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A B S T R A C T

Virtual Reality (VR) based training simulators are successfully employed in many industries (e.g., aviation) to
help train operators and professionals in a safe environment. The construction industry has also started to use
this technology in recent years for training operators of heavy equipment. However, the context presented in the
available training simulators is unrealistic because in many instances the training takes place in static sites where
there is no mobility in the site. To realistically introduce the context of construction sites into VR scenes sensory
data from actual projects can be used. However, currently, there is no systematic insight into (1) the dimensions
of context that need to be present in a training simulator, (2) the types of data required to represent various
dimensions of the context, and (3) methods for converting context data into a coherent context-realistic training
scene that enables bidirectional feedback between trainees and the VR scene. Therefore, this research aims to
develop a novel framework to generate coherent context-realistic training simulators from data collected from
actual construction projects to enhance construction training simulators. The proposed framework provides a
step-wise guideline into (a) collection of appropriate data for context-realistic simulators, (b) development of
agents and simulation physics from actual site data and their integration into a scene, (c) scene-trainee inter-
actions in context-realistic scenes, and (d) context-based assessment of the trainees' performance from safety,
productivity, and quality perspectives. A prototype is developed and a case study is conducted to demonstrate
the feasibility of the proposed framework. A workshop with expert training instructors is conducted to evaluate
the effectiveness of the proposed framework for improving simulator-based training. It is shown that compared
to the existing simulators, the context-realistic training simulators can significantly improve various aspects of
operator training, especially safety and teamwork. The research provided an insight into the future of con-
struction training simulator by indicating the importance and relevance of (1) collecting appropriate data, and
(2) developing robust data-to-agent and data-to-physics methods.

1. Introduction

The construction industry has one of the highest incident rates
among different industries [1]. Different pieces of construction equip-
ment, e.g., excavators, trucks, etc., are reported to be the second cause
of fatal injuries on construction sites [2–4]. According to statistics from
the U.S. Bureau of Labor Statistics, 21% of fatal injuries on U.S. con-
struction sites in 2016 were primarily or secondarily caused by different

pieces of equipment [2]. For instance, excavators and road construction
equipment have contributed to 44 and 16 fatalities in 2016, respec-
tively. In the U.K., 10% of fatal accidents on construction sites in the
period between 2012 and 2016 were caused by moving vehicle [5]. In
the Netherlands, 20% of the equipment related accidents resulted in
death, making vehicle-related accidents the second cause of fatal acci-
dents [6]. Among various causes of incidents, the inadequate knowl-
edge and skill of the practitioners are claimed to play a role in 42% of
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accidents on construction sites [7]. The lack of proper training has been
identified as a major cause of accidents on construction sites [8,9],
particularly in equipment-related incidents [10,11].

Normally, equipment operators go through stringent training pro-
grams. However, the following limitations compromise the efficiency of
the current training programs: (1) in current training programs, safety
is taught more at a theoretical level (i.e., through guidelines and reg-
ulations). This passive form of learning renders the content of training
highly prone to oblivion and precipitates the trainees into the state of
mindless compliance with safety codes rather than mindfully analyzing
the safety. Previous studies attest to inefficiency of the current practice
[12–17]; (2) the conventional operator training programs are expensive
and the operators would have only limited time on the actual equip-
ment during their training [13–16]; (3) the practical training is mainly
focused on motor skills; and (4) safety risks are very difficult and
dangerous to implement during the training with actual equipment
[18].

In recent years, Virtual Reality (VR)-based simulators are used to
train apprentices in many high-risk industries, such as aviation, fire-
fighting, military, medicine, and manufacturing [19–24]. The con-
struction industry also has adopted VR-based simulators for various
types of training programs. Simulators are used in such areas as safety
training [18,25–27], construction management and planning [28,29],
and equipment training [30–35]. Many of the major construction
equipment manufacturers nowadays provide training simulators that
represent the design and characteristics of their equipment [36–38].
There are also several dedicated companies specialized in the devel-
opment of training simulators for construction equipment [39–42].
These simulators consist of a motion platform, joysticks and/or steering
wheel, accelerator and brake pedals, and one or several displays. The
training simulators can considerably reduce the cost and risks involved
in operator training [43,44]. Nowadays, trainees are initially trained
with simulators to gain basic equipment handling skills. Only when the
basic skills are acquired are trainees allowed to use the actual equip-
ment. This practice is shown to increase the efficiency of training [45].

1.1. Problem statement

Despite the palpable advantages of training simulators and their
rising popularity, there are three main shortcomings: (1) focusing pri-
marily on theory-based physics (e.g., soil-blade interaction), fidelity,
and ergonomics [30,33,46–48], these simulators use hypothetical sce-
narios that place the trainees in (quasi-) static settings, where equip-
ment can execute the assigned tasks with no (or few) constraints im-
posed by the surrounding operations. Because operators of heavy
equipment need to have a sharp situational awareness to avoid conflicts
with other equipment and workers on construction sites [43,49], these
static settings are not very effective in preparing the operators for the
actual job on the site. Therefore, it is important for simulators to cap-
ture and represent the dynamics of construction sites. While some
manufacturers have recently started to introduce agent-driven mobility
in the training scenarios [42], this approach, too, has a drawback. The
behaviors of the current agents, which are based on limited data or
hypothetical assumptions, can hardly represent uncertainties and vo-
latility involved in the behavior of workers and equipment; (2) In the
current simulators, the interaction between players, environment,
construction processes and products are modeled based on known sets
of physical rules, historical data, and assumptions. Nevertheless, on one
hand, these rules are mainly defined by software developers, who are
not training experts and lack operational knowledge and historical data
about construction activities. On the other hand, the implemented rules
are usually based on well-established physical principles which, in
many instances, are either not sufficient or oversimplified to cover
different aspects of the interplay between actors and the environment
[50]. In recent years, and with the rising power of sensors, it is possible
to collect a large amount of data about how the environment behaves

with regards to actions made by operators [51,52]. However, these
valuable data have never been incorporated in VR-based training si-
mulators; (3) Existing simulators leave little flexibility for training
schools to develop customized curriculum. This is because the number
of scenarios provided by manufacturers is limited. On one hand, the
development of new scenarios at the training school requires technical
know-how that is often not available or too expensive to acquire. On the
other hand, given the efforts and time required for scenario develop-
ment [32], manufacturers do not offer customized scenarios.

It can be argued that the problems with existing training simulators
can be addressed, to a great extent, by replicating a realistic context of
construction work in VR training scenarios. A realistic context re-
presentation in simulators can help the trainees better develop skills
that normally require in-situ experience and cultivation.

In recent years, the advancements of the Internet of Things (IoT)
and Real-time Location Systems (RTLSs) technologies has made it
possible to capture various types of site and operation data that can be
used to represent construction sites in VR [53–75]. Additionally, ap-
plication and development of new surveying technologies, e.g., Laser
Detection and Ranging (LiDAR), and modeling tools, e.g., Building In-
formation Modeling (BIM), made it possible to capture and represent
the geometry and layout of construction sites with high accuracy
[76–82]. CityGML models of major urban areas are becoming increas-
ingly available [83,84], making the realistic representation of con-
struction sites in VR even easier [85,86]. Depending on the scope of the
work, these technologies are used to reconstruct certain aspects of the
construction sites in VR scenes. Most notably, site reconstruction has
been used for activity monitoring [50] and process analysis [35]. These
studies have indicated the value and significance of data acquisition
and representation for improving safety and productivity. Nevertheless,
the current state-of-the-art in construction site reconstruction is limited
to replaying the construction operations in VR. This means that the
developed VR scenes can only be used as materials for reviewing the
executed work [87]. While very valuable, these VR scenes are only
navigable and not interactable. In operator training simulators, the
context needs to be interactable so that trainees' performances can in-
stigate changes in the site and vice versa. The main challenge in moving
from navigable to interactable data-driven VR scene is to make the
data-driven context aware of and reactive to decisions made by trai-
nees. For instance, in the case where the trainee is trying to load a data-
driven truck with an excavator, the truck might leave in the middle of
the loading if the behavior of the truck is not dependent on the behavior
and state of the trainee-operated excavator. Therefore, it can be argued
that the logical interaction between scene and trainees requires bidir-
ectional feedback.

The authors have previously demonstrated the value of real data to
VR scenarios [88]. However, the idea was presented at a conceptual
and highly-abstract level, without providing a detailed framework,
comprehensive testing, and validation. Additionally, the presented
concept is limited to capturing the mobility of equipment in a VR scene.

In summary, in the current body of knowledge, there is no sys-
tematic insight into (1) the dimensions of context that need to be pre-
sent in a training simulator, (2) the types of data required to represent
various dimensions of the context, and (3) methods for converting
context data into a coherent context-realistic training scene that enables
bidirectional feedback between trainees and the VR scene.

1.2. Research objectives

Based on the aforementioned problem statement, this research aims
to develop a novel framework to generate coherent context-realistic
training simulators from data collected from actual construction pro-
jects to enhance the following aspects of construction training simula-
tors: (1) safety education, (2) teamwork, (3) interface, (4) education
design, and (5) versatility. The framework aims to provide a step-wise
guideline into (a) collection of appropriate data for context-realistic
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simulators, (b) development of agents and simulation physics from
actual site data and their integration into a scene, (c) scene-trainee
interactions in context-realistic scenes, and (d) context-based assess-
ment of the trainees' performance from safety, productivity, and quality
perspectives. It is hypothesized that by developing appropriate methods
to generate simulation agents and physics from site data, the above
objective can be met.

The structure of the paper is as follows. First, the research metho-
dology and the proposed framework is discussed in detail. Then, the
implementation of the proposed framework in a case study is demon-
strated. Following the case study, the results and effectiveness of the
framework are validated through a workshop with expert instructors
from an operator training school. Finally, the conclusions are presented.

2. Context-realistic training simulators

2.1. Research methodology

Fig. 1 provides an overview of the methodology used in this re-
search. Given the design nature of this research, a variation of design
research methodology is applied [102]. The methodology has 4 main
phases, namely literature review, requirement analysis, development,
and implementation, verification and validation. In the first phase, the
research gap is identified through an extensive literature review, as
presented in Section 1.

In phase 2, first, the research objective is formulated to address the
identified gap, as presented in Section 1.2. Based on the research ob-
jective, various aspects of the training simulators that are expected to
be enhanced are identified, as shown in Section 1.2. These aspects are
later used in Phase 4 to validate the proposed framework. Next, the
functional requirements of the new training simulators are identified

using the input from a number of training experts. These are the specific
features that are expected to be present in the new context-realistic
training simulators. This step is then subsequent by the identification of
different dimensions of context that need to be present in context-rea-
listic training simulators. This step, too, is done in collaboration with
the training experts. The functional requirements and the presence of
the relevant context dimensions are used to verify the proposed fra-
mework in Phase 3.

In Phase 3 of the research, the conceptual model of the proposed
framework is developed by building on the findings from the literature
review and developing relevant methods for generating data-driven
agents and physics. The conceptual model includes guideline into (1)
context capturing, (2) scenario generation, (3) context-user interaction,
and (4) context-based assessment.

Once the conceptual model of the framework is developed, the
framework is implemented in a prototype in Phase 4 of the research.
The developed prototype is verified against the identified functional
requirements. If the prototype is not verified, the framework is updated.
Once the framework is verified, the framework is applied in a case
study. The results of the case study are presented to training experts and
the ability of the proposed framework to meet the objective of the re-
search in improving the training simulators using context-realism is
assessed. During the validation phase, the 5 expected improvement
areas of the context-realistic simulators, which are mentioned in
Section 1.2, are used to compare the context-realistic simulators with
the existing ones. Based on the results of the validation, the adjustment
of the framework is undertaken, if needed.

2.2. Requirements analysis

With the research gap and objective identified in Section 1, the next
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steps in the research methodology were to identify the functional re-
quirements of the new training simulators and dimensions of the con-
text that need to be present in the simulators. These steps were taken in
collaboration with two training experts from SOMA College, which is
one of the biggest operator training schools in the Netherlands. The
instructors from SOMA College are deemed to be best positioned to
reflect on training simulators since the college has been using 18 VR-
based equipment training simulators as part of their curriculum for
several years. Accordingly, the instructors have comprehensive
knowledge and experience about the state of the art in the training
simulators and their pedagogical value.

Based on the limitations of the existing training simulators identi-
fied in Section 1, and in collaboration with training experts, three main
functional requirements are identified for context-realistic training si-
mulator: (1) the simulator must be able to represent actual mobility
patterns on the construction sites to help trainees hone their situational
awareness; (2) the simulators must reflect more realistic physics based
on data collected from the sites to generate a better feel about the
consequence of trainees' decisions on the environment; and (3) the si-
mulators must be interactable and coherent, meaning that there must
be a bilateral feedback between the scene and trainees.

It should be highlighted that the goal of context-realistic simulators
is not to require trainees to replicate the operations of the actual op-
erators, but to allow them to interact with more realistic mobility
pattern and environments. Accordingly, the users of the context-rea-
listic simulators are not expected to follow the same paths or opera-
tional patterns as the actual operators. In this sense, the context-rea-
listic simulators must offer the same flexibility to trainees as the
existing simulators.

In the next step, the dimensions of context that add value to the
training were identified in discussion with the training experts. Fig. 2
summarizes these dimensions. Essentially, the context of projects can be
categorized into four dimensions: (1) Environment, (2) Actors and
Materials, (3) Operations, and (4) Products.

Environment represents the hosting setting of construction projects
and encompasses such elements as the site layout/geometry, permanent
and temporary structures, surroundings, and weather condition. The
environment dimension in the VR scene helps trainees better relate
themselves to the setting of the work and better correlate the opera-
tional decisions with the site layout restrictions and different weather
conditions. This contributes to creating a more realistic feel about the
context of construction projects. Additionally, since the environment
hosts all other context dimensions, it provides a logical basis for dif-
ferent movement and operational patterns.

Actors are workers and pieces of equipment (e.g., excavators and
rollers) that execute different construction operations. During these
operations, materials will be consumed to generate or place products.
Actors and materials are of particular importance to context-realistic
VR scenes because they are highly dynamic and mobile. It is the mo-
bility of these elements that requires trainees to be continuously
mindful of the surrounding to avoid collisions with other equipment,
workers or materials on actual sites. The capturing and incorporation of
this dimension in the VR scene generate realistic and dynamic settings
wherein trainees can hone their situational awareness while acquiring
technical skills. As mentioned in Section 1, the current approach in
representing actors and materials on construction sites is sub-optimal
because agents used in these VR scenes are not able to effectively mimic
uncertainties and erraticness associated with the human behavior on
construction sites.

The next dimension of context is operations. An operation is defined
as an aggregation of coordinated work tasks of several actors who use
materials and a unique construction method to place a certain con-
struction product [89]. Excavation, pavement, and compaction are
examples of construction operations. While several operations can also
be aggregated into an activity (e.g., earthwork) [89], given the scope of
VR training, which is to prepare operators for a given task, it is

sufficient to limit the VR context to operations. Operations are im-
portant in VR training scenes because they (1) determine the training
objectives, and thereby tasks of trainees, (2) drive the interaction be-
tween actors and materials, and (3) regulate the behavior of actors. The
capturing and modeling of operations in the VR scene requires inferring
of the underlying patterns of actors' mobility and their inter-
dependences on the site. Once captured and modeled, data-driven op-
erations can be used to develop more realistic agents that can logically
interact with trainees in the VR scene.

The final dimension of the training context is the product. A product
is defined as the output of operations. In this sense, products could refer
to both physical products (e.g., an asphalt layer or a ditch) or changes
to state/characteristics of the physical products (e.g., compacted or
graded soil). Given this broad definition, modeling of products requires
capturing of both the physical entity (e.g., the geometry of the ditch)
and/or its state/characteristics (e.g., the degree of compaction of the
soil). Products are important in training scenes because they help
trainees form a frame of reference for how various actions result in
different types or quality of final products. The product data must be
correlated with operations to identify how different tasks in the op-
eration cause changes in products. As mentioned above, this can be
used as the basis for developing data-driven physics.

To have a realistic context in the training simulator, all the above
dimensions need to be captured and accounted for. Given the hetero-
geneity of these data, a comprehensive framework is required to sys-
tematically collect, integrate, synchronize and incorporate the data into
a coherent training scenario. To the best of authors' knowledge, such a
comprehensive framework is missing in the literature.

2.3. Proposed framework

Fig. 3 shows an overview of the proposed framework, which is the
result of several design iterations. In short, the proposed framework has
four main phases, namely, Context Capture, Context Generation, Con-
text-user Interaction, and Context-based Assessment. Context Capture
phase is concerned with the collection of relevant context data, which
were discussed in Section 2.2, from actual sites using a variety of sen-
sors and tracking technologies, e.g., GPS, camera, Inertial Measurement
Units (IMUs), infrared camera, laser scanners, etc. In Context Genera-
tion phase, the collected context data are translated into virtual models,
or in other words to the digital twin of the construction operations.
Hereafter, this process is referred to as virtualization. In this phase, a
portion of the virtual scene that fits the profile of the trainees (e.g.,
entry-level skills, expected exit level skills, target equipment, etc.) is
chosen for the training by the instructor. A trainee can either substitute
one of the actual operators or be added to the site as an operator of a
new piece of equipment. In Context-user Interaction phase, human-
computer interaction media (e.g., joysticks, head and eye trackers, Ki-
nect, head-mounted displays, etc.) are used to immerse the user in the
context-realistic VR site. Eventually, a set of safety performance metrics
(e.g., proximity, collisions, etc.) will be used to evaluate the perfor-
mances of trainees in terms of safety and productivity. The remainder of
this section describes each phase of the proposed framework in detail.

2.3.1. Context capturing
In Context Capturing phase, a set of technologies are used to collect

context data. It should be highlighted that the Level of Detail (LoD) of
the VR scene is directly correlated with the accuracy of the data col-
lection technologies applied in this phase. Due to the limited resources
available for accurate tracking of construction objects, it is important to
identify the appropriate technologies that provide a suitable LoD for
different dimensions of the construction context. Fig. 3 illustrates var-
ious types of sample technologies that can be used to capture different
dimensions of the context. It should be noted that different context
dimensions can accommodate different degrees of mobility of their
constituent elements.
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Environment capturing:
Objects in the environment dimension are either static or semi-

static. Static objects are those objects whose status (i.e., location, or-
ientation, and geometry) either do not change or the changes are of a
low significance to the context-fidelity of the VR scene. The best ex-
ample of this category is the surrounding environment of the site, i.e.,
the area beyond the site perimeter where no construction activities take

place. In essence, static objects of environment context can be best
modeled using available CityGML and digital cadastral data, which are
mostly generated from aerial photography and are often publically
available. Alternatively, on-site cameras, drones or LiDAR scanning can
be used for this purpose. However, given the cost and efforts required
for the processing of images or LiDAR data and the lower relevance of
this dimension to the training context, the use of these technologies

Fig. 2. Decomposition of Construction Site's Context.
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may not be entirely justified. Semi-static objects are objects that are
within the perimeter of the construction site and their statues change
slowly (i.e., in the order of several days or a month). Good examples of
semi-static objects are security fences and office containers. Given their
low mobility level, semi-static objects can be best captured using onsite
surveillance cameras. Recent research has demonstrated how camera
inputs can be easily used to virtualize semi-static objects on construc-
tion sites [77]. Again, other sensor solutions (e.g., RFID, UWB) can be
used, but may not be economically justified. The low update rate of the
publically available cadastral data makes them unsuitable for the vir-
tualization of semi-static objects. However, in the future, the integra-
tion of BIM models with progress monitoring data (e.g., collected by
LiDAR) can be used to generate as-is 4D BIM that can be used for vir-
tualization purposes.

Actor and material capturing:
Actors and materials dimension of the context is composed of dy-

namic or semi-dynamic objects. The status of dynamic objects change
rapidly and there is a high degree of human factor involved in the
mobility of these objects. Consequently, these objects are simulta-
neously the predominant causes and victims of accidents on the site
and, therefore, are very important to track and virtualize. The most
remarkable examples of these objects are equipment and workers. For
the mobile objects to be represented in the VR scene, it is required to
track the motions of the objects, which is defined as a combination of
location and orientation. Depending on the controllable Degrees of
Freedom (DOFs) of the equipment, motion tracking may require the
integration of multiple sensory data. For instance, the motion tracking
of an excavator requires a GPS for localization and at least 4 IMUs for
the estimation of the pose of the superstructure, boom, stick, and
bucket. Various types of technologies can be used for the tracking of
dynamic objects, including GPS, UWB, RFID, and camera. Previous
research has indicated the potentials of each of these technologies for
tracking mobile objects [53,57,69,72,73]. Considering the cost-accu-
racy-reliability ratio, integration of GPS and IMU remains the most
promising technology for the motion tracking of the mobile objects,
especially equipment. It is noteworthy that the increasing popularity of
Automated Machine Control and Guidance (AMC/G) technologies in
construction sites can greatly streamline the process of data collection
for mobile objects. The status of semi-dynamic objects changes at a
higher frequency than semi-static objects (i.e., changes happen in the
order of several hours to days). However, their mobility is usually based
on a premeditated plan or schedule and as a result, the need for in-
stantaneous human reflex based on their mobility is rather marginal.
Nevertheless, these objects have a considerable impact on how opera-
tions are carried out safely (e.g., route planning) on the construction
site and, therefore, are important to capture and virtualize. Examples of
semi-dynamic objects are the material stack (e.g., cement bags, re-
inforcement stacks, etc.). These objects can also be best tracked using
cameras. Alternatively, and especially for larger materials, sensor
technologies can be used for the localization. Examples of using RFID
for construction material tracking is presented by Song et al. [90].

Operation capturing:
As stated in Section 2.2, the operation dimension of the context is

the result of inferring operational patterns/cycles from motion data
captured from actors and materials. The core idea of operation capture
is to identify the nature of activities (e.g., swinging, digging, com-
pacting, etc.) of different actors and materials at different points in
time. This information is usually referred to as the state of the actors/
materials [91]. The inference of the state information from mobility
data can be done through two main methods: (1) rule-based method: in
this method, a number of heuristic rules can be applied to the mobility
data of actors/materials to infer their states [91]; (2) Machine learning:
different machine learning methods (e.g., deep learning, support vector
machine, etc.) can be used to identify the state of the equipment based
on a set of indexed historical data. Golparvar-Fard et al. [54] presented
an example of how support vector machine can be used for the state

identification of excavators. Once the states of different actors and
materials are identified, the repetitive patterns in the behavior of actors
can be extracted from the data to identify the underlying operation
logic of different actors. These operational patterns can be used to de-
velop realistic agents that can interact with the trainees in the VR scene,
as will be discussed in Section 2.3.2.

Product capturing:
The product dimension of context can incorporate objects with

various levels of mobility. The elements in this dimension are the most
difficult to track given their highly volatile nature and the complex
interaction with human-induced operations. Depending on the type of
product, e.g., trench or compacted asphalt layer, different types of
technologies can be used to track the changes in the state of the pro-
duct. In most cases, remote sensing technologies and embedded sensors
can be used to track product status in real time. For instance, as shown
in the recent work of the authors [92], linescanners and embedded
thermocouples can be used to track the temperature of hot asphalt in
real time. Additionally, nuclear density gauge can be used to measure
the density of the compacted asphalt. Another example of product
capturing is the tracking of changes in the terrain states in the earth-
work operations. The application of LiDAR technologies for capturing
and monitoring the site topography in real-time has been previously
studied [93].

2.3.2. Context-based scenario generation
Once the data about the various dimension of construction context

is collected, the next phase of the framework is to translate the sensory
data to a virtual scene that can be used in the training simulation. The
assumption of this phase is that the data collected from the previous
step are either highly accurate or processed [72] to be readily usable for
the virtualization.

Environment and 3D model development:
The first step in the preparation of a scenario is the virtualization of

the data. Various types of context data collected in the previous phase
need to be virtualized in an interactable environment. The environment
data need to be translated into a 3D model of the site and DTM. For this
purpose, GIS platforms can be used for data integration, as shown in
Fig. 4. The GIS platform can integrate various sensory, surveying and
cadastral data in a seamless way. As shown in Fig. 4, different types of
data can come from various sources and in different formats. For in-
stance, the terrain model can be obtained from open-source heightmaps
or LiDAR data. This data can be imported into the GIS platform, where
they can be converted to a surface mesh. Additionally, data about the
surrounding buildings, underground utilities, the road network, etc.,
can be extracted from the publically available cadastral data. This data
can be imported into the GIS platform as CityGML data or Shapefiles. If
sensors are used to track semi-static objects, the sensory information
can be converted into a graphic representation of objects (e.g., build-
ings and fences) in the GIS platform. Finally, various types of 3D design
information models (e.g., BIM) can be used to incorporate the semi-
static objects into the GIS platform. These files are commonly object-
oriented and data-rich. However, the attributes of objects are not of
great relevance to the virtual scene. The GIS platform can convert the
object-related information to geometry-only representation, which is
sufficient for the training purposes. Once all the environment data are
imported to the GIS platform, they can be merged into surfaces that
represent the actual site. The integrated file can, then, be imported into
a game engine, where it can be combined with operation-driven agents,
actor/material, and product data.

Data-driven actors and materials:
As for actor/material data, the time-stamped motion data collected

from sensors can be directly imported into the game engine. The sen-
sory data must be registered with respect to (1) the tracked object, and
(2) the tracked element (e.g., bucket). Another component for the vir-
tualization of actor/material data is the 3D model of the objects. There
are currently many royalty-free 3D object libraries from which these 3D
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models can be retrieved. Additionally, the 3D models of equipment can
be obtained from the manufacturers or by laser scanning. These 3D
models can be directly imported into the game engine. It is of cardinal
importance to make sure that different components in 3D models of
dynamic objects are organized in such a way that the kinematic chain of
actual objects is captured. For instance, as shown in Fig. 5, different
joints and body parts of an excavator should be organized in the pre-
sented hierarchy to ensure easy integration with the sensory data. In the
presented example, by attributing the location data to Joint 1 and
linking the Euler angles from sensors to the associated Joints 1, 2, 3, 4,
and 5, the motion of the excavator can be simulated in the VR scene.
Concerning the LOD of the simulated or replayed workers, it is

sufficient to represent their movements as walking or static figures. In
other words, capturing the postures and motions of workers offer a
limited advantage at the cost of additional requirements for complex
data collection/preparation and computation power.

Data-driven agents:
Next component of the context-realistic scenario is the data-driven

agents. These agents are essential in the scenario because interaction
with only data-driven mobility on site can cause incongruity in the
logical sequences of activities or unrealistic encounters. For instance, if
a trainee is supposed to replace an excavator operator from an actual
project, his/her working pattern and timing may not be synchronized
with the motions of the truck that has worked with the actual excavator

Fig. 4. Data fusion and virtualization of context data.

Fig. 5. Example of 3D model preparation for virtualization.

F. Vahdatikhaki, et al. Automation in Construction 106 (2019) 102853

7



on the site. As a result, if the truck in the VR replicates the actual
motions on site, there can be situations where the truck leaves in the
middle of a loading operation. To circumvent these incongruities, as

shown in Fig. 6, mobile objects not operated by trainees can be cate-
gorized into two classes, namely, interacting and non-interacting ob-
jects. Non-interacting objects are objects whose behavior on the site
does not depend on the decisions and actions of the trainee-operated
equipment. These pieces of equipment can be represented by simply
replaying the motion data. Interacting objects, on the other hand, are
those whose actions and operations depend on the performance of
trainees. To avoid breaches in the logical progression of the scene, these
pieces of equipment should be represented by computer agents. These
agents represent the typical behavior of actors and materials in different
types of projects and they can be modeled based on the operation data
collected in the previous phase. There are two approaches to develop
simulation agents, namely heuristic, and data-driven approaches. In the
heuristic approach, existing simulation models and/or descriptions of
construction methods are used to develop agents. In the data-driven
approach, the state information is translated into state diagrams, which
represent agents in a simulation, as shown in Fig. 7. An important step
in the preparation of data-driven agents is the identification of corre-
lations between the start/end point of various activities (e.g., green and
red dotted lines in Fig. 7). These correlations define the communication
and interaction protocols between various agents. This can be done
through pattern matching and machine learning approaches. However,

Fig. 6. Classification of equipment in the VR.

Fig. 7. Data-driven agent development.
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further discussion of these approaches is out of the scope of this paper
and will be discussed in the future work of the authors. Regardless of
the source of agents (data or heuristic rules), the necessary agents can
be stored and retrieved from a database of agents.

Data-driven physics:
The final component of the scenario is the product data. The product

data can be used to create or augment the physics applied to the scene.
These data-driven physics would help increase the realism of the scene
from the perspective of the user-scene interaction and how the scene
would react to decisions made by the trainees. One instance of data-
driven physics can be using the soil moisture data, i.e., collected by soil
moisture sensor, from the site to feed the soil physics models. The
moisture can be used to determine the cohesion factor of the soil based
on the site condition [47]. Another example of data-driven physics is
the use of temperature data collected by infrared cameras and em-
bedded thermocouples during paving operations to model the cooling
rate of asphalt, as shown in Fig. 8. The details of the data collection
procedure are presented in the previous work of the authors [92]. The
cooling rate of asphalt is very important in the pavement operations
because asphalt can be optimally compacted only with a certain range
of temperature. The compaction outside this range results in under- or
over-stressed asphalt [94]. The data-driven cooling curve can be im-
plemented in the game to simulate how each part of the asphalt cools
down after it is placed on the mat.

Scenario generation:
Once all the data are imported to the game engine, the next step is

to prepare the scene. The main assumption in this step is that there is a
library of projects for which virtualized scenes are available. In this
phase, training instructors should make a few choices based on the
learning objectives of the particular training and the skill level of the
trainees. As shown in Fig. 9, the generation of the scene depends on
selecting the appropriate site, the number/type of equipment, the
agent-driven equipment, the time period, the site condition.

In the first step, the instructor should identify projects that would fit
the learning objectives of the training. Parameters to consider in this
step are the desired assignment or task, the magnitude of the project,
and the location of the project. For instance, for preparing the trainees
for safe excavation work in congested sites, the instructor may choose a
building foundation construction project in an urban area.
Alternatively, if the learning objective is to sensitize the trainees to the
coordination needed for effective compaction work, a road construction
project, where multiple rollers worked together, can be chosen.

In the next step, the instructor decides on the number and type of
equipment that will be operated by the trainees. This decision, again, is
made based on the learning objectives of the training, the number of
trainees, the size of the project (i.e., to ensure the site is big enough for
the given number of trainees), and the number and types of equipment
available on the selected site.

The next step in the process is the selection of the portion of the
work that fits the scope and learning objectives of the training. For
instance, if the learning objectives include honing the situational
awareness of trainees, instructors may want to isolate a part of the
project where the site was very dynamic. Alternatively, the instructor
may decide to focus more on the dexterity and motor skills of novice
learners and, therefore, may opt for a more static part of the project.
Another important parameter in selecting the period of time is the
significant incidents (e.g., near misses) that happened in the project.
Such incidents provide a very effective and realistic exposure for trai-
nees to hone their skills in avoiding everyday risks on the site. These
incidents, which may have been caused by expert operators on the site,
can be of significant value for trainees to develop their emergency re-
activeness and management.

Next, the instructor determines the level of context realism. Context
can be incorporated in the simulator at different levels of completeness.
This is because the exposure to the complete context can be over-
whelming for novice learners who may need to focus more on the
dexterity at the beginning of the training. For these trainees, a high
degree of context-realism can impose cognitive overload and become
counter-productive as it makes the sense of accomplishment and ful-
fillment for trainees more difficult to come by. The exigency of context
realism will increase as trainees build up skills. For more skillful trai-
nees, the increased context-realism will provide a better opportunity for
developing situational awareness and more contextualized skills. The
main advantage of the proposed framework is that it allows instructors
to adjust the degree of context realism by including/excluding certain
elements of the context, e.g., certain surrounding equipment or
workers. The decision about the degree of context-realism can be made
by tracking the performance of individual trainees and based on their
progress.

In the final step of this phase, site condition can be modeled. In this
step, the instructor can decide to either use the weather condition from
the actual project (this can be retrieved from publically available me-
teorological databases) or simulate different types of weather condi-
tions (e.g., rain, wind, snow, etc.).

2.3.3. Context-user interaction
As shown in Fig. 9, once a scenario is built, trainees can start the

training by interacting with the VR simulator. Conventionally, con-
struction VR simulators expose trainees to the scene through a set of
screens. In recent years, the advent of the VR Head Mounted Displays
(HMD), e.g., Oculus Rift [95], and advancements of Graphics Proces-
sing Units (GPUs) allow the replacement of the screen with VR HMDs.
This would allow a deeper immersion of trainees in the VR scene and
enables a more realistic interaction with the surroundings. Especially,
given that the core objective of the proposed framework is to support
the development of trainees' situational awareness, HMDs can better

Fig. 8. Determining the cooling curve of asphalt based on embedded thermocouples and infrared camera.
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enable trainees to navigate and monitor the site. Of particular interest
of instructors is the instillment of proper manners of shoulder check in
trainees [45]. This cannot be easily achieved using the conventional
screen system approach. HMD, on the other hand, is ideally applicable
for this purpose. The trainees can use joysticks that resemble actual
control units on the equipment to steer the equipment.

Another important feature of the proposed framework is the support
for multi-player training. The multi-player featured can be added to the
game engine through the local network or cloud-based platform. The
multi-player setting not only helps better sensitize trainees to activities
of other peers but also can be used to assign collaborative tasks to
multiple users. This can be used as a platform for fostering collabora-
tion and coordination. As shown in Fig. 10, multiple trainees can work
in the same team (e.g., one trainee operates the truck and another
operates the excavator) or in different teams (e.g., each trainee operates

an excavator). When working in a team, trainees should be aware that
their performance (productivity and safety) would influence the entire
operation. Trainees should try to avoid collisions with the trainee-
controlled, agent-controlled, and data-driven equipment.

2.3.4. Context-based assessment
The final phase of this framework is the context-based assessment of

trainees' performances. In the conventional simulators, the focus of
assessment is mainly on productivity, although attention to safety
started to surface in recent years. In this framework, since the focus is
placed on the context realism, extra assessment can be performed with
respect to how trainees operated in the context. This includes an as-
sessment of safety performance with respect to site mobility.
Additionally, since context-realistic simulators incorporate more rea-
listic physics, the performance can also be measured from the quality

Fig. 9. Process of generating a scene.

Fig. 10. Immersive VR-based visualization and interaction components (Hammad et al. 2016).
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standpoint in more details.
The safety performance is evaluated based on (1) number of colli-

sions, (2) near-miss events calculated based on collisions between
safety buffers of the mobile objects, and (3) head motions of the op-
erator (i.e, the tendency for shoulder check). Of the main three safety
components, the identification of near misses is more challenging. The
authors have previously presented a method for real-time identification
and warning of hazardous proximity based on the generation of safety
buffers, i.e., dynamic equipment workspace [96]. In this approach, the
complex geometry and kinematics of the equipment are considered to
determine the space required for the safe operations of different
equipment. The same approach can be implemented in the context of
training simulators. As shown in Fig. 11, the safety buffers can be
generated in real-time in the VR and any collisions between the buffers
would indicate a near miss situation, whether or not they eventuate in
actual collisions. The details about the shapes and sizes of different
buffers can be found in the previous work of the authors [96].

The productivity performance is measured considering (1) the
average cycle time of the operation, (2) the waiting time and length in
the queue, (3) the length and the smoothness of the paths generated by
the trainee, (4) the ability to control multiple DOFs simultaneously, and
(5) the ability to coordinate with other trainees or agents.

The quality performance can be assessed based on (1) the depth and
shape of the excavated area and comparison with expected design, (2)
compaction rate of the asphalt at different parts of the mat, (3) the
temperature window within which different parts of the asphalt were
compacted, and (4) efficiency of the collaboration between different
players by measuring the completeness of the work and the overlap
between work zones of different players.

The proposed VR environment can record the training session and
mark parts of the performance where trainees did not perform sa-
tisfactorily, from productivity, safety, and quality standpoints. The
trainees can review their performances and observe their mistakes at
the end of each training session.

3. Implementation and case studies

The proposed framework is implemented and tested through a case
study. Fig. 12 shows the input data and modules of the developed
prototype in Unity. The prototype requires the user to input environ-
ment data (i.e., 3D model of the site), actor data, processes data, and
product data. The prototype comprises five main modules, namely,
motion replay, equipment agent, equipment control, product and

feedback modules. The Motion Replay Module is designed to read the
actor data, which is represented in the form of time-stamped location
data, and convert this to the movement of the associated 3D models.
The Equipment Agent Module, on the other hand, uses the process data,
e.g., cycle distribution information and propel the agents. The Equip-
ment Control Module converts the trainees' command (from keyboard
or joysticks) to the motion of the trainee-controlled equipment. The
Product Module reads the product data, which represent the behavior
of the product in response to environmental and operational stimuli,
and virtualize the product. Finally, the Feedback Module tracks the
performance of the trainee and assess the productivity, safety, and
quality of his/her performance.

3.1. Case study

In this case study, a set of data collected from an actual road con-
struction site in the Netherlands are used to develop a context-realistic
training simulator. The captured project is a surface rehabilitation of a
250m stretch of A-15 highway near Rotterdam. Fig. 13 shows the lo-
cation of the project as extracted from Google Map.

In a typical paving operation, the paver is used to lay the hot mix
asphalt on the base layer. The rollers would only start the compaction
after the freshly laid asphalt is properly cooled down. The clearance
distance between the rollers and paver is a factor of the type of the mix,
weather condition, compaction speed, truck arrival rate, etc.
Additionally, two workers move very close to the paver to level the
edges of the asphalt layer using rakes. In this case study, two rollers
compacted the layer laid by one paver. The three pieces of equipment
were tracked using Differential GPS rovers [97]. The workers were not
tracked. As for the product capturing, thermocouples and linescanners
were used to track the temperature of the asphalt during the operation,
as explained in the previous work of the authors [92]. This setting
creates a grid on the asphalt layer and captures (1) the initial tem-
perature of each cell of the asphalt, and (2) the average cooling rate of
the asphalt.

To create the 3D model of the site, two different methods are ap-
plied and compared. In the first approach, the digital topographic data
from the Dutch public services for maps [98] are used. The data, in-
cluding the terrain model, building parcels, height information, water
areas, and road network, are exported as Geography Markup Language
(GML) file from PDOK website and imported to InfraWorks 360. Then,
using the height information, the footprints of the buildings are ex-
truded. The road network information is used to reconstruct the 3D
roads in InfraWorks. Fig. 13(b) shows the output of this approach. In
the second approach, the built-in feature of InfraWorks is used to re-
construct the 3D model of the site. InfraWorks extract terrain and other
topographic information from OpenStreetMaps database and auto-
matically drape them based on a set of predefined rules. Fig. 13(c)
shows the result of applying this method.

Table 1 compares the two approaches based on a number of criteria.
In terms of accuracy, the GML-based solution is slightly advantageous
[99]. The InfraWorks-generated model has some irregularities in the
representation of the road network that necessitates some manual ad-
justment. Based on the CityGML standard, the LoD of the model in both
methods is 2 [84]. In terms of more realistic texturing and draping,
InfraWorks has a clear edge. While both methods originally generate
DTM that can be used in the game engine to model soil deformation, the
conversion to Filmbox (FBX) causes the DTM to be transferred into a
mesh. In order to enable terrain deformation, some manual adjustment
is required in both methods to convert the mesh back to the terrain.
InfraWorks is user-friendlier since the process is completely automated.
Additionally, the data used by InfraWorks are more frequently updated
[99]. BIM models can be easily integrated into the 3D model in both
methods. Overall, based on the visual analysis, the model created using
the built-in feature of InfraWorks 360 seems to be more photo-realistic
and less laborious to create. In this case study, this model is used for the

Fig. 11. Monitoring near misses using safety buffers.
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further development of the simulation scene.
In the next step, the 3D model of the site is exported as FBX file and

imported to Unity 3D [100], which is used as the game engine. 3D

Warehouse [101] was used to find, clean and adjust the models re-
presenting the paver, rollers, and workers. To link the GPS data to the
VR scene, the API of Unity 3D is used to program the connection

Fig. 12. The input data and modules of the implemented prototype.

Fig. 13. Project's Location (adapted from Vahdatikhaki et al. 2016).

Table 1
Compassion of the two approach based on the model requirements.

Requirements GML-based Model Infraworks 360

Accuracy ±2m heterogeneous but overall slightly lower than GML-based data (Bhattacharya 2012)
Resolution LOD2 (e.g., buildings as generalized objects) LOD2 (e.g., buildings as generalized objects)
Visual Realism The terrain and the objects are not fully textured The terrain and objects are textured
Terrain Deformability Not available in native format Not available in native format
Ease of Use Requires manual integration, texturing and draping Automated process
Reliability Updated every 2 years (Bhattacharya 2012) Varied but generally more updated
Extensibility When imported to Infraworks, BIM models can be integrated BIM models can be easily integrated
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between Excel and Unity. The scene reads the GPS data from an Excel
sheet and moves the 3D models of equipment based on the GPS data.

It should be highlighted that in the process of importing the
InfraWorks model to Unity, the geo-referencing of the data is lost.
Therefore, the site model has a local coordinate system defined by the
user. As a result, all the objects in the game engine are placed in an
arbitrary (or local) coordinate system. Consequently, sensory data (e.g.,
GPS) cannot be directly integrated into the model. To resolve this issue,
the transformation matrix (M) that translates the two coordinate sys-
tems is found and used to map the sensory data of the (semi-) mobile
objects into the local coordinate system of the VR scene. For this pur-
pose, first, the latitude/longitude data are projected to the standard
Universal Transverse Mercator (UTM) coordinate system. Next, the
corresponding coordinates of three points in the real world (i.e., X, Y, Z)
are found in the VR world (i.e., x, y, z). The transformation matrix for
this system can be found based on Eq. (1).

= ×

X X X
Y Y Y
Z Z Z

M

x x x
y y y
z z z

1 1 1 1 1 1

1 2 3

1 2 3

1 2 3

1 2 3

1
1 2 3

(1)

where:

Xi, Yi, and Zi are the coordinates of the point i in the world system
xi, yi, and zi are the coordinates of the point i in the VR system
M is the transformation matrix

Transformation matrix has two components for rotation R, and
translation T, assuming that scale is intact, as shown in Eq. (2).

=M
R T
0 1

3,3 3,1

1,3 (2)

where:

R is a 3×3 matrix formed based on the Proper Euler angles
T is a 3×1 matrix based on the Euclidean translation

Matrix R can be formed as shown in Eq. (3).
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sin sin cos sin cos cos sin cos cos cos sin sin

(3)

where:

α, β, and γ are rotations around X, Z, and X axes, respectively

Matrix T is shown in Eq. (4).

=T
t
t
t

x
y

z (4)

where:

tx, ty, and tz are the value of translation along X, Y, and Z axes,
respectively

The formation of Eq. (1) leads to a nonlinear 9-body problem system
which can be solved numerically, provided the three points are not on
the same line. Once solved, this equation would yield the transforma-
tion matrix M that transforms all the location data from the world
system to the VR system.

Once the environment data are fully imported into Unity, two dif-
ferent scenarios are developed. As shown in Fig. 14, there are four main
components in both scenarios: (1) the paver: the equipment that lays
the fresh asphalt on the base layer; (2) workers: two laborers that use
rakes to level the freshly laid asphalt at two opposing edges of the as-
phalt layer; (3) master roller: the roller that leads the compaction op-
eration and determines the compaction pattern and path; and (4) slave
roller: the roller that follows the master roller and should always re-
main in synch with it. In both scenarios, the paver is driven by the GPS
data and workers are represented by simple agents that follow the paver
at two opposing edges of the road. The first scenario focuses on the
controlling ability of the trainee and requires him to operate the slave
roller. The trainee should try to operate safely and remain in synch with
the master roller, which is driven by the GPS data. The second scenario,
on the other hand, concentrates on the strategic decision making of the
trainee and requires him to operate the master roller. The trainee
should lead the compaction by setting the pattern and path of the
compaction. The slave roller in this scenario is driven by an agent, who
observes the master roller and replicates the same path on the unpaved
section of the road immediately next to the compacted area. To develop
the agent, the movement patterns of two compactors were closely ob-
served. Fig. 15(a) shows a period of coordinated compaction by two
rollers. As can be seen, The slave roller maintains a distance with the
master roller and performs the compaction. During this process, the
slave roller travels back and forth for a certain distance. Fig. 15(b)
shows the travel distances in several cycles of compaction and the
changes in the states of the roller (i.e., compaction and returning). This
figure represents an instance of the process capturing from actual
construction sites. A similar analysis is performed for nearly 1 h of co-
ordinated compaction. Accordingly, the probability distribution of
rollers' cycle length, the distances between master and slave rollers, and

Fig. 14. Main objects in the training scenarios.
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the rollers' speed are determined as shown in Fig. 15(c) to (e). Based on
the observed patterns and values, an agent is developed for the slave
roller. Fig. 16 shows the roller agent developed as an example of
equipment agent module. In this Figure, the slave roller waits for the
master roller to position itself on the asphalt. Once the master roller
starts the compaction, the slave roller as well starts the compaction at a
randomly generated distance from the master roller based on the dis-
tribution shown in Fig. 15(d). After this, the slave roller starts com-
pacting along the same direction as the master roller for a single cycle.
The length of the cycle is determined based on the distribution shown in
Fig. 15(c). Once one cycle is complete, the slave roller again checks the

updated location of the master cycle and repeats the above steps for
another cycle. In both scenarios, the mission is to compact all parts of
the newly laid asphalt at least thrice. As for the period of simulation, a
portion of the total project is selected where the paver was working
continuously, i.e., the operation was not disturbed by the arrival of
trucks.

Regarding the data-driven physics, the cooling curve of the asphalt
is extracted from the collected temperature data, as shown in Fig. 17(a).
This curve represents the rate at which the asphalt layer cooled down
on this particular site. Based on the input from the project manager, the
used asphalt is best compacted at the temperatures between 120 °C and
80 °C. To implement these physics, the Product Module models the
asphalt layer as a grid, corresponding to the same grid generated by the
data capturing mechanism, as shown in Fig. 17(b). First, the initial
temperature of each cell after the placement by the paver is determined
based on the collected data. The initial temperature needs to be based
on the actual data because its value varies depending on the weather
condition, the time between the transportation of the asphalt to the site
and placement on the mat, the type of the paver, etc. After the place-
ment of the asphalt layer, each cell cools down based on the cooling
curve shown in Fig. 17(a).

Upon the completion of the scenarios, the interaction mode of the
simulator is developed. The trainee is immersed in the VR scene using
an Oculus Rift. The use of VR kit allows a deeper and wider interaction
with the scene, especially for safety purposes, and makes it possible to
enforce and monitor shoulder check during the training. The control of
the equipment is done through a keyboard. The use of the keyboard is a
limitation of the developed prototype and it should be replaced with a
joystick in the future. Fig. 18 shows an instance of user interaction with
the simulator. The selection of the scenario (i.e., slave or master mode)
is done at the inception of the training through a drop-down menu.
While the training is running, the compaction contour plot is generated
and provided to the operator. This contour plot demonstrates the
number of times each part of the asphalt is compacted. For this purpose,
a cell-based counter is used to count the number of time a roller collides
with (i.e., compacts) each cell. As shown in Fig. 19(a), color coding is
used to present the compaction contour plot. The trainee can use this
plot to determine which parts of the road still require compaction and
how many more passes. Also, the trainee can decide to speed up or slow
down based on these inputs. Additionally, the temperature contour plot
of the asphalt is provided on a separate smaller window on the scene.
Trainees can see this information to determine the current temperature
of the asphalt at different parts of the mat, as shown in Fig. 19(b).

At the end of the training session, the Feedback Module provides
several types of productivity, safety, and quality-related feedback.
Table 2 summarizes all feedback components provided to the trainee.

Fig. 15. (a) Example of rollers' movement, (b) State-distance diagram of the
sample compaction period, (c) Distribution of rollers' cycle path length, (d)
Distribution of distances between two rollers, (e) Distribution of rollers' speed.

Fig. 16. State diagram of the slave roller.
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The productivity feedback is concerned with the percentage of different
levels of compaction achieved, the average number of passes for the
entire road, the training time and productivity. Productivity is defined
as the completed compaction area (i.e., cells with three or more passes)
divided by the overall time. The safety feedback, on the other hand,
focuses on the number of actual collisions, near misses and shoulder
check. Fig. 19(c) shows the feedback report provided to the trainees.
Quality feedback focuses on the notion of efficient compaction. This
index measures how many of the compacted cells received both the first
and the last compaction within the temperature window. As an ex-
ample, the compaction efficiency of 40% suggests that 60% of the cells
have received at least one compaction outside the compaction tem-
perature window.

Table 3 presents all the instruments and human capital used for this
case study and the associated costs. The most significant investment
was manpower. As shown in this table, many of the cost elements are
not borne for this project. GPS, thermologger, and linescanner are used
mainly in the operator support system of paving equipment to improve
productivity and safety. These type of data are now becoming in-
creasingly available through the automated machine guidance and
control systems of construction equipment. In this sense, context-rea-
listic simulators can be considered as a by-product of using operator
support systems on construction sites. The only exclusive cost-bearing
elements of the case study were (a) thermocouples used to capture the
core temperature of the asphalt, which amounted to approximately
€20, and (b) Oculus Rift, approximately €550. The software suites used
for this project are all available freely through educational and personal
licenses. The development of the prototype and implementation of the
case study took about 160 man-hours. However, this includes the time
to develop some of the underlying platforms that can be reused later on
for other scenarios (e.g., GPS to motion module in Unity, underlying
agent behavior, etc.). While they had some programming background,
the development team had mostly very little background in game de-
velopment, and this represents the ease with which this framework can
be implemented without major skills in game development. Having said
that, it should be also added that the many of the developed platforms
can be used across different scenarios and the time required to prepare
new scenarios based on a new set of sensory data will be considerably
less. All in all, when the prototype modules are improved to commercial
units, the educators are expected to be able to use data available from
project with relative ease and low costs.

3.2. Validation

The proposed method and implementation have been validated
through a workshop with five training experts form SOMA College. In
the workshop, first, a brief overview of the proposed framework was

Fig. 17. (a) Data-driven cooling curve of asphalt, and (b) implementation of the cooling physics in the scene.

Fig. 18. User interaction with the simulator.
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presented to the instructors. Subsequently, the developed prototype
was demonstrated and offered for hands-on trials. Next, instructors
were asked to fill a questionnaire to answer a few questions about the
context-realistic training simulators. As shown in Tables 4, 10 questions
were about scoring the usefulness of different aspects of the proposed
training simulator from 1 to 5, representing the range from absolutely
useless to very useful. As shown in this table, a strong majority found
the use of actual context for training simulator very useful (average
score of 4.8). Similarly, a strong majority found the integration between

agents and real data useful (average score of 4.5). Overall, the effec-
tiveness of the context-realism in addressing different entry levels of
trainees, improving situational awareness, providing more curriculum
development flexibility, improving the interface, and preparing the
trainees for different types of work were all confirmed with high
unanimity. However, although its value is confirmed, there seems to be
less consensus on the extent to which context-realistic simulators can
contribute to improving teamwork competencies (average score of 4).
This can be partially because, as mentioned by the instructors, it is

Fig. 19. Context-based feedback to the trainees.

Table 2
Feedback provided to the trainees.

Category Feedback Description

Productivity Compaction profile Percentages of cells with no pass, one pass, two pass, and more than two pass
Compaction Index Average number of passes for all cells
Time The overall time of the training session
Productivity Area of cells with two or more number of passes divided by time

Safety Collisions Number and instances of collisions with workers and other pieces of equipment
Near Misses Number and instances of collisions between safety buffers of the operated equipment and other equipment/workers
Shoulder Check Number and instances of failed shoulder check during reverse motions

Quality Efficient Compaction Index the ratio of compacted cells that received both the first and the last compaction within the temperature window
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better to have scenes with a bigger size of the fleet. Also, there seems to
be less unanimity about the use of data-driven physics (average score of
4). However, instructors mentioned that they are slightly concerned
about the cost and efforts associated with accessing/collecting the
product data on the site rather than its applicability for training.

In the final part of the workshop, instructors were asked to score
their existing simulators in 5 categories, namely, safety education,
teamwork, interface, education design, and versatility (i.e., the ability
to reflect on training for different types of job/equipment), so that a
comparison can be drawn between the existing and context-realistic
simulators. As shown in Fig. 20, the context-realistic simulator scored
higher in all categories except versatility. The instructors mentioned
that they appreciate the salve-master setting of the prototype and found
it a major improvement over existing mostly static scenarios. As for
education design, the instructors mentioned that they could see the
benefit of the context-realistic simulators in terms of improved freedom
and flexibility in curriculum design. However, when it comes to ver-
satility, the instructors believed that the existing simulators are already
very versatile and able to address various types of training. However,
they appreciated the fact that the proposed framework can generate
scenarios from actual data with relative ease. The instructors mentioned
that they would really like to experiment with the scene preparation to
better judge the ease with which the scenarios can be built.

4. Discussions

The presented work offers the following contributions to the body of
knowledge: (1) the functional requirements of context-realistic training
simulators are systematically identified and formulated. (2) a sys-
tematic framework that elaborates the steps required for the develop-
ment of context-realistic training simulator is developed. It is shown
that the development of data-driven context-realistic training simula-
tors cannot be realized by merely visualizing the raw sensory data in a
VR environment; (3) an approach for the integration of site data and
computer agents is presented. It is shown that it is feasible to develop
realistic agents from the site data and thus ensure that the training
scene is coherent and interactable; and (4) an approach for the devel-
opment of physics from site data is presented. It is shown that site data
can be integrated into the VR scene to better mimic how the environ-
ment changes with respect to decisions made in the VR scene.

By highlighting the importance, relevance and feasibility of (1)
collecting appropriate context data, and (2) developing data-driven
agents and physics, this framework can be used by the data science and
construction automation community as a roadmap for the future tech-
nological needs that can enhance the next generation of training si-
mulators. Also, the framework contributes to the education science
community by indicating the new potentials of context-realistic and
data-driven simulators and by urging them to further the scope of the
requirements from VR training towards instillment of safety education.

From a more practical standpoint, it is evidently shown by the case
study that construction training schools can benefit from the proposed
new type of simulators to better integrate their safety training with

technical training. The proposed framework provides an environment
for students to learn about safety issues through learning from their
mistakes in the context-realistic VR scenes. Additionally, these simu-
lators can be used to tightly couple in-simulator and on-equipment
training. When on-equipment practices are virtualized (1) instructors
can review and analyze trainees' performances in VR scenes using safety
evaluation criteria that cannot be monitored through visual inspection
(i.e., current practice), and (2) trainees can replicate on-equipment
practices in the simulator to correct their mistakes. This will result in
training schools being able to use their equipment-based training,
which is costly and dangerous, in a more effective way.

Finally, the proposed framework offers a systematic approach to-
wards the development of a comprehensive virtual model of actual
construction projects that incorporate various levels of implicit (e.g.,
asphalt temperature and compaction paths) and explicit (e.g., paver
motions) data. This virtual model can serve as a digital twin of con-
struction operations that can be used for other purposes such as simu-
lation and optimization of construction operations, safety and pro-
ductivity analysis of projects, analysis of the root causes of variability in
construction operations, and archiving and claim management.

5. Conclusions and future work

This research presented a novel framework for the next generation
of training simulators, which focuses more on the context realism, as
opposed to photo- or physics-realism. In these simulators, several types
of data (i.e., product, actors, process, and environment) are used to
develop a context-realistic training simulators. A comprehensive de-
scription of the construction context and a detailed description of the
framework for the preparation of training simulators was presented. A
prototype was developed and a case study was conducted to demon-
strate the feasibility of the proposed framework. The developed pro-
totype is presented to a group of operator training experts and it is
shown that the context-realistic simulator has a great potential to im-
prove the operator training simulators in various aspects.

It can be concluded that: (1) existing sensing and tracking tech-
nologies enable the collection of a wide variety of implicit and explicit
data about construction processes, products, environment, and actors;
(2) it is shown that the plethora of site data collected from the site can
be synthesized into a context-realistic training simulators. It is de-
monstrated that data analytics approaches can be used to generate in-
ferred knowledge about construction processes and convert this
knowledge into computer agents that can replicate the behavior of
actual operators. The seamless integration of site lay out, mobility data,
data-driven physics, and data-driven agents in context-realistic simu-
lators is fully demonstrated; and finally (3) through a workshop with
expert training instructors, it is shown that context-realistic training
simulators have several advantages over the existing simulators spe-
cially with respect to safety education (i.e., situational awareness),
development of teamwork skills and the provision of more immersive
and realistic training experience.

There are a number of limitations in this research; (1) the case study

Table 3
Costs associated with the case study.

Category Element Purpose Acquired for this project Cost (approx.) Cost frequency

Hardware GPS Collect location data of equipment No €5000 One-off
Thermologger Log core temperature data No €250 One-off
Thermocouple Collect core temperature data Yes €20 recurrent
Linescanner Collect surface temperature data No €40,000 One-off
Oculus Create the immersive exposure Yes €550 One-off

Software Unity Integrate data into VR scene Yes Free personal licence One-off
Trimble 3D Warehouse Acquire the 3D models of equipment Yes Free One-off
Infraworks Generate the environment Yes Free educational licence One-off

Human capital Development Analyze and integrate data Yes 160 man-hours recurrent
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only used GPS for tracking equipment. In the next step of this research,
the full-motion tracking will be applied to more complex earthmoving
equipment in the field; (2) in the current version, data to agent con-
version was done semi-manually. In the future, the application of ma-
chine learning for the development of data-driven agents will be in-
vestigated. With a proper data-to-agent method that can capture
uncertainties in human behavior accurately, the future context realistic
simulators can become entirely agent-driven. In such simulators, data
collected from the site will be translated into associated agents for all
equipment, be it interacting or non-interacting. Moreover, this frame-
work can be further extended to include scenarios where AMC/G are
used. Trainees can use these scenarios to become more acquainted with
the interface of this technology and work on semi-robotic sites. Finally,
the validation of the context-realistic simulator can be further enhanced
by conducting several training sessions with actual trainees.
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