
Mind the Gap: A Practical Framework for Classifiers in a Forensic Context

Chris Zeinstra, Didier Meuwly, Raymond Veldhuis, Luuk Spreeuwers
University of Twente, Faculty of EEMCS, DMB Group

P.O. Box 217, 7500 AE, Enschede, The Netherlands
{c.g.zeinstra,d.meuwly,r.n.j.veldhuis,l.j.spreeuwers}@utwente.nl

Abstract

In this paper, we present a practical framework that ad-
dresses six, mostly forensic, aspects that can be considered
during the design and evaluation of biometric classifiers for
the purpose of forensic evidence evaluation. Forensic evi-
dence evaluation is a central activity in forensic case work;
it includes the assessment of strength of evidence of trace
and reference specimens and its outcome may be used in a
court of law. The addressed aspects consider the modal-
ity and features, the biometric score and its forensic use,
and choice and evaluation of several performance charac-
teristics and metrics. The aim of the framework is to make
the design and evaluation choices more transparent. We
also present two applications of the framework pertaining
to forensic face recognition. Using the framework, we can
demonstrate large and explainable variations in discrimi-
nating power between subjects.

1. Introduction
Given trace specimens from a crime scene (for exam-

ple finger marks or face images extracted from surveillance

camera footage) and reference specimens taken from a sus-

pect (for example, finger prints or good quality frontal and

profile facial images), one of the tasks of the forensic exam-

iner is to determine the strength of evidence supporting the

hypothesis that trace and reference specimens have a com-

mon donor versus the hypothesis that the trace originates

from another donor. We refer to this process as forensic

evidence evaluation.

Not every modality has the same maturity level of au-

tomation. For example, on one hand, the finger print modal-

ity has a straightforward three level representation (of which

often only the first two are used) and mature extraction and

comparison methods [22]. On the other hand, the face is a

complex modality and especially forensic evidence evalua-

tion using images of faces taken under realistic conditions is

largely a manual process [17]. Therefore, there is still a gen-

eral need for research on biometric classifiers that are capa-

ble of producing strength of evidence, to be used in a foren-

sic evidence evaluation process in which the human exam-

iner remains to have a pivotal role. Biometric and forensic

science have much in common, notably due to their strong

interest in connecting individuals to traces (in the forensic

nomenclature) or probes (in the biometric nomenclature).

However, a number of small but important differences

between biometric and forensic science are easily over-

looked. First, not every biometric modality has the same

potential in forensic science and vice versa. Second, scores

produced by biometric classifiers in most cases cannot di-

rectly be used as strength of evidence in a court of law. Fi-

nally, certain performance characteristics are relevant from

a forensic perspective [23], but are hardly taken into account

by standard biometric research.

Additionally, in both biometric and forensic science, the

importance of subject based performance evaluation in re-

lation to general performance evaluation seems to be some-

what underrated, since insight into this type of performance

might be especially important from a forensic point of view.

Here, a subject based performance evaluation uses traces

from a single subject, whereas a general performance evalu-

ation uses traces from multiple subjects. Having an extreme

eye fissure angle opening might discriminate a specific sub-

ject well, while in general this angle has average to poor

biometric performance. In general, the range of possible

performances and their link to phenotype enforces the sci-

entific foundation of the reported strength of evidence based

on phenotypes. This is a relevant issue in light of the very

critical NRC [9] and PCAST [26] reports on forensic sci-

ence in the USA.

The contributions of this paper are:

• A systematic presentation (framework) of aspects to be

considered during the design and evaluation of biomet-

ric classifiers for forensic evidence evaluation, includ-

ing forensic performance characteristics and metrics;

• An emphasis on general versus subject based perfor-

mance evaluation;
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Figure 1. Framework that can be used during the design and evaluation of biometric classifiers for forensic evidence evaluation and relates

to the forensic process published in [23]. Top row contains the aspects, bottom row shows essential components of an evaluated biometric

system. Arrows are unidirectional “influences” relationships.

• A presentation of two relevant applications within the

domain of forensic face recognition.

The paper is structured as follows. Section 2 presents the

framework and discusses the six aspects. Section 3 demon-

strates the first application of the framework. It studies nine

facial measures that can be used when trace images depict a

perpetrator wearing a balaclava. Section 4 contains the sec-

ond, smaller, application of the framework that studies the

location of facial marks. It considers the case when trace

images originate from surveillance cameras. Both appli-

cations take the form of a small paper within a paper, as

such they can be read independently from the description

of the framework. Since related work is either confined to

the framework or the two applications, we do not provide a

separate related work section. Section 5 presents the con-

clusion.

2. Framework

As can be seen in Figure 1, the six aspects reside at the

design level of biometric classifiers for forensic evidence

evaluation. These aspects influence the biometric system

and its evaluation at an operational level. The aspects can

be grouped into three groups of two aspects; they influence

the feature, score calculation, and the evaluation. Choices

addressed in or related to the first five aspects can serve

as a template for their influence on Aspect 6, the chosen

performance characteristic(s). This framework is a gener-

alisation of the six aspects discussed in [33] and includes

forensic performance characteristics presented in a recently

published forensic guideline [23].

2.1. Modality relevance and selection within

Modalities can be composed of several smaller entities

which on their own might be modalities as well. Due to the

forensic context, may be only some of these modalities can

be used.

Jain et al. [15] identifies characteristics of biometric

modalities. The distinctiveness property is used in forensic

scenarios as identification (both closed and open), investiga-

tion, intelligence, and the evaluation of strength of evidence

[10]. Distinctiveness does not need to be uniform amongst

the subjects in order to have a forensic interest. Acceptabil-

ity is a notable exception; robustness to forensic scenarios

and the availability of biometric information as a trace are

additional forensically important characteristics.

Another test for suitability is the forensic relevance of

the modality, either at source (who is acting) or activity

(what is the act) level inference. It involves the descrip-

tion of forensic use case(s) in which the modality could be

used. A forensic use case describes an act that produces a

particular type of trace material captured at a crime scene.

An example is a robbery in which the robber wears a bala-

clava and trace material only shows a few facial parts like

the eyes, eyebrows, mouth, possibly part of nose and part of

the chin.

2.2. Feature Representation

The outcome of the modality selection steers the possi-

ble feature representation(s). An example is given by facial

marks. Since the measurement of the location of a facial

mark is subject to within variation, one might also consider

the use of a facial grid to represent the location in terms of

the grid cell it belongs to, as a method to compensate for

this variation [33].

2.3. Classifier

The third aspect is whether we use any data to train a

classifier and if so, whether that data is related to a general

population or to a subject. Although we use the term clas-

sifier, we are mostly interested in the comparison score it

produces, rather than a decision. For example, the proba-

bility of detecting facial marks depends on the considered

region of the face [33]. Hence, using facial mark location



data in a classifier could enhance its ability to discriminate;

a model based on a single subject could even be better than

one based on general data, especially if the facial mark lo-

cations are very distinctive for that particular subject [33].

2.4. Strength of evidence

The desired outcome of a comparison process is either

a comparison score in biometric science or strength of evi-

dence in forensic science. The latter is commonly expressed

as a likelihood ratio in modern forensic science1:

LR(E) =
p(E|Hs)

p(E|Hd)
. (1)

Here E denotes evidence, Hs is the same source hypothesis

and Hd is the different source hypothesis. As described in

[14], the forensic examiner is responsible for the calculation

of LR(E), whereas a court of law determines the prior odds
p(Hs)
p(Hd)

and ultimately the posterior odds
p(Hs|E)
p(Hd|E) :

p(Hs|E)

p(Hd|E)
= LR(E)× p(Hs)

p(Hd)
. (2)

Finally, often (1) is used in its log10 form as LLR(E). In the

latter form, it emphasises the magnitude of the likelihood

ratio rather than the exact value.

The evidence E in LLR(E) is either the occurrence of

trace x and reference y or a biometric comparison score s =
s(x, y) computed on trace x and reference y.

In the first case, we obtain the feature based log-
likelihood ratio:

LLR(x, y) = log10

(
p(x, y|Hs)

p(x, y|Hd)

)
. (3)

Approaches to calculate (3) include the use of parametric

models for p(x, y|Hs) and p(x, y|Hd) and copula models

that relate joint probability distributions to their marginal

distributions [31].

In the second case, LLR(E) reverts to the score based
log-likelihood ratio:

LLR(s) = log10

(
p(s|Hs)

p(s|Hd)

)
. (4)

Several techniques can be used to estimate the numerator

and denominator of (4): parametric model (for example a

normal distribution), non-parametric (for example Parzen

windows [29]) or the Pool of Adjacent Violators (PAV) al-

gorithm [12]. Given a training set of scores, the PAV algo-

rithm estimates p(Hs|s) from which the likelihood LLR(s)
can be derived:

LLR(s) = logit(p(Hs|s))− logit(p(Hp)), (5)

1Although Darboux, Appell, and Poincaré suggested its use already in

1906 for the appeal in the Dreyfus case [1], mostly during the last decade

it has seen a mainstream acceptance.

with logit(x) = log10

(
x

1−x

)
. Note that the prior p(Hs) in

(5) is the fraction of same source pairs in the training set and

it is not the prior p(Hs) set by a court of law. This process

is an example of score calibration [5].

Both biometric comparison score functions and feature

based log-likelihood ratio functions may include parameters

that reflect general behaviour or subject based behaviour.

In particular, the same source Hs and different source Hd

hypotheses can be formulated in two, distinct, manners. The

general formulation is

• Hs = Hg
s : the trace x and reference y originate from

a common donor.

• Hd = Hg
d: the trace x and reference y do not have a

common donor.

The subject based formulation is

• Hs = Hs
s: the trace x and reference y originate from

the same specific donor.

• Hd = Hs
d: the trace x and reference y do not have the

same specific donor.

Since the subject based formulation is tailored towards a

specific subject (the suspect), one could argue that the sub-

ject based formulation should be favoured over the general

formulation, although less data is available for a reliable es-

timate of parameters.

2.5. Evaluation level

Another consideration is at which level performance

characteristics are evaluated. From a biometric point of

view, often only the general discriminating power is of in-

terest. We refer to this as a general evaluation. However,

since some modalities are generally not very discriminative,

they still might be for certain subjects. It suggests that it

makes sense to also report at a subject based level, at least

to get an idea of the range of attained performances. We

refer to this as subject based evaluation. Observe that the

use of subject based data is independent of subject based

evaluation: it is indeed possible to perform a subject based

evaluation on any classifier.

2.6. Performance Characteristics and Metrics

Biometric performance is often confined to ROC, AUC

or EER. According to a recently proposed guideline by

Meuwly et al. [23], used as a basis for an upcoming ISO

standard, there are several other performance characteristics

and corresponding metrics that are relevant in the context of

our framework. In their work, they classify the performance

characteristics into primary and secondary classes. The pri-

mary class encompasses

• Accuracy



• Discriminating power

• Calibration

Accuracy is the “closeness of agreement between computed

likelihood ratio and the ground truth status” and is measured

in Cllr. Given a set S of ns and a set D of nd scores under

the same source hypothesis Hs and different source hypoth-

esis Hd) respectively, the cost of log-likelihood ratio [7] is

defined by:

Cllr =
1

2

(
1

ns

∑
s∈S

log2(1 + e−s) +
1

nd

∑
s∈D

log2(1 + es)

)
.

(6)

Discriminating power is a “property representing the ca-

pability of a given method to distinguish amongst forensic

comparisons where different propositions are true”, and is

either measured in EER or Cllrmin. If we apply the PAV

algorithm to the set of scores and reapply (6), we obtain the

minimal achievable cost of likelihood ratio Cllrmin. This

quantity measures the discriminating power and can be used

as an alternative to EER.

Calibration is a “property of a set of LRs (...)”. Perfect

calibration means that LRs can be interpreted as strength of

evidence. Its performance metric is calibration loss:

Cllrcal = Cllr− Cllrmin. (7)

Calibration loss essentially measures how well the com-

puted likelihood ratio can be used as strength of evidence

in a court of law.

The secondary performance characteristics are

• Robustness

• Coherence

• Generalisation

Robustness refers to “the ability of the method to maintain

a performance metric when a measurable property in the

data changes”. Coherence is the “ability to yield likelihood

ratio values with better performance with the increase of

intrinsic quantity/quality (...)”. Generalisation refers to the

“ability to maintain performance under a dataset shift.” The

secondary performance characteristics are measured in Cllr
or EER.

3. Application 1: Balaclava
3.1. Introduction

Figure 2a shows a representative balaclava that could be

worn by a perpetrator. Although the shown example is of

good quality, trace images are typically taken under chal-

lenging conditions that significantly impact the image qual-

ity. Shape information is typically lost in these low quality

a) Balaclava

AE

EA
EB EC

EE

ED

WN

WM
HM

b) FISWG descriptors

Figure 2. a) Subject wearing a balaclava with three holes, b) Face

showing the nine considered FISWG characteristic descriptors:

angle fissure (AF), five distinctive eyebrow measures A-E (EA-

EE), the height (HM) and width (WM) of the mouth, and the width

of the nose (WN).

images, whereas it might be still possible to extract angles,

positions, and distances [36]. Several forensic institutes

participate in the Facial Identification Scientific Working

Group [3]. It has published several recommendations re-

garding the forensic facial comparison process, including

a detailed list of facial features (FISWG characteristic de-

scriptors) [2] that might be considered during a comparison.

Figure 2b shows nine simple balaclava related characteristic

descriptors (angle fissure, five distinctive eyebrow measures

A-E, the height and width of the mouth, and the width of the

nose). We expect that these descriptors have limited general

discriminating power, but have a potential to discriminate

some subjects to a certain extent.

This leads to the following two research questions:

RQ1 What is the discriminating power of an untrained

classifier and those trained on general or subject based data

viewed at a general and a subject based evaluation level?

RQ2 Which feature phenotypes correspond to good and

poor subject based discriminating power?

3.2. Related Work

One of the papers that initiated research in the periocu-

lar region is [28], exploring the use of a local (SIFT) and

global (HOG, LBP) approach to describe the texture of the

periocular region. Other studies investigated different vari-

ants of LBP [32, 21] and FISWG characteristic descriptors

[35]. Also the eyebrow modality itself has been the topic of

several studies [34, 18]. In the latter study, it was shown that

the eyebrow region accounts for 1
6 of the facial region while

it retains 5
6 of the performance of the facial region. The

remaining modalities (nose and mouth) have almost never

been studied. For example, the study of Moorhouse [25]

considered the nose using photometric stereo images; lips

as a biometric modality have been studied in Choraś [8].

In general, FISWG characteristic descriptors have been the



subject of several related studies, of which [36] systemati-

cally investigated them in various forensic use cases.

3.3. Framework applied

Modality relevance and selection within. The foren-

sic relevance of the nine descriptors has already been ex-

plained. Moreover, these features are exemplary for a cate-

gory of features with limited general discriminating power

that can discriminate some subjects to a certain extent.

Feature Representation. All measures are one-

dimensional real numbers; all but one (angle fissure) are

either a distance or a relative position. The angle fissure is

measured in degrees.

Classifier. We employ classifiers that are untrained and

ones are trained on either general or subject based data.

Strength of evidence. For each of the FISWG characteris-

tic descriptors, we choose three different score comparison

functions. The Euclidean distance score is

s(x, y) = −|x− y| (8)

and is PAV calibrated, from which the likelihood ratio (5)

can be computed.

We also use the feature based log-likelihood ratio (3)

and assume that the feature values are normally distributed.

Using the general model, we assume that under the same

source hypothesis we have(
x
y

)
|Hg

s = N
((

μx

μy

)
,

(
σ2
x ρσxσy

ρσxσy σ2
y

))
(9)

and under the different source hypothesis(
x
y

)
|Hg

d = N
((

μx

μy

)
,

(
σ2
x 0
0 σ2

y

))
. (10)

We also formulate a subject based model, for which under

the same source hypothesis we have(
x
y

)
|Hs

s = N
((

μs
x

μs
y

)
,

(
σ2
x ρσxσy

ρσxσy σ2
y

))
(11)

and under the different source hypothesis(
x
y

)
|Hs

d = N
((

μx

μy

)
,

(
σ2
x 0
0 σ2

y

))
. (12)

The only difference between the general and subject based

model are the subject specific means in the same source

model.

Evaluation level. Given research question RQ1, we are in-

terested in using both the general and subject based evalua-

tion level.

Performance characteristics. We select discriminating

power as the performance characteristic.

3.4. Experimental setup

For this experiment, we use a subset of the FRGCv2

dataset [4]. It consists of 12306 images taken under con-

trolled conditions showing in total 568 subjects with a neu-

tral expression. We adopt the following procedure on train-

ing and testing.

In total 376 subjects have less than 25 recordings and

are used for training of the general model. For the remain-

ing 192 subjects with 25 or more recordings, the first ten

recordings are reserved as subject based training data; the

remainder of the recordings constitute the test set.

The nine FISWG characteristic descriptors are automat-

ically determined. We use the One Millisecond Deformable

Shape Tracking Library (DEST) [19] for landmark location.

We do not employ the default landmark model of DEST as

it is too coarse for our purposes. We train DEST using all

available (2330) images in the HELEN database [20] and

the available ground truth annotation provided by STASM

[24] of a model containing 199 landmarks. An affine trans-

formation is then applied on the landmark positions such

that the found pupil coordinates of each image are mapped

to fixed locations. Finally, we extract the nine descriptors

from the landmarks in this coordinate system.

3.5. Results and discussion

Regarding RQ1, the discriminating power of the three

classifier types at a general and subject based level, Figure

3 shows the box plots of the EER for comparison methods

that do not require training, those trained on general data,

and those trained on subject based data. We observe that

all considered characteristic descriptors can be seen as soft

biometric modalities as they have a very moderate median

EER.

Although the box plots appear very similar, we can show,

using a Wilcoxon signed rank test, that for each considered

characteristic descriptor, the subject based method is bet-

ter than the general method which in turn is better than the

score based method (p < 0.1%). This relationship is rein-

forced by their corresponding high correlation coefficients:

ρ ∈ [0.91, 0.99].
What makes the considered characteristics particularly

interesting is the performance difference between some sub-

jects. In Figure 4, for each of the descriptors, we show an

outline2 of the best (green) and worst (red) performing sub-

jects with their performance, alongside with the general per-

formance (blue) in a ROC curve. These examples indicate

that the performance at a subject level can be explained in

terms of the phenotype of the feature. For example, Figure

4a shows that having low outer eye corners in relation to the

inner eye corners is discriminative, whereas they are more

leveled, they are essentially random. These results address

2Showing the outline is clearer than showing the actual facial patch.



AF EA EB EC ED EE H
M

W
M

W
N

Modality

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

EE
R

a) Score LLR
AF EA EB EC ED EE H
M

W
M

W
N

Modality

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

EE
R

b) Feature LLR, gen.
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Figure 3. Box plots of (a) EER of score based likelihood ratio, (b) EER of feature based likelihood ratios using a general model, and

(c) EER of feature based likelihood ratios using a subject based model. The following nine FISWG characteristic descriptors have been

considered: angle eye fissure (AE), eyebrow A-E (EA-EE), height mouth (HM), width mouth (WM), and width nose (WN).
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a) Angle Eye Fissure
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c) Eyebrow B
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d) Eyebrow C
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f) Eyebrow E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FMR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TM
R

g) Height Mouth
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h) Width Mouth
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Figure 4. The variation in performance of nine FISWG characteristic descriptors: (a) angle fissure, (b)-(f) eyebrow A-E, (g) height mouth,

(h) width mouth, and (i) width nose. Green and red refers to the best and worst performing subject and performance respectively, blue is

the general performance.



RQ2 on the connection between phenotype and discriminat-

ing power.

This is one of the key observations in relation to foren-

sic evidence evaluation. In principle we are only interested

in discriminating a particular subject from a group of sub-

jects, rather than the much stronger property of discrimi-

nating everyone, including this particular subject. Although

we do not claim this insight is new, but given the large varia-

tion between subjects, it seems warranted to emphasise this

in the context of the validation of likelihood ratio methods

for forensic evidence evaluation as described by [23]. This

guideline does not specify the level of evidence evaluation.

4. Application 2: Grid Based Facial Mark
Likelihood Ratio Classifiers

4.1. Introduction

The second application is more limited than the first ap-

plication and is a small extension of [33] on facial marks.

In that work, primary performance characteristics (discrim-

inating power and calibration) of six classifiers operating on

a facial grid representing facial mark locations were com-

pared. Moreover, the influence of grid cell sizes ranging

from 0.05 IPD (interpupillary distance) to 1.0 IPD on these

characteristics was studied as well. This study did not con-

sider secondary performance characteristics like generalisa-

tion of discriminating power. In particular, only a subset of

images of FRGCv2 [4] taken under controlled conditions

and showing subjects with a neutral expression was used.

Therefore, we use another dataset, SCFace [13] to address

the generalisation of discriminating power.

Due to the inherent poor image quality and low(er) res-

olution of surveillance camera stills, we expect a large re-

duction in the number of detected facial marks in trace im-

ages relative to the corresponding reference images, intro-

ducing a systematic difference and rendering even classi-

fiers trained on general data useless. Therefore, we only

consider the Hamming classifier that (a) only uses the pres-

ence of facial marks in grid cells and (b) does not use any

general or subject based facial mark location data.

This leads to the following two research questions:

RQ1 Can we generalise the discriminating power of Ham-

ming based classifiers that use a facial mark grid?

RQ2 How many subjects can still be discriminated, using

their facial mark grid?

4.2. Related Work

Facial marks have forensic relevance [6, 2]. Several stud-

ies consider facial marks and the spatial patterns they form.

They can complement face recognition systems [27, 11] or

serve as a single biometric modality [30]. Applications in-

clude quering mugshot databases for matches to facial mark

spatial patterns [16] and the calculation of strength of evi-

dence [33].

4.3. Framework applied

Modality relevance and selection within As discussed in

[33], not every facial mark type is suitable in a forensic con-

text. In particular, in [33] and the present study only the

mole, pockmark, raised skin, and scars are taken into ac-

count.

Feature Representation. We assume that the facial mark

locations are given in a coordinate system for which the

pupil coordinates are fixed. We superimpose a grid with

square cells having sizes Δ ranging from 0.05 IPD to

1.0 IPD in steps of 0.05 IPD. The feature is a binary vector

that indicates for each grid cell whether it contains no or at

least one facial mark.

Classifier. As discussed before, we only consider the Ham-

ming comparison score

H((bij1 ), (b
ij
2 )) = −

∑
i,j

|bij1 − bij2 |. (13)

Strength of Evidence. Since the Hamming comparison

function does not produce likelihood ratio values, we use

PAV calibration and (5) to create a score based likelihood

ratio.

Evaluation Level We evaluate both at a general and a sub-

ject based level, as we expect that facial marks on low qual-

ity images have poor discriminating power, but might dis-

criminate certain subjects.

Performance Characteristics Generalisation is chosen to

augment previous work [33].

4.4. Experimental Setup

The SCFace dataset contains surveillance footage of

six cameras in seven different configurations (visible and

IR), depicting a subject at three different distances (4.20m,

2.60m, and 1.00m), IR mugshot and high resolution images

for 130 subjects. We manually locate facial marks in refer-

ence images and then annotate all trace images, in random

order. The facial mark locations are subsequently mapped

to the fixed coordinate system introduced before.

4.5. Results and Discussion

Regarding RQ1, we compare the EER on FRGCv2 (Fig-

ure 5a) with the EER on SCFace for Camera 1 and distance

3 (Figure 5b). Other cameras exhibit similar results and are

therefore omitted. We observe that in the FRGCv2 case,

the EER has some dependency on the grid cell size (no-

tably with smaller grid cell sizes, its increase is explained

by within variation) and some variation between subjects.

On the other hand, in the SCFace case we observe a very

poor EER that is even mostly independent of the grid cell
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Figure 5. EER of Hamming comparison score function on a) FRGCv2, b) SCFace Camera 1, Distance 3, a subject that can be perfectly

discriminated based on the indicated facial mark location c) Trace, and d) Reference. Due to the SCFace license agreement we can only

show anonymised images.

size. With respect to RQ1, we conclude that the discriminat-

ing power of Hamming based classifiers using facial mark

grids cannot be generalised.

With respect to RQ2, we find that results between sub-

jects vary to a large extent. There is a number of subjects

that even have EER=1; this is caused by the large mismatch

of observed facial marks in the trace and reference image

belonging to that subject in relation to the differences in

facial mark observations between its trace and reference

images of other subjects. However, mostly for distance 3

(1.00m), we found up to ten different subjects that can be

perfectly discriminated based on their facial mark grid. An

example of such case is shown in Figures 5c and 5d. Sub-

ject 009 has a facial mark (raised skin) located at his left

temple, clearly visible in both trace and reference images.
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5. Conclusion
In this paper, we have presented a framework that con-

siders six aspects during the design and evaluation of bio-

metric classifiers for forensic evidence evaluation. We also

presented two applications of this framework.

The first application deals with the situation that trace

images depict a perpetrator wearing a balaclava. We ex-

plored the use of nine simple characteristic descriptors and

found that the incorporation of either general or subject

based data versus no training yields very similar classifiers.

We observed a large variation in discriminating power be-

tween subjects that can be attributed to, in some cases the

extreme, phenotype of the considered features.

The second application is an extension of existing work

on classifiers that use facial marks as features on a large

subset of the FRGCv2 dataset. The extension considered a

secondary performance characteristic and used the SCFace

dataset. The EER of Hamming based classifiers is in the

case of the SCFace dataset very poor and we concluded that

its good results on the FRGCv2 dataset cannot be gener-

alised. Despite the lack of facial mark observations in the

SCFace case, we did find subjects that could be discrimi-

nated based on their facial mark grid.

These applications show that this framework has an

added value for the forensic biometric community. The

framework makes design choices more transparant. Fur-

thermore, both applications emphasize the importance of

subject based evaluation. Especially the first application

scientifically connects results to phenotypes and as such

helps to enforce the scientific foundation of forensic science

found lacking in the NRC and PCAST reports.
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