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Abstract 

A process language is presented which makes a clear distinction between temporal order and 
causal order. This allows for several algebraic laws that are particularly interesting for the des/gn 
of concurrent systems. One of these is an algebraic formulation of the communication closed 
layers principle by [EF82]. These laws suffice to rewrite process terms that avoid specification 
of temporal ordering into a unique normal form. Other transformations allow for gradually 
imposing temporal ordering on an already functionally correct design. The combination of such 
laws enables a design strategy where architecture independent designs are transformed towards 
a form that matches a particular implementation architecture. We apply this style of design 
to various distributed algorithms, including an algorithm for the "point-in-polygon" problem 
transformed to a form suitable for pipelined execution on a t ~  network, and the Floyd-Warshall 
algorithm for the all-points shortest path transformed to a form suitable for execution on a SIMD 
architecture. 

1 I n t r o d u c t i o n  

In order to have a transformational algebraic approach that suits both specification and design of 
concurrent systems, a clear distinction should be made between temporal order and causal order 
between actions. In this paper we present a process language where a distinction is made between 
language constructs for specifying temporal order, sud~ as the sequential composition operator, 
and causal order, using the layer composition operator, cf. [JPZ91]. Layer composition, denoted by 
P �9 Q, gives rise to several important algebraic laws. For instance the communication dosed layers 
principle from [EF82] can be formulated as the following algebraic law: 

(P-Q) II (R. s) -- (e  II R). (Q II s), 
provided there is no "conflict" (communication) between P and S, and between Q and R. Another 
algebraic law, called the Left-Right Movers law states in its simplest form that 

( P ~  = ( P ~ 1 7 6 1 7 6  

if there is no conflict between Q and R. The above laws would not be valid if we replaced layer 
composition by sequential composition. 

Layer composition is a valuable tool in the initial design stage of a system. Such operations allow for 
an architecture independent design strategy. In this initial phase of design, the above laws together 

�9 Part of this work has been supported by Esprit/BRA Pro~ect 6021 (REACT) 
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with an expansion theorem make it possible to rewrite a process term that avoids specification of 
temporal order into an unique normal form. This normal form is the maximal parallelization of 
that process term, and resembles the normal form for Mazurkiewicz traces. Other transformations 
and implementation relations, cf. section 2, then allow for a transformation of this normal form 
towards a process that can be implemented on a particular architecture. 

This style of design is demonstrated on various distributed algorithms. First the "point-in-polygon" 
algorithm presented in the book of Aki, [Ak189] is considered. After removing all the irrelevant 
temporal order, but preserving the causal order induced by the temporal order (i.e. changing every 
sequential composition in a layer composition), this algorithm is rewritten into normal form. After- 
wards this normal form is transformed to several distributed processes, all suitable for pipelining 
on a tree network. 
Next the FIoyd-Warshall algorithm for the "all-points shortest path" problem is discussed. Again 
after all the temporal order is deleted, but the induced causal order is preserved, this algorithm is 
transformed into normal form. Afterwards several optimal parallelizations are obtained, both for 
a CREW-PRAM and an EREW-PRAM. 
Other applications to for instance protocols can be found in [JZ92b, JZ92a], and to parsing in 
[JPSZ911. 

In section 2 we introduce the language together with informal discussion of the semantics. Also 
the algebraic laws and the theorem on normal forms are presented. In section 3 we apply the 
transformational algebraic approach to the point in polygon algorithm on a tree network. Section 
4 gives several transformations of the FIoyd-Warshall algorithm for the all-points shortest path 
problem. One transformation is suitable for a CREW-PRAM and another for an EREW-PRAM. 
Both are optimal parallelizations of the sequential Floyd-Warshall algorithm. 

2 Language, Algebraic Laws, and Normal Forms 

In this section we introduce a language which contains both layer composition and sequential 
composition. Assume that processes perform actions a that read and write shared variables 
z, y, z , . . .  E Vat, and perform (boolean valued) tests on shared variables. We employ the usual 
(simultaneous) assignment notation x := f where x and f are a list of variables and a list of expres- 
sions. Such assignments are guarded by means of a boolean expression b which must evaluate to 
true before executing the assignment. For such actions, that we denote by b& x := f, the evalua- 
tion of the guard together with the assignment constitute a single atomic action. When the guard 
b is identically true, we omit it andemploy the usual simultaneous assignment notation x := f. 
Similarly we regard boolean tests b as degenerate cases where the assignment part has been left out. 
Such guards can be used to model more conventional constructs. For instance we use 

if  b then P else Q fl as an abbreviation for (b �9 P) or (-,b �9 Q) 

For an action a of the form b&x :ffi f the set of variables {x} is called the write-set W(a) of a. 
Similarly, we define the read-set R(a) as the set of variables occurring (free) in b and the expression 
list f. Finally we define the base of a as base(a) ffi R(a) U W(a). Two actions ao and al conflict if one 
of them writes a variable z that is read-or written by the other one. Formally we define a conflict 
relation on actions, denoted by ao - - a l  as follows: 

ao--al iff W(at) N base(a0) ~ 0 or W(ao) n base(a1) ~ 0 

Other models can be easily obtained by changing the conflict relation, for example by introducing 
also read-read conflicts, which is in correspondence with the EREW-PRAM. 
The syntax for DL is as follows: 

P E DL, 

P : : f b & x : = f  I P I I Q  I P . Q  I P ; Q  [ e o r Q  

] skip [ e m p t y  ] P\z [ (P) [ io(P) 

We will now provide the intuition for the language operations of DL. A process P as a whole 
denotes the set ~P] of all possible runs for that system. Execution of an action a results in a single 
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event. Therefore, actions are executed atomically. Our semantic domain is such that events, say 
e0 and el, arein conflict, then they are ordered. Hence each run consists of a set of events, an a 
partial order --* on events, such that events which are in conflict are ordered with respect to -"~. 
Summarizing: 
Each run (E, ---*) of P satisfies: 

�9 (E. ---+) is a pomset of events, i.e. a partially ordered muitiset. 

�9 ---+ is a partial order on E such that if e and d are in conflict then e and d are ordered with 
respect to ---r 

Consequently we regard two processes P and Q as equal, denoted by P = Q iff their sets of possible 
runs are equal, i.e. iff [P~ = [Q~. 

For parallel composition, the order that necessarily must exists between conflicting P and Q events 
is nondetenninistically determined. The nondeterministic choices for different pairs of conflicting 
events are of course subject to the condition that the order must remain a partial order, so certain 
choices are excluded. Each choice corresponds to a (potential) different net effect of the whole run. 

For layer composition P �9 Q the situation is the reverse: any P event e0 precedes any Q event el with 
which it conflicts. This resembles the sequential composition construct, but there is a substantial 
difference. For sequential composition P ; Q all P events precede any Q event .  This is not so 
for layer composition. In file latter case any Q event e must wait only for its causal predecessors, 
implying that it need not wait for all P events. 

Nondeter~ninistic choice P or Q is a straightforward construct that either executes P or Q. 

The process skip performs no action at all, and the empty  process, cannot perform any 
computation at all, not even the computation executed by skip which contains no events. Both 
processes aid in formulating some algebraic properties of DL, where they act as a unit element and 
as a zero element respectively. 

Atomic execution. Atomic brackets {P) serve to indicate that P should execute "atomically", i.e. 
without interference by other processes. 

The hiding construct P\x  hides the variable x in each run of ,~ it is removed from the write-set 
and read-set of each event. (Moreover events with empty read- and write-set are removed from the 
run.) The complement of the hiding operator is the projection operator; let S be a set of variables 
and let A be all tile variables of a process P then 

Pls ~_r P\(A - S) 

All the variables except those contained in S are hidden in each run of P. 

io(P) denotes execution of a single action that captures the net effect of executing P without 
admitting interference by other events. The io(-) operation is also called the contraction operation, 
since it contracts complete P runs into single events. Intuitively io(P) represents the input-output 
behavior of a process P if we execute that process in isolation, i.e. without interference from outside. 
This operation induces an interesting process equivalence, called IO-equivalence, and an associated 

Io 
implementation relation, denoted by P sa~ Q. 

IO 
p io Q iffio(P) = io(Q), and P 8a[ Q iff io(e)  c_ io(Q). 

Such equivalences play an important role in the book by K.R. Apt and E.-R. Olderog [AO]. Specifi- 
cation of what is often called the functional behavior of a process P is really a specification of io(P), 
i.e. of the IO-equivalence class of P. The iu(-) operation does (obviously) not distribute through 
parallel composition. For the case of layer composition though, we have the following laws: 

p �9 Q/=o io(P) �9 io(Q) and P ; Q/=o g ~ Q 

The intuition here is that although execution of "layer" P might overlap execution of 'qayer" Q 
temporally, one can pretend that all of P, here represented as an atomic action io(P), precedes all of 
Q as far as IO behavior is concerned. 
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2.1 A l g e b r a i c  L a w s  

In this section we provide some algebraic laws for model informally introduced here and extensively 
studied in [JPZ91]. The well-known laws for sequential composition, such as associativi~ are not 
stated. 

Lemma 2.1 
Commutativity and Associativity: 

= Q II P (COM1) 
= Q o r  P (COM2) 
= ( P I I Q )  IIR (ASSO0) 
= (P~176 (ASSOC2) 
= ( P o r Q )  o r R  (ASSOC3) 

P l I Q  
P o r Q  

P II (Q II R) 
P~ 

P or (Q or R) 

Distributivity: 

P II ( Q o r R )  = 
P .  (Q or R) = 
(P or Q ) . n  = 

Idempotency: 
P o r  P = P 

Units and zeros: 
s ~ p  II P = 
skip �9 P = 
empty  or  P = 
empty II P = 
empty  �9 P = 

[] 

(P II O)or (P II R) (DIST1) 
(P .Q) or (P~ R) (Dim) 
(P �9 R) or (Q �9 R) (D~ST3) 

e II s k i p  ---- P (SKIP1) 
P .  skip = P (SKIP2) 
P or empty  = P (EMPTY1) 
P [[ empty  = empty  (EMPTY2) 
P ,  empty  = empty  (EMPTY3) 

More interesting is the relationship between parallel composition and layer composition. We can 
formulate here a (simple form of) the principle of communication closed layers in the form of an 
algebraic law. The communication closed layers law (CCL) deviates somewhat from file usual style 
of algebraic laws in that there is a (syntactic) side condition that should be checked concerning 
conflicts between processes. Let act(P) denote the (finite) set of actions that (syntactically) occur in 
a DL process P. Let Act denote the set of actions, we extend the conflict relation on Act to sets of 
Act elements as follows: for X, Y __..Act, 

X - - Y  iff there exist a C X, b E Y such that a - -b .  

Conflicts between DL processes are then defined thus: P - - Q  iff act(P)--act(Q). 

As usual, P -~Q denotes that p m Q  is not the case, i.e. P actions do not conflict with Q actions. 

The CCL laws can now be formulated as follows. 

Lemma 2.2 
Communication Closed Layers: 
Provided that P - ~  S, and Q -~ R: 

( P ' Q )  I I ( R ' S )  = (P II R) . (Q II S) (CCL) 
( P ' Q )  II s = P ~  II s)  (CCL-L) 
( P . Q )  II R = (P  II R ) . Q  (CCL-R) 

Q II R = Q �9 R (Independence) 
[] 

In order to state a generalized version of the CCL and related laws, we introduce the abbreviations: 

for i~[n...m] dopar P(i) rof abbreviating: P(n) II "'" II e ( " 0  

for i~[n.. ,  m] layer P(i) rof  abbreviating: P(n) . . . . .  P(m) 
for i~-[n. . .m] choice P(i) rof  abbreviating: P(n) or . . .  or P(m) 
for i~--[n...m] doseq P(i) rof  abbreviating: P(n) ; . . .  ; P(m) 
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Lemma 2.3 

�9 Generalized Communication Closed Layers Law. 
Assume that if there is a conflict between Pij and Pkt then either i = k or j = i is satisfied, for 
1 <_ i , j , k , l  <_ n. Then 

for i~--[1...hi dopar 
for fi~--[1...m] layer Pid rof  

rof 

for fl~-[1.., m] layer 
for i ~ [ 1 . . . h i  doper /~d  rot" 

rof 

�9 Lefl-RightMovers Law. 
Assume that, for 1 _< i < k _< n and 1 <_ l < j < m, P; j  - f  P~,~. Then 

for i~--[1.., n] layer 
for j~--[1.., m] layer Pi j  rof  

rof  

for j ~ [ 1 . . . m ]  layer 
for i*--[1 . . .h i  layer P~j rot. 

rot" 

[] 

2.2 Normal  Forms 

Let DU denote the language DL with the sequential composition operator omitted. If P is in DL' 
then for each P run (E, --+) the order --~ is generated by conflicts only. That is, if e E E and e' is 
a direct successor of e with respect to ---% then e and �9 ~ are in conflict. (This is not the case if one 
adds the sequential composition to the language.) 

Define layer L(k) as 

L(k) = {e E E I the longest chain below e has length k} 

Since runs are assumed to be finite, L(k) = 0 for sufficient large k. Enumerate the elements in each 
layer L(k) such that 

L(k) -- {e~j 11 _< j <_ t(k)} 
where l(k) is the number of elements in L(k). 
Observe that there can be no conflict between events in the same layer, and for all events e in layer 
L(k), k > 1, there exists an event e' in layer L(k - 1) such that e--e ' .  The run (E, ----~) is can be 
denoted syntactically by: 

for k~[0 . . .n ]  layer for j~[1 . . . l (k) ]  dopar ekj rot" rof 

where n is such that 

(O<_k<_n :~ L(k)~O) A k > n  ~ L ( k ) = 0  

(Formally speaking eI, j is not an action but an event, and should replace ehj by/~(ei, j ) ,  where 
#(e~j) is the action corresponding to the event e~.j.) This can be done for every run of P, hence if 
we let r denote the number of runs of P then 

P = for i~-[1.. .r]  choice 
for k~[1. . .n(r ) ]  layer for j*--[1...k(n(r))] dopar e,,kj rot" rot" 

rof  

The above decomposition of P has the following properties: 

�9 For eachj  and j ' ,  wi th j  ~ j ' ,  ei.kj --/-e~,kjo. 
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�9 For each k > 1 and each e~,kd there exists an event e~,k-l,j, such that el,k,i --ei,~-~,i,. 

Hence we have written P as a choice over layered maximal parallel processes. This above decom- 
position of P leads to following definition 

Definition 2.4 Normal Form 
A normal form is a process term of the form 

for i~--[1.., r] choice 

for k*-[1 . . .  n(r)] layer  

for j t - [1 . . . k (n ( r ) ) ]  doper  el,td rof  

rof  

ro f  

where each el,kd is an elementary process term. Moreover the process term should satisfy 

1. For each j and j ' ,  with j ~ j*, el, k./-/ei,kd,.  

2. For each k > I and each e~,kd there exists an event el,t-id, such that el,td --el/.-l,.i o. 

3. All mutually distinct branches of the choice construct are syntactically different. 

[] 

This normal form resembles the normal form for Mazurkiewicz traces. 

It follows from the observations above that each process term in DL ~ has a normal form. But there 
is more to it: 

Theorem 2.5 Expansion theorem 
Let L e .  P and LCt �9 Q be process terms in DL' such that any two actions in Lp and any two actions 
in LCt are non-conflicting. Furthermore assume that for every action a~, E P (a~t E Q) there exists 

an action ap E Le (act E Lct) such that a~ "-- ae (a~ *-- act), where ~ is the transitive closure of 
the conflict relation - - .  Then 

(Lp~ II (LctoQ)= 
for ap E Le choice a j, ~ (((Lp - {ap}) �9 P)  II (Lct �9 Q)) r o t  

O1" 

for act ~. Lct choice act �9 ((L~, ~ P) II ((Lct - {act})�9 Q)) ro f  
[] 

The expansion theorem, together with the Left-Right Movers law, is crucial for transforming every 
process term P in DL' into normal form. The normal form is the maximal parallelization of P. 

Theorem 2.6 
Each process term P ~ DL* has an unique normal form (up to permutations of the indices). 
Moreover P can be algebraically transformed into this normal form in an algorithmic way using 
the algebraic laws of section 2.1 and the expansion theorem, theorem 2.5. [] 

A proof can be found in [PZ92]. 

3 The 'Point in polygon' algorithm: Pipelining on a tree network 

The aim of this section is to show how to transform an initial, algorithmic design to a form that is 
suitable for implementation on a pipelined architecture. The (functional) correctness of the initial 
design is not our concern; we assume that it is the result from an initial design stage where it has 
been developed from a specification of the required functional behavior. We concentrate on the stage 
following the initial design phase, where not only functional correctness is of importance, but  where 
also the architecture of the implementation must  be taken into account. 
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The functional specification of the algorithm, that we do not formalize here, amounts to the follow- 
ing: Given a (fixed) polygon with edges El , - - . ,  EN and a set {P0,pi,'-",P,~} of points in a two 
dimensional Euclidean space, it is required to determine which of the points in {P0, P2, �9 �9 -, P,,,} lay 
inside the polygon. 

Our initial design has been essentially taken over from [Ak189]. It is based on the fact that a point 
p lies inside the polygon if and only if the vertical line through p intersects an odd number of 
edges above p. Thus the problem reduces to computing file number of intersections above p. The 
intuition for the algorithm in [Ak189] is as follows. Assuming that N + 1 is a power of 2, put 
�9 = Iog(N + 1). A tree-like arrangement of processes of depth s is used, containing one process for 
each edge. The coordinates of the points are stored in an array c, with c[a] the coordinates of point 
p,,, a = 0 , . . . ,  m. The coordinates of the candidate points p are read by the top process and are 
broadcast during so called descend phases. A separate descend phase is executed for each 'level' 
in the tree, starting with the top node and ending with the level consisting of all leaf nodes. Each 
process receives the coordinates of the candidate point, determines locally whether the vertical line 
through p intersects the edge associated with that process, and broadcasts the results "downwards" 
to its children. After these descend phases, the total number of intersections is calculated during a 
number of ascend phases, where processes add together partial counts calculated by their children. 
If this count reaches the top process, then this top process assigns the appropriate boolean value to 
inside[a], where inside is a boolean array, such that inside[a] holds if and only if the point p,, lies in 
the polygon. The algorithm in [Ak189] is presented in the form of a sequential composition of "layers" 
D(I) and A(l), each consisting of independent, parallel executed, actions. Communication between 
processes is by means of shared variables, where variables dl and pl are used during the descend 
phases and variables ul during ascend phases. (Apart from these, there are local variables sl, ~i, and 
ql. ql is used to store a local copy of coordinates of the point under consideration) Each descend 
layer D(l) is itself divided into a reading phase D Jr (l) and a writing phase D TM (t),and similarly, A(l) 
is split into AS(l) and AW(O. The layer corresponding to the 'qeaf" nodes is an exception; there is 
no writing for the descend phase, and no reading for the ascend phase. The algorithm given in Akl 
[Ak189], adapted to our notation, is: 

Program 0 

for a t - f0 . . .m] doseq 

d l : = 0 ; P l : - - e [ a ] ;  

for 1~-[1...s - 1] doseq Din(l) ; Dw(I) rof ; 

Din(8) ; Aw(*) ; 

for l~[s  - 1. . .  1] doseq Am(l) ; AW(O rof ; 

inside[a] := odd( ul ) 

rof 

This describes the "layered" structure of the algorithm. The layers Dn([), DW(O, AR(I) and AW(i) 
can each be described by means of parallel composition of independent actions. This implies that 
there is no interference among parallel processes, and consequently the (functional) correctness of 
the algorithm can be shown relying essentially on techniques for sequential programs, as explained 
for instance in [AOgl]. The reason for tids is that for independent processes P and Q, parallel 
composition P Jl Q is (semantically) identical to layer composition P �9 Q; the latter in turn is, 
though not identical, lO-equivalent to sequential composition P ; Q. 

The layers for the algorithm presented in [Ak1891 can be spedfied as follows 
The descending read phase for level l: 

DR(0 = for j~-[21-1... 21 - 1] dopar 
if Int~rseas(ej,pj) then  sj : =  dj + 1 else s i := d i f l [ I  qj := pj 

rof 
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The descending write phase: 
Dw(l) = 

for j~[2~-1 . . .  21 - 1] dopar P2i := qJ [[ P2i+l := qi [[ d~j := sj ]I d2i+l := 0 rof 

The ascending read phase: 

Aa(l) = for j~-[21-1...2 r - 1] dopar tj := u2j + u2j+l rof  

Finally file ascending write phase is given by: 

AW(l) = forjr ...21 - 1] dopar uj :-- tj rof  

except for I = s, in that case: 

AW(s) = for j*--[(N + 1)/2. . .  N] dopar uj :-- sj rof  

The presentation in [Ak189] is in terms of sequential composition of layers. From the point of view of 
functional correctness this is unnecessary; replacing all sequential composition by layer composition 
results in a process that is IO-equivalent. Moreover, this allows for algebraic manipulation that 
would be invalid for the version based on sequential composition. In particular, the layer compo- 
sition version allows for overla~ng execution of different layers, resulting in a pipelined execution 
where layers that have to be executed for different candidate points are executed in parallel. Thus, 
we will use, as starting point for a series of transformations, the following version: 

Program 1 

for a~ [0 . . ,  m] layer 

G(a) �9 

for l~-[1 . . . s  - 1] layer DR(') .  Dw(0  rot �9 

DR(s) .AW(s) .  

for ~,-[s - 1 . . .  1] layer AR(0.  AW(0 rot �9 

P(,,) 

rof 

where 

a(a) -- d~ := 0 II p~ := 4"] and P('0 = inside[a] := odd(u1) 
First we will rename the processes DR(I), DW(l), Aa(l) and AW(l), according to read or write 
actions. Put t = 2s and define 

{ DR(1) i f l  < l  < s 
a(0= AR( t - 0  i f s + l S ~ S t - *  

W(O = { DW(O if 1 < ~ < s - 1 
AW(t- l )  i f s < l ~ _ t - 1  

Then Program 1 can be rewritten as 

Program 1' 

for a~-[0..,  m] layer 

a(a) �9 

for b--[1 . . . t -  1] layer R(l), W(l) rof �9 

P(a) 

rof  

Conceptually we chanced the tree structure in a reflected flee structure, two identical trees with the 
leaves merged, such that all the data flows from top to bottom. 
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Observe that the above program is actually in pseudo normal form. It can be transformed into 
normal form, using the Left-Right Movers law and the Independence law, where one should check 
the side-conditions for these laws based on the following pattern of conflicts: 

R ( j )  - -  R ( j ) ,  W ( j )  - -  W ( j ) ,  R ( j ) - -  W ( j )  and R ( j ) - -  W ( j  - 1) 

Indeed, using that skip is a unit for layer composition, the above program is (semantically) equal 
to: 

for a,-[O...,~] layer for t~[O. . .m + q layer R(a, 1) �9 fi'(a, l) rot  for 

where 
P(a) if I --- a + t 

k ( a ,  t) = a ( !  - a) if a < l < a + t 
skip otherwise 

G(a) i f l = a  
17r l) = W ( I  - a) if a < l < a + t 

skip otherwise 

The side-eonditions for the Left-Right Movers Law are fulfilled, hence the program can be trans- 
formed into 

for l ~ - [ O . . . m  + t] layer for a,-[O..,  m] layer h(a, l) �9 ff'(a, 0 rof rof 

Again applying the Left-Right Movers and Independence Law to the inner layered loop gives that 
the program equals 

Program 2 

for 1.--[0...m + t] layer 

for a+--[O.. ,m] dopar R(a, 1) rof * 

for a~--[O...m] dopar lYf(a, I) rof 

rof 

This last transformation results, for large enough m and again using that skip is unit for layer 
composition, in a program consisting of a phase where the tree is gradually filled, a phase where 
all the nodes of the tree execute simultaneously, and a final phase where the tree is emptied. For 
instance the layered loop 

for a+-[O.., m] dopar J~(a, 1) rot  

equals, by definition of/~(a, l) 

if (1 - t) _> 0 then  P(~ - t) fl II for a~[max(O, 1 -- t + 1). . .rain(m, t - 1)] dopar  R( l  - a) rof 

which on it's turn equals, by substituting i = 1 - a 

if (1 - t) >_ 0 then  P(I  - t) fl II for i~--[maz(1, l - m ) . . .  m i n ( t  - 1,1)] dopar  R( i )  rof 

If we apply similar substitutions to the layered loop with W(a, 1), the resulting program is 

Program 3 

for b-[O.. ,  ra + t] layer 

( if (l - t) _> 0 then  P(l - 0 fl II 

for i~[ rn~(1 ,  l - m ) . . .  m i n ( t  - I, t)] dopar R(i )  rof ) �9 

( i f ! < m t h e n G ( l )  fl II 
for i4---[maz(1, l - m) , . .  m i n ( t  - 1, |)1 dopar W ( i )  r o t  ) 

rof 

The variable boundaries at the inner parallel loops are due to "filling" of the tree, for 0 < 1 < t - 1, 
and "emptying" of the tree, for m + 1 < 1 < m + t. The "filling" of the tree consists of two phases 
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analogous to the descend and ascend phases in the original algorithm. First the information is 
broadcast "downwards", layer after layer, into the tree, until this downwards fill reaches the leaves. 
Then the results are broadcast "upwards", again layer after layer, towards the root of the Ixee, until 
it reaches layer 1. At that moment the tree is filled, this is the case for I = t - 1. Tllereafter all 
cells compute in parallel for t ~ I <_ m and afterwards the tree is emptied in the reverse order for 
m < l ~ m + L  

Although this program admits pipelined execution, it has the disadvantage that at each moment 
of time there is a different set of active processes. This is well known for pipelinlng in general: 
there is a phase where the pipeline is gradually 'filled', a phase where all processes in the pipeline 
are simultaneously executing, and a final phase where the pipeline is 'emptied'. This picture of 
"filling" and "emptying" is adequate on the abstraction level of processes only. On a low level where 
allocation of processes to processors is considered, there is no corresponding "starting" and "halting" 
of processors. Rather, during the filling and emptying phase there will be processors executing the 
same algorithm as others, but on non-relevant data so to sa)~ We model this by adding 'dummy' 
actioils to Program 3, in order to obtain a regular pattern. 

Program 4 

for i*--[O.., m + t] layer 

( i f ( l - t ) _ > 0 t h e n P ( l - t ) f l  JJ 

for j ~ [ 1 . . ,  t - 1] dopar R(j) rof ) �9 

( if I <_ m then G(l) fl JJ 

for j~--[1.., t - 1] dopar W(j) rot" ) 

rof 

Although this program doesn't semantically equal program 3, it has the property that it preserves 
functional correctness. More precisely program 4 projected onto the variables c and inside is 
semantically equal to program 3 projected onto the variables c and inside. Hence program 4 has 
the IO behavior with respect to c and inside as the original program 1. This can be seen by applying 
the inverse of the transformation steps above to program 4. 

Next we take a step in the design that no longer preserves semantic equality, but only IO-equivalence, 
by imposing extra order by replacing the layer composition by a corresponding sequential compo- 
sition in program 4. This cannot affect functional correctness, but it does allow for allocation of 
processes on (sequentially executing) processors. 

Program 6 

for l*-[0...m-t- t] doseq 

( if (l - t) _> 0 then P(l - t) fl II for j~- [1 . . . t  - 1] dopar R(j) rot" );  

( i f  I ~ m then  G(I) fl JJ for j*--[1 .... g - 1] dopar W(j) rof ) 

Note that for each sequential phase, there are at most (3N + 1)/2 and at least (3N - 1)/2 processes 
active, which suggest a rather obvious allocation onto (3N + 1)/2 processors. In essence there are 
(3N + 1)/2 processes executing in parallel their contribution to some read phase and afterwards 
there are (3N + 1)/2 processes executing part of some ascend phase. Note that the structure of the 
program matches the class of SIMD macldnes, where a number of processors execute in lockstep 
the same (parameterized) program. 

Applying the Independence law and commutativity of parallel composition to the program frag- 
ment 

( if (l - t) _> 0 then P(l - t) fl Jl for j r  t - 1] dopar R(j) rof ) �9 

( if I _< m then  G(l) fl Jl for j~- [1 . . . t  - 1] dopar W(j) rof )  

yields the following program fragment 
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for  j ~ [ 1 . . . s ]  d o p a r  R(j )  r o f  �9 

( for  j*---[1...s - 1] d o p a r  W( j )  rot" II i f  I _< m t h e n  G(I) fi ) �9 

( for  j*--[s + 1 . . . t  - 1] d o p a r  R(j)  r o f  I1 i f  (i - t) _> 0 t h e n  P(I - t) fl ) ~ 

for  j * - [ s . . . t  - 1] d o p a r  W( j )  r o f  

Invoking the definit ion of R(j)  and  W(j )  and replacing layer composi t ion by  sequential  composi t ion  
results in  N + 1 processes that  al ternate be tween  four phases,  corresponding to the  r e a d / w r i t e  and  
the descend /a scend  phase. As before, the a lgori thm matches an  SIMD architecture. The  final 
results is 

Program 7 

for  l* - - [O. . .m+ L] d o s e q  

for  j ~ - [ 1 . . . s ]  d o p a r  DR(j)  r o f  ; 

( for  j ~ [ 1 . . ,  s - 1] d o p a r  D w ( j )  r o f  II i f  I < m t h e n  G(l) fl ) ; 

( for  j ~ [ 1 . . . s  - 1] d o p a r  Aa( j )  ro f  II i f  (1 - t) > 0 t h e n  P(I - t) fl ) ; 

fo r  j~-[1 . . .  s] d o p a r  A w ( j )  r o t  

r o f  

In this program each cell, Cdl(i), 1 < i <_ N, executes the following program: 

Cell(i) = 
for  1.--[0... m + t] doaeq  

ql := Pl ; 

i f  lntersecLs(ei, q~) t h e n  sl := d~ + 1 e l s e  s l  :=  ~ fi ; 

i f  i < 2 ~-1 t h e n  P21 := ql ; P21+l := ql i d21 := si ; d21+l := 0 fl ; 

i f  i < 2 ~-1 t h e n  t~ := u21 + u21+l fi ; 

i f  i < 2 ~-1 t h e n  ul := tl e l s e  u~ := sl fi 

r o f  

It 's clear ti~at in this program for Cell(i) we can take the local variables s~ and  tl equal. 

4 The  Al l -Po in t s  Shortest  Path P r o b l e m  

We have  g iven  some weighted directed graph  of n nodes.  The weights  of the edge from node  i to 
node  j is g iven as wi~, where  wlj _> 0. If there is no edge from i to j in the graph,  then we add  one  
with weight  w~ = oo. 

The problem is to find the shortest  distance d~j from node  i to j for all i and  j .  A path from node  
i to node  j is a sequence of nodes  (/oil . . .  ik) where  ij C 1..~ for j E 0..k and  where  io = i and  
ik = j .  The length of a path  (ioil . . .  ik) is the n u m b e r  of edges k, whereas  the dis tance a long it fits 
weight) is wlol ~ + wi~2 + " "  + w~,_,i,. Note  that  since all weights are non-negat ive  the shortest  pa th  
from i to j is well defined,  it will never  cross itself, and  so has length smaller  than n. We denote  
the collection of paths  from i to j wi th  length  smaller  than m by path(i, j ,  m). Then  the dis tance dlj 
along the shortest path from i to j is defined as: 

i = j  ~ dij -- O, a n d i  ~ j  ~ dlj = min{wi01~ + wil~, + ' "  + Wlh-~ik }, 

where  the m i n i m u m  is over  all sequences in path(i,j ,  n). A simple fact that  follows directly from 
the definition: If node  p is on the shortest  pa th  from i to j ,  then the subpa ths  from i to p and  from p 
to j are the shortest paths  from i to p and  from p to j .  Moreover, d~j ffi d~p + dpj. (For instance,  if the 
subpa th  from i to p would  not be  the shortest  one, then we could improve  the i - j path,  contrary 
to the assumpt ion  that  it was the shortest  i -  j p a t i o  
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A well-known sequential algorithm for computing the shortest path, based on the above observa- 
tions, is the Floyd-Warshall, cf. [Ak189], Chapter 10. 

Program Floyd-Warshall 

for i*--[1...n] doseq 

for j*--[1...hi doseq m[0, i,j] := w[i,j] rot  

rof ; 

for k~--[1.., a] doseq 

for i~--[1.,.n] doseq 

for je--[1...n] doseqm[k , i , j ]  := min{m[k - 1 , i , j l , m [ k -  1,i,k] + m [ k  - 1,k,j]} ro t  

rof 

rof 

An invariant of the above program is; m[k, i, j] is the shortest path from node i to node j with all 
the intermediate nodes taken from {1, . . . .  k}. From which the correctness easily follows. Put 

~,,~,j = m [ k ,  i ,  ~ J : =  m i ~ , { . , [ k  - 1, i,  jJ,  ,~ fk  - 1, i,  k} + ,~,lk - 1, k,  j J }  

The Floyd-Warshall is a sequential algorithm where all actions are ordered in time. Again from 
point of functional correctness this is unnecessary; we can replace each sequential composition by 
a layer composition to get a process which is IO-equivalent to the initial process: 

for i~---[I...hi layer 

for j ~ [ 1 . . . n ]  layer re[O, i, j l  := w[i,jJ rof 
rof * 

for k~[1 . . .n ]  layer 
for i*--[1.., n] layer 

for j~-[1. . .n]  layer (ei,l:,j) rof 
rof 

rof 
This process without sequential composition allows for algebraic transformations towards a specific 
architectnre. Take for instance a CREW-PRAM, then there is only a conflict between ei,l,,j and el,k,d. 
This yields, invoking the Left-Right Movers law, in that case the following normal form: 

Program Floyd-Warshall Normal Form 1 
for i*--[1.., n] dopar 

for j~--[1...hi dopar m[O, i,j] := w[i,j] rof  
r o ~  �9 

for k*"[1...hi layer 
for i*-[1.. .n] dopar 

for j~-[1. . .hi  dopar (el,kj) rof 
rof 

rof 
This leads to an implementation on a CREW-PRAM by changing every layer composition in a 
sequential composition, with complexity O(n) time, on O(n ~) processors. This is an optimal 
parallelization of the sequential Floyd-Warslmll algorithm. 

If we consider a EREW-PRAM then for fixed k ei.k,j is in conflict with ei,,kd, if and only if i = i' 
or j = j ' ,  because in that case they want to read both the same shared variable. The conflict order 
imposed by the sequential Floyd-Warshall algorithm is, again for fixed k 

el,kd'--'~ei,,k,j i f f  i < i t and ei,kd.--..4.ei,kd, iffj < j '  

cf. figure 1, where one has to take the transitive closure in each row and column. 
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L( ] )  

~l,&,l 

/ Z / Z Z / _ , / r / r , / .  

/ - ' / / - I  - 
Z Z ~ Z  

- - / - . /  / ' /  

1 

Z -  

Figure 1: The causal ordering and layering for fixed k. 

If we write this in pseudo normal form the computation becomes 
Program FIoyd-Warshall Normal Form 11 

for i~-[1.., n] dopar 

for j~[l.., n] dopar m[0, i, j] := w[i, j] rot  
ro~" �9 

for k~--[1.., n] layer 
for l~ [1 . . .  2 * n - 1] layer L(k, l) rof 

rof 
where for I < n 

L(k, l) = fo r /~ [1  ...l] dopar (ej,k,t+l-./) rof 

and forn < l < 2 . n -  1 

L(k, 1) = for j ~ [ 1 . . . 2  * n - 1] dopar (e,_,,+i,t,,,+l_i} rot  

which leads to an algorithm with time complexity O(n 2) and processor complexity O(n) on an 
EREW-PRAM, which is again optimal. 

Observe that the causal ordering on the e~,kd for fixed k is only induced by Read/Read conflicts, 
which means that the choice of the ordering doesn't influence the total result of the computation. 
Hence we can take another minimal conflict dosed ordering, for instance the one given in figure 2. 
Writing this computation in a pseudo normal form gives: 

Program FIoyd-WarshaU Normal Form III 
for i~ [1 . . ,  n] dopar 

for j+-[1 . . .  n] dopar m[O, i,j] := w[i, j] ro t  
r o f  �9 

for k+--[1.., rl] layer 
for 1~[1. . .  n] layer L'(k, l) rof 

rol"  

where 

L'(k, l) = for i+-[1...hi dopar (el,k,lel) ro t  

with 

i ( ~ l = ( n + l - i )  m o d n +  l 
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Z Z /+.Z.  Z 

/ ~ 1  -V" ' 

A , _ /  x /_ /-, / .  / / ' 

Figure 2: Another causal ordering for fixed k and the corresponding layering. 

5 Conclus ion 

A ianguage is presented which makes clear distinction between temporal order and causal order. 
This allows for a transformational approach, in an algebraic way, for the specification and verifica- 
tion of concurrent systems. Each process term without sequential composition can be transformed, 
in an algoriffunic way, using the algebraic laws, into a normal form. This normal form is the max- 
imal parallelization of the process under consideration. The techniques involved are exemplified 
by some examples from pipelining on a tree network, and the Floyd-Warshall algorithm for the 
all-points shortest path. 
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