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Abstract

We study existence of solutions, and in particular well-posedness, for a class of inhomogeneous, nonlinear partial differ-
ential equations (PDE’s). The main idea is to use system theory to write the nonlinear PDE as a well-posed infinite-
dimensional linear system interconnected with a static nonlinearity. By a simple example, it is shown that in general
well-posedness of the closed-loop system is not guaranteed. We show that well-posedness of the closed-loop system
is guaranteed for linear systems whose input to output map is coercive for small times interconnected to monotone
nonlinearities. This work generalizes the results presented in (Tucsnak and Weiss, 2014), where only globally Lipschitz
continuous nonlinearities were considered. Furthermore, it is shown that a general class of linear port-Hamiltonian
systems satisfies the conditions asked on the open-loop system. The result is applied to show well-posedness of a system
consisting of a vibrating string with nonlinear damping at the boundary.

Keywords: Well-posedness - passive infinite-dimensional systems - nonlinear feedback - boundary feedback -
port-Hamiltonian systems - vibrating string - nonlinear damping

1. Introduction

The notion of well-posedness for infinite-dimensional
linear systems has been much studied in the last years,
see e.g. (Staffans, 2005; Tucsnak and Weiss, 2009).
More recently, existence of solution and in particular
well-posedness of nonlinear partial differential equations
(PDE’s), has been addressed using system theory, see
(Zwart et al., 2013). In the survey (Tucsnak and
Weiss, 2014), conditions for the well-posedness of infinite-
dimensional linear systems are provided in detail. In that
work, also the case with static nonlinear feedback has been
addressed for globally Lipschitz continuous nonlinearities.

The problem of well-posedness for only locally Lipschitz
continuous nonlinearities has been considered in the dis-
cussion paper (Zwart et al., 2013), where some issues re-
lated to this open problem were addressed.

The paper (Augner, 2016) provides conditions on a
nonlinear boundary feedback interconnected with a linear
port-Hamiltonian system to determine a nonlinear con-
traction semigroup. Even if those nonlinearities comprise
some classes of locally Lipschitz continuous functions, well-
posedness in the sense of (Tucsnak and Weiss, 2014) is not
addressed for the closed-loop system.

In this work, we introduce a more general class of closed-
loop well-posed systems composed of a well-posed linear
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infinite-dimensional system whose input to output map
is coercive for small times interconnected with static and
monotone nonlinear feedback, which includes the class
of locally Lipschitz continuous functions considered in
(Augner, 2016).

This paper is organized as follows. In Section 2, the
necessary background is presented and a motivating ex-
ample which introduces the problem is provided. In par-
ticular, we recall the notion of well-posedness, both for
linear and nonlinear systems. Section 3 is dedicated to
the statement and the proof of the main result. In Section
4, it is shown that the assumptions required on the linear
open-loop system are satisfied for an important class of
port-Hamiltonian systems. The result is applied to show
the well-posedness of a vibrating string with a nonlinear
damper at the boundary. Section 6 contains conclusions
and future work.

2. Background and problem statement

As said in the introduction we follow the idea of (Tuc-
snak and Weiss, 2014). That is, we consider an inhomo-
geneous, non-linear system as the interconnection of an
inhomogeneous linear system with a static nonlinearity as
depicted in Figure 1. Furthermore, it is assumed that the
linear part, denoted by ΣP is well-posed, of which we recall
the definition first.

Consider the linear system ΣP , with input space U , state
space X, and output space Y (all real Hilbert spaces),
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Figure 1: Representation of Σf .

described by the equations

ΣP :

 ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)
x(0) = x0

(1)

where A,B,C and D are in general unbounded operators.

Definition 2.1. The system ΣP is said to be well-posed
if for every u ∈ L2

loc ([0,∞) ;U) (input) and for every
x0 ∈ X (initial state), the abstract differential equation
(1) possesses a unique (mild) solution x ∈ C ([0,∞) ;X)
(state trajectory) and y ∈ L2

loc ([0,∞) ;Y ) (ouput func-
tion). Hence, if ΣP is well-posed, then the solution of
(1) can be written using four families of bounded linear
operators as follows: 1

x(t) = Ttx0 + Φtu,

Pty = Ψtx0 + Ftu,

for all t ∈ [0,∞). Moreover, on any bounded time interval
[0, τ ] , 0 < τ < ∞, x(τ) and Pτy depend continuously on
x0 and on Pτu.

Note that Tt is the C0-semigroup generated by operator
A, Φt is called the input map, Ψt the output map, and Ft
the input-output map, which satisfy the following proper-
ties, see (Tucsnak and Weiss, 2014) :

• T = (Tt)t≥0 is an operator C0-semigroup on X,

• Φ = (Φt)t≥0 is a family of bounded linear operators

from L2([0,∞);U) to X such that

Φτ+t(u♦
τ
v) = TtΦτu+ Φtv,

for every u, v ∈ L2([0,∞);U) and all τ, t ≥ 0,

• Ψ = (Ψt)t≥0 is a family of bounded linear operators

from X to L2([0,∞);Y ) such that

Ψτ+tx0 = Ψτx0♦
τ

ΨtTτx0,

for every x0 ∈ X and all τ, t ≥ 0 and Ψ0 = 0,

• F = (Ft)t≥0 is a family of bounded linear operators

from L2([0,∞);U) to L2([0,∞);Y ) such that

Fτ+t(u♦
τ
v) = Fτ♦

τ
(ΨtΦτu+ Ftv),

for every u, v ∈ L2([0,∞);U) and all τ, t ≥ 0, and
F0 = 0,

1For a positive t, Pt denotes the operator of truncation to the
interval [0, t] of a function defined on a larger set than [0, t], see
(Tucsnak and Weiss, 2014).

where, for any u, v ∈ L2([0,∞);U) and any τ ≥ 0, the
τ−concatenation of u and v is the function defined by

u♦
τ
v = Pτu+ Sτv. (2)

Here Sτ is defined as the bilateral right shift operator.
With these notations, we denote ΣP = (T,Φ,Ψ,F). More-
over, these maps satisfy the following properties :

• Φ is causal, i.e., ΦτPτ = Φτ for all τ ≥ 0,

• For all τ, t ≥ 0,

Φτ+tPτ = TtΦτ ,
PτΨτ+t = Ψτ ,

PτFτ+tPτ = PτFτ+t = Fτ .
(3)

The feedback interconnection of ΣP and f as shown in
Figure 1 is denoted by Σf and is the dynamic system ob-
tained by imposing :

u(t) = ν(t)− f (y(t)) ∀t ∈ [0,∞) . (4)

Here we assume that f : Y → U is a static nonlinear
continuous function and ν ∈ L2

loc ([0,∞) ;U) is the new
external input.

Under the assumption that ΣP is well-posed, well-
posedness for the nonlinear closed-loop system Σf can be
defined.

Definition 2.2. The closed-loop system Σf is said to
be well-posed if for any input ν ∈ L2

loc ([0,∞) ;U) and
any x0 ∈ X (initial state) there exists tf ∈ (0,∞] and
unique functions x ∈ C([0, tf ) ;X) (state trajectory) and
y ∈ L2

loc([0, tf ) ;Y ) (output function) such that

x(t) = Ttx0 + Φtν − Φtf(y), (5)

Pty = Ψtx0 + Ftν − Ftf(y), (6)

for all t < tf , and moreover, on any bounded time interval
[0, τ ] , 0 < τ < tf , x(τ) and Pτy depend continuously on
x0 and on Pτν.

In (Tucsnak and Weiss, 2014) is was shown that if f is
(globally) Lipschitz continuous and δL < 1, (where L is
the Lipschitz constant of f and δ = inft>0 ‖Ft‖), then the
closed-loop system is a well-posed system, and solutions
exist globally, i.e., tf =∞. Based on this it is temping to
believe that well-posedness with local existence of trajec-
tories (i.e., tf < ∞) will hold when f is locally Lipschitz
and δ = 0. The following example shows that this is false.

Example 2.1. As linear well-posed system we consider
the controlled transport equation with observation, given
by

∂x

∂t
(ζ, t) =

∂x

∂ζ
(ζ, t), ζ ∈ [0, 1], t ≥ 0

x(ζ, 0) = x0(ζ), ζ ∈ [0, 1]

u(t) = x(1, t), t ≥ 0

y(t) = x(0, t), t ≥ 0.

(7)
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As state space we choose L2([0, 1];R). For this simple
boundary control system the solution is given by

x(ζ, t) =

{
x0(ζ + t), ζ + t ≤ 1
u(ζ + t− 1), ζ + t > 1

(8)

and

y(t) =

{
x0(t), t ≤ 1
u(t− 1), t > 1.

(9)

Hence the system is clearly well-posed and δ = 0. Let us
now consider the nonlinear feedback

u(t) = −f(y(t)) = y2(t), (10)

as also depicted.

Figure 2: Nonlinear feedback interconnection of a pure shift and a
static nonlinearity.

The solution for t < 1 must take the form

x(ζ, t) =

{
x0(ζ + t), ζ + t ≤ 1
x2

0(ζ + t− 1), ζ + t > 1
(11)

Consider now the following initial condition in L2([0, 1];R)

x0(ζ) =
1
3
√
ζ
.

For 0 < t < 1 we have from (11)∫ 1

0

x(ζ, t)2dζ ≥
∫ 1

1−t
x(ζ, t)2dζ

=

∫ 1

1−t

1
3
√

(ζ + t− 1)2
dζ =∞.

Hence there does not exists any t > 0 such that state lies
in the state space, and so the system merged by this simple
interconnection is not well-posed.

The above example implies that if we want/have to con-
sider connection as in Figure 1 with f (only) locally Lips-
chitz, then we have to impose extra condition on ΣP and
f . In the following we assume U and Y to be the same
real Hilbert space, i.e., U = Y . On the system we impose
the following, where Ft was introduced in Definition 2.1.

Assumption 2.1. There exists t∗ > 0 such that for all
t < t∗, the operator Ft is coercive2, i.e., there exists c̃ > 0
such that for all u ∈ L2([0, t∗);U), it holds

〈Ftu, u〉 ≥ c̃〈u, u〉, for all t < t∗.

2Note that since Ft is coercive, it is boundedly invertible, see e.g.
(Curtain and Zwart, 1995, Example A.4.2).

This condition can be interpreted as being strict input
passive on small time intervals and for finite-dimensional
systems it is satisfied if and only if D +DT > 0.

For the nonlinear function f(·) we assume the following.

Assumption 2.2. The nonlinearity satisfies the following
properties:

• f is continuous

• ∀y1, y2, 〈f(y1)− f(y2), y1 − y2〉U ≥ 0,

• f(0) = 0.

Remark 2.1. The class of considered nonlinear functions
f(·) comprises strictly increasing, positive and unbounded
locally Lipschitz continuous (scalar) functions like odd
polynomials (e.g. f(y) = y3).

We end this section with a result on m-dissipativity.

Definition 2.3. The (nonlinear) operator J on domain
D(J) ⊂ X is called m−dissipative if

• J is dissipative, i.e., 〈Jx−Jx̃, x− x̃〉X ≤ 0 for x, x̃ ∈
D(J);

• For all λ > 0, the operator J satisfies the range con-
dition

X = {y ∈ X | ∃x ∈ D(J), y = (λI − J)(x)}
=: Ran(λI − J).

Notice that since the operator J is dissipative, the so-
lution x of the equation (λI − J) (x) = y for a given
y ∈ X and a given λ > 0 is unique. In fact, suppose
there are two solutions, x1 and x2, respectively. We have
y = λx1 − J(x1), y = λx2 − J(x2) so that

λ ‖x1 − x2‖2 = λ 〈x1 − x2, x1 − x2〉
= 〈J(x1)− J(x2), x1 − x2〉 ≤ 0,

which is possible if and only if x1 = x2.

Lemma 2.1. Let f : Y 7→ Y be a function satisfying the
conditions in Assumption 2.2, then for every λ > 0 the
range of λI + f equals Y , and thus −f is m-dissipative.
Furthermore,

‖(λI + f)(y)‖ ≥ λ‖y‖. (12)

Proof. Since the domain of −f equals the whole space Y ,
it is maximally dissipative, i.e., it does not have a proper
(dissipative) extension. Since Y is a Hilbert space this
gives that −f is m-dissipative see (Miyadera, 1992, Section
2.3). For the norm inequality (12) we use the inequality
in Assumption 2.2 with y1 = y and y2 = 0,

‖(λI + f)(y)‖2 =〈(λI + f)(y), (λI + f)(y)〉
=λ2‖y‖2 + λ〈y, f(y)〉+ λ〈f(y), y〉+
‖f(y)‖2 ≥ λ2‖y‖2.

Taking the square root on both sides ends the proof. �
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3. Main result

First we state and prove some lemmas. For any contin-
uous f : U → Y and any t∗ > 0, we define the operator
Λf by (Λf (y)) (·) = f (y(·)) for y in

D (Λf ) =
{
y ∈ L2 ([0, t∗) ;Y ) | f(y(·)) ∈ L2 ([0, t∗) ;U)

}
.

(13)
Since D (Λf ) = D (−Λf ), the domain D (Λf ) will be used
in the following.

Lemma 3.1. Under Assumption 2.2 the operator −Λf on
the domain D(Λf ) is m−dissipative.

Proof. Let first prove that −Λf is dissipative. Taking
x, x̃ ∈ D(Λf ), we have

〈−Λf (x)− (−Λf (x̃)), x− x̃〉 = −〈Λf (x)− Λf (x̃), x− x̃〉 ≤ 0

since by assumption the last inequality holds pointwise.
It remains to prove that Ran(λI − (−Λf )) =

L2 ([0, t∗) ;U) for all λ > 0. So given λ > 0, we have to
show that for all u ∈ L2 ([0, t∗) ;U), there exists y ∈ D(Λf )
such that u = (λI − (−Λf ))(y).

For u ∈ L2 ([0, t∗) ;U), we define

y(t) = (λI + f)−1(u(t)), t ∈ [0, t∗)

By Lemma 2.1 this inverse exists. Furthermore, using (12)
we obtain that y ∈ L2 ([0, t∗) ;U). Now since

f(y(t)) = (λI + f)(y(t))− λy(t) = u(t)− λy(t)

we find that f(y(·)) ∈ L2 ([0, t∗) ;U). Concluding, −Λf is
m−dissipative. �

Lemma 3.2. Under Assumptions 2.1 and 2.2 the opera-
tor εI−F−1

t∗ −Λf on the domain D(εI−F−1
t∗ −Λf ) = D(Λf )

is dissipative for sufficiently small ε > 0.

Proof. By Assumption 2.1 it follows that F−1
t∗ exists and

since Ft∗ is coercive, F−1
t∗ is also coercive, i.e., there ex-

ists c > 0 such that for all y ∈ L2 ([0, t∗) ;Y ), it holds
〈F−1
t∗ y, y〉 ≥ c〈y, y〉.
Let us now consider y, ỹ ∈ D(εI − F−1

t∗ − Λf ). It yields〈
(εI − F−1

t∗ − Λf )(y)− (εI − F−1
t∗ − Λf )(ỹ), y − ỹ

〉
=
〈
−Λf (y)− F−1

t∗ y + εy + Λf (ỹ) + F−1
t∗ ỹ − εỹ, y − ỹ

〉
= −〈Λf (y)− Λf (ỹ), y − ỹ〉 −

〈
F−1
t∗ (y − ỹ) , y − ỹ

〉
+ 〈ε (y − ỹ) , y − ỹ〉

≤ −
〈
F−1
t∗ (y − ỹ) , y − ỹ

〉
+ 〈ε (y − ỹ) , y − ỹ〉

because of dissipativity of −Λf . Moreover, by coercivity
of F−1

t∗ and sufficiently small ε > 0 it holds

〈(εI − F−1
t∗ − Λf )(y)− (εI − F−1

t∗ − Λf )(ỹ), y − ỹ〉

≤ (−c+ ε) ‖y − ỹ‖2 ≤ 0.

�

With the help of above lemmas we show that the non-
linear system Σf is well-posed on [0,∞). We begin by
showing that this holds on [0, t∗]. Here t∗ is the constant
introduced in Assumption 2.1.

Lemma 3.3. Under Assumptions 2.1 and 2.2, the state
trajectory of Σf , x(t), and the output of Σf , y, exist in X
and in L2([0, t∗];Y ) respectively for t < t∗. Thus for every
x0 ∈ X and every ν ∈ L2([0, t∗];U) there exists a unique
solution of (5) and (6). Moreover, f(y) ∈ L2([0, t∗];U).

Proof. For the t∗ of Assumption 2.1, we start by prov-
ing the existence of y ∈ L2 ([0, t∗) ;Y ), the output of the
closed-loop system. Consider the operator −Λf on the do-
main D(Λf ) defined by (13). It is easy to see that D(Λf )

is dense in L2 ([0, t∗) ;Y ), i.e. D(Λf ) = L2 ([0, t∗) ;Y ). Let
us also define operator εI − F−1

t∗ on the domain D(εI −
F−1
t∗ ) = L2 ([0, t∗) ;Y ). Notice that D(Λf ) = D(εI − F−1

t∗ )

and that εI − F−1
t∗ is a continuous operator on D(Λf ).

By Lemma 3.1, operator −Λf is m−dissipative. More-
over, εI − F−1

t∗ − Λf is dissipative by Lemma 3.2. Hence,
εI−F−1

t∗ −Λf is m−dissipative by (Miyadera, 1992, Corol-
lary 6.19). It means that for all λ > 0,

Ran
(
λI − εI + F−1

t∗ + Λf
)

= L2 ([0, t∗) ;Y ) .

Taking λ = ε, it shows that the equation(
Λf + F−1

t∗
)

(y) = ω (14)

has a unique solution y ∈ D(Λf ) for all ω ∈ L2 ([0, t∗);U).
Choosing ω = F−1

t∗ Ψt∗x0 + ν ∈ L2 ([0, t∗) ;U), we find(
Λf + F−1

t∗
)

(y) = F−1
t∗ Ψt∗x0 + ν, (15)

which is equivalent to

y = Ψt∗x0 + Ft∗ν − Ft∗Λf (y). (16)

Hence, the output equation (16) has a unique solution
y ∈ L2 ([0, t∗) ;Y ) for which Λf (y) ∈ L2 ([0, t∗) ;U). The
corresponding state trajectory, denoted by x, is obtained
by injecting (16) in (5). Using (3), it follows from (16)
that

Pty = PtΨt∗x0 + PtFt∗ν −PtFt∗Λf (y)

= Ψtx0 + Ftν − FtΛf (y),

for all t < t∗. �

For ease of reading, we will now (often) replace Λf (y)
by f(y).

Lemma 3.4. Under Assumptions 2.1 and 2.2, for t ≤
t∗ the state and the output of the closed-loop system Σf

are continuously dependent on x0 and on Ptν. Moreover,
there exist positive constants γi, i = 1, · · · , 4 such that
for all t ≤ t∗ the following inequalities hold

‖x(t)− x̃(t)‖ ≤ γ1 ‖x0 − x̃0‖+ γ2 ‖Ptν −Ptν̃‖ ,
‖Pty −Ptỹ‖ ≤ γ3 ‖x0 − x̃0‖+ γ4 ‖Ptν −Ptν̃‖ .

(17)
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Proof. Consider two initial conditions x0 and x̃0 ∈ X,
two external inputs ν and ν̃ ∈ L2([0, t∗];U) and t < t∗.
The two corresponding state trajectories are given by

x(t) = Ttx0 + Φtν − Φtf(y)

x̃(t) = Ttx̃0 + Φtν̃ − Φtf(ỹ)
(18)

and the corresponding outputs are given by

Pty = Ψtx0 + Ftν − Ftf(y)

Ptỹ = Ψtx̃0 + Ftν̃ − Ftf(ỹ).
(19)

We start by proving the continuous dependence for the
output. From (19), it holds

F−1
t (Pty −Ptỹ) + (f(Pty)− f(Ptỹ))

= F−1
t Ψt(x0 − x̃0) + (Ptν −Ptν̃), (20)

where the causality of Ft has been used, i.e., Ftf(y) =
Ftf(Pty). Using the coercivity of F−1

t and the inequality
of f (or Λf ), we find

〈F−1
t (Pty −Ptỹ) + (f(Pty)− f(Ptỹ)),Pty −Ptỹ〉

= 〈F−1
t (Pty −Ptỹ),Pty −Ptỹ〉

+ 〈f(Pty)− f(Ptỹ),Pty −Ptỹ〉
≥ 〈F−1

t (Pty −Ptỹ),Pty −Ptỹ〉
≥ c‖Pty −Ptỹ‖2

(21)

for some c > 0. Moreover, by the Cauchy-Schwarz inequal-
ity, we find

〈F−1
t (Pty −Ptỹ) + (f(Pty)− f(Ptỹ)),Pty −Ptỹ〉 (22)

≤ ‖F−1
t (Pty −Ptỹ) + f(Pty)− f(Ptỹ)‖ · ‖Pty −Ptỹ‖.

Combining (20), (21), and (22) yields

‖Pty −Ptỹ‖ ≤
1

c
‖F−1

t (Pty −Ptỹ) + f(Pty)− f(Ptỹ)‖

=
1

c
‖F−1

t Ψt(x0 − x̃0) + (Ptν −Ptν̃)‖ (23)

≤ ‖F
−1
t ‖ · ‖Ψt‖

c
‖x0 − x̃0‖+

1

c
‖Ptν −Ptν̃‖

which is the second inequality of (17). Moreover, from (19)

‖f(Pty)− f(Ptỹ)‖
= ‖F−1

t Ψt(x0 − x̃0) + (Ptν −Ptν̃)− F−1
t (Pty −Ptỹ)‖

≤ ‖F−1
t ‖ · ‖Ψt‖ · ‖x0 − x̃0‖+

‖Ptν −Ptν̃‖+ ‖F−1
t ‖ · ‖Pty −Ptỹ‖.

Using (23), it holds

‖f(Pty)− f(Ptỹ)‖
≤ ‖F−1

t ‖ · ‖Ψt‖ · ‖x0 − x̃0‖+ ‖Ptν −Ptν̃‖+

‖F−1
t ‖ ·

[
‖F−1

t ‖ · ‖Ψt‖
c

‖x0 − x̃0‖+
1

c
‖Ptν −Ptν̃‖

]
= ‖F−1

t ‖ · ‖Ψt‖ ·
[
1 +
‖F−1

t ‖
c

]
· ‖x0 − x̃0‖+[

1 +
‖F−1

t ‖
c

]
· ‖Ptν −Ptν̃‖. (24)

Putting (18) and (24) together yields

‖x(t)− x̃(t)‖
≤ ‖Tt‖ · ‖x0 − x̃0‖+ ‖Φt‖ · ‖Ptν −Ptν̃‖+
‖Φt‖ · ‖f(Pty)− f(Ptỹ)‖

≤‖Tt‖ · ‖x0 − x̃0‖+ ‖Φt‖ · [‖Ptν −Ptν̃‖ +

‖F−1
t ‖ · ‖Ψt‖ ·

(
1 +
‖F−1

t ‖
c

)
· ‖x0 − x̃0‖+(

1 +
‖F−1

t ‖
c

)
· ‖Ptν −Ptν̃‖

]
=

[
‖Tt‖+ ‖Φt‖ · ‖F−1

t ‖ · ‖Ψt‖ ·
(

1 +
‖F−1

t ‖
c

)]
.

‖x0 − x̃0‖+ ‖Φt‖ ·
(

2 +
‖F−1

t ‖
c

)
· ‖Ptν −Ptν̃‖

which is the first inequality of (17). �

We are ready now to prove the well-posedness of Σf .

Theorem 3.1. Under Assumptions 2.1 and 2.2, the sys-
tem Σf is well-posed in the sense of Definition 2.2 with
tf = ∞. Furthermore, inequalities, like (17) with γ’s de-
pending on t, hold for all t > 0.

Proof. We prove this by induction. That is, we show
that the system is well-posed on the interval [0, kt∗], with
k ∈ N and that inequalities, like (17) with γ’s depending
on k hold. In Lemmas 3.3 and 3.4 we showed that this
holds for k = 1. Assuming now that it holds for k = K,
we show the correctness for k = K + 1. Let x0 ∈ X and
ν ∈ L2([0, (K + 1)t∗];U) be given. For t ∈ [0,Kt∗] the
assertion holds by the induction hypothesis, so we assume
that t ∈ (Kt∗, (K + 1)t∗]. We show first that we have a
solution, and next we show the continuous dependence on
the initial condition and external input.

By the induction hypothesis, the state and the output
exist until Kt∗, i.e.,

x(t) = Ttx0 + Φtν − Φtf(y)

Pty = Ψtx0 + Ftν − Ftf(y)

for t ∈ [0,Kt∗]. For νK := ν|[Kt∗,(K+1)t∗] ∈ L2([0, t∗];U)
and τ ∈ (0, t∗] we define

xK(τ) = Tτx(Kt∗) + ΦτνK − Φτf(yK)

PτyK = Ψτx(Kt∗) + FτνK − Fτf(yK).
(25)

Thus xK and yK are the state trajectory and the output
generated by the initial condition x(Kt∗) and the external
input νK in Σf . Again by the induction hypothesis this
exists.

We extend the solutions x and y to the time interval
[Kt∗, (K + 1)t∗] by defining

x(τ +Kt∗) := xK(τ) (26)

Pτ+Kt∗y := y ♦
Kt∗

PτyK (27)
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for τ ∈ [0, t∗]. Developing (26) for τ ∈ [0, t∗], we find

x(τ +Kt∗) = Tτx(Kt∗) + ΦτνK − Φτf(yK)

= Tτ [TKt∗x0 + ΦKt∗ν − ΦKt∗f(y)] + ΦτνK − Φτf(yK)

= Tτ+Kt∗x0 + (TτΦKt∗ν + ΦτνK)−
(TτΦKt∗f(y) + Φτf(yK))

= Tτ+Kt∗x0 + Φτ+Kt∗(ν ♦
Kt∗

νK)− Φτ+Kt∗(f(y) ♦
Kt∗

f(yK))

= Tτ+Kt∗x0 + Φτ+Kt∗(ν)− Φτ+Kt∗(f(y)),

by the choice of νK and (27). This has the same form of
(5). Looking at the output (27) for τ ∈ [0, t∗] yields

Pτ+Kt∗y = PKt∗y + SKt∗PτyK

= ΨKt∗x0 + FKt∗ν − FKt∗f(y)+

SKt∗Ψτx(Kt∗) + SKt∗FτνK − SKt∗Fτf(yK)

= ΨKt∗x0 + FKt∗ν − FKt∗f(y)+

SKt∗Ψτ [TKt∗x0 + ΦKt∗ν − ΦKt∗f(y)] +

SKt∗FτνK − SKt∗Ftf(yK)

= [PKt∗ΨKt∗x0 + SKt∗ΨτTKt∗x0] +

[SKt∗ (ΨτΦKt∗ν + FτνK) + PKt∗FKt∗ν]−
[SKt∗ (ΨτΦKt∗f(y) + FτfyK)) + PKt∗FKt∗f(y)]

= Ψτ+Kt∗x0 + Fτ+Kt∗(ν ♦
Kt∗

νK)− Fτ+Kt∗(f(y)♦
t∗
f(yK))

= Ψτ+Kt∗x0 + Fτ+Kt∗(ν)− Fτ+Kt∗(f(y)),

using the definition of νK and (27). This has the same form
of (6) which means that the solution can be extended on
[0, (K + 1)t∗].

It remains to show that an estimate like (17) holds on
the extended time interval. Since the proof for the state
and the output are very similar we only show it for the
state. Let x and x̃ denote the two states. Since by the
induction hypothesis we have the estimate for t ∈ [0,Kt∗],
we take t = τ + Kt∗ with τ ∈ (0, t∗]. By (26) we have
that x(τ +Kt∗) = xK(τ) and the same for x̃. So using the
induction hypothesis (twice) we obtain

‖x(τ +Kt∗)− x̃(τ +Kt∗)‖ = ‖xK(τ)− x̃K(τ)‖
≤ γ1‖x(Kt∗)− x̃(Kt∗)‖+ γ2‖PτνK −Pτ ν̃K‖
≤ γ1 [γ1,K‖x0 − x̃0‖+ γ2,K‖PKt∗ν −PKt∗ ν̃‖] +

γ2‖PτνK −Pτ ν̃K‖
= γ1γ1,K‖x0 − x̃0‖+

γ1γ2,K‖PKt∗ν −PKt∗ ν̃‖+ γ2‖PτνK −Pτ ν̃K‖
≤ γ1,K+1‖x0 − x̃0‖+ γ2,K+1‖P(K+1)t∗ν −P(K+1)t∗ ν̃‖

for some γ1,K+1 and γ2,K+1, where we have used the defi-
nition of νK once more. �

4. Application to linear port-Hamiltonian systems

In this section we apply Theorem 3.1 to a particular
class of linear port-Hamiltonian systems. Consider first-
order linear port-Hamiltonian systems described by the

following PDE :

∂x

∂t
(ζ, t) = P1

∂

∂ζ
(H(ζ)x(ζ, t)) + P0 (H(ζ)x(ζ, t)) , (28)

with boundary control, conditions and observation

u(t) = WB,1

[
H(b)x(b,t)
H(a)x(a,t)

]
,

0 = WB,2

[
H(b)x(b,t)
H(a)x(a,t)

]
,

y(t) = WC

[
H(b)x(b,t)
H(a)x(a,t)

]
,

(29)

where ζ ∈ [a, b], t ≥ 0, x(ζ, t) ∈ Rn, P1 ∈ Rn×n is in-
vertible and self-adjoint, P0 ∈ Rn×n is skew-adjoint, H ∈
L∞([a, b];Rn×n) such that H(ζ) = H∗(ζ) and mI ≤ H(ζ)
for a.e. ζ and constant m > 0 independent of ζ, see (Ja-
cob and Zwart, 2012, Definition 7.1.2). Furthermore, we

assume that y(t), u(t) ∈ Rk, and rank
[
WB,1

WB,2

]
= n. The

above implies that the operator associated to the homoge-
neous port-Hamiltonian system, i.e., (28)–(29) with u ≡ 0,
generates a contraction semigroup on the state space X.
Here X is L2([a, b];Rn) equipped with the inner product

〈f, g〉X =

∫ b

a

f(ζ)∗H(ζ)g(ζ)dζ. (30)

Furthermore, it follows by (Jacob and Zwart, 2012, The-
orem 11.3.2) that (28)–(29) is a boundary control system
in the sense of (Jacob and Zwart, 2012, Definition 11.1.1).

The energy associated to (28) is given by E(t) =
1
2‖x(t)‖2X . Along classical solutions of (28), an expression
of the time derivative of the energy is provided in (Jacob
and Zwart, 2012, Theorem 7.1.5) and is given by

dE

dt
(t) =

1

2

[
(H(ζ)x(ζ, t))TP1H(ζ)x(ζ, t)

]b
a
. (31)

We suppose that (28)–(29) is impedance passive, i.e., that
dE
dt (t) ≤ uT (t)y(t) holds along classical solutions.

Lemma 4.1. Let us consider the impedance passive
boundary control system (28)–(29). Assume that P1H(ζ)
is diagonalizable, i.e., there exist ∆(ζ), a diagonal matrix-
valued function and S(ζ), a matrix-valued function, both
continuously differentiable on [a, b] such that

P1H(ζ) = S−1(ζ)∆(ζ)S(ζ), ζ ∈ [a, b]. (32)

Furthermore, assume that

rank

[
WB,1

WB,2

WC

]
= n+ rank(WC). (33)

Then, the system (28)–(29) is regular, well-posed and sat-
isfies3 limRe(s)→∞G(s) = lims→∞,s∈RG(s) =: D where
G(s) is the transfer function of (28)–(29). Moreover, the
feed-through term D is coercive.

3Note that the convergence is uniform with respect to the imag-
inary part of s, see (Jacob and Zwart, 2012, Lemmas 13.2.6, 13.2.7,
Theorem 13.3.1).
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Proof. The regularity and the well-posedness are pro-
vided by (Jacob and Zwart, 2012, Theorem 13.2.2).

By (Jacob and Zwart, 2012, Lemma 13.2.5), the diago-
nal matrix ∆(ζ) has the form

∆(ζ) =
[

Λ(ζ) 0
0 Θ(ζ)

]
, (34)

where Λ(ζ) is a diagonal real matrix-valued function with
strictly positive functions on the diagonal and Θ(ζ) is a
diagonal real matrix-valued function with strictly negative
functions on the diagonal.

We consider the state transformation

z(ζ, t) =
[
z+(ζ,t)
z−(ζ,t)

]
:= S(ζ)x(ζ, t). (35)

In this way, the PDE (28) becomes

∂z

∂t
(ζ, t) =

∂

∂ζ
(∆z)(ζ, t) + S(ζ)

dS−1(ζ)

dζ
∆(ζ)z(ζ, t)

+ S(ζ)P0S
−1(ζ)z(ζ, t)

(36)

and (29) becomes[
0
u(t)

]
= Kus(t)+Qys(t), y(t) = O1us(t)+O2ys(t), (37)

where

us(t) =
[

Λ(b)z+(b,t)
Θ(a)z−(a,t)

]
, ys(t) =

[
Λ(a)z+(a,t)
Θ(b)z−(b,t)

]
. (38)

K and Q are two square n×n matrices with [K Q ] of rank
n and O1 and O2 are k×n matrices, see (Jacob and Zwart,
2012, Section 13.4). By (Jacob and Zwart, 2012, Lemma
13.1.14), the limit of the transfer function of (36)–(37)
for Re(s) → ∞ is equal to the same limit of the transfer
function of

∂z

∂t
(ζ, t) =

∂

∂ζ
(∆z)(ζ, t) (39)

with the boundary input and output (37). If we write
O1K

−1 as
[
? D

]
, with D k×k, then by (Jacob and Zwart,

2012, Theorem 13.3.1), this D is the feedthrough operator
of our system, i.e., limRe(s)→∞G(s) = lims→∞,s∈RG(s) =
D. Since the system is impedance passive, the transfer
function is positive real, see e.g. (Jacob and Zwart, 2012,
Example 12.2.3). Hence D satisfies D+DT ≥ 0. To prove
that this inequality is strict, we begin by showing that
D is invertible. Suppose by contradiction that D is not
invertible. By the relation with O1K

−1 this implies that
there exists a non-zero u ∈ Rk such that O1K

−1 [ 0
u ] = 0.

Let us define[
Λ(b)z+(b)
Θ(a)z−(a)

]
:= K−1 [ 0

u ] ,
[
z+(a)
z−(b)

]
:= [ 0

0 ] . (40)

In this way,

y = O1us(t) +O2us(t) = O1K
−1 [ 0

u ] + 0 = 0. (41)

It can be shown that the energy balance combined with
the impedance passivity gives

1

2
[zT (b)HS(b)∆(b)z(b)− zT (a)HS(a)∆(a)z(a)] ≤ uT y,

(42)

where HS(ζ) = S−T (ζ)H(ζ)S−1(ζ). Using (40) and (41),
(42) gives

zT+(b)H11(b)Λ(b)z+(b)−zT−(a)H22(a)Θ(a)z−(a) ≤ 0, (43)

where the decomposition HS(ζ) =
[
H11(ζ) H12(ζ)
H21(ζ) H22(ζ)

]
has

been used.
Since H11(ζ) and H22(ζ) are two principal matrices of

HS(ζ), since H11(ζ)Λ(ζ) = Λ(ζ)H11(ζ),H22(ζ)Θ(ζ) =
Θ(ζ)H22(ζ), and since HS(ζ) is positive definite, the rela-
tions

H11(ζ)Λ(ζ) > 0, H22(ζ)Θ(ζ) < 0 (44)

hold. Combining this with (43) implies that z+(b) = 0
and z−(a) = 0. Using (40), this yields K−1 [ 0

u ] = 0. This
means that u is identically 0, which is a contradiction.
Hence, D is invertible. So we have shown the invertibil-
ity of the feedthrough matrix for any impedance passive
port-Hamiltonian system for which the Hamiltonian can
be written as (32). If we put all inputs except the first one
equal to zero and we only consider the first output, then
this scalar input-output system is impedance passive. The
above result implies that its feedthrough is invertible. It is
easy to see that this (new) feedthrough equals D11. We can
repeat this argument for all components of the input vec-
tor, and so we find that Dii 6= 0 for i = 1, · · · , k. Since the
system is impedance passive, we even know that Dii > 0
for i = 1, · · · , k.

Let U be a unitary k×k matrix, and define ũ = Uu and
ỹ = Uy. Then ũT ỹ = uT y, and so the port-Hamiltonian
system with the new input ũ and new output ỹ is still
impedance passive. The feedthrough matrix D̃ of this sys-
tem is related to D via

D̃ = UDUT .

Since the port-Hamiltonian system with input ũ and out-
put ỹ still satisfies all the assumptions, we have that the
diagonal elements of D̃ are strictly positive.

Assume now that D is not coercive. Thus there ex-
ists a non-zero u0 ∈ Rk such that uT0Du0 = 0. Without
loss of generality, we may assume that u0 has norm one.
Let U be a unitary matrix which maps this vector onto
[1, 0, · · · , 0]T . Then

0 = uT0Du0 = [ 1 0 0 ]UDUT
[

1
0

0

]
= D̃11.

This is a contradiction, and so D is coercive. �

The following theorem characterizes closed-loop systems
that result of the interconnection of a linear system com-
prises in the class of linear port-Hamiltonian systems in-
troduced in this section with a static nonlinearity that
satisfies Assumption 2.2.

Theorem 4.1. Consider the first order port-Hamiltonian
system described by (28)–(29) that satisfies the assump-
tions of Lemma 4.1. Furthermore, consider the intercon-
nection u(t) = −f(y(t)) where f(·) is a nonlinear function
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that satisfies Assumption 2.2. Then, the resulting nonlin-
ear system is well-posed.

Proof. By Lemma 4.1, the linear system is well-posed,
regular and the corresponding feedthrough operator, D, is
coercive. Moreover, since

lim
Re(s)→∞

G(s) = D, (45)

there exists a sufficiently large α ∈ R such that G(s) is
boundedly invertible on Cα := {s ∈ C | Re(s) > α}. By
the Paley-Wiener Theorem, see e.g. (Jacob and Zwart,
2012, Theorem A.2.9), there exists a sufficiently small
t∗ > 0 such that the operator Ft is boundedly invertible for
all t < t∗. Moreover, since the port-Hamiltonian system
(28)–(29) is impedance passive, the operator Ft is positive,
i.e., along any solution on [0, t∗) it holds 〈Ftu, u〉 ≥ 0. This
fact together with the invertibility, implies coercitivity of
the operator Ft for t < t∗, i.e. Assumption 2.1 is satisfied.

Since the considered nonlinearity satisfies Assumption
2.2, Theorem 3.1 provides the well-posedness of the closed-
loop system. �

5. Example : The vibrating string with a nonlinear
damper at the boundary

In this section, Theorem 4.1 is illustrated with a vibrat-
ing string with a nonlinear damper attached to it. This
system can be described by means of the following PDE

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

(
T (ζ)

∂w

∂ζ
(ζ, t)

)
, w(ζ, 0) = w0(ζ),

− f
(
∂w

∂t
(1, t)

)
= T (1)

∂w

∂ζ
(1, t),

∂w

∂t
(0, t) = 0, (46)

where ζ ∈ [0, 1] is the spatial variable, w(ζ, t) is the vertical
position of the string at position ζ and at time t, T (ζ) and
ρ(ζ) represent the Young’s modulus and the mass density
respectively and are supposed to be positive, continuously
differentiable functions. Equation (46) can be seen as the
linear PDE

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

(
T (ζ)

∂w

∂ζ
(ζ, t)

)
, (47)

with boundary input and output

u(t) = T (1)
∂w

∂ζ
(1, t), y(t) =

∂w

∂t
(1, t) (48)

connected by the nonlinear feedback u(t) = −f(y(t)).
Defining the state variables x1(ζ, t) = ρ∂w∂t (the momen-

tum) and x2(ζ, t) = ∂w
∂ζ (the strain), the linear PDE (47)

admits a port-Hamiltonian representation in the form

∂x

∂t
(ζ, t) = P1

∂

∂ζ
(H(ζ)x(ζ, t)) , (49)

where x(ζ, t) =
[
x1(ζ, t) x2(ζ, t)

]T
, P1 = [ 0 1

1 0 ] and

H(ζ) =
[

1
ρ(ζ)

0

0 T (ζ)

]
. This PDE falls in the well-established

class of linear port-Hamiltonian systems on 1-D spatial
domain, whose properties are considered in the previous
section. For this system, P1H(ζ) can be expressed as
P1H(ζ) = S−1(ζ)∆(ζ)S(ζ) where

S(ζ) =

[
1

2γ(ζ)
ρ(ζ)
2

− 1
2γ(ζ)

ρ(ζ)
2

]
and ∆(ζ) =

[
Λ(ζ) 0

0 −Θ(ζ)

]
, (50)

with Λ(ζ) = Θ(ζ) = γ(ζ) =
√

T (ζ)
ρ(ζ) . Then Theorem 4.1 es-

tablishes well-posedness of (46) for any function f(·) that
satisfies Assumption 2.2, e.g. f(y) = y3 or any odd poly-
nomial representing nonlinear damping at the end of the
string.

6. Conclusion and future work

In this paper, well-posedness of a class of infinite-
dimensional linear systems interconnected with a static
nonlinearity has been proven. The problem has been in-
troduced with a simple (counter) example. As main re-
sult, sufficient conditions on the linear system to end up
with a well-posed closed-loop system are provided, ex-
tending the class of admissible nonlinearities presented in
(Tucsnak and Weiss, 2014). Moreover, it is shown that
impedance passive port-Hamiltonian systems satisfy the
necessary conditions of the well-posed linear system. Fi-
nally, the result has been applied on a vibrating string with
a nonlinear damper at the boundary.

Future work aims at extending the class of nonlinearities
for which a closed-loop system is well-posed to dynamical
systems.
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