lemma 1. We use the first Jacobi-Trudi formula, see
[2], which can be written as

det





zm1

1 . . . zmn

1

. . . . . . . . . . . . . . .
zm1

n . . . zmn

n



 = V (z1, . . . , zn) det





ζm1
. . . ζmn

. . . . . . . . . . . . . . . . . . . . . . . .
ζm1−n+1 . . . ζmn−n+1



 . (69)

It is used for the Schur polynomials, for which m1 > . . . > mn. However, the
result is general. In particular, a permutation of rows gives the result for any
m1, . . . ,mn such that mi 6= mj for any i 6= j. Note also that if mi = mj for
i 6= j, then both sides of (69) are equal to 0.

Lemma 1 follows from equation (69) by summing it for all possible combina-
tions (m1, . . . ,mn) with coefficients

∏n

k=1
αk,mk

. Note also that (69) is a special
case of Lemma 1.

Appendix C Proof of Property 4

In this section, we prove Property 4. We use the induction by n. Consider
n = 1. Then the matrix

(

a0 a1
f0(z1) f1(z1)

)

(70)

is singular for all z1, which means a0f1(z) = a1f0(z) for all z and either a0 or
a1 is non-zero, i.e., the functions are linearly dependent. Suppose we proved
the statement for n − 1. Using Laplace expansion, we find 0 = detΛa =
∑n

k=0
detΛa,kfk(z1), where Λa,k is matrix Λa without second row and (k+1)st

column. If det Λa,k is not identically 0, then the functions are linearly depen-
dent. Now suppose that detΛa,k is identically 0 for all k = 0, . . . , n. Without
loss of generality, we can assume a1 6= 0. Applying property for matrix Λa,0, we
find that functions f1(z), . . . , fn(z) are linearly dependent, and so are functions
f0(z), . . . , fn(z).

Appendix D Proof of bound (22)

In this section, we prove bound (22). Suppose |z̄k| 6 q for k = 1, . . . , n, and
|αl| 6 Crl for l = 0, 1, . . ., where f(z) =

∑

∞

k=0
αkz

k. The latter condition holds
if function f(z) is analytic in a disk with radius more than 1/r. Suppose also
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that qr < 1. Then, we can give the following bound

∣

∣

∣

∣

∣

Fn
k (z̄1, . . . , z̄n)−

M
∑

k=0

αkζk(z̄1, . . . , z̄n)

∣

∣

∣

∣

∣

= (71)

=

∣

∣

∣

∣

∣

∞
∑

k=M+1

αkζk(z̄1, . . . , z̄n)

∣

∣

∣

∣

∣

6 (72)

6

∞
∑

k=M+1

|αk||ζk(z̄1, . . . , z̄n)| 6 (73)

6 C

∞
∑

k=M+1

rkζk(|z̄1|, . . . , |z̄n|) 6 (74)

6 C

∞
∑

k=M+1

rkζk(q, . . . , q) 6 (75)

6 C

∞
∑

k=M+1

(

k + n− 1

k

)

(qr)k
!
= (76)

!
= C

(

M + n

M

)

∑n

l=1
(−1)l+1

(

n

l

)

l
M+l

(qr)M+l

(1− qr)n
= (77)

= C

(

M + n

M

)

n
∑n−1

l=0
(−1)l

(

n−1

l

)

1

M+l+1
(qr)M+l+1

(1− qr)n
= (78)

= C

(

M + n

n

)

n
∫ qr

0
xM (1− x)n−1dx

(1− qr)n
6 (79)

6 C

(

M + n

n

)

n
∫ qr

0
xMdx

(1− qr)n
= (80)

= C

(

M + n

n

)

n(qr)M+1

(M + 1)(1− qr)n
= (81)

= C

(

M + n

n− 1

)

(qr)M+1

(1− qr)n
. (82)

Equality
!
= can be proven using induction by M as follows. Consider Sn,M =

Sn,M (x) =
∑

∞

k=M+1

(

k+n−1

k

)

xk. For M = 0, we get

Sn,0 =

(

∞
∑

j=0

xj

)n

− 1 =
1

(1− x)n
− 1 =

∑n

l=1
(−1)l+1

(

n

l

)

xl

(1− x)n
. (83)

Now suppose we have proved the statement for Sn,M−1. Consider Sn,M :

Sn,M (1− x)n =

(

Sn,M−1 −

(

M + n− 1

M

)

xM

)

(1− x)n = (84)

=

(

M + n− 1

M − 1

) n
∑

l=1

(−1)l+1

(

n

l

)

l

M + l − 1
xM+l−1 − (85)

−

(

M + n− 1

M

)

xM (1− x)n = (86)
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=

(

M + n− 1

M − 1

) n−1
∑

l=0

(−1)l
(

n

l + 1

)

l + 1

M + l
xM+l − (87)

−

(

M + n− 1

M

) n
∑

l=0

(−1)l
(

n

l

)

xM+l = (88)

=
n
∑

l=0

(−1)l
(M + n− 1)!(n− l)

(M − 1)!l!(n− l)!(M + l)
xM+l − (89)

−

n
∑

l=0

(−1)l
(M + n− 1)!n

M !l!(n− l)!
xM+l = (90)

=

n
∑

l=0

(−1)l
(M + n− 1)!

(M − 1)!l!(n− l)!

(

n− l

M + l
−

n

M

)

xM+l = (91)

=

n
∑

l=0

(−1)l+1 (M + n)!

M !l!(n− l)!

l

M + l
xM+l = (92)

=

(

M + n

M

) n
∑

l=1

(−1)l+1

(

n

l

)

l

M + l
xM+l. (93)

Appendix E Proof of Lemma 3

In this section, we prove Lemma 3. Recall that we need to prove that there
exists a point z∗ ∈ D1 such that functions fj(z) after a linear transformation

give functions f̃i(z) that are locally equal to (z − z∗)i + o((z − z∗)i).
Functions fj(z), j = 0, . . . , n, are analytic and linearly independent. There-

fore, the Wronskian

detW (z) = det









f0(z) f1(z) . . . fn(z)
f ′

0(z) f ′

1(z) . . . f ′

n(z)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f
(n)
0 (z) f

(n)
1 (z) . . . f

(n)
n (z)









(94)

is not identically 0, see [3]. Note that detW (z) is an analytic function in D1

and, therefore, it has not more than a finite number of zeros in D1. Let z
∗ ∈ D1

be such that detW (z∗) 6= 0. Define functions f̃0(z), . . . , f̃n(z) by the following
linear combination:
(

0! · f̃0(z) 1! · f̃1(z) . . . n! · f̃n(z)
)

=
(

f0(z) f1(z) . . . fn(z)
)

(W (z∗))−1.

(95)
Consider the matrix W̃ (z) for functions 0!f̃0(z), . . . , n!f̃n(z) defined as

W̃ (z) =









f̃0(z) f̃1(z) . . . n! · f̃n(z)

f̃ ′

0(z) f̃ ′

1(z) . . . n! · f̃ ′

n(z)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f̃
(n)
0 (z) f̃

(n)
1 (z) . . . n! · f̃

(n)
n (z)









. (96)

At point z∗, we get that W̃ (z∗) = W (z∗)(W (z∗))−1 becomes an identity matrix.

Thus, f̃
(l)
k (z∗) = 0 for l < k and k!f̃

(k)
k (z∗) = 1, which means that functions

f̃0(z), . . . , f̃n(z) satisfy (51).
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Remark 9. Given condition (∗), one can choose z∗ and the functions so that for
a particular index k, f̃k(1) 6= 0. To see this, let us first consider the case k = n.
Note that fj(1) 6= 0 for at least one j; otherwise the matrix M(1, ẑ1, . . . , ẑn)
would be singular, which contradicts (∗). We can consider a linear transfor-
mation of functions fk(z) such that f0(1) 6= 0, and fk(1) = 0 for all k 6= 0.
Then f̃n(1) 6= 0 if and only if the coefficient of f0(z) in the definition of f̃n(z),
see (95), is non-zero. This coefficient, up to multiplication by detW (z∗) and a
sign, is equal to the Wronskian for functions f1(z), . . . , fn(z) at point z

∗, which
is non-zero for all possible z∗ except a finite set. Note that if f̃n(1) 6= 0, then
either f̃k(1) 6= 0 or f̃k(1) + f̃n(1) 6= 0. Therefore, the result for all k follows
from the fact that f̃k(z) + f̃n(z) satisfies (51) for i = k.

Appendix F Proof of Lemma 4

In this section, we prove Lemma 4. We need to prove (52), i.e.,

h(z, z1, . . . , zk, 0, . . . , 0)

h(1, z1, . . . , zk, 0, . . . , 0)
=

detΛk(z, z1, . . . , zk)

det Λk(1, z1, . . . , zk)
, (97)

where Λk(z, z1, . . . , zk) is an alternant matrix constructed using functions fn−k(z),
. . . , fn(z) and points z, z1, . . . , zk.

Recall that function h(z, z1, . . . , zk, 0, . . . , 0) is the determinant of matrix
M̄(z, z1, . . . , zk, 0, . . . , 0), which entries are Fn

j,m(z1, . . . , zk, 0, . . . , 0). From Prop-

erty 2, we get Fn
j,m(z1, . . . , zk, 0, . . . , 0) = F k

j,m(z1, . . . , zk). Now, according to
Property 3,

F k
j,m +

k
∑

l=1

(−1)lσl(z1, . . . , zk)F
k
j,m+l = αj,m, (98)

where fj(z) =
∑

∞

l=0
αj,lz

l. Thus, after a linear transformation, we get that
matrix M̄(z, z1, . . . , zk, 0, . . . , 0) changes to





















f0(z) . . . fn(z)
α0,0 . . . αn,0

. . . . . . . . . . . . . . . . . . . . . . . . .

α0,n−k−1 . . . αn,n−k−1

F k
0,n−k . . . F k

n,n−k

. . . . . . . . . . . . . . . . . . . . . . . . .

F k
0,n−1 . . . F k

n,n−1





















. (99)

Here, we added the (m+ l + 2)nd row multiplies by (−1)lσl(z1, . . . , zk) to the

(m+ 2)
nd

row for l = 1, . . . , k and m = 0, . . . , n−k−1. Now, note that αj,k = 0
for j > k and αj,j = 1, which means that the matrix in (99) is equal to





















f0(z) . . . fn−k−1(z) fn−k(z) . . . fn(z)
1 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α0,n−k−1 . . . 1 0 . . . 0
F k
0,n−k . . . F k

n−k−1,n−k F k
n−k,n−k . . . F k

n,n−k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F k
0,n−1 . . . F k

n−k−1,n−1 F k
n−k,n−1 . . . F k

n,n−1





















. (100)
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Hence, the determinant is equal to

h(z, z1, . . . , zk, 0, . . . , 0) = (−1)n−k det









fn−k(z) . . . fn(z)
F k
n−k,n−k . . . F k

n,n−k

. . . . . . . . . . . . . . . . . . . . . . .
F k
n−k,n−1 . . . F k

n,n−1









. (101)

At this moment, we can use Lemma 1, to find that up to multiplication by
the Vandermonde determinant V (z1, . . . , zk), the determinant of the matrix on
the right-hand side of (101) is equal to the determinant of an almost alternant
matrix

V (z1, . . . , zk) det









fn−k(z) . . . fn(z)
F k
n−k,n−k . . . F k

n,n−k

. . . . . . . . . . . . . . . . . . . . . . .
F k
n−k,n−1 . . . F k

n,n−1









= det











fn−k(z) . . . fn(z)
fn−k(z1)

z
n−k

1

. . . fn(z1)

z
n−k

1

. . . . . . . . . . . . . . . . . . . . .
fn−k(zk)

z
n−k

k

. . . fn(zk)

z
n−k

k











,

(102)
which is not identically equal to 0 due to the linear independence of the func-
tions fn−k(z), . . . , fn(z). Here, we used the fact that fl(z), l = n − k, . . . , n,
satisfies (51), and, therefore, has first n − k − 1 coefficients in the Taylor ex-
pansion equal to 0. Hence, the (m, k)-transformation of function fl(z)/z

n−k =
∑

∞

j=n−k αjz
j−n+k is equal to F k

l,n−k+m =
∑

∞

j=n−k+m αjζj−n+k−m. Combining
(101) and (102), gives (52) and, therefore, concludes the proof.

Appendix G Proof of Lemma 5

In this section, we prove Lemma 5. In this lemma, we assume that equation
(57) holds for zk+1 = . . . = zn = 0, i.e.,

∂

∂z

h(z, z1, . . . , zk, 0, . . . , 0)

h(1, z1, . . . , zk, 0, . . . , 0)

∣

∣

∣

∣

z=1

=
f ′

n−1(1)

fn−1(1)
− (k − 1)

C ′(1)

C(1)
+

k
∑

j=1

C ′(1)

C(1)− C(zk)
,

(103)
and that fj+1(z) = C(z)fj(z) for j = n − k + 1, . . . , n − 1. We need to
prove that function fn−k(z) is equal (up to a linear combination of functions
fn−k+1(z), . . . , fn(z)) to β0fn−k+1/C(z).

First, we apply Lemma 4 and get

h(z, z1, . . . , zk, 0, . . . , 0)

h(1, z1, . . . , zk, 0, . . . , 0)
=

fn−k+1(z) detMG(z, z1, . . . , zk)

fn−k+1(1) detMG(1, z1, . . . , zk)
, (104)

where

MG(z, z1, . . . , zk) =











1
G(z) 1 . . . C(z)k−1

1
G(z1)

1 . . . C(z1)
k−1

. . . . . . . . . . . . . . . . . . . . . . . . .
1

G(zk)
1 . . . C(zk)

k−1











, (105)

and G(z) = fn−k+1(z)/fn−k(z).
Second, we find the derivative of (104) at 1:

∂

∂z

h(z, z1, . . . , zk, 0, . . . , 0)

h(1, z1, . . . , zk, 0, . . . , 0)

∣

∣

∣

∣

z=1

=
f ′

n−k+1(1)

fn−k+1(1)
+

∂

∂z

detMG(z, z1, . . . , zk)

detMG(1, z1, . . . , zk)

∣

∣

∣

∣

z=1

.

(106)
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Note that fn−1(z) = fn−k+1(z)C(z)k−2. Thus,

f ′

n−1(1)

fn−1(1)
=

f ′

n−k+1
(1)

fn−k+1(1)
+ (k − 2)

C ′(1)

C(1)
. (107)

Combining equations (57), (106) and (107), we get that

∂

∂z

detMG(z, z1, . . . , zk)

detMG(1, z1, . . . , zk)

∣

∣

∣

∣

z=1

= −
C ′(1)

C(1)
+

k
∑

l=1

C ′(1)

C(1)− C(zl)
. (108)

Third, we prove that functions C(z1)/G(z1), 1, . . . , C(z1)
k are linearly de-

pendent if C ′(1) 6= 0, which we show later. Let µj(z) be the determinant of
matrix MG(z, z1, . . . , zk) without the second row and (j + 1)st column. Note
that µj(z) does not depend on z1. Fix any z2, . . . , zk such that µ0(1) 6= 0, which
is possible since function C(z) is not constant. By multiplying both sides of
(108) by detMG(1, z1, . . . , zk), we get

1

G(z1)
µ′

0(1) +

k−1
∑

l=0

µ′

l+1(1)C(z1)
l = −

1

G(z1)
µ0(1)

C ′(1)

C(1)
+

+
1

G(z1)
µ0(1)

k
∑

l=1

C ′(1)

C(1)− C(zl)
+

+

k−1
∑

l=0

µl+1(1)C(z1)
l

(

−
C ′(1)

C(1)
+

k
∑

l=1

C ′(1)

C(1)− C(zl)

)

. (109)

Note that µ0(z) = V (C(z), C(z2), . . . , C(zk)). Hence,

µ′

0(1) = µ0(1)

k
∑

l=2

C ′(1)

C(1)− C(zl)
. (110)

Therefore, we can rewrite equation (109) as

C(z1)

G(z1)
µ0(1)

C ′(1)

C(1)(C(1)− C(z1))
=

=
k−1
∑

l=0

C(z1)
l

(

µ′

l+1(1) + µl+1(1)
C ′(1)

C(1)
− µl+1(1)

k
∑

l=1

C ′(1)

C(1)− C(zl)

)

. (111)

Note that multiplying both sides by C(1)−C(z1) will give a linear dependency
between functions C(z1)/G(z1), 1, . . . , C(z1)

k with a non-zero coefficient for
C(z1)/G(z1) (if C ′(1) 6= 0). To get (58), one needs to multiply both sides of
equation (111) by fn−k+1(z1)C(1) (C(1)− C(z1))/(C(z1)µ0(1)C

′(1)).
Finally, we prove that C ′(1) 6= 0. Suppose C ′(1) = 0. We will prove that

this contradicts (∗∗). Note that c = f ′

n−1(1)/fn−1(1) and, due to (57),

h′(1, z1, . . . , zn) = c h(1, z1, . . . , zn). (112)

This means that matrix








f ′

0(1)− c f0(1) . . . f ′

n(1)− c fn(1)
f0(z1) . . . fn(z1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
f0(z1) . . . fn(z1)









(113)
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is singular for all z1, . . . , zn. Since functions f0(z), . . . , fn(z) are linearly inde-
pendent, we get that f ′

i
(1) = cfi(1) for i = 0, . . . , n, which contradicts with (∗∗).
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