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vAbstract

Our energy supply chain is changing rapidly, driven by a societal push towards
clean and renewable resources. However, these resources are often uncontrollable
(e.g., wind and sun) and are increasingly being exploited on smaller scales (e.g.,
rooftop photovoltaic). This poses a reliability challenge for the operation of our
energy supply chain, specifically for our electricity grid. In this grid, supply and
demand must be matched at all times, since storage is virtually non-existent. Tra-
ditionally, the supply is controlled centrally and follows the load, where the latter
is assumed to be uncontrollable. With the growing number of uncontrollable dis-
tributed renewable resources in the system, the centralized paradigm is quickly
becoming infeasible.

To combat the decreasing flexibility due to loss of controllability on the generation
side, often the exploitation of flexibility on the consumption side is considered.
This flexibility comes from devices that can adapt their energy use, e.g., smart white
goods or electric vehicles (EVs) with smart chargers. Such resources of flexibility
on the consumer side are called distributed energy resources (DERs). With the ex-
pected growth of the number of DERs in future energy systems, their coordination
offers potential to operate the grid more efficiently and allows the integration of
more (uncontrollable) energy from renewables into the grid. Traditional steering
approaches in the electricity grid do not scale well with the number of DERs and
were not designed for the diversity (i.e., heterogeneity) of the envisioned DERs.
Thus, new energy management approaches are required.

In this thesis we introduce and study such an energy management approach called
profile steering. The profile steering approach decentralizes (part of) the compu-
tational effort to ensure scalability, making it a decentralized energy management
approach. Profile steering relies on predictions and scheduling, meaning that it pre-
dicts the future system state and requirements and schedules the use of flexibility
of the available DERs to best meet the system goals. We focus on the distribution
grid, as a large part of the DERs are expected to be present in this part of the grid.

The profile steering approach influences the energy use ofDERs using generic steer-
ing signals. We show that the approach can incorporate a broad class of such
steering signals. This implies that the approach is flexible enough to be applied in
many different situations. Furthermore, we exploit the hierarchical structure of
the electricity grid to set up a corresponding hierarchical control structure. This
structure allows us to incorporate local limitations into our approach, for instance
maximum cable loading of the considered grid section.
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As the developed approach is decentralized, we distribute (part of) the required
computation to a local level, i.e., to a controller inside a home or embedded in a de-
vice. Such controllers often do not have large computational power. To ensure the
computations can be feasibly executed on these local controllers with low computa-
tional power the resulting distributed scheduling problems have to be researched.
We show that many of these problems fall into the class of resource allocation prob-
lems, which are well studied in literature. Several of these problems are extensions
of known problems. Therefore, we apply some of the techniques found in literature
and extend them to include common cases (current and futuristic) in residential
energy settings.

In particular we consider buffering devices. Such buffering devices can utilize an
internal buffer to decouple (part of) the time they require energy for their operation
and the time this energy is taken from the grid. The first type of such a device we
consider is the electric vehicle (EV). Scheduling the energy use of theEV is similar to
a classical resource allocation problem if it can charge at any rate between zero and
a given maximum. To solve this case we apply techniques from literature. However,
if the EV can only be charged at a finite number of rates, the problem becomesNP-
hard, even if we are only interested in obtaining feasible solutions. To circumvent
this issuewe consider an adaptation of the problem forwhichwe develop an efficient
solution method giving results that are nearly identical to feasible solutions to the
original problem.

In a follow up chapter we extend the results found for the EV to devices that also
allow discharging, e.g., residential stationary batteries and EVs with vehicle-to-grid
capabilities. Furthermore, we study heating, ventilation, and air conditioning sys-
tems as a special case. In these systems the energy losses depend on the energy
present in the storage (in this case the house itself). Next to developing amethod to
control such a device, we also study the effect of prediction errors on our approach
and show that we can effectively deal with them in the case of heating, ventila-
tion, and air conditioning systems using an approach inspired by model predictive
control.

We use simulations to show the validity of profile steering using several cases. We
show that profile steering can also be used to achieve near optimal results when
minimizing the degradation of a power transformer. This indicates that the benefits
that can be expected from using our approach are not limited to energy markets,
but also include increased lifetime of grid assets resulting in reduced investment
costs in these assets.

Summarizing, the introduced profile steering decentralized energy management
approach promises to be a valuable approach in the future (smart) electricity grid
where it can unlock the potential of many residentialDERs and assist in an effective
and efficient energy transition.



viiSamenvatting

Ons energie distributie netwerk ondergaat snelle veranderingen, gedreven door
een ideaal van een maatschappij gebaseerd op schone en herbruikbare bronnen.
Deze bronnen zijn echter vaak onbeheersbaar (bijvoorbeeld de wind en de zon)
en zij worden in steeds grotere mate op kleine schaal geëxploiteerd (bijvoorbeeld
zonnepanelen op het dak). Deze veranderingen bedreigen de stabiliteit van onze
energie distributie netwerken, met in het bijzonder ons elektriciteitsnetwerk. In het
elektriciteitsnetwerk moeten vraag en aanbod altijd in balans zijn, omdat opslag
praktisch niet voorkomt. Traditioneel gezien wordt het aanbod gestuurd zodat
productie en vraag altijd overeenkomen, omdat men er vanuit gaat dat de vraag
niet beheersbaar is. Maar, met het groeiend aantal onbeheersbare gedistribueerde
bronnen in het systeem wordt deze traditionele centrale aanpak snel onbruikbaar.

Om de vermindering van flexibiliteit door het verlies van stuurbaarheid aan de
aanbodkant tegen te gaan, wordt vaak flexibiliteit aan de vraagkant als optie gezien.
Deze flexibiliteit komt van apparaten waarvan het gebruik van energie kan wor-
den aangepast, bijvoorbeeld slim witgoed en elektrische auto’s met slimme laders.
Zulke apparaten, gezien als bronnen van flexibiliteit aan de kant van het verbruik,
worden gedistribueerde energiebronnen genoemd. Met het verwachte aantal ge-
distribueerde energiebronnen in ons energiesysteem van de toekomst leveren zij
de mogelijkheid om, met de juiste coördinatie, het net efficiënter te maken en een
grotere mogelijkheid te bieden tot het integreren van energie van hernieuwbare
bronnen. Traditionele aanpakken van de coördinatie van deze bronnen schalen niet
naar een groot aantal gedistribueerde bronnen en zijn bovendien niet ontworpen
voor een grote diversiteit aan bronnen. Daarom zijn nieuwe aanpakken nodig om
het net te besturen.

In dit proefschrift introduceren en bestuderen wij een aanpak om het net te be-
sturen, genaamd profile steering. Deze profile steering aanpak is een gedecentra-
liseerde aanpak omdat (een gedeelte van) de berekeningen decentraal uitgevoerd
wordt om zo schaalbaarheid te bereiken. Profile steering maakt gebruik van voor-
spellingen en planningen, waarmee bedoeld wordt dat de aanpak toekomstige situa-
ties in het systeem voorspelt en dat het gebruik van flexibiliteit door de beschikbare
gedistribueerde bronnen wordt gepland, zodat dit gebruik overeen komt met de
doelstellingen van het systeem. Wij leggen de nadruk op elektrische distributie
netwerken, omdat daar een groot aantal van de gedistribueerde energiebronnen
verwacht wordt in de toekomst.

Profile steering stuurt het gebruik van flexibiliteit van de gedistribueerde energie-
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bronnen door middel van stuursignalen. Wij laten zien dat onze aanpak gebruik
kan maken van een brede klasse van zulke stuursignalen. Dit impliceert dat de
aanpak flexibel genoeg is om in vele verschillende situaties te worden toegepast.
Verder gebruiken we de hiërarchische structuur van het elektriciteitsnet om een
vergelijkbare structuur in de aansturing te bereiken. Met deze structuur in de aan-
sturing wordt het mogelijk om lokale limieten, zoals maximale kabel belasting, mee
te nemen in onze aanpak.

De ontwikkelde aanpak is decentraal; we distribueren (een gedeelte van) de ver-
eiste berekeningen naar een lokaal niveau, bijvoorbeeld naar een systeem dat het
verbruik binnen een huis aanstuurt of naar de apparaten zelf. De rekenkracht op
dit lokale niveau is vaak beperkt. Om toch de uitvoerbaarheid van de aanpak te
garanderen met deze beperkte rekenkracht, moeten de resulterende problemen,
die op lokaal niveau moeten worden opgelost, worden bestudeerd. Wij tonen aan
dat een groot gedeelte van deze problemen in de klasse van ‘resource allocation
problems’ valt. Deze problemen zijn bekend en eerder bestudeerd in de literatuur.
Een aantal van de problemen die wij tegenkomen zijn uitbreidingen van bekende
problemen. Dit maakt het voor ons mogelijk om technieken uit de literatuur her
te gebruiken en uit te breiden om veel voorkomende problemen in de decentrale
aansturing van het net op wijkniveau aan te pakken.

In het bijzonder kijken wij naar apparaten die intern opslag bevatten om zo (een
gedeelte van) hun energieverbruik van het net te kunnen afnemen voordat dit
daadwerkelijk nodig is voor het gebruik van het apparaat. Een eerste apparaat dat
hieraan voldoet, en dat wij bestuderen, is een elektrische auto. Het inplannen van
het verbruik van een elektrische auto is vergelijkbaar met een klassiek resource
allocation problem zolang we aannemen dat de auto op elk vermogen tussen nul
en een gegeven maximum kan laden. In dit geval passen we technieken uit de
literatuur toe. Als de auto, in tegenstelling tot eerder, beperkt is tot laden op een
eindig aantal verschillende niveaus wordt het probleem NP-hard, zelfs als we
alleen geïnteresseerd zijn in een oplossing die aan de eisen voldoet. Om toch tot een
werkbare oplossing te komen bekijken we een aanpassing van het probleem. Voor
deze aanpassing ontwikkelen we een efficiënte oplossingsmethode die resultaten
geeft die bijna identiek zijn aan oplossingen die aan de eisen van het originele
probleem voldoen.

Hierna breiden we onze resultaten, gevonden voor de elektrische auto, uit naar
apparaten die ook energie kunnen ontladen, bijvoorbeeld batterijen en elektrische
auto’s die ook kunnen ontladen naar het net. Verder bestuderen we ook luchtbehan-
delingssystemen als een speciaal geval, omdat in zulke systemen de energieverliezen
afhangen van de hoeveelheid energie ‘opgeslagen’ in het systeem (in dit geval het
gebouw zelf). Naast dat we een aanpak om zo’n systeem te besturen ontwikkelen,
bestuderen we ook het effect van voorspellingsfouten op onze aanpak. We laten
zien dat onze aanpak voor luchtbehandelingssystemen effectief met voorspellings-
fouten kan omgaan, waarbij we gebruik maken van een aanpak geïnspireerd door
‘model predictive control’.
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We tonen door middel van verschillende simulaties aan dat profile steering goed
functioneert. In het geval dat we het verouderen van een transformator bestuderen
laten we zien dat onze aanpak bijna optimale resultaten geeft. Dit geeft een indicatie
dat de voordelen van onze aanpakniet beperkt blijven tot energiemarkten,maar ook
verlenging van de levensduur van componenten in het net omvatten, wat resulteert
in gereduceerde investeringen in het net.

Samenvattend belooft profile steering om van waarde te zijn in het toekomstige
(slimme) elektriciteitsnet, waar de aanpak efficiënt gebruik kan maken van vele
verschillende gedistribueerde energiebronnen en kan assisteren in een effectieve
en efficiënte energietransitie.
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11
Introduction

Abstract – This chapter serves as an introduction to the thesis. We briefly
introduce the research area energy management for smart grids and illustrate
some of the prominent problems in this area. Furthermore, we give a problem
sketch by means of an illustrative example. This leads to the formulation of the
main research question: How can we manage energy in the future smart grid?
We briefly introduce our novel energy management approach called profile
steering. Finally, we give an outline of the thesis.
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Figure 1.1: The share of electricity produced by renewables (data taken from [25]
(NL) and [7] (Ger)).
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discharge energy (corresponding to Figure 1.2).
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1.1 Introduction

In December of 2015 world leaders gathered in Paris for the 21st United Nations
conference on climate change (COP21). During this conference, representatives
from countries all over the world signed an agreement to limit the emission of
green houses gases and, thereby, holding the increase in global average tempera-
ture well below two degrees Celsius above pre-industrial levels [130]. Furthermore,
the agreement states an intention of pursuing a target of one-and-a-half degrees of
temperature rise. As of January 2017, the agreement has been signed by 194 coun-
tries, contributing to a total of 99% of the greenhouse gas emissions worldwide
[131, 132]. The agreement has been ratified by enough parties for it to enter into
force as of November 2016, with the ratifying parties accounting for over 80% of
the global emissions as of January 2017.

Among experts there is a consensus of between 90% and 100% that we as humans
are causing recent global warming [33]. Together with other important drivers such
as health related issues and a desire to be independent of finite resources that often
come from politically less stable regions, this is causing a need for change in our
energy supply chain: the energy transition. This transition primarily includes a
push towards energy savings and incorporating energy from clean and renewable
sources such as wind and sun. In Figure 1.1 an example for the share of electricity
production from renewables in the Netherlands and Germany is given. The transi-
tion is realized through agreements, plans, and policies worldwide, one of which is
the Paris agreement mentioned above. Another example is the set of targets of the
European Union in their 2020 and 2030 energy and climate packages [49, 50].

However, a society that no longer depends on carbon-based energy is not without
difficulty. One of the challenges to be tackled is that our energy supply chain was
designed using a paradigm completely based on the use of fossil fuels. The situation
in our energy supply chain is quickly changing, in particular in the electricity grid
(see, e.g., [103, 128]). Note that we often use the term electricity grid to mean the
entire infrastructure used to supply us with electricity. This includes not only the
physical cables and power electronics to transport and distribute power but also
the generation and consumption assets and the hardware and software used for
control.

One of the changes in the electricity grid is that households are increasingly in-
stalling rooftop photovoltaic (PV), which causes them to become net producers at
some times (see Figure 1.2 for an example profile of a house with PV). This poten-
tially causes problems in the grid. While novel devices, such as stationary batteries,
in principle can assist with alleviating these problems, this is only possible if they
are used properly. For example, consider a scenario where the battery is used to
store local solar energy for the house as soon as the local production exceeds the
demand, as illustrated in Figure 1.2. In this situation the battery is filled before the
PV peak is over (Figure 1.3). The result is that power at the peak of the production
provided by the PV still has to be transported away from the house.
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One of the main challenges in the electricity grid is that production and consump-
tion need to be balanced at all times. In the old system, there is a lot of flexibility
available on the production side of the system in large-scale generators running
on fossil fuels. This flexibility is traditionally used to match the production to the
consumption as the generators can adapt their output to match fluctuations in de-
mand. However, many of the renewable sources used to produce clean energy are
of an uncontrollable nature, e.g., sun and wind. This means that the flexibility on
the generation side of the system is decreasing.

Advancements in information and communication technology can offer potential
solutions to deal with the loss of flexibility in production, by considering flexibil-
ity on the consumption side instead [120, 122]. These potential solutions arise as
appliances on the consumer side are increasingly being equipped with hardware
and software that allows them to act on input from the consumer. The same hard-
and software can be used to let these appliances react on control signals from the
electricity grid. As an example, one can consider running appliances when energy
is cheap and/or available from local (renewable) production such as rooftop PV. In
essence these smart appliances offer flexibility in their energy use, compensating
for the loss of flexibility on the generation side. However, the traditional paradigm
used to manage our energy supply chain (so-called energy management (EM)) was
not designed with these (new) distributed sources of flexibility in mind and cannot
exploit this flexibility. Hence, one of the major challenges in the future electricity
grid is the design of an EM approach that is capable of exploiting the flexibility
offered to the system by a large number of novel heterogeneous appliances on the
consumption side. In this thesis we focus on the design of such an EM approach.

The remainder of this chapter serves as a general introduction to the research de-
scribed in this thesis. It is outlined as follows. In the next section we discuss the
changes occurring in the electricity grid and the complexity of the resulting problem
using an example. This leads to the formulation of the central problem statement
studied in this thesis in Section 1.3. Then, in Section 1.4 we discuss our approach to
the problem and the contributions of this thesis to the field. Finally, in Section 1.5
we give an outline of the remainder of the thesis.

1.2 Illustrative Example

In this section we explain changes and challenges we observe in our electricity
grid by means of examples. In particular we focus on the distribution part of the
electricity grid; the part of the grid used to connect smaller customers, such as
households, to the main grid.

One of the many changes in the electricity grid is the introduction of local small-
scale generation, particularly connected to the distribution grid. These local gener-
ators often exploit renewable sources such as wind and sun that are intermittent. As
an example we consider the introduction of PV, specifically rooftop PV on houses.
In several European countries, subsidies have been (and often still are) in place
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to give financial support to people with rooftop PV panels [74]. This makes an
investment in these panels rather attractive as the panels have a payback period of
just a few years. To further stimulate home-owners to consider this option, many
countries introduced beneficial energy metering policies for residential PV. As an
example consider the Dutch ‘nul-op-de-meter’ (net metering) policy, which allows
PV owners to directly subtract all production of their panels from their total energy
use in a year [74].

Financial incentives such as the subsidies described above contributed to a growing
amount of PV being installed in several European countries, with Germany being
a front-runner. The PV panels are also often installed with the idea to produce
(part of) the required energy within a neighbourhood locally. We note that the
above mentioned policy of subtracting produced energy from consumed energy
on a yearly basis effectively means the customer is allowed to use the grid as free
and 100% efficient storage. This is because energy that is produced, e.g., in the
middle of the day, when the PV production peak occurs, is generally of a larger
volume than required in the residential areas at that time. The peak in consumption
of such areas usually lies in the evening, however, at such times little or no energy
from the sun is available. Thus, customers ‘store’ their PV energy in the grid during
the day and ‘retrieve’ it back in the evening. Furthermore, due to this policy, the
amount of installed PV panels on a house often yields a production equal to the total
consumption of that house on a yearly basis. As an example see again Figure 1.2,
which shows the energy profile of a house equipped with rooftop PV.The house is a
net producer during the afternoon but needs to import energy at night. The above
also implies that it makes sense from a financial point of view to place the panels
facing south. On the other hand, facing the panels west would have caused their
production peak to occur in the late afternoon or early evening, better matching
the consumption peak of a typical household.

If only a small number of consumers use the grid as a large storage this is not harm-
ful for the grid, as (local) overproduction in a home is easily consumed locally. This
is currently the case in (nearly all parts of) the Netherlands, as the penetration of
local generation is rather low compared to, e.g., Germany (see Figure 1.1). However,
severe problems can occur at later stages during the transition if the penetration of
PV panels in a neighbourhood reaches higher levels. In such a scenario peaks in
local production can no longer be consumed locally. Instead the energy needs to
be transported away from this neighbourhood, towards areas where the energy can
be consumed. With significant levels of PV penetration the resulting production
peaks are at times far larger than the typical consumption peaks occurring in the
grid. As the grid has to be dimensioned to accommodate the largest peak, this
potentially causes overloading of grid assets and thus causes (extra) investments
in the distribution grid to be required. These problems have recently been encoun-
tered in several areas in Germany [106]. As an example see Figure 1.4 were we
give the power flows for a rural area in Germany with a lot of PV installed at the
beginning of May 2016. In this area the production from PV is far larger than the
local consumption, for which the system was originally dimensioned.
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Figure 1.4: En example of the overproduction of PV in a German neighbourhood.
Data provided by Westnetz for the week of the first until the seventh of May 2016.

To combat the problems sketched, policies are changing. For example, to encourage
local producers to consume as much of their own energy as possible, Germany now
uses a feed-in tariff for rooftop PV that is lower than the price customers pay for
energy [74]. One of the (newer) ways to increase self-consumption is through the
use of smart appliances. These smart appliances can match their consumption with
the local availability of energy and, thereby, increase the self-consumption of a
household. Another option is using storage, such as a battery. At the moment
battery prices are generally considered to be too high to be economically viable in
this setting. However, battery prices are expected to continue to drop sharply, as
we have seen over the last few years (see, e.g., Figure 5.2 on page 104). This means
batteries might become economically feasible on a household level in the (near)
future. In such a scenario it is likely, due to economical reasons, that the battery is
sized to cover just the PV production on an average day rather than on all days. If we
now consider the scenario where the battery is controlled to charge energy as soon
as there is a surplus in production from PV and discharge energy whenever the
demand exceeds production, the battery might be fully charged before the full peak
production of PV kicks in on very sunny days. To illustrate the issue we equipped
the house illustrated in Figure 1.2 with a battery of eight kWh, which covers the
daily average excess of energy produced. However, if the battery is used in a greedy
manner, i.e., charge when there is a surplus and discharge when there is demand, on
a very sunny day themaximumproduction peak is not lowered as illustrated. While
this does not affect the level of self-consumption, it still implies that the problem
of high peaks in production on the neighbourhood level remains. Furthermore, as
Figure 1.3 shows, it might be that the battery is only partly discharged during the
evening and night as the total stored energy exceeds the total energy demand of the
house for the given day. This implies the battery can store even less of the solar peak
of the next day if it is not fully discharged first. This discharging of the excess energy
in the battery at night can be used to provide neighbours with energy. However, to
determine when and by how much the battery should be discharged the situation
in the rest of the neighbourhood needs to be known or at least estimated.
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One way to combat the first difficultymentioned above is by using a smarter battery
management system that predicts when the peak in PV production will likely occur
and then uses these predictions to ensure the battery is steered to reduce the peak.
In the case of PV systems, the typical production peak lies around noon. This peak
might in some cases coincide with a local consumption peak for cooking lunch
in, e.g., Germany. Furthermore, it may be that other resources are available in the
neighbourhood which can be ‘adapted’ to the production peak. For example, it
might be possible to (also) charge an electric vehicle (EV) of a neighbour around
noon to consume the produced PV energy. In such a case the system needs to make
a trade-off between using the locally produced PV energy for the EV of the neigh-
bour now or for storage in the battery to cover the own demand in the evening. The
example illustrates that the local system benefits from knowledge of what happens
in the rest of the neighbourhood. With a lot of potential sources of energy and
(flexible) consumption in a neighbourhood, the design of a system that properly
manages these sources becomes a challenging task.

1.3 Problem Statement

As mentioned in the previous section, the traditional EM approach can no longer
be applied in the future grid due to the changes caused by the energy transition.
To this end it is of paramount interest that new EM approaches are designed and
studied, as we propose in this thesis. This leads to the main research question:

How can we effectively and efficiently manage the flexibility provided by (future)
energy resources in the electricity grid to facilitate the changes occurring due to the
energy transition?

With effective and efficient we mean that the approach should provide reasonable
solutions to the problems that are currently observed (and are expected to occur)
in the (future) electricity grid while being practically applicable. This means that
we are not only searching for solutions that have a high theoretical performance,
but we also require our solutions to be implementable in practice meaning that
constraints on available resources, such as computational power, are respected. As
an example, we consider the battery from the previous section and we assume
multiple houses in a neighbourhood have such a battery installed. It is theoretically
possible to compute the best way to coordinate the use of all batteries together to
minimize the stress on the electricity grid at a central location where all relevant
information is known. However, finding such a solution probably requires too
much computational power and uses information that is privacy sensitive. As an
outcome it is often probably better to trade performance in terms of finding the
optimal solution for other desirable characteristics, such as lower computational
complexity or independence of privacy sensitive information.

The above raises the question what these desirable characteristics are. For this
we have to look at the requirements for EM approaches. We summarize these
requirements as:
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An EM approach is required to employ scheduling in a scalable manner to use flex-
ibility offered by a large set of heterogeneous resources in a feasible manner at the
appropriate time while respecting user privacy.

In light of the example above, scheduling means that the approach is capable of
determining when flexibility is required the most, e.g., it determines when it is best
to charge locally produced energy into the battery and when to discharge energy.
By scalable we mean that the computational requirements of the approach should
not exceed what is generally assumed to be available. This scalability requirement
is of particular relevance in large systems, e.g., thousands of households each with
a multitude of flexible appliances. The heterogeneity aspect is important because
flexibility comes from many different appliances in the (future) grid, e.g., smart
white goods, heat pumps, batteries, EVs, etc. This implies that the approach should
be capable of exploiting the flexibility provided by many different devices. Further-
more, the approach needs to take all sorts of constraints into account to produce
feasible solutions, both from the users perspective (e.g., an EV needs to be charged
before departure) and from the grid perspective (e.g., currents flowing through
a cable should not exceed the cable’s limits). Some of these constraints as well as
other relevant parameters entail privacy sensitive information, for example, the
arrival and departure times of an EV disclose when the user is at home. It is often
desirable to keep this information as local as possible. We discuss the requirements
listed above in more detail in the next chapter.

In order to tackle the main problem in this thesis we study three different aspects
of the main research question. We first focus on the coordination between different
energy resources in the grid. This leads us to formulate a novel EM approach called
profile steering. In several future EM approaches, including profile steering, some
level of local decision making is required. By this we mean that on a device or
household level decisions need to bemade onwhen and how the available flexibility
is used. This already happens to some extent in the current grid, through the use of
day and night tariffs. With these tariffs, users have to make decisions whether they
want to shift (part of) their electricity consumption to the cheaper night period or
not. The study of these local or device level problems plays a central role in this
thesis. Note that in many cases the available hardware to make the local decisions is
very limited. Because of this reason it is important that local solutions can be found
very efficiently with very low computational and hardware requirements (e.g., they
cannot depend on external programs that require significant computational power
such as commercial solvers that may be available for these problems).

Finally, the goals of different stakeholders in the electricity grid do not necessar-
ily align. As an example we consider the discussion in the previous section about
houses with rooftop PV. As long as the ‘nul-op-de-meter’ policy is in place, cus-
tomers have no incentive to reduce their afternoon production peak. However,
local peaks in production can potentially lead to more investments required in grid
assets for the system operators. The above highlights that the different stakeholders
in the system do not necessarily share the same goals. However, it is important that
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an EM approach is capable of realizing different goals for different stakeholders by
being able to consider trade-offs between these goals. We briefly touch upon this
issue in this thesis. The three aspects mentioned above are captured by the three
sub-questions we consider in this thesis, given below:

» How can we effectively manage the coordination of flexibility of a set of
heterogeneous devices?

» What are the local decision problems in future EM approaches and how can
we solve them on the local level?

» Can an EM approach assist in realizing goals of different stakeholders in the
(future) smart grid?

1.4 Approach & Contributions

In this thesis we propose a novel EM approach called profile steering. Profile steer-
ing is a decentralized approach, meaning that decisions on how and when to use
flexibility are made locally. In the profile steering approach a top level controller
uses steering signals to steer the use of flexibility provided by different devices. The
flexible devices react to these steering signals by scheduling the use of their own
flexibility. This is similar to current practice in most electricity grids, where con-
sumers are offered a different tariff depending on their time of consumption (e.g.,
day and night tariff). However, our approach expands on current practice in two
ways.

» First, the steering signals are more general than energy prices, as we discuss
in Chapter 3. This allows the central controller in our approach to commu-
nicate its goals towards the devices more accurately. The end result is that
the obtained energy profiles better match the system goals.

» Second, we implement two way communication, meaning that the flexible
devices communicate their decisions, based on the received steering signals,
back to the central controller. This is in contrast to current practice. We
allow the central control to respond to the received decisions by updating
the steering signals, causing the system to become iterative. Subsequent
updating of steering signals and decisions of the devices is done until the
result is satisfactory.

The profile steering approach we propose and study in this thesis fulfils all require-
ments we list for an EM approach. Furthermore, the general approach of steering
signals we propose leads to energy profiles that generally better fit the system goals,
e.g., reducing stress on grid assets. This leads us to believe that our profile steering
approach can potentially be used in the (future) smart grid to facilitate the energy
transition in a feasible and effective way.

Another problem tackled in this thesis is the aforementioned decision making
of the devices. For profile steering (and other EM approaches) to be applicable,
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devices need to be able to make decisions based on the steering signals they receive.
For this we assume that devices locally are searching for their optimal decision
with respect to the received signal and their local state. We show that, for a broad
class of steering signals, the resulting problem for a lot of the devices is a convex
optimization problem. Using techniques from convex optimization we formulate
and study algorithms for the resulting device problems.

The results we obtain for the device level problem can be divided over three classes
of devices. The first class of devices uses an internal buffer that only needs to be
charged (e.g., an EV). The devices in this class can be modelled using a classical
resource allocation problem. We apply results from literature to the continuous
case of this model, i.e., when the energy consumption of the device is only limited
by a lower and upper bound. We also consider the discrete case, i.e., the case that
the energy consumption of the device is limited to a finite set of operational levels.
While this model leads to anNP-hard problem, we show that we can obtain good
results with a minor modification combined with a greedy solution approach.

The second class of devices extends on the first in that the internal buffer can also
be discharged (which is the case in, e.g., a stationary battery). We show that the
corresponding optimization problem for the continuous case of this class can be
solved using a divide and conquer approach, generalizing results found in literature
for similar models. Furthermore, we extend the greedy approach used for the
discrete case of the first class of devices to be applicable to the discrete case of the
second class.

The third and final class of devices is an extension of the second class, which we
obtain by adding losses that depend on the stored energy in the system. These
losses play an important role in, e.g., heating and cooling systems. We extend the
results obtained for both the discrete and continuous case of the second class to be
applicable to the models we describe for the third class.

Finally, we show, through a simulation study, that using our approach to utilize
locally produced energy as much as possible results in energy profiles that result
also in minimal asset ageing. For this we use a model of transformer ageing and
calculate how to best use the flexibility in a neighbourhood to minimize this ageing.
The results show that the flattening of energy profiles through profile steering serves
multiple system goals simultaneously, such as: minimization of transport losses,
maximizing self-consumption, minimizing asset ageing, etc.

1.5 Outline of the Thesis

The structure of this thesis is as follows. In Chapter 2 we provide some background
for our approach and discuss related work. This chapter is used to give a more
detailed overview of the current practice of energy management in the electricity
grid resulting in a mathematical problem formulation.
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In Chapter 3 we introduce the core concepts of the profile steering EM approach.
Furthermore, we modify the basic approach such that it fits all the requirements
on an EM approach listed in Chapter 2. In this chapter we also demonstrate the
effectiveness of our approach through a simulation study.

Chapters 4 to 6 study models for various flexible devices. In Chapter 4 we study
devices with an internal buffer that need to be charged (e.g., an EV). We extend this
model to also include discharging in Chapter 5 (for, e.g., stationary batteries). A
further extension is discussed in Chapter 6, where we include losses depending on
the state of charge of the system. These losses play a crucial role in many heating
and cooling systems. In each of these chapters we show the effectiveness of our
approach by means of simulation studies, utilizing devices studied in the respective
chapter.

Chapter 7 focusses on asset degradation and, in particular, on transformer ageing.
This chapter studies a model of transformer ageing and discusses how an EM ap-
proach can minimize this. We compare the results of different EM approaches and
study how they perform with respect to asset ageing.

The main part of this thesis concludes with a summary of the obtained results and
conclusions in Chapter 8. This is followed by a discussion on these results, on the
conclusions, and on future work. Finally, some mathematical background for the
thesis is given in the Appendix.

Readers with a background in the field of energy management can consider skip-
ping the background in Chapter 2. Furthermore, the concepts introduced in Chap-
ter 3 are only required in Chapters 4 to 7 for a better understanding of the nature of
the studied problems and the simulation results, hence these later chapters can be
read without intimate knowledge of Chapter 3. The results in Chapter 5 build fur-
ther on results obtained in Chapter 4. Furthermore, the results in Chapter 6 extend
upon those in Chapter 5 and hence indirectly require knowledge from Chapter 4.
In summary, Chapters 4 to 6 have a linear dependency. Chapter 7 can in theory
be read as a standalone chapter, though some concepts from Chapters 3 and 4 are
used in the simulation study presented there. The conclusion, given in Chapter 8,
logically depends on the results from all other chapters. Finally, the concepts of
convex optimization and complexity theory are heavily used throughout this thesis.
We refer the reader to the Appendix for a brief introduction to these mathematical
concepts. A visual representation of the dependency between the various chapters
of this thesis is given in Figure 1.5



12

C
hapter

1–
Introduction

Ch. 5Ch. 4Ch. 2 Ch. 6 Ch. 8

Ch. 7

Ch. 3

Appendix

Figure 1.5: Flowchart depicting the dependencies between the various parts of this
thesis.
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152
Background

Abstract – In this chapter we discuss the changes we observe in our energy
supply chain, with a particular focus on the management of the electricity
grid. To do so, we begin by giving an overview of the original design of the
grid and how it was controlled. The main changes happening in the system
are the incorporation of energy from renewable sources in our system and the
electrification of our energy use. Overall, these changes warrant a change in
how we manage our energy supply chain, in particular the electricity grid, as
the old centralized paradigm will no longer be applicable in the future. We
discuss requirements on a future proof energy management approach of the
electricity grid. We focus on the distribution grid and the distributed energy
resources therein that are expected to play an important role in the future grid.
Finally, we discuss some related work on energy management approaches that
is relevant to the approach we introduce in this thesis.
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Figure 2.1: The share of electricity from renewable sources over the total electricity
consumption in the Netherlands compared to the average in the EU in the period
2004 through 2014. Data taken from [51].
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Figure 2.2: The SAIDI (SystemAverage Interruption Duration Index) for the Dutch
grid for the period of 1999 through 2013. Note that the data for planned interrup-
tions is only available from 2006 onwards. Data taken from [35].
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Figure 2.3: The unplanned SAIDI (System Average Interruption Duration Index)
for the Dutch grid split per interruption caused on the different grid levels for the
period of 1999 through 2013. Data taken from [35].
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2.1 Introduction

Our energy supply chain is changing rapidly. The most important drive for the
change is a desire to become independent of fossil fuels, which is an important goal
as these fuels are linked to climate change, are finite, and often come frompolitically
less stable regions. Thus, alternative sources of energy are consideredmore often, in
particular energy from renewable sources such as wind and sun. The shift towards
energy from renewable sources in the EU is depicted in Figure 2.1 though the Dutch
share is well below the European average. Interestingly enough, many renewable
sources were already exploited before the second industrial revolution driven by
the electrification of our society, for example, the traditional Dutch windmills.

One of the major challenges of (most) renewable sources considered as alternatives
to fossil fuels is that we cannot control them. This causes problems in the electricity
supply chain where, in the traditional control paradigm: the generation follows the
load. Such a paradigm is no longer applicable when a significant portion of the
generation utilizes uncontrollable sources such as wind and sun. The traditional
control paradigm has lead to a very stable system. For example, consider the SAIDI
index, an index used to indicate average interruption time of low voltage (LV)
customers in a year, for the Netherlands, given in Figure 2.2. This index is in fact
one of the lowest in Europe. i.e., the Netherlands has one of the more stable grids
[35]. We further distinguish between interruption time caused by congestions on
the various grid levels in Figure 2.3. This shows that a large share of the interruption
time is caused by congestions in themedium voltage (MV) and LV distribution grid.
Thus, in order to facilitate a smooth transition towards a society free from fossil
fuels, a new control paradigm is required. A further change in the energy supply
chain is a shift from large-scale central generation towards small-scale distributed
generation (e.g., rooftop photovoltaic (PV) and residential scale combined heat and
power (CHP) units).

This shift leads, as a side-effect, to a decrease in transportation losses due to a
lower distance between generation and consumption. Also, local generation allows
for easier use of by-products, e.g., heat, which would otherwise be wasted. This
increases the overall efficiency of the system. Finally, access to locally generated
energy increases the autonomy of local systems in many situations.

Next to the supply side of our energy supply chain also the demand side is changing.
The increasing electrification of our energy use is the main influence, i.e., the share
of our energy consumption through electricity is increasing. This change is largely
motivated by the fact that most renewable sources only produce electricity. As an
example, we consider the shift towards electric driving through electric vehicles
(EVs) and plug-in hybrid electric vehicles (PHEVs). With sufficient electricity avail-
able from clean and renewable sources this shift significantly reduces the carbon
footprint of our transportation sector.

The above sketched changes in our energy supply chain lead to complex challenges
within these systems, in particular in the electricity supply chain, i.e., the electricity
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grid. For this reason, we focus on the electricity system in this thesis. We tackle
the aforementioned issue that the traditional centralized control paradigm can no
longer be applied in the changing electricity system. As the systems of various other
energy carriers (e.g., gas and heat networks) are intertwined with the electricity
system on various levels, we do consider these other systems where applicable. As
an example, generation of electricity and heat is often coupled, as in CHP units,
which we study in Chapter 5.

This chapter serves as a background for the challenges considered in the remainder
of this thesis. We first sketch the situation regarding the electricity grid as it was,
currently is and is likely to become in the future. In particular we show that the
current centralized control paradigm of the electricity grid is no longer valid. As a
consequence we need a new approach and we outline the requirements on such an
approach in Section 2.3. This leads to a formulation of themain problem considered
in this thesis in Section 2.4. For this problem, many different appliances play a vital
role, which we discuss in Section 2.5. In particular, we study the class of buffering
devices, for which we introduce a general model. Then, in Section 2.6, we discuss
the related work on the problem considered in this thesis. We wrap up with a
conclusion in Section 2.7.

2.2 The Electricity System

Most electricity systems in the western world were designed decades ago using a
central control paradigm. A large portion of these systems are now nearing the
end of their predicted lifetime. Furthermore, due to the reasons outlined above,
the control paradigm is changing. To this end we discuss the electricity system as it
was designed, how it evolved to its current state, and what changes are envisioned
for the future. The emphasis will be on the control part of the electricity grid. Only
the details that are relevant for the control part are covered. For more information
(on the Dutch grid) we refer the reader to [140].

2.2.1 Traditional Centralized System

Our electricity supply chain was originally designed as a centralized system, where
a small number of large-scale generation plants provide power to cover all demand.
Such large plants benefit from the advantage of economy of scale. Because of the
nature of the electricity system, i.e., storage of electricity is difficult and practically
non-existent, supply and demand must be balanced at all times. To ensure this
balance, the generators follow the demand using a central control paradigm. In
this paradigm the demand is considered uncontrollable and the supply adapts to
the demand. To fulfil the demand the generated electricity is transported from the
plants via the electricity grid to the customer. The grid can be roughly subdivided
into three levels based on the voltages used; high voltage (HV), medium voltage
(MV), and low voltage (LV). A schematic overview of the grid and the different
levels is given in Figure 2.4. While a higher voltage implies higher transportation
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Figure 2.4: A schematic overview of the electricity grid in the Netherlands.

efficiency, i.e., reduced transportation losses relative to lower voltages, the downside
is an increase in required hardware (in particular in their size and costs). For safety
reasons lower voltages are used closer to the customers, particularly inside towns
and cities.

The HV level is primarily used to transport electricity over longer distances, i.e.,
(trans)national and regional transportation. Conventional, large-scale generators
are connected to this level. Furthermore, only a small number of very high load cus-
tomers are connected directly to the HV level of the grid, for example aluminium
smelters. Closer to the majority of the demand, the voltage is lowered using power
transformers. TheMV level is used to further distribute electricity within a demand
area. Larger customers, such as large office buildings and local industry, are con-
nected to this level. Finally, the LV level is used for the distribution to residential
customers and small enterprises. The exact operating voltages of the grid vary be-
tween different countries. As an example we list the voltages used within the Dutch
grid (see, e.g., [107]).

» HV level: voltages of 380 and 220 kV are used for (inter)national transporta-
tion and voltages of 150, 110, and 50 kV are used for regional transportation.

» MV level: voltages of 3-30 kV are used (local distribution and larger users).
» LV level: voltages of 230-400 V are used (residential users and small enter-
prises).
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Figure 2.5: A schematic overview of a typical LV grid in the Netherlands.

In the previous paragraph we partitioned the electricity grid into three levels, based
on the voltage used. Another often used partition of the grid is based on the distinc-
tion between the part that is used for transportation (HV) and the part that is used
for distribution (MV and LV).This thesis primarily focusses on the management of
the electricity produced and consumed by residential users. As nearly all residential
customers are connected to the distribution grid, we focus on this part of the grid
and in particular on the LV grid. The structure of LV grids in the Netherlands and
many other countries generally follows the design we outline below. A transformer
is used to change the voltage to the low voltage level. From this transformer sev-
eral feeders run to the various areas, usually streets, supplied by the transformer.
These feeders consist of four conductors; the three phases providing power and the
neutral conductor. In the Netherlands, most existing residential connections are
connected to a single phase of the feeder, with three phase connections primarily
used for small enterprises with high power appliances and new residential connec-
tions. We note that the choice of the phase to which a house is connected is often
random and not well documented. A schematic overview of a typical Dutch LV
grid is given in Figure 2.5
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Until the mid 1990’s, the electricity supply chain was vertically integrated in most
of the western world, i.e., in most countries a single company (state owned and/or
regulated) owned the entire supply chain from the generators down to the customer
connection. These companies were responsible for the entire supply chain, from
generating the power to the delivery to and billing of the customers. This ended
with legislation passed in both the US and Europe to split the ownership of the
electricity supply chain. Since then, the ownership of generation, transmission and
distribution assets is split in many countries, particularly in Europe. Retailers are
now responsible for selling power to customers, which they buy from generators,
owned by different companies. The transmission and distribution parts of the grid
are owned and operated by transmission system operators (TSOs) and distribution
system operators (DSOs) respectively. These system operators facilitate the intercon-
nection between generation and customer such that the energy sold by a retailer to
a customer can be delivered. Because asset ownership of the electricity grid causes a
natural monopoly [102], TSOs andDSOs are generally state regulated. We note that,
while the distinction between retailers and grid operators is often clear in Europe,
this is not the case in the US.

To facilitate the energy trading between energy producers and retailers, several
markets exist. On these markets electricity production and consumption can be
traded on various time scales, ranging from long term contracts (i.e., months in
advance) to short term (i.e., day ahead or intra-day). The retailers forecast their
energy demand and purchase electricity using these markets. The exact schedules
for the energy generation plants are made by the energy producers (or the system
operator in an integrated system), typically a day ahead, solving so called unit
commitment problems (UCPs) and related problems [22, 145]. The systemoperators
are responsible for the balance between supply and demand. They ensure this
balance by means of spinning reserve of online generators, i.e., the capability of a
running generator to quickly adjust its production in response to fluctuations in
demand. This spinning reserve is traded through so called capacity markets.

The safe operation of the transportation grid requires monitoring andmanagement
of the grid by the operators (the TSOs). To this end, the transportation grid gen-
erally has measurement equipment in place to monitor the state of the grid and
ensure it is operated within safe margins. On the other hand, the distribution grid,
and in particular the LV grid, is typically managed using a fit and forget strategy
by the DSOs. Cables and other assets are dimensioned using a forecast on future
expected required capacities upon installation and are assumed to operate within
the boundaries without active monitoring and management. The main reason for
this paradigm is the large number of customers typically connected to distribution
grid assets, causing load diversification due to the law of large numbers. Thismeans
that demand profiles seen by the grid assets are usually smooth and predictable
because of the large number of customers connected below an asset. As an example,
we compare the load profile, measured every 5 minutes, of a house and a neighbour-
hood transformer in Figure 2.6. In the figure we give, for both the house and the
transformer, data from two days with a week in between. While the two profiles
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Figure 2.6: Comparison of the load profiles of two days for a house (a) and a trans-
former (b). The data was provided by Alliander and consists of two days with a
week in between.

given for the house are quite different, the neighbourhood profiles are roughly the
same. Furthermore, because generators were traditionally only connected to the
top level of the grid, power was flowing unidirectionally downstream, i.e., from the
power plants through the HV,MV and eventually the LV parts of the grid to the
customer. The above no longer applies in several cases due to the new emerging
trends in the electricity grid. For example, the production peaks of PV installed on
houses in the same neighbourhood coincides. Also, some heavy loads such as heat
pumps can become synchronized, causing a load that is too large to handle for the
(local) grid.

Due to the mostly passive role of customers, specifically of residential customers,
the interaction for most customers with the players in the electricity system is
limited to a single supplier. While originally this was (part of) the, typically state
owned, electricity company responsible for the entire infrastructure, this changed
to independent suppliers after the market liberalization in the 1990’s. Information
about the customers electricity use is measured (‘metered’) locally and collected
sparingly for billing purposes, e.g., once a year. The electricity bill paid by cus-
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tomers for their consumed electricity is based on the collected measurement data.
While small, residential customers pay a fixed price per unit of consumed energy,
larger customers also get billed for, e.g., their maximum consumption peak in the
considered interval. In other words, the energy tariff structure generally increases
in complexity for larger customers. We note that more complex tariff structures
increase the requirements on the measurement on when and how much energy is
consumed by the customer.

2.2.2 Current System

Caused by a drive towards a de-carbonization of our energy supply chain, the
number of clean, renewable sources has rapidly increased in many parts of the
western world. Furthermore, these generators of renewable energy are for a large
part installed on a smaller scale, closer to the customer (see, e.g., the data available
for the US [134]). The installation of these units is far from uniform across the
grid, due to several factors, including social-economic, legislative, and geographical
reasons. This non-uniform spread of the renewable generators causes excessive
stress on certain parts of the distribution grid, e.g., parts of the LV grids with large
amounts of residential PV and low consumption are already being overloaded in
Germany [103] (see also Figure 1.4 on page 6). In such cases the local generation
peak is far larger than the demand in the area at the same time. This causes a
large inverted power flow upstream, i.e., in the opposite direction than originally
intended during system design. This peak may overload the transformer. The
current practice is to upgrade grids where and when this occurs, allowing the
surplus of energy to be transported through the MV and HV parts of the grid
to areas with a net demand. However, this practice is costly and becomes infeasible
when the overall penetration of these (renewable) resources at the customer level
increases [106].

Another problem with the adoption of renewable generation is that a large share
of these generators are based on uncontrollable sources such as wind and sun.
Without the proper mix of different available technologies and suitable control, a
gap between supply and demand is likely to exist for a small portion of the year
(e.g., a few weeks) [103]. To be able to supply energy in these rare periods, backup
plants need to be kept operational, just for these periods, which is unfavourable
for their profitability. Without a change in the control paradigm, this can cause a
large increase in operational costs of the system as well as hamper the transition to
a system based purely on clean, renewable sources [22, 145].

The energy use of consumers follows the aforementioned trend of electrification;
an increasing share of our total energy consumption is in the form of electricity. In
particular large and novel loads such as EVs and heat pumps (HPs) are introduced.
The electricity grid was not designed with these new, large loads inmind. Therefore,
the introduction of these loads causes the system to be operated closer to or at the
limits, implying that safe and secure operation of the grid is becoming increasingly
difficult. To ensure the safe and secure operation, investments in additional infras-
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tructure or other approaches that can ensure a safe introduction of the increasing
demand in the grid are required [30, 67, 112].

For the residential customer, a recent change in the system is the introduction of
smart metering. The traditional electro-mechanical measurement equipment used
formetering and billing is being replaced bymore advanced sensory equipment (see,
e.g., [52]). These smart meters introduce two different types of opportunities. First,
these meters collect data with finer granularity, allowing the customers a higher
level of insight in their temporal energy use. This, consequently, opens up possibil-
ities for saving costs through reduction of (unnecessary) energy use. Furthermore,
because these smart meters are also equipped with more advanced communication
infrastructure, the data they collect can give the retailer, and potentially other third
parties, a deeper insight in the behaviour of its customers (after customer consent is
given). The more advanced measuring and communication capabilities also allow
more intricate tariff structures to be implemented. As an example, the meter can
be used to communicate time-varying prices to a customer a day ahead of their use.
From the beginning of 2017 limited use of these time-varying prices is possible in
the Netherlands [79].

2.2.3 Future System

The trends mentioned above are expected to continue in the future, even at an
increasing rate as technologies in these areas are adopted and become cheaper and
more widely available [103]. To ensure a stable and secure energy supply, two trends
are emerging. The first is expansion of transportation capacity and interconnection
between various regions. This change is especially visible in Europe where many
countries strive for a higher level of interconnectivity with their neighbours [62].
This higher level of interconnectivity ensures that local surpluses or shortages of
energy can bemore easily solved by exporting or importing energy to/from another
area.

The second notable trend is a drive towards local balancing of energy. With an
increase of local production, such as rooftop PV, it makes sense to balance this
with local consumption to reduce losses and stress on the grid. This leads to the
emergence of so-called micro-grids; parts of the electricity grid that balance con-
sumption and production locally as much as possible and, in some cases, can even
disconnect (for some period) from the main grid, particularly in case of contingen-
cies upstream [63].

Both trends have to do with reduced flexibility on the generation side of the elec-
tricity supply chain, which is expected to continue decreasing in the future. Thus,
flexibility needs to be found elsewhere if we want to ensure a safe and economic
operation of our (future) grid. There is a general consensus that to ensure safe and
economic operation, the grid needs to be updated to become a smart grid.

Recently, also flexibility on the consumption side of the supply chain is considered
as an alternative to lost flexibility on the generation side. Such flexibility can come
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in the form of shifting consumption or even shedding of loads. The latter generally
causes a large loss of user comfort and hence is only used in emergency situations,
e.g., during temporary grid congestion. This flexibility can be used to, e.g., better
match the demand to the available supply or alleviate grid congestions in cases of
stress (situations where grid assets are operated near or at their physical limits).
The management of loads, and potentially local production assets, to shift or shed
their electricity consumption/production is commonly referred to as demand side
management (DSM). We note that some authors use the term demand response for
the management of loads instead. DSM was historically introduced for larger elec-
tricity consumers [129]. Such consumers are financially compensated to decrease
their load in case of grid congestions such as large imbalances between generation
and consumption.

To facilitate the introduction of DSM on a residential scale, (external) control over
the loads on the distribution grid level is required. Traditionally this control is
not present for most of the devices used by residential customers, beyond the user
manually turning the device on or off. However, new devices that have an external
control option are being introduced into the market under the term smart appli-
ances. With the increasing penetration of these smart appliances in the residential
sector, as well as advancements in information and communication technologies
(ICT), DSM on a residential scale is becoming increasingly feasible. Due to the
relatively small scale of the loads on this level, a large number of these loads need
to be jointly managed to have a significant impact on the overall load profile of a
distribution grid. The assets considered for residential scale DSM are part of the
class of distributed energy resources (DERs). This class of devices is not limited
to loads and includes all devices that can offer some form of flexibility, e.g., also
batteries and PV installations with controllable inverters.

To effectively manage the (future) grid with a large number of DERs present, the
old, centralized control paradigm is no longer applicable for two reasons. The first
reason is that the centralized paradigm does not scale to a large number of assets.
For example, the problems solved to find generation schedules (UCPs) become
intractable for a large number of assets [21]. Furthermore, the paradigm is not
designed to handle the large diversity of assets envisioned in the future (smart) grid.
Part of the reason for this is that, in the old paradigm, assets at the customer side,
specifically those in the distribution grid, are considered uncontrollable. However,
many devices are currently being equipped with some form of local control, e.g.,
smart washing machine (WM) and dish washer (DW).

To this end we study, in this thesis, a new approach to manage all types of DERs
that emerge in the (smart) grid. We call an approach that ensures the safe and
effective management of all (future)DERs in the grid an energy management (EM)
approach. We note that, while the approach is not limited to this case, we primarily
focus on residential grids and the management of DERs that already are present or
are envisioned to become available in these grids. To study such EM approaches,
we first study what the requirements for these approaches are.
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2.3 Requirements for Energy Management Approaches

An EM approach needs tomanage the flexibility offered by the variousDERs present
in the grid effectively, from both a control and economic perspective. The type of
problems that can potentially be tackled by EM approaches form a very large and
diverse landscape. As an example, when considering the balance between consump-
tion and generation, which needs to bemanaged onmany different time scales from
seasonal to sub-second balance. Ensuring a balance between supply and demand
on an inter-day scale is closely related to systemplanning, while sub-second balance
is generally handled via droop control of spinning reserves or control of batteries.

We note that EM shows similarities with the recent topic called transactive energy
(TE) [60]. Within TE a framework is being proposed that facilitates an effective
integration of various (future) DERs. The main difference between EM and TE, as
we understand it, is that the framework considered for TE focusses mainly on mar-
kets. Within these markets the proposed TE framework is designed to ensure value
discovery of the services offered by DERs. In other words, the framework largely
focusses on the financial benefits of these services and their inclusion in traditional
energy markets. However, the total value of certain services offered by DERs for
the entire system is often hard to gauge. Furthermore, different stakeholders in the
energy supply chain are sometimes excluded from working together due to current
regulatory structures [102, 106]. Therefore, we focus on the technical aspects of an
EM approach. Thus, the requirements we formulate below are of a technical nature,
while the required economical and regulatory means to effectively implement such
a system are outside the scope of this thesis.

In this thesis we focus on an EM approach that works on time scales of minutes
to days, the time-scale that is also traditionally used in energy and ancillary mar-
kets. Nevertheless, sub-second control and system expansion planning are also of
importance. We envision that problems in both sub-second control and system ex-
pansion planning can be tackled by systems that run concurrently to our approach,
potentially in an integrated manner.

The requirements for an EM approach are: the system can

» Scale to the many DERs present in the (future) smart grid (scalability).

» Use flexibility offered by DERs at the right time (scheduling).

» Handle the many different types of DERs (heterogeneity).

» Ensure the flexibility of the DERs is used within the physical limitations of
the system (feasibility).

» Keep privacy sensitive information as local as possible (privacy).

Note that these requirements largely correspond with the technical requirements
set for TE architectures [60]. In the following we elaborate on the individual issues.
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Scalability

As mentioned before, the classical centralized approaches used to manage the elec-
tricity grid, such as the operational planning of generation, do not scale to a large
number of assets. This conflicts with the expected large number of DERs in the
future (smart) grid, particularly in residential grids. Thus, to ensure feasible oper-
ation, new EM approaches are required that scale to thousands, or, in some cases
even, millions ofDERs. Since the underlyingmathematical problems are often hard
and intractable to solve to optimality for such a large number of devices, heuristics
can offer a solution.

Scheduling

An important aspect of EM approaches is that they use the flexibility offered by the
various DERs at the most opportune time. As an example, it is beneficial for the
system to run a smartWM such that its energy consumption coincides with the
(local) PV production peak. To be able to achieve this, the approach needs to look
ahead and schedule the flexibility use of the DERs. Hence scheduling is an integral
part of a proper EM approach (see also Section 1.2).

To properly schedule the use of flexibility, predictions of the system parameters are
required. For example, to properly schedule that the use of theWM coincides with
the PV production peak, a prediction of when this peak occurs is required. Further-
more, a prediction of when theWM is available is needed together with an estimate
of the consumption of other devices to ensure feasible and optimal operation. Since
perfect predictions are generally impossible to make in the EM setting, especially
on a local level, proper control is required to adjust and implement the schedules
to minimize errors and avoid infeasibilities [6]. We call such control operational
control. The above results in an approach that consists of three steps or phases;
predictions, planning and (operational) control.

Heterogeneity

In more traditional EM approaches, the energy resources considered are typically
of a similar nature. For example, in UCPs the schedules for the generators typically
have to satisfy similar constraints. This no longer applies in the future smart grid
where a large variety of DERs is present; an EM approach needs to be able to deal
with a large diversity (in size, constraints, reaction time, granularity, etc.) in the
available resources. It is important to note that, especially on the residential level,
many DER assets have to serve the user’s comfort as primary objective. The DER
asset in question is not allowed to sacrifice this comfort, or only up to a level speci-
fied by the user, to achieve the system goals. This increases the complexity of the
problem significantly [28]. We discuss the diversity of the DERs expected in the
future (smart) grid in more detail in Section 2.5.
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Feasibility

The primary function of many DERs present in the distribution grid is generally
something other than supporting the electricity grid, e.g., an EV’s primary purpose
is transportation. The constraints and preferences of the user can deviate from
what is optimal from a grid perspective. For example, the owner of the EVmight
want the vehicle to charge as fast as possible upon arrival, which may increase the
evening consumption peak, putting extra stress on the grid. To ensure the safe
and feasible operation of the grid and all the DERs connected to it, two types of
constraints need to be taken into account. The first type of constraints are those
set by the user, e.g., the vehicle has to be charged before hour t, together with the
technical constraints, e.g., the vehicle cannot charge at a higher or lower rate than
a given value. As these constraints only affect the usage of the flexibility of theDER
for which they are specified we call these the local constraints.

On the other hand, the constraints put on the overall use of (groups of)DERs by the
grid, e.g., maximum aggregated charging of a group of EVs to prevent overloading
of cables, are called grid constraints. Note that we focus on constraints on the
aggregated energy consumption/production of groups of devices in this thesis, as
these can be used to model capacity constraints. These capacity constraints are
currently already being violated in several grids, e.g., in Germany (see [106]), and
are expected to be violatedmore often in the future [67] with the higher penetration
of (large) domestic electric loads. A feasible EM approach thus needs to consider
the local constraints when scheduling the flexibility of each individualDER together
with grid constraints on groups of schedules of the DERs.

As noted in Section 2.1, currently the electricity grid is very reliable. To ensure
the system remains as reliable during the transition towards energy from renew-
able sources it is of particular importance that new EM approaches respect all con-
straints.

Privacy

Many parameters detailing the flexibility of DERs include privacy sensitive infor-
mation. For example, the arrival and departure times of an EV provide information
on the occupancy of a home. Because of this privacy issue, the approach should
keep this information as close as possible to the user.

2.4 Formulation of the Energy Management Problem

The core task of an EM approach is to solve a scheduling problem that specifies how
to use the flexibility offered by the various DERs present in the grid. In order to
create such schedules, we mentioned that predictions and operational control are
required. As this thesis focusses on the problem of deriving schedules for the use of
flexibility of the DERs, we assume that predictions are available that are sufficiently
accurate. Furthermore, we assume that a suitable operational control approach
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is in place to realize the generated schedules. In the following we consider the
scheduling problem from a mathematical point of view.

The schedules we consider are for a given time horizon (e.g., a day) consisting
of equal length time intervals (e.g., fifteen minutes). Although the length of the
time intervals can be chosen arbitrarily, we focus on the scale of minutes or longer.
The main reason is that, with a granularity below that of minutes, certain system
dynamics start to play crucial roles in the application of an EM approach. For
example, the reliability and speed of the communication infrastructure becomes
important when schedules are made and/or readjusted within seconds. Because
these dynamics are outside the scope of this thesis, we focus on a time granularity
where such issues do not play an important role. Note that a time scale of minutes
to hours also coincides with most market structures used to operate the electricity
grid [102].

To introduce the scheduling problem more formally, we consider a given time
horizon T consisting of time intervals 1, 2, . . . , T . An EM approach schedules the
flexibility use of a DER m, resulting in an energy profile xm of T elements, for each
of the available DERs in a setM= {1, 2, . . . ,M}. The goal of an EM approach is to
determine schedules that are optimal with respect to the given system goals while
the resulting energy profiles are feasible. To this end we define x = (x1 , x2 , . . . , xM)
as the vector of the energy profiles of all devices. The system goals are expressed
using an arbitrary objective function f (x). This function indicates how well the
energy profiles resulting from a particular set of schedules fit the system goal. As
an example, using f (x) = ∥∑M

m=1 xm∥2 ensures schedules are made for the devices
that flatten the aggregated energy profile, and as such reduce stress on the network.

When scheduling the flexibility provided by DERs, especially those in a residential
setting, we mentioned that two types of constraints have to be considered: local
and grid constraints. To ensure that the local constraints are satisfied, we use a
local constraint set Xm for each device m. Thus we require that xm ∈ Xm for every
devicem ∈ M. Grid feasibility is ensured through the use of a constraint set X that
applies to the aggregated energy profiles resulting from the schedules together. In
other words, we require that x ∈ X.

From the above we obtain the following EM scheduling (EMS) problem:

Problem 2.1 (EMS).

min
x

f (x), (2.1)

s.t. xm ∈ Xm
∀m ∈ M, (2.2)

x ∈ X . (2.3)

This problem is central in scheduling based EM approaches. As an example, the
classical UCP solved to obtain generation schedules for the central generators is
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obtained from Problem EMS in the following manner. TakeM as the set of gen-
erators and f the sum of the cost of generation according to profile xm over each
m. Furthermore, take Xm as the feasible set for generator m and X as the feasible
set for the network, i.e., the set of schedules that satisfy network constraints while
matching the load.

When considering schedules in the EM domain, we note a particular subtlety that
is often overlooked. A schedule results in a profile given in terms of either power
or energy. While technically the power drawn by a device can differ greatly over a
considered time interval, a common assumption is that this does not occur. In other
words we assume that the power consumption/production is (near) constant per
time interval and equal to the average power consumption/production. Using this
assumption power and energy values can be obtained from one another through
multiplication with an appropriate factor. In this thesis we prefer the use of energy
values and assume values given in terms of power have been transformed using the
appropriate factor. For example, we assume a constraint on the maximum power a
device can draw from the grid in a time interval is transformed into the maximum
amount of energy the device can draw from the grid in this time interval.

As mentioned before, the traditional methods for solving the UCP and other vari-
ants of Problem EMS do not scale to a large number of devices/DERs. Thus, a new
approach is required. A popular approach that has been much discussed recently
is decentralized energy management (DEM), where (part of) the computation is
decentralized to ensure scalability. For example, the devices (or their users) make
their own schedules based on steering signals received from a central controller.
These steering signals give information on how desirable each possible scheduling
decision is. Note that in practice this approach is already applied in many countries,
by means of a day and night tariff. This price signal incentivizes customers to shift
their consumption to the night when the cheaper tariff applies and when energy is
generally cheaper for the retailer too. We come back to the use of a DEM approach
in the next chapter, where we introduce our own scheduling based DEM approach
called profile steering.

2.5 Different Types of Residential Distributed Energy
Resources

We already mentioned that one of the challenges for an EM approach is the het-
erogeneity of the many DERs envisioned for the smart grid. A non-exhaustive list
of potential DERs on the residential scale is: EVs, white goods, (electric) heat gen-
eration combined with storage, rooftop PV, residential-scale generators, heating,
ventilation, and air conditioning (HVAC) systems, batteries, and pool pumps. A
proper EM approach exploits the specific flexibility offered by each of these devices.
To be able to facilitate the proper interaction between such an EM approach and
the actual devices a platform is required that facilitates this communication. An
example of such a platform is the Energy Flexibility Platform and interface (EF-Pi)
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[55] (which was previously known as FPAI).

2.5.1 EF-Pi Devices

Within the EF-Pi platform DERs are divided in four different appliance classes:

» uncontrollable,
» time-shiftable,
» buffer,
» unconstrained.

These classes are based on the type of flexibility in the energy use of these devices.
Below we elaborate on each class.

Uncontrollable

Uncontrollable devices are those devices of which the energy consumption and/or
production cannot be altered. This class encompasses nearly all devices currently
found in residential areas. Examples are televisions, lighting, and (rooftop) PV.
While these devices do not offer flexibility to be used by an EM approach they still
play an important role via their energy profile (this profile is sometimes referred to
as the base load). As the energy profile of these devices cannot be altered, the other
devices that do offer flexibility need to schedule their flexible energy use around
the energy use of the uncontrollable devices.

As a subclass of the uncontrollable devices we have the curtailable devices. These
devices can be steered to consume/produce less energy or in some cases even switch
off at certain times. An example is PV with a controllable inverter. These inverters
can reduce the output of the PV system in case of, e.g., over voltages or severe fre-
quency deviations in the (distribution) grid. Such inverters are already required in
Germany and California, due to significant levels of PV penetration [88]. However,
curtailing such devices is often undesirable from either an environmental and/or a
user comfort point of view. Therefore, such curtailment should often only be used
as a last resort. Because of this, we do not consider curtailable devices in this the-
sis. However, we believe that many curtailable devices can be incorporated in the
approach discussed in this thesis with minor adoptions to the presented approach.

Time-shiftable

Time-shiftable devices are devices with a fixed energy profile that can be shifted in
time by changing their start time. Examples are pool pumps and smart white goods,
such asWMs and DWs. These devices can shift the start of their program in time
to a more opportune time, e.g., when more solar energy is available. The flexibility
of these devices is generally characterized by a time window in which the devices’
program has to be started and an energy profile of the program to be run. Some of
these devices also offer the opportunity to temporarily interrupt their program at
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specific points, thereby offering a higher level of flexibility. The scheduling decision
for these devices consists of a time to start the program and potentially a set of
decisions on where and how long to interrupt the program.

Buffer

This class consists of two types of devices: 1) pure storage devices, e.g., batteries and
heat vessels and 2) devices that utilize internal storage for their primary functions,
e.g., EVs and laptops. Note that a device of the latter type can be obtained when
combining a pure storage with another device, e.g., a heat pump or CHP unit com-
bined with a heat vessel. The internal storage of the latter type of devices allows
the energy consumption/production to be decoupled from the use of the device
for its primary function, e.g., using a heat vessel allows for the decoupling of the
production of heat and electricity by a CHP unit from the actual heat use. Typically,
the devices considered here consume a relatively large amount of energy and can
therefore have a large impact on the distribution grid.

The constraints on such devices is that enough energy has to be present in the
(internal) buffer for the desired primary operations, allowing flexibility usually in
both when and how much energy is consumed/produced. Thus, the scheduling
decision for these devices is often how much energy is to be consumed/produced
by the device for every time interval. This implies that a large amount of flexibility
is offered. Combining this with the typical large load of such devices implies that
most devices in this class should be an integral part of any effective future EM
approach. To this end we discuss a model for such devices in the next section. On
the other hand, the scheduling problem for many of these devices, as we discuss in
Chapters 4, 5, and 6, are typically more difficult to solve than those considered for
time-shiftable devices.

Unconstrained

Unconstrained devices are those devices without user specified constraints, i.e., the
primary purpose of such devices is to support the grid within their own technical
constraints. The typical example for this class of devices is a (residential-scale)
generator. Thus the primary goals of such devices is to provide the best energy
profile for the grid. As such devices are both rare on a residential scale and the
control of most of these devices on a larger scale is already covered by traditional
EM approaches, we do not consider this class of devices in this thesis.

2.5.2 Model for Buffering Devices

In the previous section we mentioned that the class of buffering devices plays an
important role in future EM approaches. In the following we introduce a model for
the buffer inside such devices. The buffer itself is used to store energy, where the
internal state of the buffer gives the total amount of energy currently stored. This
amount of energy is called the state of charge (SoC) and is usually given as the total



33

C
ha

pt
er

2
–
Ba

ck
gr

ou
nd

buffer

SoC

inflow outflow

Figure 2.7: A schematic overview the buffer model used in this thesis.

value stored (e.g., 4 kWh) or the fraction of the maximum storage capacity used
without a unit (e.g., 1.0 or 100% if the device is full).

The SoC of the buffer depends on both an inflow process and an outflow process.
Via the inflow process additional energy is stored inside the buffer while energy is
taken from the buffer through the outflow process. Depending on the exact device
in question one or both of these processes are (partially) controllable. Note that, if
neither of the two is controllable, the device belongs to the class of uncontrollable
devices instead. A schematic overview of the buffer model used in this thesis is
given in Figure 2.7.

As an example we consider an EV. The outflow process is assumed to be uncontrol-
lable as the required energy for driving depends on the required trips, and road and
traffic conditions which we assume we cannot influence. The best we can do is to
predict the outflow. On the other hand, the inflow process in an EV is the charging
process. We assume that this process is controllable by controlling the amount of
energy that is charged into the EV in every time interval considered.

2.6 Related Work

It appears that the need for new approaches in EM, and thus studies in this area,
has only arisen in the last ten to fifteen years due to an increasing interest in clean,
renewable energy and the emergence of enabling technologies in, e.g., communi-
cation technology. The number of publications in this area increased drastically in
the last five years [142, Fig 2]. However, the first studies and discussions on this
subject date back earlier than this, with the first being published in 1980 to the best
of our knowledge [118]. In this work, Schweppe et al. argue that economic princi-
ples can be used to balance supply and demand between individual customers on a
minute to hour scale. Furthermore, they propose to ensure the shorter term balance
by responding to frequency deviations with eligible devices, potentially (partially)
displacing the need for conventional spinning reserve. The marketing interface
to customers, introduced to facilitate the billing of customers under the proposed
paradigm, is very similar to smart meters currently deployed in the system.
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Many concepts similar to the one introduced in 1980 have since been covered,
as evidenced by the many surveys (recently) published on EM (see, e.g., [6, 15,
39, 120, 142]). Similar to the energy marketplace proposed by Schweppe et al.,
several authors study the effect of implementing more intricate tariff structures for
(smaller) customers. A popular structure is time-of-use (ToU) pricing [125, 147].
In ToU pricing the retailer broadcasts prices for different time intervals during
the day, e.g., fifteen minute or hourly intervals, at predetermined times (e.g., a day
or an hour in advance) to the customer. This communication can be facilitated
by, e.g., the smart meter. Generally, these prices are assumed to reflect the prices
seen by the retailers on the electricity market, thus allowing the retailer to better
reflect its actual costs to the consumer. The differences in prices between time
intervals incentivizes customers to shift their consumption from intervals with
high prices to intervals with low prices, e.g., to better match supply and demand.
Another possibility is that a new market player, often called an aggregator, exploits
price differences on the market through the use of the flexibility provided by its
customers. The exact role and potential of such a player is, however, often unclear
and could be hampered by regulations [77, 137].

As the communication between supplier, or potentially the grid operator, and the
customer is one-way in such pricing schemes, the response to the broadcasted
prices can only be estimated on before hand. This can be done through price elas-
ticity models, which determine the (expected) responsiveness to price fluctuations
by customers [11]. It has been noted however that, when sufficient flexibility is
available, ToU pricing (or other linear pricing mechanisms) potentially only shift
the peak instead of shaving it [15, 91]. This means that the highest consumption is
shifted in time to the interval with the lowest price without a significant reduction of
the actual peak. Thus, the actual stress put on the grid is potentially hardly reduced
by these means. Added to this, ToU pricing can lead to power quality issues (due
to synchronous behaviour) [66]. As an alternative, differentiated pricing schemes
are considered, which send different prices to different customers [20, 95]. While
such methods can be effective, there are potential ethical and legislative reasons
against such systems.

The above mentioned potential issues of linear pricing, i.e., pricing per consumed
kWh, can be alleviated by using tariff structures that better reflect the actual costs of
generation and transportation. As an example, Mohsenian-Rad et al. [94] consider
a setting in which the system is optimized towards minimizing actual generation
costs. They formulate the resulting problem as a non-cooperative game and show
that a Nash equilibrium exists that is equal to the system optimum. Furthermore,
they show that, with the proper incentives for the individual users, the system wide
optimum is obtained in this game theoretic setting, i.e., all users are individually
incentivized to take actions that benefit the overall system. Similar conclusions are
also reached in [10]. Next to the mentioned structures, also other tariff structures
are considered in literature (see, e.g., the discussion on price-based programs in
[39]).
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Another popular approach is to directly control devices on the demand side. In
such an approach the use of flexibility of the available devices is generally controlled
through the use of optimization, i.e., a controller decides how to best use the avail-
able flexibility for a given set of objectives. Traditionally, such control is reserved for
large customers and used in emergency situations, i.e., during grid congestion [129].
However, with recent advancements in ICT, such as the introduction of smart me-
ters, direct load control on a residential scale becomes increasingly viable [46, 119].
In these traditional approaches, larger non-critical loads can be deferred during
times of congestion.

However, with current technologies, such approaches do not need to be limited
to load deferral during grid congestion, but can be implemented in a broader EM
approach designed to operate the grid more efficiently and economically as a whole.
However, as mentioned before, dealing with this problem in a central way leads to
a problem that is too large and complex to be tackled by the traditional approaches
when going beyond the scale of a house or a few large generators. In other words,
it is not feasible from a computational perspective to centrally gather knowledge
of the flexibility provided by every available DER and compute a schedule of the
flexibility use in this central controller followed by a dispatch of the computed
schedules to the DERs. Furthermore, the data required by such a central approach
is often privacy sensitive. To tackle these issues, heuristics and approximations
are required to ensure that a solution that is good enough can be obtained within
reasonable time.

One approach to the problem is to decompose it into several sub-problems that can
be solved individually. For example, Toersche et al. [127] decompose the problem
using a nested Dantzig-Wolfe decomposition resulting in tractable sub-problems
that can in practice be solved concurrently. The authors note a performance degra-
dation when using smaller group sizes, i.e., when the problem is decomposed into a
larger number of sub-problems, due to overhead of the remaining central problem.
This work is part of a larger set of publications on a DEM approach called Triana
[14, 20, 95, 96].

The Triana approach consists of three steps; prediction, planning, and operational
control, mimicking the structure we outlined for a scheduling-based approach in
Section 2.3. The prediction step is done on a household level for each of the rele-
vant parameters, e.g., uncontrollable load, available flexibility, and generation from
renewables. These parameters serve as an input for the neighbourhood level plan-
ning. The scalability of the planning step is ensured through the aforementioned
decomposition. The decomposition is set up in such a way that the problem and
subproblems form a tree [126]. The scheduling problem, present at the root of the
tree as a master node, is solved by iteratively cascading price signals downwards
through the tree to the leaves, which represent the various flexible devices. These
devices schedule the use of their flexibility based on the received price signal and
communicate the scheduled profile upwards. On each intermediate level, a selec-
tion is made between the different schedules each device has communicated, such
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that the overall profile best fits the received price signals on this level.

One of the downsides of such an approach is that, in order for the approach to
work in practice, commonly a ’copper plate’ is assumed for the distribution grid
present in the neighbourhood. This assumptionmeans that, regardless of individual
consumption patterns of the houses, as long as the neighbourhood profile stays
between the operational bounds of the transformer, no problems occur elsewhere
in the network. This assumption turns out to be false in practice in many scenarios
[66, 67] and is sometimes even amplified by the fact that the approach uses price
signals. Such price signals cause the devices to choose between either consuming as
much energy as possible, if the price is low enough, or not consuming any energy,
if the price is too high. As a consequence the devices never operate using a state
that consumes a moderate amount of energy (e.g., an EVwill never charge with less
than maximal power). While grid constraints can be taken into account during the
planning phase [66], the scheduled profiles still show significant fluctuations on a
local level due to the price signals.

Furthermore, such an approach relies heavily on reasonably accurate predictions
as input for the planning. Toersche shows [126] that it is possible to use an auction
structure, similar to the PowerMatcher we discuss below, to determine requests
of when and how devices should use their flexibility. To ensure that the requests
match the available flexibility, even in case of predictions errors, the system uses
simulations to predict possible outcomes and uses these to determine its control pol-
icy. This leads to an effective, though somewhat computationally heavy, approach.
The approach can be combined with the aforementioned (decomposed) planning
approach. Toersche [126] also outlined the profile steering approach in his thesis,
which relies on the same fundamental ideas as the EM approach we study in this
thesis. However, we extend the approach to include more general steering signals
than just desired profiles (see Chapter 3).

The PowerMatcher [83] approach avoids the extreme on/off reactions when sending
(linear) prices, by using an auction structure where devices bid onto the market
by giving a consumption or production level for each price. This approach is very
similar to the third step in the Triana approach, i.e., the operational control step.
For example, an EV provides a curve that relates its power consumption, i.e., its
charging level, for the current time interval to the price of electricity. Similarly,
producing devices provide an energy production level for each possible price. The
bids of all consumers and producers are then aggregated separately into two curves
giving the total consumption and production for each possible price respectively.
Placing mild restrictions on the individual bids, the two aggregated curves always
intersect. The price at this intersection is called the market clearing price. This
market clearing price is sent to the devices, which can then determine their corre-
sponding consumption/production for the coming interval by evaluating their bid
at the received market price.

A downside of the PowerMatcher approach is that it only considers the current
time interval. This leads to the unwanted effect that the flexibility of devices is
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sometimes already used up before the real problems appears, e.g., a large peak
of the uncontrollable consumption occurs in the network at a later time. When
combining a scheduling-based approach with the PowerMatcher, it is possible to
mitigate these effects [101].

The pricing signal used by Triana as well as the market clearing price used by the
PowerMatcher could in theory be directly linked to financial incentives for the
users, i.e., the prices sent correspond directly to those used to bill the customer.
However, in practice, these prices mostly serve solely as a steering signal, i.e., a
signal directing the individual users/devices to schedule the use of their flexibility
to best match the system goals. The participation in the system is often envisioned
using different incentives, where a user can sometimes decide on a case-by-case
basis to participate, i.e., if they feel the reward outweighs the downsides [118]. Such
a system is thus effectively a mix between direct control and participation purely
incentivized through the price of energy.

Instead of prices, different signals can be used to steer a group of appliances. An
example for this is the priority signal used by the Intelligator [28, 29, 65]. This
approach reduces the need for local intelligence by deducing certain important
parameters on a central level using self-learning. The Intelligator approach consists
of three steps; aggregation, optimization and control. Devices use local bidding
functions, similar to those used in the PowerMatcher approach, to communicate
the desire to consume energy right now compared to delaying the consumption.
Furthermore, the relative energy, a ratio between already consumed energy and
(expected) total energy consumption, is also communicated for each device. Both
the bidding functions and the given values of relative energy are aggregated. The
amount of available flexibility is then deduced from the aggregated bid function and
relative energy for the coming period using self-learning. This leads to bounds that
are used to schedule the use of flexibility over a predetermined scheduling horizon
consisting of time intervals. Finally, the use of energy for the current time interval is
communicated back to the devices using the aforementioned priority signal, which
the devices can use to determine their energy consumption. The above steps are
repeated in each time interval, similar to a classical model predictive control (MPC)
approach [5].

The approach has been shown to work for a large cluster of EVs [141] but assumes
EVs only arrive and depart at the start of time slots. This restriction has been lifted
in [36], where the problem includes a real-time coordination aspect to adopt the
priority signal for EVs that arrive or leave during a time interval. A similar approach
has been applied for domestic water heaters in [72]. In this approach for the water
heaters, the aggregated model of flexibility is based on tracer devices, which give a
representative model for the entire population of water heaters. The authors also
include the dispatchmechanism into the optimization step, which further improves
the results.

The advantage of the Intelligator approach is that no privacy sensitive information
needs to be communicated. Furthermore, local constraints on, e.g., user comfort
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can be guaranteed since devices can always consume when required regardless of
the priority signal sent by the central controller. However, the approach depends
on an appropriate self-learning technique to determine the relevant parameters
used in the optimization. For example, Claessens et al. [28] show that under a
strong repetitiveness assumption on the parameters, an intuitive approach gives
adequate results. However, in case the parameters are hard to learn the system
operates sub-optimally [27].

2.7 Conclusion

In this chapter we reviewed the energy system and in particular the electricity sys-
tem. Our review sketched the system in the past, how it evolved to its current form
and how it is expected to evolve in the future. From the (expected) changes sketched
it is evident that, in order to ensure safe and stable operation of our electricity supply
chain, new approaches are needed. In particular, with the increasing penetration of
uncontrollable renewable energy sources andmeasurement and control capabilities
on all levels of the system and a greater need for flexibility in consumption, EM
approaches will play an important role in the future (smart) grid.

To facilitate the integration and proper use of DERs in the future (smart) grid,
a new EM approach is required. The main requirements for such an approach
are: scalability, scheduling, heterogeneity, feasibility, and privacy. We discussed
and motivated each of these requirements. Furthermore, we gave a mathematical
problem formulation of the (scheduling) problem that an EM approach needs to
tackle. In this problem many different types of DERs will play an important role.

We classified the different types ofDERs that we assumewill play a role in the future
smart grid in four classes: uncontrollable, time-shiftable, buffer, and unconstrained.
We argued that the buffer class will play an important role in the future grid, partic-
ularly in residential areas. Hence this thesis focusses on the use of devices falling
into the buffer class. For this, we described a generic model for storage devices that
will aid us in later chapters.

Finally, we reviewed some of the related work on EM approaches. In this review we
distinguished between approaches that incentivize the use of the available flexibil-
ity through adapting different tariff structures in the market versus those directly
controlling loads. Furthermore, we discussed several approaches (i.e., Triana, Pow-
erMatcher, and Intelligator) that effectively combine the two using different incen-
tives for users to participate without assuming that the approach has full control of
the appliances of the customers. However, none of these approaches fulfils all the
requirements we listed for an EM approach.

Summarizing, the requirements listed in this chapter lead us to formulate our own
EM approach in the next chapter. This is a heuristic approach that is inspired by
the Triana approach as reviewed in this chapter.
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413
Profile Steering

Abstract – In the previous chapter we sketched a changing energy supply
chain. As the old paradigm of central control is no longer applicable in the
future grid, a new energy management approach is required. In this chapter
we discuss our profile steering decentralized energy management approach.
This approach ensures that the flexibility of all distributed energy resources can
be used efficiently. The approach uses a hierarchical control structure to ensure
that it scales to the large amount of distributed energy resources expected in
the future grid. Furthermore, we show that local limitations of the grid, i.e.,
maximum power flows through assets, are important to consider in future
grids with large loads and much local production. We adapt our approach
to incorporate these limitations ensuring that the approach uses the provided
flexibility in a feasible way.

This chapter is based on [TvdK:7] and [TvdK:3].
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Figure 3.1: The cumulative share of different sources of renewable energy in the
total energy consumption of the Netherlands over the period 1990 to 2015. Data
taken from [51].
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Figure 3.2: The cumulative share of different sources of renewable energy in the
electricity consumption of theNetherlands over the period 1990 to 2015. Data taken
from [51].
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Figure 3.3: Share of the different sectors in the total energy consumption in the
Netherlands over the period 1990 to 2014. Data taken from [51].
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3.1 Introduction

In the previous chapter we sketched a rapidly changing energy supply chain, in
particular the electricity grid. The changes are mostly caused by a shift towards
energy from carbon free sources and the electrification of our energy supply chain.
The introduction of energy from renewable sources in our energy supply chain is
depicted in Figure 3.1. This change is particularly notable in the electricity grid (see
Figure 3.2). Most of electricity produced from new sources comes from smaller
units that are often situated closer to the demand, i.e., in the distribution grid. For
example, consider rooftop photovoltaic (PV) that are very popular in Germany.
Furthermore, many sources of flexibility (e.g., electric vehicles (EVs), smart white
goods, and heat pumps) have a relatively small impact on their own but can offer
large benefits in groups of large sizes.

We argued that traditional approaches to control our energy supply chain, and in
particular our electricity grid, are no longer applicable in this changing landscape.
Thus, a new energy management (EM) approach is needed. We focus on the res-
idential sector in this thesis. Figure 3.3 lists the share of the different sectors in
the total energy consumption of the Netherlands over the period of 1990 to 2014.
The residential sector takes up a significant share of the total energy consumption.
Furthermore, the approaches and ideas we present in this thesis also apply to other
customers (e.g., offices, schools, etc.) located in the distribution grid. In other
words, a large share of the total energy consumption is covered by our approach.

In this thesis we focus on the electricity grid. The traditional approach to manage
the electricity grid is through a centralized approach. If all (future) distributed en-
ergy resources (DERs) are to be considered by such an approach, all the information
on the flexibility provided by the DERs needs to be known in a central location.
This causes a very large communication requirement and dependency as well as an
issue concerning privacy. Furthermore, the problem to be solved in such a central
approach isNP-hard, as we show in this chapter. This means that we expect these
problems to be computationally difficult to solve in reasonable time as the compu-
tational times of methods solving (sub)problems to optimality grow exponentially
in the size of the instances.

In the previous chapter we listed several requirements on a new EM approach. Re-
capping on these; we need a scalable scheduling based approach capable of handling
many heterogeneous devices in a feasible manner for all levels of the grid while
respecting privacy sensitive information. To tackle the scalability, communication,
and privacy issues, we consider a heuristic approach, namely decentralized energy
management (DEM). In a decentralized approach the system is controlled through
a hierarchical control structure. In such a control structure, the DERs make their
own schedule of the use of flexibility. How and when this flexibility is used by the
DERs is coordinated through the use of steering signals send to the (controllers of
the) DERs by higher level controllers. Note that this is already common practice
in many countries through the use of different energy tariffs throughout the day,
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indicating when energy is expected to be abundant (cheap periods) compared to
when it is constrained (expensive periods), e.g., day and night tariffs.

The scalability to a large amount of DERs is ensured through the decentralization.
Furthermore, less communication is required than in a central approach, as only the
steering signals and schedules are communicated instead of all relevant information
required to obtain them. This also ensures that privacy sensitive information is kept
locally, (partially) solving the privacy issue. Note that it is possible to make small
groups of DERs and schedule them together rather than individually. This reduces
the computing power requirement for each of the individual DERs.

As mentioned in the previous chapter, purely steering on prices, as is currently
common practice and often considered for the smart grid, can have adverse effects.
Furthermore, if the communication in a decentralized scheduling system is one
way, i.e., only the steering signals are send and the DERs do not communicate
their schedule back, it is hard to predict how the system will react and regularly
might overshoot or not reach the desired effect. To this end we study a system
with communication in both directions; a centralized unit sends steering signals to
the DERs. Then, these DERs schedule their flexibility use based on the signals and
communicate these schedules back to the central units. The approach may react to
the schedules made by the DERs by updating the steering signals, resulting in an
iterative process.

The remainder of this chapter is outlined as follows. In the next section we further
study the EM scheduling (EMS) problem as introduced in the previous chapter. In
particular we study the complexity of this problem and show it to be alreadyNP-
hard in a simple setting. To avoid the computational difficulty associated with such
problems we introduce a basic variant of our decentralized, heuristic approach in
Section 3.3. The steering signals used by this approach are elaborated in Section 3.4.
In Section 3.5 we detail the results of a simulation study showing the effectiveness
of the proposed approach. The simulation results reveal that local limitations of
the physical grid are not always respected by the approach. As this violates the
feasibility requirement we stated, we adapt our approach to rectify this problem in
Section 3.6. Finally, some conclusions and a discussion are presented at the end of
the chapter, in Section 3.7

3.2 Complexity of Scheduling Based EM

In this section we study the complexity of the EMS problem as introduced in Chap-
ter 2. For this, we first consider time-shiftable DERs and how they are scheduled in
an EM approach. As discussed in the previous chapter, a time-shiftable appliance
offers flexibility to the system by allowing its program to be shifted in time. In other
words, the device has to run a fixed program, which is synonymous with a fixed
energy profile from the perspective of the grid. However, the time at which the
program starts can be shifted to better fit the system goals.
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More formally, a time-shiftable appliance is characterized by a time window in
which the device has to run. This time window is generally characterized by two
parameters, the interval of arrival ta and the deadline for starting td . The interval ta
specifies the time interval in the scheduling horizon at which the device becomes
available, i.e., it is the earliest time interval in which the program of the device
can be started. On the other hand, the interval td gives the latest possible starting
time of the program. Generally the intervals ta and td result from user defined
constraints. Furthermore, the energy profile of the program of the device is given
by a vector p ∶= (p0 , p1 , . . . , pℓ−1), i.e., p defines the energy use of the device for
each of the ℓ time intervals that the program runs. Recall that T is the scheduling
horizon used in Problem EMS. We assume that ℓ ≤ T − td , i.e., that the entire
program can be completed within the considered time horizon for every possible
starting time. The scheduling decision to be made by the device is to determine the
start time ts of the program, where ts has to be chosen such that:

ta ≤ ts ≤ td . (3.1)
For a chosen start time, the energy use xt of the device for time interval t is given
by:

xt = pt−ts , (3.2)
where we assume that pt = 0 for t < 0 or t ≥ ℓ. Using the notation introduced
in Chapter 2, we obtain that the feasible set Xm for the energy profiles of a time-
shiftable device m is given by:

Xm
= {xm ∣ ∃ts ∶ ta ≤ ts ≤ td ∧ xmt = pt−ts∀t}. (3.3)

We note that this feasible set can readily be extended to includedmultiple programs
that have to be executed sequentially.

3.2.1 Complexity

Abovewedefined the scheduling decision for a time-shiftable appliance in a schedul-
ing based EM approach. In this subsection we study the complexity of the gen-
eral EMS problem tackled by a scheduling based EM approach (see Chapter 2 for
scheduling based EM approaches, for an introduction to the complexity of prob-
lems see the Appendix). We show that Problem EMS is already NP-hard when
scheduling a set of time-shiftable devices. For this we consider a setM of time-
shiftable devices. Note that, to indicate the parameters of a device m we add the
superscript m to the parameters of the notation introduced above. As constraints
of the EMS problem, we add only a single constraint on the energy profile resulting
from the joint schedule of the time-shiftable devices, given by x, limiting the total
energy consumed by the time-shiftable devices by a vector xmax . This limit can for
instance be imposed by maximum loads on a cable or transformer. In other words,
we assume that the set X is given by:

X = {x ∣ ∑
m∈M

xm ≤ xmax
}. (3.4)
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Using these assumptions we obtain the following result.

Theorem 3.1. Determining if a feasible solution to the EMS problem exists is NP-
complete, even for instances where we only consider two time intervals (T = 2), time-
shiftable devices that run for a single time interval (ℓ = 1) and can be scheduled in
both time intervals (i.e., ta ,m = 1, td ,m = 2 ∀m), and a uniform upper bound on the
consumed energy (xmax

t = xmax∀t).

Proof. The problem belongs to NP because it is straightforward, given starting
times ts ,m for eachm, to check the feasibility of these start times. Also it is straight-
forward to calculate the total power profile x and check if ∑m∈M xmt ≤ xmax

t for
every t. To proveNP-completeness we reduce the (NP-complete) partition prob-
lem to Problem EMS. Let the multiset S = {s1 , s2 , . . . , sK} specify an instance of
the partition problem. We construct a corresponding instance of Problem EMS as
follows. We define M ∶= K , T ∶= 2, xmax

t ∶= 1
2 ∑

K
k=1 sk , and ℓm ∶= 1, pm1 ∶= sm for all

m ∈ M. A feasible solution to Problem 2.1 now translates into a feasible partition
(S1 , S2) by taking:

S1 = {sm ∈ S∣ts ,m = 1}, (3.5a)
S2 = {sm ∈ S∣ts ,m = 2}, (3.5b)

and vice versa. Since the reduction given above uses a polynomial number of steps,
the theorem follows.

We note that the result is independent of the objective function f for the EMS
problem. Furthermore, we note that it is also possible to prove a similar result for
a broad class of objective functions f without imposing constraints on the joint
schedule x, i.e., without using the (uniform) limit xmax .

The complexity result above implies that centrally computing optimal schedules for
all smart appliances is not feasible in many situations, especially when the set of
devices becomes large and the allowed solution times and computational power are
limited. To tackle this issue we propose a decentralized, heuristic approach where
the computation is split over the devices by letting them make their own schedule.
We describe this heuristic approach in more detail in the next section.

3.3 Profile Steering Heuristic

To solve the (hard) problem of scheduling smart appliances, we propose a heuristic
approach that splits the computation by letting the smart devices, or their con-
trollers, make their own schedules. The heuristic coordinates the use of flexibility
between the different devices by first requesting an initial schedule of each device,
followed by an iterative phase where each device is asked to send a (new) candi-
date schedule. In each iteration a single device that is selected greedily is asked
to update its schedule to its proposed candidate schedule. We call this approach
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profile steering as we steer the total profile formed by the individual schedules of
the devices based on the objectives of the system. For example we steer the profile
of the devices directly based on the desired profile of the system. Profile steering
works by using a centralized controller that steers the scheduling of the individual
appliances. This centralized controller knows the system objectives and can thus
coordinate between the schedules made by the devices. To ensure the resulting
schedules properly align with the system goals the controller works in two phases:
an initial phase and an iterative phase.

In the initial phase, the controller asks each individual device to create an initial
schedule and to send back the corresponding energy profile. This initial schedule
can be constructed in several manners, e.g., by scheduling the device as soon as
possible, by maximizing user comfort, or by scheduling towards the system objec-
tives. In the last case, these system objectives, captured by the objective function
f in the EMS problem, need to be known by the device or device controller. For
example, if the system goal is to flatten the energy profile, then each device is asked
to create a schedule resulting in a profile that is as flat as possible in the initial phase.
We often use the Euclidean norm as the objective function to model the desired
flattening of the profiles. In this case each device is asked to create a schedule such
that ∥xm∥2 is minimized. The advantages of scheduling towards the system objec-
tives in the initial iteration is that in many situations the resulting overall profile
already fits the objectives reasonably well. By this we mean that the combination
of all initial schedules leads to a result already quite close to the optimal solution.
After construction of these (initial) schedules all devices send the resulting profiles
back to the central controller, which aggregates these profiles into an initial total
(scheduled) profile.

The second phase is an iterative phase, in which schedules of individual appliances
are updated to achieve a better overall profile regarding the system goals. To this
end, each appliance is asked to construct a candidate schedule that best fits the
overall system objective given the current total profile. More precisely, let x be
the current total profile with objective value f (x). Now, device m, with current
profile xm , is asked to construct a candidate schedule, resulting in a profile x̂m . This
candidate schedule should be constructed such that the system goals, captured in
the objective function f , are maximally improved (i.e., decreased) by switching
from the original schedule of the device to the candidate schedule. In other words,
the candidate schedule is constructed such that the resulting energy profile x̂m
minimizes f (x − xm + x̂m). This schedule needs to be feasible, i.e., x̂m ∈ Xm .
After constructing a candidate schedule, the device sends the corresponding (new)
energy profile back to the central controller.

After receiving all profiles corresponding to candidate schedules, the centralized
controller decides which device gives the best improvement when updating this
device’s current schedule to the proposed candidate schedule. If the improvement
is large enough, the centralized controller then asks only this device to update its
schedule to the candidate schedule. The reason that only the schedule of a single
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device is updated is to prevent oscillation and overshoot effects. The process is then
restarted by again asking each device to propose a candidate schedule, using the
updated total profile. This iterative process is repeated until the central controller
decides that no proposed candidate schedule significantly improves the system ob-
jectives. The approach is summarized in Algorithm 3.1, where we denote schedules
of devices using their resulting energy profile.

Algorithm 3.1 Profile steering algorithm PS

1: x = Function PS( f ,M, T , X , Xm , є)
2: Request an initial schedule xm of each device
3: x ∶= ∑m xm {Aggregate the initial schedules}
4: repeat
5: for m ∈ M do
6: x̂m = argminx̄m∈Xm f (x− xm + x̄m) {Construct candidate schedule form}

7: δm = f (x) − f (x − xm + x̂m) {Improvement made by m}
8: end for
9: m̂ = argmaxm δm {Find device with best improvement}
10: xm̂ = x̂m̂ {Update schedule of m̂}
11: until δ̂m < є {Repeat as long as sufficient progress is made}
12: Return x

By distributing the computation of the (device specific) schedules to the (controllers
of the) actual devices, the problem is distributed and parallelized over these devices
(see Figure 3.4). This implies that the approach is scalable. The added benefit of
using the proposed profile steering approach is that we immediately solve (part
of) the privacy issue. This is because the devices no longer have to communicate
their exact preferences and limitations, only schedules and candidate schedules.
However, some information can still be derived from these schedules, especially
when many requests are made, i.e., in case of many iterations in the iterative phase
of the algorithm.

Central to the profile steering approach is the bidirectional communication be-
tween the centralized controller and the devices. The central controller sends steer-
ing signals to the devices. In turn, the devices respond with the best schedule with
respect to these steering signals. How we achieve the latter is discussed in more
detail in the next section. Note that it is possible to introduce intermediate levels
in the control hierarchy, of which we give an example in Figure 3.4. It is possible
to group devices and/or controllers, where the controllers themselves represent
a group of devices, and introduce an intermediate controller for this group. As
the central control is agnostic to how the schedules it receives are obtained, the
intermediate controller can also use the profile steering approach to transfer the
received steering signals to its children and ask them for their schedules. Then, the
intermediate controller can provide a schedule, as requested by its parent controller,
through aggregation. Using this principle the devices can be split over a tree struc-



49

C
ha

pt
er

3–
Pr

of
il
e
St
ee
ri
ng

central controller

intermediate
controller

intermediate
controller

device device device device

sc
he
du
le

ste
er
in
g
sig
na
l

schedule

steering
signal

schedule
steering

signal

sc
he
du
le

ste
er
in
g
sig
na
l

sch
ed
ule

ste
eri
ng
sig
na
l

schedule
steering signal

Figure 3.4: The control hierarchy of the profile steering approach, as given in Algo-
rithm 3.1, extended with one intermediate level.

tured hierarchy, where the intermediate controllers send steering signals based on
the signals they receive from their parent. The devices remain the only entities
that have to schedule the use of flexibility, as schedules on intermediate levels are
obtained only through aggregation of schedules received from below.

To design a hierarchy of controllers, we may use the structure of the underlying
grid. The low voltage (LV) part of the electricity grid is usually designed radially,
i.e., it has a tree structure. This implies that there is a natural mapping from the
electricity grid to a control hierarchy. We gave an example of a typical Dutch LV
network in Figure 2.5 (Chapter 2). For this example a natural control hierarchy
in the LV grid is given in Figure 3.5. In this hierarchy, first devices are grouped
together per house. Next, the houses are grouped together per phase. Note that the
phase level can be removed in case a three phase connection is common. The three
phases of a single feeder are grouped together at the feeder level. Finally, the feeders
behind the LV transformer are combined and governed by the central controller
for this LV grid. In the figure we depicted a structure with three feeders, however,
it is possible to add more. Note that it is also possible to add higher levels to the
control hierarchy, e.g., part of the medium voltage (MV) grid.

Note that additional bookkeeping is required on the candidate schedules/profiles
if multiple layers are used with profile steering. To illustrate this we consider the
following example.
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Figure 3.5: The natural control hierarchy that follows from the structure of the
Dutch LV grid as depicted in Figure 2.5. Note that we do not show all children of
the entities on each level.

Example 3.1. We consider profile steering applied to an arbitrary set of devices using
a hierarchical control approach with two levels of controllers. These levels consist of
a level with two intermediate controllers to which the devices are connected and a
level with the central controller to which both intermediate controllers are connected.
In the initial phase of profile steering the central controller asks the intermediate
controllers for their initial schedules, which these intermediate controllers obtain from
the devices. Then, in the iterative phase the central controller asks both intermediate
controllers to propose candidate schedules. To obtain these candidate schedules both
intermediate controllers apply the profile steering approach. Now, the intermediate
controllers already know the initial schedule of the devices and hence only use the
iterative phase of profile steering. This results in candidate schedules being requested
from the devices by the intermediate controllers with these candidate schedules being
committed if they best fit the signals the intermediate controllers received from the top
level controller. After both intermediate controllers finish their application of profile
steering they send the resulting schedule to the central controller. Note that the devices
have already updated their initial schedules based on the requests of the intermediate
controllers. After receiving both candidate schedules of the intermediate controllers,
the central controller chooses exactly one to be used. Thus, only the schedules of the
devices below the intermediate controller that is chosen can be used and the schedules
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of the devices below the other intermediate controller need to be reverted back to their
initial schedules.

The above example illustrates that, when using a hierarchical control structure with
profile steering, the updated schedules of devices, which were obtained through
requests of intermediate level controllers, sometimes have to be reverted back due
to choices made by higher level controllers. This can be done by letting the device
save the accepted schedule for each level in the hierarchical structure, i.e., by let-
ting a device save a schedule for each controller above it in the hierarchy. In the
initial phase, the initial schedule made by the device is the same for all hierarchical
levels. Afterwards, in the iterative phase, the schedules are updated only if they are
accepted by the appropriate controller. Furthermore, if a higher level controller
rejects the schedule of an intermediate controller, the schedules of the devices be-
low this intermediate controller are reverted back to the one saved for this higher
level controller. In the example above this means the devices have two schedules;
the first for the intermediate controller and the second for the top level controller.
While the intermediate controller is applying profile steering only the first of these
two schedules is updated. Then, if the top level controller accepts the candidate
schedule of the intermediate controller to which the device is connected, the device
updates its second schedule to be equal to the first. On the other hand, if the top
level controller does not select this schedule, the device reverts its first schedule
back to the original schedule (given by the second schedule).

3.4 Steering Signals

The profile steering approach, introduced in Section 3.3, depends on bidirectional
communication between the central controller and the devices. The central con-
troller sends the current total profile x together with the system’s objective f to
the devices. We call this information send by the global controller the steering sig-
nal, as it steers the profile of the local devices in a certain direction. The devices
respond with a candidate profile x̂m . Note that it is possible to forego the bidirec-
tional communication, by only making an initial schedule for each device, based
on the received steering signal, and using this schedule for each device.

The results attained by the approach depend heavily on the choice of the steering
signal, as we discuss below. Steering signals are often applied in decentralized
control structures (see, e.g., [29, 126]). Below we first discuss the traditional pricing
signals and then extend on these.

3.4.1 Price Signals

Steering signals are currently already in use in electricity grids in many countries.
For example, many energy retailers differentiate between the tariff for energy con-
sumed during on-peak hours (when energy is in high demand and expensive) and
off-peak hours (when energy is cheaper). Furthermore, many larger customers
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(e.g., large industry) pay a fee based on their maximum consumption next to the
fee based on their total energy consumption [39]. These approaches can be used as
a starting point and adapted to better reflect the requirements of the future grid.

A popular approach in the literature is dynamic pricing (also often referred to as
time-of-use (ToU) pricing) or other (linear) pricing approaches. However, such
pricing structures, and specifically linear pricing, can result in outcomes far from
the desired effect and in some cases can even have adverse effects, as we discussed in
Chapter 2. Furthermore, (linear) pricing signals are ambiguous in communicating
the goals of the system, as the following example shows.

Example 3.2. Consider the situation where an EV has to be charged in two hours
upon arrival. Furthermore, we assume the user does not care how the charging is done
exactly in these two hours, as long as the battery is full afterwards. We also assume
that the ideal scenario for the grid is that the EV equally spreads its charging over the
two hours. When sending a pricing signal with the same price for both hours, any
division of the required charging over both hours is optimal when minimizing costs.
Furthermore, when sending a slightly lower price for one of the two hours, the user is
financially incentivized to shift all its charging to the hour with the lower prices.

This example illustrates that (linear) dynamic pricing leads to extreme behaviour
(shifting all or nothing), which can be far from ideal for the overall system. Note
that, the more systems that react automatically on linear pricing signals the more
extreme the behaviour will be.

3.4.2 General Steering Signals

The profile steering approach is designed to allow the use of a very broad class of
steering signals, as any objective function that can be feasibly transferred to signals
for the controllers can be used. This implies that the approach is capable of asking
the devices directly to optimize towards the system’s objectives rather than in an
indirect and ambiguous way through dynamic prices.

As an example we consider the case that the (central) controller has a desired profile
in mind for the group of devices it controls. This desired profile d is simply an
energy profile for the considered scheduling horizon, i.e., d ∶= (d1 , d2 , . . . , dT), it
could for example be a constant, e.g., flat, profile to minimize stress on grid assets,
or a profile that best fits renewable energy generation. As a measure of fitness to
the system goals we use, e.g., a norm on the difference between the current profile
(x) and desired profile (d), i.e., f = ∥x−d∥. The norm can be chosen depending on
a specific aspect of the difference between the desired profile and scheduled profile
that is to be minimized. For example, the Euclidean norm (2-norm) minimizes
squared deviations, thus equally spreading differences between the scheduled and
desired profile over the time intervals minimizes this norm. On the other hand the
Manhattan norm (1-norm) minimizes only the deviations, hence it does not care
where the differences between scheduled and desired profile are, as long as the total
(absolute) difference is minimal.
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The freedom of choosing the steering signal ensures that the profile steering ap-
proach is broadly applicable. The choice of the steering signal may significantly
complicate the scheduling problem that has to be solved by each individual appli-
ance. We come back to this issue in the next section.

Furthermore, in the examples and applications throughout this thesis, we frequently
combine a desired profile d with the Euclidean norm, i.e. ft = ∥x − d∥2. Where in
many cases we take the (original) desired profile to be the zero profile, i.e., d = 0.
This is mathematically the same as steering towards any other flat desired profile
when the total consumed energy over the planning horizon does not change be-
tween different schedules. We made the choice for this objective because it steers
at flattening the energy profile, which reduces stress on the grid assets in a grid.
Furthermore, this objective also ensures that locally produced energy is used locally
as much as possible. Finally, minimizing the squared energy consumption is also
closely related to minimizing grid losses.

3.4.3 Scheduling Devices under Steering Signals

The introduced profile steering approach distributes the computation of schedules
to the devices using steering signals as discussed above. It remains to determine
how the devices obtain their schedules based on these steering signals. In Chapter 2
we separated DERs into four classes; uncontrollable, time-shiftable, buffer, and
unconstrained devices. We argued that the most important classes to be considered
for residential EM are the time-shiftable and buffer classes.

We first consider a time-shiftable, as discussed in Section 3.2. Time-shiftables offer
flexibility by allowing to shift the program that they need to run in time. This leads
to a feasible set of schedules for the devices where each schedule corresponds with
a feasible start time. In general we assume that these feasible start times correspond
with time intervals used by our approach. As the number of time intervals con-
sidered is generally small, this implies that the number of feasible start times, and
hence the number of feasible schedules, is small for these devices. This results in a
small discrete set of possible solutions, which can be explored exhaustively to obtain
the best possible schedule for the received steering signal. While straightforward
implementations are already rather efficient, more intricate methods can provide a
speed-up such as the convolution approach used by Toersche [126, Section 5.4.2.6].

Besides the time-shiftables, the buffer class also plays an important role in residen-
tial EM. DERs in this class generally offer flexibility in both when and how much
they consume and/or produce. This makes their scheduling problemmore difficult,
as the set of potential schedules is no longer finite and hence an exhaustive search
is no longer possible. In Chapters 4 to 6 we consider various devices in this class
and formulate efficient algorithms for the scheduling problems they need to solve
in the profile steering approach.
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3.5 Example Application of Profile Steering

In the previous section we described the profile steering DEM approach. This ap-
proach iteratively steers the energy profile of the flexible appliances in a given grid
towards a desired profile. To demonstrate the potential of this approach, we con-
sider an example with 121 houses in the Dutch town of Lochem. We have access to
a detailed model available of the LV grid used to distribute energy to these houses
(provided by the DSO Alliander). This allows us to not only study the overall sup-
ply and demand matching but also how energy flows through the grid, including
several important aspects of power quality. We consider a futuristic scenario re-
garding the penetration of renewables and flexible appliances. However, note that
this neighbourhood is already actively working towards a large penetration of re-
newables and flexible devices, mostly in the form of rooftop PV panels and EVs
[67]. For the scenario we assume 50 houses are mounted with rooftop PV panels,
where the total surface area of the panels of each house is randomly selected to be
between 8 and 16 square metres. Furthermore, we assume the following flexible
appliances are present;

» 54 EVs with an internal battery of either 12 or 24 kWh (both equiprobable)
and a maximum charging rate of 7.7 kW.

» 121 smart washing machines (WMs), each with built-in tumble dryer, with
a time-shiftable load profile as found in [121].

» 121 smart dish washers (DWs), with a time-shiftable load profile as found in
[121].

» 30 stand-alone batteries with a capacity of 10 kWh and a maximum power
of 3.7 kW, both for charging and discharging.

Each house has exactly one smartWM and one smartDW. Furthermore, the batter-
ies are only present in houses with rooftop PV panels. We generated the availability
of the smart appliances as well as the load of the uncontrollable devices using the
profile generator described in [68]. For this example, we specifically assumed EVs
can sometimes be charged during the day (using energy produced by the PV panels),
e.g., due to the owner having a day off or working from home. This is in contrast
to the usual operation of charging in the evening and/or at night.

We applied the profile steering approach to the described scenario in a simulation
study. For the simulation we chose the minimization of the Euclidean norm of
the total profile as the objective. In the simulation we steer the energy profile of
the entire neighbourhood for a week (using data for the 31st week of a year). As a
comparison we also simulated a no control case, where devices consume energy as
soon as possible, i.e., the smart white goods run as soon as they become available
and the EVs charge as fast as possible. The batteries are not used in this case. The
results of the simulation for the entire neighbourhood are given in Figures 3.6
(energy profile at the transformer) and 3.7 (minimum andmaximum voltages in the
network), together with some grid statistics in Table 3.1 (note that the last column
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Figure 3.6: Energy profile for the transformer of the neighbourhood of 121 houses
with either no control (devices run as soon as they become available) or using
profile steering towards a flat profile.
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Figure 3.7: Lowest and highest voltages observed in the (simulated) network cor-
responding to the energy profile given in Figure 3.6 for profile steering and the no
control case.

in this table gives statistics for a case we consider later on). For the profile steering
approach we steered houses to flatten their own profile as much as possible in the
initial phase of the algorithm. This ensured that the resulting profile was already
quite flat, resulting in a small amount of iterations required in the iterative phase.

The results show that a significant peak occurs during the evening hours if no con-
trol is applied, i.e., when devices run as soon as they are available. This peak occurs
because the majority of the EVs charge on top of the usual evening consumption
peak. Due to this peak the voltages drop significantly in the network. When ap-
plying profile steering the charging of the EVs is shifted to the night or even to the
afternoon, when there is energy available from the PV panels, if the EV is available
long enough. Furthermore, the batteries are used to store energy produced by the
PV panels in the morning/afternoon. The stored energy is used in the evening to
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Table 3.1: Comparison of several grid statistics between our profile steering ap-
proach and no control.

No control Profile steering Including limits
Total losses (%) 3.2 1.1 1.1
Lowest voltage (V) 196.5 215.3 215.3
Highest voltage (V) 239.1 236.5 236.4
Max. peak (kW) 380.6 93.7 93.9
Cable load (%) 151.4 84.1 67.5

compensate for the peak in demand. Overall the resulting neighbourhood profile
is significantly flattened, causing a significant reduction in stress on the network
assets. Also, the surplus of energy is minimal, causing a minimal flow of electricity
through the transformer towards theMV grid. This also ensures that the voltage is
muchmore stable. When comparing the grid statistics (the first and second column
in Table 3.1), the grid losses, given as a percentage of the total energy supplied by
the transformer, are reduced by about a factor three. Significant improvements in
voltages, peak load, and cable load are also observed.

3.6 Hierarchical Control

In the previous sections we introduced the profile steering DEM approach to man-
age the energy profiles of flexible devices and showed that it can significantly flatten
the energy profile of a neighbourhood. We argued before that such an approach
should also take the local limitations of the grid into consideration. In principle,
steering towards a flat profile should already ensure that asset stress is minimized.
However, there are cases where significant overloading of network assets is still
possible. As an example, we go back to the simulation study performed in Section
3.5. In particular, we consider a single house equipped with PV that offers a lot of
flexibility during the day due to the availability of a lot of smart appliances (DW,
WM, EV, and battery). The schedules of the appliances and the total profile of the
house are depicted in Figure 3.8. The results for the considered house show that all
smart appliances consume as much energy as possible during the afternoon. This
coincides with the peak availability of solar energy in the neighbourhood. The total
power drawn by the house peaks over 9.2 kW, which is the standard fuse limit for
Dutch households with a single phase connection (40A×230V ). Thus, the resulting
schedule for the household appliances of this house is not feasible. However, the
overall profile at the transformer is acceptable for this time period.

In the depicted scenario we have the situation that a single house is overloaded in
the scheduled energy profile. However, the same can occur for other network assets.
An example of this can be observed if the appliances connected to a single feeder
together try to compensate for a large production peak, e.g., of PV, elsewhere in the
network. In general, in such situations the safe operation of distribution networks
can no longer be guaranteed by the traditional fit and forget strategy. This is mainly
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Figure 3.8: Profiles for a single house of the simulated neighbourhood with a lot of
flexibility available during the afternoon PV peak.

due to an expected increase in large loads and an increasing simultaneity factor,
e.g., in the case of a significant penetration of EVs that need to be charged in the
evening. Further evidence of this is, for example, provided by Hoogsteen et al. [67].

The given examples illustrate the importance of a DEM approach also considering
the local limitations of the grid, ensuring that the constructed schedules are also
feasible with respect to the physical grid. To ensure this we can exploit the natural
mapping between the physical (LV) grid structure and the control hierarchy we dis-
cussed in Section 3.3 (see Figure 3.5). The controllers that govern intermediate levels
(e.g., a feeder or a phase) can consider the aggregate schedule for their children and
adapt the steering signal they send whenever this aggregated schedule exceeds the
constraints on the asset they govern. It remains to adapt the basic profile steering
approach such that these constraints are taken into account.

3.6.1 Incorporating Bounds in Profile Steering

By design each controller within the hierarchy corresponds to a physical part of
the grid. We assume that the controller knows the physical limitations of this part.
To ensure these limitations are taken into account when schedules are made, we
incorporate them in the steering signals. Let the vectors xmin and xmax represent
the known limitations on the aggregated profile for a given controller. Note that,
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in addition to the upper bound given in Problem 2.1, we also incorporate a lower
bound on the profile. This lower limit can be used to ensure that the energy deliv-
ered back through the assets governed by the controller does not exceed certain
limits. Thus, this allows us, e.g., to limit peaks in local production. In terms of
the scheduling problem for the controller, the methodology needs to be adapted
to ensure that the sum of the profiles resulting from the schedules made by the
children of a controller lies between the given bounds. This means that the set X,
used to denote the set of feasible aggregated schedules, includes the constraint ,
xmin ≤ ∑m∈M xm ≤ xmax . Note that we assume that the energy flow through an
asset can be calculated by summing the energy profiles of the devices connected
below this asset. This implies we neglect losses in the grid.

As discussed in Section 3.3, the profile steering approach works in two phases. In
the initial phase of the controller, no information is known about the schedules of
the children of the controller; they still have to be made. To ensure feasibility we
extend the approach to include an additional iterative phase after the initial phase.
Thus, the approach now consists of an initial phase and two iterative phases. In the
first iterative phase we are purely looking for a feasible set of schedules, while we
optimize these schedules in the second iterative phase. We note that this is similar
to the two phase simplex method, commonly used to solve linear programs [144].

In the initial phase no schedules are known, hence we let (device) controllers make
an initial schedule without considering the limitations, as these depend on the
schedules of the other controllers. This is the same as in the basic profile steering
approach. Then we come to the first of the two iterative phases, the one responsible
for ensuring feasibility. In this phase we first check if the set of initial schedules is
feasible, i.e., if the combined schedules do not violate any local limitations. If this
set is feasible we can immediately continue with the second iterative phase, as this
phase requires a feasible set of schedules as starting point. If not, we need to update
the set of schedules to a feasible one. To do this, we can use the basic profile steering
approach with an objective aiming to minimize violation of the given bounds. As
an example, we can use:

f (x) = ∑
t∈T

max{ ∑
m∈M

xmt − x
max
t , xmin

t − ∑
m∈M

xmt , 0}. (3.6)

Next, we consider the second iterative phase of the profile steering approach, used
to optimize the set of schedules. In this phase the controller knows the current
schedule xm of child m. For child m, we can deduce bounds on the candidate
schedule to ensure feasibility of the sum of its schedule added to the schedules of
the other children. We calculate these bounds xmax ,m and xmin ,m by taking the
difference between the given bound and the current schedule of the other devices:

xmin ,m
= xmin

− ∑
m′≠m

xm
′
, (3.7a)

xmax ,m
= xmax

− ∑
m′≠m

xm
′
. (3.7b)
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Figure 3.9: The total scheduled load profile for the house considered in the example
in Section 3.5 minus the scheduled EV profile given in (a) can be used to calculate
the upper bound on a candidate EV schedule given in (b).

Example 3.3. An example of the limits on a candidate schedule is given in Figure 3.9.
For this example we consider the same house as in the example in Section 3.5. For this
house we specifically consider the EV and deduce the bounds on the profile resulting
from its schedule. These bounds are given by the limit of the house (9.2 kW for the
fuse) minus the aggregated schedule of the other devices, which are both given in
Figure 3.9 (a). We only calculate the upper bound on the schedule of the EV, which
we give in Figure 3.9 (b). Note that the limits resulting from this are stricter than
the maximum charging allowed by the EV around six o’clock in the morning and
around noon. In the schedule constructed without limits imposed, the EV charged at
maximal power around noon to compensate for the PV production peak at that time
in the neighbourhood. This lead to a total schedule for the house giving a consumption
profile that was too high around noon.

In general, to ensure that a child of a controller using profile steering can calculate
the bounds on a new candidate schedule, it needs to know the current total schedule
x (of the controller) and the limits xmin and xmax . Thus, we include this information
into the steering signal sent by the controller. Next we need to consider how a
controller that receives such bounds can incorporate them in their approach to
derive a schedule.
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We first consider the case that the controller receiving a steering signal including
bounds is a controller using profile steering. This implies that this controller cor-
responds with a physical part of the grid, for which local limits need to be taken
into account next to the limits received in the steering signal. We obtain the local
limits used by this controller by taking, for both lower and upper bound, the stricter
between the bound received in the steering signal and the local limits applicable to
this controller. In other words, this controller sends the stricter of the two limits in
the steering signals to its children. For example, consider the case that a controller
for a house with a total maximum allowed load of ten kWh for a time interval
receives a limit of twenty kWh in the received steering signal. This house controller
then incorporates a limit of ten kWh in the steering signal it sends to the devices
in the house.

Next we consider the case that the controller receiving a steering signal including
bounds is a device controller. In this case the controller needs to ensure that the
schedule produced for its device is feasible with respect to both the limitations
put on the device and the limits received in the steering signal. This asks for an
adaptation of the corresponding scheduling algorithms and the details on how this
can be incorporated into the scheduling approaches of various devices is discussed
in later chapters.

We summarize the above discussed adaption of the basic profile steering approach
to include local grid limitations in Algorithm 3.2. First the initial schedules of the
children are requested (line 2). These schedules are made without considering the
limits on the sum of the schedules. Next we check if the sum of the initial schedules
is feasible (lines 3-4) and, if this is not the case, we arrive at the first iterative phase
of the adapted approach, used to obtain a feasible set of schedules. In this phase we
use the basic profile steering approach (Algorithm 3.1) with the objective as given
in (3.6) (lines 5-7). Next, we check if the resulting sum of the schedules is feasible.
If it is not, i.e., we still have that f̂ (x) > 0, then we conclude that we cannot obtain
a set of feasible schedules and we return what we have (lines 8-10). If, on the other
hand f̂ (x) ≤ 0 we arrive at the second iterative phase of the adapted approach. In
this phase we iteratively request candidate schedules of the children while ensuring
that the sum of the schedules stays within the limits, until no further improvement
can be found (lines 11-20).

3.6.2 Incorporating Local Limits in the Example

To show the effectiveness of the approach, we take the example described in Sec-
tion 3.5 and incorporate local limits in this example. More precisely, we only con-
sider a limit on the aggregated profile of the houses, namely a limit of 9.2 kW
imposed by the fuse of a single phase connection. The achieved results for the
house already considered in Figure 3.8 are given in Figure 3.10. The energy pro-
files of the battery and EV are slightly adjusted to ensure the total profile of the
household does not exceed the limit imposed by the fuse.
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Algorithm 3.2 Profile steering with grid limitations algorithm PSL

1: x = Function PSL( f ,M, T , xmin , xmax , є)
2: Request an initial schedule xm of each device
3: x ∶= ∑m xm {Aggregate the initial schedules}
4: f̂ = ∑t max{x − xmax , xmin − x, 0}
5: if f̂ (x) > 0 then
6: x = PS( f̂ ,M, T , 0) {Call Algorithm 3.1 with the objective function given in

(3.6) to make x feasible}
7: end if
8: if f̂ (x) > 0 then
9: return x {If the schedule remains infeasible return the best obtained}
10: end if
11: repeat
12: for m ∈ M do
13: xmin ,m = xmin − (x − xm) {Determine lower bound}
14: xmax ,m = xmax − (x − xm) {Determine upper bound}
15: x̂m = argminx̄m{ f (x − x

m + x̄m) ∣ xmin ,m ≤ x̄m ≤ xmax ,m} {Construct
candidate schedule for device m within bounds}

16: δm = f (x) − f (x − xm + x̂m) {Improvement made by device m}
17: end for
18: m̂ = argmaxm{δ

m} {Find device with best improvement}
19: xm̂ = x̂m̂ {Update schedule of m̂}
20: until δm̂ < є {Repeat as long as sufficient progress is made}
21: Return x

The differences between the scheduled energy profile of the entire neighbourhood
with and without limits on the total household profile are only very minimal. The
small difference can be explained by the observation that the overloading of a fuse in
a single house occurs rarely in the considered scenario. Furthermore, simultaneous
overloading of the fuses of multiple houses nearly never happens. If we would
consider more extreme scenarios the probability that the limits imposed by the
physical grid are violated will increase. As a consequence the resulting total profile
may differ more from the profile obtained if these limits are not taken into account.
The grid statistics (see the last column of Table 3.1) change slightly. Themost notable
change is the reduction in the maximum load put on the cables. This is caused by
the fact that the highest loaded cable was previously a cable running directly from
a house to the feeder, on which the maximum load has now been reduced.

3.6.3 Overloading of Cables

Above we discussed how we can incorporate the physical grid into our profile steer-
ing EM approach. We showed, through an example, how this can effectively ensure
that limitations on energy flows through grid assets can be taken into account. To
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Figure 3.10: The results for the same house as in Figure 3.8 when we incorporate
local limits into the example of Section 3.5.

achieve this we mapped the physical grid structure, e.g., transformer, feeder, phase,
to controllers in our control hierarchy. However, energy flows in the grid can cause
overloading at different points than modelled in this way, as we show below.

Example 3.4. Consider the grid given in Figure 3.11. In this figure a feeder is depicted
where the first twelve houses (given in the ‘does not contribute to overloading’ box) are
equipped with renewable generation, e.g., rooftop PV, such that they together are net
energy producers during the afternoon. To minimize energy flows through the cable
our profile steering approach can now ask the other houses (given in the ‘contribute
to overloading’ box) connected to this feeder to consume as much energy as possible
locally. If these houses together generate a schedule that results in a profile with high
energy consumption, then the net energy flow at the beginning of the feeder might be
low while the energy flowing through the section of the cable between the producing
and consuming houses causes overloading.

Example 3.4 shows that it is important to be able to consider groups of houses
that are supplied by a particular section of a feeder that can become congested in
our approach. Note that it is often not possible to pinpoint where such problems
will occur in a grid. However, if they are detected the approach can be adapted
by adding an additional layer in the control hierarchy, as depicted in Figure 3.12,
splitting the control of the houses on the feeder in question over two groups. The
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Figure 3.11: An example of an overloading situation in the LV grid from Figure 2.5.
The assets in the ‘contribute to overloading’ box (potentially) contribute to the
overloading of the cable given in the red ellipsoid, while the assets in the ‘does not
contribute to overloading’ box don’t.

first group governs the houses that are not responsible for the congestion, while the
second group governs those houses that are. The controller governing the houses
that caused the overloading take the maximum cable load into consideration when
making schedules, ensuring that no congestions occur. Note that, in order to apply
the approach described above, measurement equipment on various points in the
LV grid is required.

3.7 Conclusion

In this chapter we presented the profile steering DEM approach and discussed how
the use of flexibility provided by smart devices can be scheduled by it. The approach
overcomes the scalability issue of traditional scheduling approaches (e.g., solving
unit commitment problems (UCPs)) in the energy domain. Furthermore, it also par-
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Figure 3.12: Adopting the control hierarchy given in Figure 3.5 to ensure the profile
steering approach can be adopted to alleviate the problem.

tially solves the privacy issue and can incorporate local grid limitations through the
proposed hierarchical control structure. The heterogeneity of the devices, expected
in the future smart grid, is taken into account by the use of non-device specific
steering signals. Devices can handle their specific constraints locally by making a
schedule based on the received steering signal. The devices only communicate back
their scheduled profile to the next controller upstream, thereby keeping privacy-
sensitive device-specific information rather local. For the class of time-shiftable
devices we argued that schedules can be obtained efficiently through exhaustive
searches independent of the used objective. In the next chapters we discuss the
aspect of creating schedules and profiles for the class of buffer devices. In sum-
mary, the profile steering approach meets all the requirements of a DEM approach,
sketched in Chapter 2.

The scheduling approach presented in this chapter requires predictions of the avail-
able flexibility in the system to function properly. Furthermore, if these predictions
are unreliable, the produced schedules can be suboptimal or even infeasible. We
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believe the system can be adapted to become event-based. In such a system, sched-
ules are onlymade for devices when their relevant parameters are known, i.e., at the
time the devices become available. Note that in this case predictions of the expected
flexibility available later on in the system are still required to make a schedule that
best fits the system goals. For a further discussion on dealing with uncertainty we
refer the reader to Section 8.3.1.

The presented basic profile steering approach extends the current billing structure
used for nearly all energy consumers, as well as the much discussed extension of
ToU pricing in several ways. The steering signals are more general than a pricing
structure. We argued that simple pricing structures can cause extreme behaviour
and that by using more complex structures, e.g., non-linear pricing (prices that
depend on the consumption rate), as steering signals some of these drawbacks can
be overcome. As a general example we used a desired profile as the steering signal.
We combined this desired profile with a norm that measures the deviation between
the desired profile and the current schedule. This allows the approach to steer the
total schedule towards the desired goals.

We showed that our basic profile steering approach can produce schedules that
result in profiles violating local limitations in the grid. To overcome this issue we
proposed to use a hierarchical control structure that mimics the physical grid. We
showed that we can incorporate local limitations of grid assets in such a control
structure in our extended profile steering approach. This extended approach is
capable of scheduling the use of flexibility while respecting grid limitations on
various levels in the grid (i.e., house, feeder, transformer).

Our presented approach is based on two-way communication; devices receive steer-
ing signals and send the schedule they make based on these signals back to con-
trollers upstream. As the approach works iteratively, we can update the steering
signals to take the (updated) schedules of others into account. This results in the
capability of devices to react on what is happening elsewhere, effectively incorpo-
rating a feedback loop into the approach. However, this feedback is not necessary
for the approach to work, though it significantly improves the results. Without
the feedback loop, steering signals are send only once and the devices schedule
their use of flexibility once without communicating this schedule upwards. For this
to effectively work in practice, it is important to have proper knowledge on how
the various connected devices will react to the steering signal used by the central
controller.

The scalability issue present in EM is solved by letting the devices produce their
own schedule based on the steering signals they receive. An open question that
remains is if and how these schedules can be made efficiently. It is important to
note that the computing power present in smart devices is (very) limited and is
expected to remain so in the future [126]. Thus, efficient methods for scheduling
the use of flexibility provided by these devices are required. In the next part of this
thesis we discuss these scheduling problems and several efficient solution methods
in more detail.
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Charging of Electric Vehicles

Abstract – In this chapter we discuss electric vehicles (EVs), which are a
prime example of the electrification of our energy supply chain. EVs offer a
large potential to make our transportation sector sustainable. In this chapter
we model the scheduling problem an EV faces when it receives steering signals
froma controller using the profile steering approach. We show that this problem
falls into the class of resource allocation problems. This allows us to use solution
approaches for classical resource allocation problems. Furthermore, we extend
the model to limit the charging of the vehicle to discrete levels, resulting in an
NP-hard problem. We approximate this problem using convex combinations.
For this approximation we develop an efficient solution approach. We use the
obtained solution approaches to simulate a case study of a neighbourhood with
a large number of EVs showing the effectiveness of our approach.

This chapter is based on [TvdK:4] and [TvdK:1]
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Figure 4.1: The number of EVs sold per year and the market share of EVs in the EU.
Data taken from [48].
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Figure 4.2: The number of EVs sold per year and the market share of EVs in the
Netherlands. Data taken from [48].

Country
2020 EV

stock target
(millions)

EV market
share of new
vehicles

2016-2020 (%)

EV share of
total stock in
2020 (%)

Austria 0.2 13 4
China 4.6 6 3

Denmark 0.2 23 9
France 2.0 20 6
Germany 1.0 6 2
India 0.3 2 1
Ireland 0.1 8 3
Japan 1.0 4 2

Netherlands 0.3 10 4
Portugal 0.2 22 5

South Korea 0.2 4 1
Spain 0.2 3 1

United Kingdom 1.6 14 5

Table 4.1: Table denoting EVs penetration targets for several countries with ambi-
tious goals. Data taken from [76].
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4.1 Introduction

Our energy supply chain, and specifically the electricity grid are undergoing rapid
changes, as sketched in Chapters 1 and 2. One of the major changes is the elec-
trification of our energy supply chain; devices that traditionally use other sources
of energy switch to electricity instead. One of the drivers for this switch to elec-
tricity for these devices is the abundance of clean and renewable sources available
for electricity generation, e.g., wind and sun. An example of this electrification
is the introduction and rise in popularity of EVs. In this thesis, we use the term
EV to cover both full electric vehicles and plug-in hybrid electric vehicles (PHEVs),
vehicles that combine an electric motor and a battery system with a conventional
combustion engine, where the battery can be charged by plugging into the grid.

To operate the electricity grid of the future in a safe and efficient manner, as men-
tioned in Chapters 1 and 2, a completely new approach is required. One such
approach, presented in Chapter 3, is the decentralized energy management (DEM)
approach called profile steering. The coordination mechanism of this approach dis-
tributes the scheduling problems to the individual devices, using steering signals to
communicate the system goals to these devices. It remains to study methods that
determine the schedules of the individual devices, based on the received steering
signals. In this chapter we focus on the EV as a flexible device. We formulate its
(local) scheduling problem and study efficient solutions to this problem.

The number of EVs is rapidly growing in many countries and their uptake is ex-
pected to increase worldwide in the coming decades. As an illustration we give the
total number of EVs sold as well as the market share of EVs on the total automotive
market in the EU in Figure 4.1. While a steep increase in the total number sold as
well as the market share is visible, the total share remains low (around 1.1%). The
story for the Netherlands is somewhat different, as depicted in Figure 4.2. For the
Netherlands extensive subsidiary programs have run to promote electric driving,
resulting in a far larger market share in 2015 (nearly 10%). The decline in market
share between 2013 and 2014 can be explained by the termination of some sub-
sidiary programs. Furthermore, many countries have set ambitious targets, which
we give in Table 4.1.

An EV is a perfect example of a flexible device. Vehicles are commonly used to
commute between home and work, a relatively short distance trip with predictable
characteristics for many residential consumers. Furthermore, most vehicles only
spend little time on the road compared to the time they spend parked and are
thus potentially available for charging [147]. On the other hand, the energy that
needs to be charged into a depleted EV battery is typically several times larger than
the daily energy consumption of a Dutch household [117]. Compare, e.g., a Tesla
with a 85 kWh battery and the average Dutch daily electricity consumption of a
household of 10 kWh. Furthermore, if EVs are charged at maximum power (i.e., as
fast as possible) directly upon arrival at home in the evening this can have potential
negative effects on the distribution grid [30]. We observed these negative effects in
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the form of large peak loads in the simulation study performed in Chapter 3 (see
Figure 3.6). However, as the vehicles are expected to remain stationary the whole
night, a perfect opportunity for a DEM approach to manage the charging arises.

The profile steering DEM approach can be used for the management of this charg-
ing of an EV to, e.g., minimize stress on the network by flattening the total load
profile. For this, a schedule for the EV has to be made by a controller in, e.g., the
charging station to which the vehicle is connected. This controller determines the
schedule for the charging of the EV based on the received steering signals and
(predicted) parameters of the vehicle, e.g., arrival time, departure time, required
charging and maximal charging. As such a controller is generally expected to have
low computational power, we require efficient solution methods to this scheduling
problem. In this chapter, we study two variants of the EV charging problem, both
falling into the category of resource allocation problems. For both problems we
present efficient solution methods.

The remainder of this chapter is outlined as follows. In the next section we briefly
discuss related work on EV charging. Then, in Section 4.3, we introduce the EV
charging problem considered in this chapter. For this problem we formulate nec-
essary and sufficient optimality conditions. Next, in Section 4.4, we discuss two
solution methods for resource allocation problems commonly applied in literature
and apply them to the EV problem. In Section 4.5 we discuss an extension of the EV
charging problem that ensures the EV is only charged at specific charging levels. As
this extension turns the problem into a hard problemmathematically speaking, we
adapt the problem slightly to be able to derive efficient solution approaches. Then,
in Section 4.6 we simulate the profile steering approach coordinating the charging
of multiple EVs in a neighbourhood and compare this approach to state-of-the-art
methodologies. Finally, we draw some conclusions and discuss the obtained results.

4.2 Related Work

In this section we briefly sketch related work on EV charging. We note that we
focus primarily on problems that are closely related to the problem we study in
this chapter (see Section 4.3 for our problem definition). In the literature on the
scheduling of EV charging there is a clear distinction between work discussing the
optimal charging of a single vehicle and work aimed at optimizing the charging of a
fleet of vehicles. The latter case is often implemented using steering signals, similar
to our profile steering approach, which are used to decompose the overall problem
into optimization problems for each vehicle separately.

4.2.1 Optimization of a Single Vehicle

In [115] a detailed model of the battery use in a PHEV is described. The model is
used to determine the optimal balance between using the battery and conventional
fuel to supply the energy required for a detailed trip of the vehicle. Simultaneously,
an optimal charging strategy for the battery is determined when the vehicle is
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plugged into the grid. The charging part is optimized with respect to costs of
charging under a time-varying pricing scheme of electricity. The option of offering
regulation services to the grid is also considered which leads to a higher net profit in
the simulation results. The authors solve the optimization problem using dynamic
programming, for which the range of possible charge and discharge values is a
discrete set, similarly to the second variant studied in this chapter. We note that
the steering signals used in our profile steering approach can be interpreted as
time-varying prices to ensure economic scheduling of the vehicle for the owner.
Furthermore, regulation services to the grid can also be adopted in the steering
signal in several cases. This implies that our solution methods are more general
and can be used to solve the problems considered in [115].

The model for EVs in [147] is used to compare different strategies for EV charg-
ing based on electricity prices and driving data obtained in Denmark in 2003. A
comparison is made between charging during the night and charging at any time
during the day. In both cases the option of gaining additional profit by selling en-
ergy through vehicle-to-grid (V2G) utilization is also considered. The problem is
solved as a mixed integer program, where the optimization is done with respect to
the time-varying prices. While the models presented in this chapter do not con-
sider V2G, we make extensions to the model in Chapter 5 to allow for this. This
implies that our solution methods can be used to solve the problem considered in
[147] in a much more efficient manner than through a mixed integer problem.

4.2.2 Optimization of a Fleet of Vehicles

The charging of a fleet of EVs is often optimized from a grid perspective. Examples
of objectives are the minimization of the generation costs of the required energy
for charging or the minimization of peaks in the load profile.

In [56] the charging of a fleet of EVs is considered on top of a given base load. The
optimization goal is assumed to be a general convex function of the sum of the base
load and total EV load. It is shown that an overall optimal solution can be found by
an iterative algorithm. This iterative algorithm optimizes the charging of each EV
separately with respect to a control signal of time-varying prices and the squared
distance to the charging profile of the previous step. The authors give no indication
on how this local charging problem is solved. The problem considered in [56] fits
exactly into the continuous problem discussed in this chapter, implying that the
local charging problems can be solved efficiently by our solution approaches.

Themethodology proposed in [141] attempts tominimize the cost of the generation
of electricity required to charge a fleet of EVs. This methodology aggregates the
scheduling possibilities of all EVs in the fleet together into a single master problem.
This master problem is then solved using dynamic programming. A control sig-
nal, based upon the solution of the master problem, is then send to the individual
EVs. The actual charging done by the EVs is based upon the control signal and
the proximity to their deadline. The master problem is very similar in nature to
the problems considered in this chapter. However, we allow for more general, con-
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vex objective functions. We note that the approach used in [141] is similar to the
approach of the Intelligator (see, e.g., [29]).

The approaches found in literature listed here focus primarily on EVs. Our profile
steering approach is more general in that it incorporates all types of distributed en-
ergy resources (DERs). Furthermore, the solution methods we develop and discuss
in this chapter can be applied to other appliances that have an internal battery that
needs to charged without allowing discharging to the grid.

4.3 Electric Vehicle Scheduling Problem

When considering the EV we note that it fits into the buffer class of DERs as intro-
duced in Chapter 2. The internal battery of the EV corresponds with the buffer in
the model, whereby the state of charge indicates how much energy is left inside the
battery. The inflow process of the battery is the charging done while the vehicle
is plugged in. We assume that this process is controllable. The outflow process
is the energy used for driving the vehicle. Because the in- and outflow processes
are decoupled in time, we only need to make sure that the inflow process, i.e., the
charging of the vehicle, is done in such a way that the energy need of the next out-
flow process is satisfied. Also, note that some EVs recover energy internally, e.g.,
from the braking system. As we cannot control such a system, we assume the total
energy requirement for the drives already takes such recoveries into account.

To integrate EV charging into the profile steering DEM approach, we have to con-
sider the problem of scheduling the EV charging with respect to received steering
signals. As outlined in Chapter 3, the steering signals consist of an objective func-
tion f (x) potentially together with a lower bound xmin and an upper bound xmax

on the charging schedule. The steering signals thus define the objective of the op-
timization problem together with bounds on the schedule. This schedule consists
of decisions for a finite set of equal length time intervals, i.e., we need to find a
decision vector x that describes the amount of energy charged into the EV for every
time interval. Furthermore, we need to ensure that the charging volume of the EV
is equal to the specified level between arrival and departure, where in general this
level is fully charged. This leads to the following optimization problem.

Problem 4.1 (EVC).

min
x

f (x), (4.1a)

s.t.
td

∑
t=ta

xt = C , (4.1b)

xmin
≤ x ≤ xmax . (4.1c)

We call this problem the EV charging (EVC) problem. Within Problem EVC, con-
straint (4.1b) ensures that the charging volume between arrival at ta and departure
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at td is equal to the specified amount C. In other words the EV is charged with the
specified amount C between arrival and departure. Furthermore, constraint (4.1c)
ensures the schedules stays between specific bounds, which result from the bounds
given by the steering signal and device specific bounds, e.g., the maximum rate of
energy transfer allowed by the charger. In the notation introduced in Chapter 3 the
feasible set of schedules Xm is given as:

Xm
= {x ∣ x satisfies (4.1b) and (4.1c)}. (4.2)

Since the EV cannot charge energy while not connected, we have that xt = 0 for
t < ta and for t > td . In particular, we can restrict the scheduling horizon for the
EV to be exactly the intervals between ta and td , i.e., we assume w.l.o.g. that ta = 1
and td = T .

We note that Problem EVC in the given form cannot be used to cover discharging
of the vehicle, i.e., V2G. This is because constraint (4.1b) only restricts the state
of charge (SoC) of the battery at the end of the optimization horizon. This means
that, with V2G enabled, no constraint is given that forbids the SoC of the battery
from dropping below zero or rising above the capacity of the battery during the
scheduling horizon. This implies that we have to assume that xmin ≥ 0. In Chapter 5
we extend the model and problem to include the case that the vehicle can discharge
energy to the grid when beneficial and present also corresponding efficient solution
approaches.

Note, thatwe furthermoremay assumew.l.o.g. that the lower bound on the charging
done on each time interval is zero, i.e., that xmin = 0. This follows from the fact
that we can transform any instance of Problem EVC to an instance with xmin = 0
using the variable substitution y = x − xmin .

To ensure that Problem EVC and also other device scheduling problems we en-
counter later on are tractable we make the following assumption.

Assumption 4.1. The objective function f (x), communicated to the devices in the
profile steering approach, are convex and separable, i.e., f (x) = ∑T

t=1 ft(xt), with
each ft convex.

In essence, the objective function f (x) determines how well the schedule x fits
the system goals. When the function is separable, the fitness of the schedule for
a specific time interval is independent of the fitness on other time intervals. This
means that the fitness of the scheduled value for interval t, given by xt , can be
expressed by an explicit function ft(xt), which only depends on xt . Note, that
this, e.g., implies that the change of the charging level between two consecutive
intervals cannot be part of the objective. The convexity assumption implies that
each ft is convex, i.e., it is "changing at an increasing rate". For more background
on convexity we refer the reader to the Appendix.

We note that the Euclidean norm, which we often use to steer the load profile
towards a flat profile within profile steering, in its basic form is not a separable
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function. However, if we instead consider the square of the Euclidean norm, we
get a separable (and convex) function. This modification does not alter the optimal
load profiles found by the devices, since a schedule with a smaller (non-negative)
objective remains smaller after squaring the objective.

4.3.1 Resource Allocation Problems

With Assumption 4.1, Problem EVC becomes a problem in the class of nonlinear
continuous resource allocation problems. Resource allocation problems consider a
bounded resource or resources that has/have to be optimally divided over various
activities or tasks. In Problem EVC the resource is the offered flexibility in the charg-
ing, which has to be divided over the time intervals. The problem is continuous
since the decision variable, given by x, has a continuous feasible set. Furthermore,
because we in general do not assume the objective function f (x) to be linear, the
problem is in its general form nonlinear.

In resource allocation problems, often the resource constraint, given by (4.1b), is
a less than or equal constraint ∑T

t=1 xt ≤ C, i.e., at most a given amount of the
resource can be used. We note that this variant can be reduced to our formulation
in the following way. We first solve the relaxation of Problem EVC obtained by
dropping the resource constraint (4.1b). We note that this turns the problem into T
disjoint one-dimensional convex optimization problems by Assumption 4.1, which
are generally easy to solve. Then we calculate the total resource usage ∑T

t=1 xt for
these T disjoint problems. If∑T

t=1 xt ≤ C we have found an optimal solution. On
the other hand, if∑T

t=1 xt > C, then, by the convexity of the objective, it follows that
this constraint must be tight in an optimal solution. Hence, we can solve Problem
EVC to obtain an optimal solution in this case. Note that, when considering EVs, a
constraint of the form∑T

t=1 xt ≥ C (i.e., the vehicle has to charge at least C units of
energy) can be treated similarly to the above.

Continuous resource allocation problems have various application fields. Inter-
estingly enough one of those fields is the field of traditional energy management,
where the problem needs to be solved to, e.g., let running generators respond to fluc-
tuations in demand [82, 135, 136]. Another such application field is green computing,
where the energy consumption of a processor is minimized, while respecting con-
straints on the tasks to be processed. Since the relation between processor speed
and energy consumption is superlinear, it can be beneficial to slow down the pro-
cessor to conserve energy if the restrictions on the tasks allow this. The technique
used in this field is often referred to as either dynamic voltage and frequency scaling
(DVFS) or speed scaling. For more details we refer the reader to [58, 87, 146]. The
problems solved in this field are similar to those we encounter in DEM, as already
noted by Tang et al. [124].

Another application area is the area of shipping logistics (see, e.g., [71, 100]). The
problem studied in this field is that of finding optimal vessel routes and speed
schedules on the obtained routes. Herein a resource allocation problem is used
to find the optimal speed of vessels for a fixed route. This problem is solved as
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a subroutine of the main solution method to find the combination of routes and
speed schedules.

The application of resource allocation problems is not limited to the fields men-
tioned above. Another field of application lies in economics, in portfolio optimiza-
tion [42, 90]. Furthermore, the problem is also of importance in strategic planning,
e.g., in the field of weapon allocation games [37]. An elaborate history of the class
of nonlinear continuous resource allocation problems can be found in the excellent
surveys recently published by Patriksson [108] and Patriksson and Strömberg [109].

4.3.2 Optimality Conditions

Resource allocation problems fall in the class of convex optimization problems (for
a background on the concepts used here, see theAppendix). For these problems gen-
eral solution methods exist based on the well known Karush-Kuhn-Tucker (KKT)
conditions [80, 85] or on generalizations of these conditions. Furthermore, these
conditions (or a generalization of them) often lead to tailored solution methods for
specific problems in this class. In our context, the generalization to non-smooth
objective functions using subderivatives is of interest. For our convex objective
function f (x) in particular the left and right derivatives, given by f −(x) and f +(x),
play an important role. This generalized version of the KKT optimality conditions
for Problem EVC can be formulated as follows.

Lemma 4.1. A feasible solution x to EVC is optimal if and only if∑t∈T xt = C and
there exists a multiplier λ such that, for all t:

xmin
t < xt < xmax

t ⇒ f −t (xt) ≤ λ ≤ f +t (xt), (4.3a)

xt = xmin
t ⇒ f +t (xt) ≥ λ, (4.3b)

xt = xmax
t ⇒ f −t (xt) ≤ λ, (4.3c)

where f −t and f +t denote the left and right derivatives of ft respectively.

For completeness sake we give a direct proof of the above conditions, i.e., a proof
without use of the generalized KKT conditions.

Proof. To prove that the conditions are necessary, we consider a solution x for
which the conditions do not hold and show that we can construct a (feasible) solu-
tion with lower objective value. Assume, that for x, no λ can be found for which the
conditions of the lemma hold. This implies that there must be two indices t′ and t
with xt′ < xmax

t′ and xt > xmin
t such that f +t′ (xt′) < f −t (xt). By the convexity of each

ft , f −t and f +t exist. Furthermore, they are left-continuous and right-continuous
respectively and it follows that

f +t′ (xt′ + є) < f −t (xt − є), (4.4)
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for є small enough. This implies that the solution where xt′ is replaced by xt′ + є
and xt by xt − є is a better feasible solution. This in turn implies that x is not an
optimal solution.

Next we prove the sufficiency of the conditions. To do so, we consider a feasible
solution x that satisfies the conditions and an arbitrary feasible solution y ≠ x. We
consider two sets of indices:

I+ ∶= {t ∣ yt > xt}, (4.5a)
I− ∶= {t ∣ yt < xt}. (4.5b)

Note that, since both x and y are feasible it follows from (4.3) that f +t (xt) ≥ λ for
t ∈ I+ and f −t (xt) ≤ λ for t ∈ I−. Furthermore, it follows that

∑
t∈I+

yt − xt = ∑
t∈I−

xt − yt . (4.6)

We now obtain

∑
t∈I+

ft(yt) − ft(xt) ≥ ∑
t∈I+
(yt − xt) f +t (xt),

≥ λ∑
t∈I+

yt − xt ,

≥ ∑
t∈I−
(xt − yt) f −t (xt),

≥ ∑
t∈I−

ft(xt) − ft(yt),

(4.7)

where the first and last inequality follow from the convexity of each ft and the other
two inequalities follow from the fact that x satisfies (4.3) and (4.6). Summarizing,
we obtain that f (y) − f (x) = ∑t∈I+ ft(yt) − ft(xt) +∑t∈I− ft(yt) − ft(xt) ≥ 0 for
any feasible y. This implies that x is indeed optimal.

It is worthwhile to note that, in case the objective functions ft are differentiable for
every t, the conditions (4.3) simplify slightly. This is because, for ft differentiable, we
have that f −t (xt) = f ′t (xt) = f +t (xt) for all xt . Thus, in (4.3) the subderivatives can
be replaced with the derivate and (4.3a) simplifies to xmin

t ≤ xt ≤ xmax
t ⇒ f ′t (xt) =

λ. Below we give an example of an optimal solution to an instance of Problem EVC
demonstrating the balance between the derivatives given by Lemma 4.1.

Example 4.1. Consider an instance of Problem EVC with T = 4, C = 5, xmin =

(0, 0, 0, 0), xmax = (2, 2, 2, 2), and objective functions:

» f1(x1) = x2 − 4x + 5,
» f2(x2) = 3x2 − 6x + 4,
» f3(x3) = 1

5 x
2 + 8

5 x +
11
5 ,

» f4(x4) = 3
2 x

2 − 9
2 x +

35
8 .
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t t′
=
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x t
′

(i) charging volume

Figure 4.3: Example of the balance between the derivatives as given by Lemma 4.1.
Where (a)-(d) depict the objective functions with their respective derivatives given
in (e)-(h) and the charging volume given in (i).

For the optimal solution x = (2, 1 16 , 0, 1
5
6 ) we have λ = 1. This solution is depicted

in Figure 4.3. Note that for the optimal solution it holds that f ′2(x2) = f ′4(x4) = λ,
f ′1 (x1) < λ and f ′3(x3) > λ.

4.4 Solution Methods

In Section 4.3 we formulated Problem EVC together with necessary and sufficient
optimality conditions. The necessary and sufficient optimality conditions we for-
mulated in Lemma 4.1 hold for convex separable ft and simplify if we also assume
that each ft is differentiable. A distinction can be made between two types of so-
lution approaches to Problem EVC with continuous f , both based on Lemma 4.1.
The first type of solution approach attempts to find the value of the Lagrangian
multiplier λ as given in Lemma 4.1. Such an approach is often referred to as a La-
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grangian multiplier approach. The other approach builds a solution to Problem
EVC from solutions to relaxations of EVC, in which constraints (4.1c) are dropped.
This approach is an iterative one where in each iteration one or more variables are
fixed at their optimal value (either xmin

t or xmax
t ). This second approach is often

called pegging.

4.4.1 Lagrangian Multiplier Approach

For the Lagrangian multiplier approach for problem EVC with differentiable ob-
jective we note the following. We first consider the case that ft is strictly convex.
In this case we know that f ′t is a strictly increasing function. Furthermore, since
ft is convex, f ′t is continuous. Hence, if we guess the value of the multiplier to be
λ̂, then, using Lemma 4.1, we can uniquely determine the associated value of the
decision variable x̂t using:

x̂t(λ̂) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

xmin
t if λ̂ ≤ f ′t (xmin

t ),
gt(λ̂) if f ′t (xmin

t ) < λ̂ < f ′t (xmax
t ),

xmax
t if λ̂ ≥ f ′t (xmax

t ),
(4.8)

where gt is the inverse of f ′t (which is well-defined because f ′t is continuous and
strictly increasing).

To find an optimal solution we use (4.8) to calculate the value Ĉ(λ̂) = ∑t x̂t(λ̂),
which depends on the guess λ̂. If Ĉ(λ̂) = C, we have found an optimal solution.
This follows directly from the fact that the solution is feasible and satisfies (4.3).
Furthermore, since each f ′t is a strictly increasing function, each gt is also strictly
increasing. From this it follows that Ĉ(λ̂) is also continuous and strictly increasing,
allowing us to use, e.g., bisection search methods to determine the optimal λ.

Next we consider the case that one or more of the ft are convex but not strictly
convex. In this case the inverse gt is not defined as a real-valued function, but rather
as a set function. However, because ft is convex, it follows that gt always returns
an interval. This allows us to specify the functions gmin

t and gmax
t that return the

endpoints of this interval. With this we can reformulate (4.8) to:

x̂t(λ̂) ∈

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

{xmin
t } if λ̂ ≤ f ′t (xmin

t ),
[gmin

t (λ̂), gmax
t (λ̂)] if f ′t (xmin

t ) < λ̂ < f ′t (xmax
t ),

{xmax
t } if λ̂ ≥ f ′t (xmax

t ).
(4.9)

For a guess λ̂ it may be that some values of x̂ can be freely chosen from an interval.
Hence the value of Ĉ may be given by an interval [Ĉmin(λ̂), Ĉmax(λ̂)]. If C ∈
[Ĉmin(λ̂), Ĉmax(λ̂)], an optimal solution exists for this value of the multiplier λ̂.
Because f ′t is non-decreasing, both gmin

t (λ̂) and gmax
t (λ̂) (and hence also both

Ĉmin(λ̂) and Ĉmax(λ̂)) are non-decreasing functions. Furthermore Ĉmin(λ) >
Ĉmax(λ̂) for λ > λ̂. Thus again, a bisection search method can be applied to find
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the value of λ. After such a λ is found, exact values for each xt still have to be
determined. Note that, because not all ft ’s are strictly convex, the existence of
a unique optimal solution is no longer guaranteed. In fact, any combination of
xt ’s that satisfies both (4.8) and ∑t xt = C is optimal in this case. Thus a greedy
approach can be used to determine values of the xt ’s such that∑t xt = C.

The above process can be computationally difficult, depending on the complexity
of finding the inverses gt . However, inDEMmany objectives can be captured using
quadratic objective functions, e.g., linear functions for pricing or the sumof squared
differences for the Euclidean norm. To this end we study a Lagrangian multiplier
approach in the case of quadratic objectives, i.e., ft(xt) ∶= 1

2 atx
2
t + btxt + ct and

f ′t (xt) = atxt+bt . In the followingwe assume that at > 0 to simplify the description.
However, we note that the approach can be adapted to include the case that at is
zero for one or more values of t.

For the given objective (4.9) reduces to:

x̂t(λ̂) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if λ̂ ≤ bt ,
λ̂−b t
a t

if bt < λ̂ < atxmax
t + bt ,

xmax
t if λ̂ ≥ atxmax

t + bt ,
(4.10)

Where we used that w.l.o.g. we assumed that xmin
t = 0. In the following, we call a

time interval t used if xt > 0 and maximally used if xt = xmax
t .

Let us assume we have a guess λ̂ for the value of λ. Using (4.10) we can compute
the schedule x for this λ̂ leading to a total charging of Ĉ. The goal is to update λ̂
until Ĉ = C since then x is feasible and hence optimal by Lemma 4.1. To this end,
let us first sort the time intervals such that b1 ≤ b2 ≤ . . . ≤ bT . Note that for any
λ̂ ≤ b1, it follows that x = 0 and hence Ĉ = 0. Thus we only have to consider λ̂ ≥ b1
and we can start our approach using b1 as the initial value of λ̂.

Next we assume that we have a solution x for some value λ̂ with I the index set of
intervals that are used but not maximally used, i.e., I ∶= {t ∣ 0 < xt < xmax

t }. When
we increase λ̂ by ∆, where ∆ is sufficiently small such that no indices are added to
or deleted from I, then xt increases by 1

a t
∆ for each t ∈ I. Thus, Ĉ increases by η∆,

with η = ∑t∈I
1
a t
. We note that an interval t becomes used whenever λ̂ > bt and

it becomes maximally used when λ̂ ≥ atxmax
t + bt . Thus, I only changes when λ̂

becomes larger than a value in either of the following two sets:

A ∶= {b1 , b2 , . . . , bT}, (4.11a)
B ∶= {a1xmax

1 + b1 , a2xmax
2 + b2 , . . . , aTxmax

T + bT}. (4.11b)

Note that we sorted the time intervals such that A is non-decreasing.

In our approach, we iteratively increase the value of λ̂ to the next value in the
combined set A ∪ B. While doing so, we calculate the increase in Ĉ. During the
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process we ensure that Ĉ ≤ C, by ensuring that we never increase λ by more than
C−Ĉ
η . Furthermore, as soon as Ĉ = C we have found an optimal solution, which we

can calculate using (4.10).

The approached sketched above is summarized inAlgorithm4.1. For the complexity
of the algorithm, note that each of the steps in thewhile loop can be done in constant
time when using two counters to track the number of deleted elements from the
front of A and B respectively. Since at least one element is deleted from either
A or B in each but the final iteration of the while loop, the while loop runs for
at most O(T) iterations. Thus, the sorting step on both A and B dominates the
complexity, giving a total complexity of O(T logT). We note that Hochbaum and
Hong solve the same problem in time O(T) by exploiting the fact that median find
has linear complexity [64]. However, the linear time algorithm for median find is
inefficient for small to medium sized T [18]. Thus, since many scheduling problems
encountered in DEM use a relatively small number of time intervals, we expect our
approach to be more efficient in practice. Furthermore, we expect our approach to
be easier to implement.

Algorithm 4.1Water filling approachWF for EVC with ft = 1
2 atx

2
t + btxt + ct

1: x = FunctionWF( f , xmax ,C)
2: Set A, B according to (4.11) and order them both non-decreasingly
3: Take α as the first value from Awith associated interval t and delete it from A
4: Set λ̂ ∶= α, Ĉ ∶= 0 and η ∶= 1

a t

5: while Ĉ < C do
6: Take α the first element from Awith associated time interval t
7: Take β the first element from B with associated time interval t′

8: γ ∶= min{α, β}, ∆ ∶= min{γ − λ̂, C−Ĉη } {Calculate increase of λ̂}
9: λ̂ = λ̂ + ∆, Ĉ = Ĉ + ∆η {Increase λ̂ and Ĉ}
10: if Ĉ < C and α = γ {Interval t becomes used} then
11: A = A∖ {α}
12: η = η + 1

a t

13: else if Ĉ < C and β = γ {Interval t′ is now maximally used} then
14: B = B ∖ {β}
15: η = η − 1

a t′
16: end if
17: end while
18: x = x̂(λ̂) {Using (4.10)}
19: Return x

Example 4.2. As an examplewe appliedAlgorithm4.1 to the instance of ProblemEVC
given in Example 4.1. The results are depicted in Figure 4.4. In Figure 4.4(a) a graphi-
cal representation of the optimal solution is given. In Figure 4.4(b) the values of the
various variables used in the algorithm are given for the iterations of the while loop.
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We note that the current value of γ is the marked red value in either A or B. After
iteration 4, it holds that Ĉ = 5 = C, thus the while loop terminates.

Algorithm 4.1 is known in the literature as the water filling approach, where it has
been applied in various fields [97, 148]. The reason for the name water filling is
that an optimal solution can be found by pouring an amount of water equal to
C on the graph given in Figure 4.4(a). In this graph, a floor has been added for
every time interval equal to bt and a ceiling equal to atxmax

t + bt . Furthermore,
the width of the interval is scaled such that atxt + bt increases by the appropriate
amount whenever additional water is poured on the graph. The value of each xt is
given by the amount of water in bar t. Since the water evenly distributes itself over
the intervals the derivatives automatically balance in this approach. This implies
that the result is an optimal solution. We note that a minor modification from the
original approach, where upper bounds where not present, is needed. To prevent
blocks from becoming isolated, like the block for t = 4 in Figure 4.4, the infeasible
region is assumed to be porous without holding water.

4.4.2 Pegging Approach

The pegging approach for solving continuous nonlinear resource allocation prob-
lems is based on two observations. The first is that for a lot of these problems the
relaxation when dropping the constraints on the individual usage of the resource,
i.e., constraints (4.1c) in Problem EVC, is easy to solve. In particular, if each ft is
differentiable, it follows from Lemma 4.1 that, for an optimal solution to the relax-
ation the derivatives must be in balance, i.e. f ′t (xt) = λ for all t. Thismeans that the
objective cannot be improved by increasing a variable xt while decreasing another
variable by the same amount. After such a solution x of the relaxation is found two
sets I+ and I− are considered, which contain the intervals that violate xt ≤ xmax

t
and xt ≥ xmin

t respectively. More formally:

I+ ∶= {t ∣ xt > xmax
t }, (4.12a)

I− ∶= {t ∣ xt < xmin
t }. (4.12b)

Using these sets, we can calculate the total violations of the upper and lower bounds
on the xt ’s, given by ∆+ and ∆− respectively:

∆+ ∶= ∑
t∈I+

xt − xmax
t , (4.13a)

∆− ∶= ∑
t∈I−

xmin
t − xt . (4.13b)

The second important observation is formulated in the following lemma.

Lemma 4.2. Consider Problem EVC and an optimal solution x to the relaxation
obtained by dropping constraints (4.1c) together with the corresponding sets I− and
I+ and values ∆− and ∆+. Furthermore, assume that x is not feasible to the original
problem. Then, there exists an optimal solution x to the original problem such that:
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1 2 3 4
-6

0
λ

6

t

a t
x t
+
b t

infeasible region

(a)

Step A B λ̂ Ĉ η
Initial {−6,−4 1

2 ,−4, 1
3
5} {0, 1 1

2 , 2
2
5 , 6} -6 0 1

6
1 {−4 1

2 ,−4, 1
3
5} {0, 1 1

2 , 2
2
5 , 6} -4.5 1

4
1
2

2 {−4, 1 3
5} {0, 1 1

2 , 2
2
5 , 6} -4 1

2 1
3 {1 3

5} {0, 1 1
2 , 2

2
5 , 6} 0 4 1

2
1
2

4 {1 3
5} {1 1

2 , 2
2
5 , 6} 1 5 1

2
(b)

Figure 4.4: Results obtained when applying Algorithm 4.1 to the instance of EVC
given in Example 4.1. (a) gives a graphical representation of the optimal solution
and (b) gives the values of the variables used in the algorithm for the iterations of
the while loop.

» If ∆+ ≥ ∆− then x t = xmax
t for all t ∈ I+.

» If ∆+ ≤ ∆− then x t = xmin
t for all t ∈ I−.

Proof. We first consider the case where ∆+ ≥ ∆−. Assume that for an optimal
solution x there is an index t⋆ ∈ I+ such that x t⋆ < xmax

t⋆ < xt⋆ . Since∑t x t = C =
∑t xt it follows that there must be an index t′ for which x t′ > xt′ . Since ∆+ ≥ ∆− it
follows that we can assume that also x t′ > xmin

t′ . Furthermore, from Lemma 4.1, it
follows that f −t⋆(xt⋆) ≤ f +t′ (xt′) and f −t′ (x t′) ≤ f +t⋆(x t⋆). Summarizing we obtain:

f +t′ (xt′) ≤ f −t′ (x t′) ≤ f +t⋆(x t⋆) ≤ f −t⋆(xt⋆) ≤ f +t′ (xt′). (4.14)
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Therefore, all the inequalities in (4.14) must be equalities. This implies that f ′t⋆
and f ′t′ , exist, are constant, and are equal on the intervals [x t⋆ , xt⋆) and (xt′ , x t′]

respectively. This in term implies that we can increase x t⋆ and decrease x t′ without
changing the objective value. We can repeat the above argument until x t⋆ = xmax

t⋆ .

The proof for the case ∆+ ≤ ∆− is symmetrical.

The observation given in Lemma 4.2 ensures that whenever a relaxation of Problem
EVC is solved either we obtain an optimal solution or we get a set of indices for
which the optimal values are at a specific bound. This implies that the problem can
be solved iteratively, whereby in every iteration the relaxation of Problem EVC is
solved. This solution is either optimal or it gives us several variables that are fixed
at a bound, the latter is often referred to as pegging these variables. These pegged
variables can consecutively be removed from the problem, resulting in a smaller
remaining problem to be solved. This process terminates in at most T steps with
an optimal solution.

In the following we study a pegging approach for the specific case that each ft is
strictly quadratic, i.e., ft(xt) = atx2t + btxt + ct with at > 0. For this pegging
approach, we assume some variables might already be pegged and denote the set of
variables that are currently not pegged by I. We denote by Ĉ the amount of charging
that still has to be done by the unpegged variables. When solving the relaxation
in this case, we know that in the corresponding optimal solution x the derivatives
of each ft for t ∈ I are equal. Thus, for any two time intervals t′ , t ∈ I it holds that
at′xt′ + bt′ = atxt + bt , or, equivalently;

xt =
at′xt′ + bt′ − bt

at
. (4.15)

Furthermore, since∑t xt = Ĉ, we obtain

∑
t∈I

at′xt′ + bt′ − bt
at

= Ĉ . (4.16)

From this we obtain

xt′ =

Ĉ+∑t∈I
bt
at

∑t∈I
1
at
− bt′

at′
, (4.17)

which we can use to calculate the value of xt for every t ∈ I. The resulting pegging
approach for EVC with quadratic objective is summarized in Algorithm 4.2. The
complexity of the approach is O(T2). This follows from the observation that all
steps before a potential recursive call can be calculated in linear time. Furthermore,
in the worst case only a single variable is pegged in each call, resulting in a total
complexity of O(T + T − 1 + . . . + 1) = O(T2).

Example 4.3. As an example we applied Algorithm 4.2 to the instance of EVC given
in Example 4.1. The values of the various variables used in the algorithm are given
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Algorithm 4.2 Pegging approach PEG for EVC with ft = 1
2 atx

2
t + btxt + ct

1: x = Function PEG( f , xmax , I, Ĉ)
2: ∆+ , ∆− ∶= 0
3: I+ , I− ∶= ∅
4: for t ∈ I do
5: Calculate xt using (4.17)
6: if xt < xmin

t then
7: ∆− ∶= ∆− + xmin

t − xt
8: I− = I− ∪ {t}
9: else if xt > xmax

t then
10: ∆+ ∶= ∆+ + xt − xmax

t
11: I+ = I+ ∪ {t}
12: end if
13: end for
14: if ∆+ ≥ ∆− and ∆+ > 0 then
15: Set xt = xmax

t for all t ∈ I+
16: Ĉ = Ĉ −∑t∈I+ xmax

t
17: I = I ∖ I+
18: Calculate xt for t ∉ I+ using PEG( f , xmax , I, Ĉ)
19: else if ∆− > ∆+ then
20: Set xt = xmin

t for t ∈ I−
21: Ĉ = Ĉ −∑t∈I− xmin

t
22: I = I ∖ I−
23: Calculate xt for t ∉ I− using PEG( f , xmax , I, Ĉ)
24: end if
25: Return x

Step I C ( x1 , x2 , x3 , x4 ) ∆+ I+ ∆− I−

0 {1, 2, 3, 4} 5 (2 9
14 ,1

3
14 ,−

11
14 ,1

13
14 )

9
14 {1} 11

14 {3}
1 {1, 2, 4} 5 ( 2 1

4 ,1
1
12 , 0 , 1 4

6 )
1
4 {1} 0 ∅

2 {2, 4} 3 ( 2 , 1 1
6 , 0 , 1 5

6 ) 0 ∅ 0 ∅

Table 4.2: Values of the various variables used in Algorithm 4.2 on the instance of
Problem EVC given in Example 4.1.

in Table 4.2. In the first call of the algorithm (recursive depth zero) ∆− > ∆+ and
hence x3 is pegged to be equal to zero. Then, in the first recursive call (depth of one),
∆+ > ∆− and x1 is pegged to be equal to xmax

1 = 2. Finally, the optimal solution is
found in the second recursive call since ∆− = ∆+ = 0.

The pegging approach can also be used to solve extensions of Problem EVC to opti-
mality. For example, Bretthauer and Shetty studied Problem EVC with a quadratic
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objective [23], where they replaced the resource constraint (4.1b) with

∑
t
atxt ≤ C , (4.18)

and at ≥ 0 for all t. They also added generalized upper bound constraints, modelled
by

∑
t∈Ik

btxt ≤ Ck , k = 1, 2, . . . ,K , (4.19)

where I1 , I2 , . . . , IK are disjoint subsets of the index set T . Their solution approach
divides the problem into several subproblems, which they solve using the pegging
approach.

The same authors also showed in [24] that the pegging approach applies to a gener-
alization of Problem EVC where the resource constraint (4.1b) is replaced with the
more general constraint

∑
t
gt(xt) ≤ C , (4.20)

with each gt convex and differentiable. They study both the continuous and discrete
variant, where the latter is obtained by the further addition of the constraint that
each xt ∈ Z. Below we formulate a discrete version of the problem that only allows
a finite set of values for each xt , which makes the problem difficult. The standard
approach for discrete resource allocation problems no longer applies. Furthermore,
in the next chapters we extend the problem to include both a lower and an upper
bound on the total charged volume up to each time interval.

4.5 Discrete Variant

In Section 4.3 we introduced the EV charging problem EVC and classified it as a
continuous resource allocation problem. Solutions to this problem, e.g., obtained
through the methods discussed in Section 4.4, are used in the profile steeringDEM
approach to obtain charging schedules for EVs and other battery powered devices
that only charge. However, in practice not always each of the achieved schedules
may be applicable. This is because of the modelling assumption that the allowed
charging levels have a continuous range, i.e., x is considered as continuous, but
this may not hold in all cases. For example, several EV charging stations currently
available only allow charging at specific amperages [81]. In the following we extend
Problem EVC to incorporate such constraints.

4.5.1 Complexity of Charging over a Discrete Set

To model the mentioned restriction we replace constraint (4.1c) by the restric-
tion that xt must lie in a finite set. To this end we assume that a finite set Zt ∶=

{z0t , z1t , . . . , z
m t
t } with z jt < z j+1t given for every index t. If we replace constraint

(4.1c) by the constraint that xt must lie in this set Zt we obtain the following opti-
mization problem:
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Problem 4.2 (dEVC).

min
x

f (x), (4.21a)

s.t.
T
∑
t=1

xt = C , (4.21b)

xt ∈ Zt t = 1, 2, . . . , T . (4.21c)

We call this problem the discrete EV charging problem (dEVC). Similar to the
assumption that xmin = 0 for Problem EVC, we can assume that z0t = 0 for every t,
since we can always apply the transformation yt = xt − z0t for every t. Furthermore,
we note that we explicitly do not assume that the sets Zt are equal for every t.
This allows us to model, e.g., grid restrictions at certain times in the feasible set of
operational points.

Discrete (or integer) resource allocation problems have been studied in the litera-
ture. However, these integer problems differ from the problem we consider here.
The distinction lies in the fact that the common assumption in the literature is that
xt ∈ Z for every t is added as a constraint to arrive at a discrete resource allocation
problem. For such problems a proximity results holds (see [64] and the references
therein). This proximity result states that for any optimal solution to the integer
problem of any resource allocation problem, there is an optimal solution to the con-
tinuous variant that lies relatively close (in fact, this result holds for themore general
class of convex optimization problems with submodular constraints [64]. For an
introduction to optimization problems with submodular constraints see, e.g., [12]).
This proximity result implies that an optimal solution to the integer problem can
efficiently be obtained from an optimal solution to the continuous problem. Thus,
an efficient solution method to the continuous problem also (indirectly) results in
an efficient method to solve the integer problem.

The common assumption that xt ∈ Z, which is equivalent to assuming that the
distance between two consecutive points in each Zt is the same, does not hold for
our problem. This impacts the complexity of Problem dEVC.

Lemma 4.3. The decision problem of determining if a feasible solution to Problem
dEVC exists isNP-complete, even if all sets Zt are the same.

Proof. The problem of existence of a feasible solution is in NP , since verifica-
tion of the feasibility of a given solution can be done in polynomial time. The
NP-completeness in case the sets Zt may differ follows from a reduction from
the partition problem. For this we define Zt ∶= {0, pt} and C = 1

2 ∑t pt , where
p1 , p2 , . . . , pT are the integers from the set to be partitioned.

For the case that all Zt are equal we assume that Zt = {z0 , z1 , . . . , zm} for every t
and use a reduction from even/odd partition. In the even/odd partition problem a
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set P = {p1 , p2 , . . . , p2 l} of 2l non-negative integers is given with total sum 2B. The
problem is to determine if there is a subset A ⊂ {1, 2, . . . , 2l} such that∑i∈A p i = B
and for i = 1, 2, . . . , l we have: 2i − 1 ∈ A iff 2i ∉ A.

Consider an instance I of even/odd partition and let k ∶= ⌊log2(2B)⌋, i.e. k is the
unique integer such that 2k ≤ 2B < 2k+1. To transform this instance of even/odd
partition to an instance I′ of dEVC we take T = m = 2l . Furthermore, we choose
z2t−1 = p2t−1 + 2k+t and z2t = p2t + 2k+t for t = 1, 2, . . . , l and C = B +∑l

i=1 2k+i . In
the following we show that I is a yes-instance iff I′ is a yes-instance.

First assume that I is a yes-instance. Thus there exists a subset Awith∑i∈A p i = B
and 2i ∈ A iff 2i − 1 ∉ A. By defining x2t = p2t +2k+t if 2t ∈ A and x2t = 0 otherwise,
and x2t−1 = p2t−1 + 2k+t if 2t − 1 ∈ A and x2t−1 = 0 otherwise, it now follows that
∑

T
t=1 xt = ∑i∈A p i +∑l

i=1 2k+i = C.

On the other hand, assume that I′ is a yes-instance for the dEVC problem and
x a corresponding solution. Note that the l most significant bits of C in binary
representation are 1 and correspond to 2k+1 , 2k+2 , . . . , 2k+l . Since ∑T

t=1 xt = C, it
follows that for i = 1, 2, . . . , l there is exactly one of the values p2i + 2k+i or p2i−1 +
2k+i contained in ∑T

t=1 xt . If we now define A as the subset of {1, 2, . . . , T} of the
indices of these values that are contained in∑T

t=1 xt , it follows that 2i ∈ A iff 2i−1 ∉ A.
Furthermore, by construction we have∑i∈A p i = ∑T

t=1 xt −∑
l
t=1 2k+t = B.

This shows that checking whether a feasible solution to Problem dEVC exists is
NP-complete, even if we assume that the Zt are the same for every index t.

Lemma 4.3 shows that determining if a feasible solution to Problem dEVC exists
is already difficult. In the context of the profile steering DEM approach we need
efficient algorithms to solve the scheduling problems for the individual devices.
This implies that we should not aim for an optimal approach but for a heuristic
approach instead to incorporate a finite set of potential charging levels for the EV
into our scheduling problems.

4.5.2 Piecewise Linear Approximation

Before discussing a possible approach for Problem dEVC, we first consider the
interpretation of a schedule x for an EV. Such a schedule gives, for every time
interval t, the amount of energy xt to be charged. As discussed in Chapter 2, we
assume that this energy is charged at a (near) constant power throughout the time
interval. For instance, if we schedule the charging of the EV in fifteen minute time
intervals, then a scheduled value of one kWh charged in a time interval translates
into four kWof power drawn from the grid for these fifteenminutes. The limitation
to a finite set mentioned previously is exactly on this amount of power drawn at any
given point in time. However, limiting the EV to only charge an amount of energy
equal to charging at any of the values in the finite set for a full time interval does
not represent the options available in practice. Different amounts of energy can
be charged into the EV by changing to a different (allowed) power level during the
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time interval. For instance, charging for 7.5 minutes at four kW and for the other
7.5 minutes at two kW results in a total of 0.75 kWh charged. In fact, any value
between 0.5 and 1 kWh can be charged into the EV by a combination of charging
at two and four kW in a fifteen minute time interval. This strategy is practically
applicable, since tests have shown that switching between different charging levels
can be done in seconds or even faster [81].

To incorporate the above into our scheduling model, we allow the decision variable
xt to take on any convex combination of the points in the set Zt . To do this, we
modify problem dEVC into:

Problem 4.3 (rdEVC).

min
y

T
∑
t=1

Ft(xt), (4.22a)

s.t.
T
∑
t=1

xt = C , (4.22b)

xt =
m t

∑
j=0

y j
tz

j
t i = 1, 2, . . . , n, (4.22c)

m t

∑
j=0

y j
t = 1 i = 1, 2, . . . , n, (4.22d)

y j
t ≥ 0 t = 1, 2, . . . , T ; j = 0, 1, . . . ,m i . (4.22e)

We denote the objective function for time interval t here with Ft instead of ft ,
as the same amount of energy charged can be obtained using different charging
levels. Furthermore, we call this the relaxed discrete EV charging problem (rdEVC).
Within Problem rdEVC, the variable y j

t is a multiplier that indicates the fraction
of time interval t the vehicle charges with a power of z jt . We note that the use of
convex combinations is also common practice in the field of DVFS [86, 87], where
similar problems are studied.

As mentioned, the objective function Ft expresses the objective for a specific charg-
ing volume instead of a charging level. Below we discuss how we can obtain Ft
from the objective functions ft of the original problem. The most straightforward
way to do so is to use the original objective function at the convex combination of
the charging levels, i.e., Ft(xt) = ft(∑ j y

j
tz

j
t). However, as discussed before, this

does not adequately reflect factors such as the stress put onto the network. This is
because charging at both a high and a low power in an interval puts considerably
more stress on the network than charging at the average of the two. To take this into
account we instead consider the convex combination of the values of the original
objective function at the various charging levels, i.e., Ft(xt) = ∑ j y

j
t ft(z

j
t).

For this case we note that, since we are minimizing, any optimal solution will
always pick a combination of charging levels that gives the best objective. In other
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words, to obtain a charging volume xt , the multipliers y
j
t are always chosen such

that Ft(xt) = ∑m t
j=0 y

j
t ft(z

j
t) is minimal. Since ft is convex, this implies that at

most two consecutive multipliers y j−1
t and y j

t are non-zero. This in turn implies
that the value of Ft at xt is given by y j−1

t ft(z
j−1
t ) + y j

t ft(z
j
t) with z j−1t ≤ xt < z jt

and y j−1
t z j−1t + y

j
tz

j
t = xt . In other words, we can replace Ft by the piecewise linear

convex function obtained by linearizing ft on each of the intervals (z
j−1
t , z jt) for

j = 1, 2, . . . ,m j . In summary, solving rdEVC with Ft = ∑m t
j=0 y

j
t ft(z

j
t) reduces to

solving EVC with a convex piecewise linear objective.

4.5.3 Solution Methods

To solve Problem EVC with a piecewise linear objective function, we can use any
solution approach (see Section 4.4) that is applicable with non-differentiable ob-
jectives. However, as mentioned before, we are interested in very fast and efficient
solution methods, since the considered problems generally have to be solved often
and on embedded platforms. To this end, we study Problem EVC with a piecewise
linear objective in more detail. The objective function ft is piecewise linear with
the pieces on the intervals (z0t , z1t), (z1t , z2t ), . . . , (z

m t−1
t , zm t

t ), where z
j
t is called a

breakpoint of ft . We use s jt to denote the slope of the piece with left breakpoint
z j−1t and right breakpoint z jt , which is given by s

j
t ∶=

f t(z
j
t)− f t(z

j−1
t )

z jt−z
j−1
t

. Note that by the

convexity of ft , it follows that s1t ≤ s2t ≤ . . . ≤ s
m t
t and we can assume, w.l.o.g., that

these inequalities are strict. Furthermore, we call a piece used by a solution x if xt
is at least as large as the left breakpoint of this piece and completely used by x if xt
is at least as large as the right breakpoint. Furthermore, we call a piece active for
solution x if it is used but not completely used, i.e., a piece with breakpoints z j−1t
and z jt is active if z

j−1
t ≤ xt < z

j
t . Note that only one piece can be active per time

interval. As an example see Figure 4.5, where a function is depicted for which the
first two pieces are used, the first piece is completely used and the second piece is
active.

When we increase the charging on interval t for a solution x by δ, with δ sufficiently
small, the objective increases by δ multiplied by the slope of the active interval for
t. To construct a greedy solution to Problem EVC with piecewise linear objective,
we can iteratively increase the charging on the time interval that gives the lowest
increase in the objective value, i.e., the time interval with active piece with the
smallest slope. In each iteration we increase the charging until either a new piece
becomes active or until the total charging is equal to C. Below we show that this
greedy approach is indeed optimal. To do so, we show that, in an optimal solution,
any piece with a slope smaller than the slope of a used piece must be completely
used.

Lemma 4.4. Consider an instance of Problem EVCwhere each ft is a piecewise linear
function. Furthermore, assume that a piece with slope s is used in an optimal solution
(i.e., the corresponding xt is at least as large as the left breakpoint of this piece). Then,
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Figure 4.5: Example of a piecewise linear objective function ft with value xt where
the first two pieces are used and the second piece is active.

any piece with a slope smaller than s is completely used by an optimal solution (i.e.,
the corresponding xt is at least as large as the right breakpoint of this piece).

Proof. Consider an optimal solution x and assume there is a piece with slope s′ < s,
which is not completely used, with corresponding objective function ft′ . Let s⋆ be
the slope of the active piece for interval t′. By the convexity of ft′ it follows that
f +t′ (xt′) ≤ s⋆ ≤ s′ < s ≤ f −t (xt). This is a contradiction with Lemma 4.1.

From Lemma 4.4 it follows that the greedy approach we described above is optimal.
To implement this greedy approach we need to sort the pieces such that their slopes
are non-decreasing and then iteratively increase the charging on the time interval
with the smallest slope, deleting this slope from the sorted list, until∑t xt = C. Note
that the smallest slope considered in each iteration of this greedy approach does
indeed correspond to the slope of an active piece, by the convexity of the functions
ft . A straightforward implementation considers all pieces simultaneously and sorts
them based on their slopes, resulting in a complexity of O(M logM), where M
is the sum of the number of pieces mt of all T objective functions. However, we
can reduce the complexity to O(M logT) by only considering a single piece for
each objective function at a time, as only the currently active piece needs to be
considered. The resulting greedy approach is summarized below in Algorithm 4.3.
We use Z to denote the set containing all the breakpoints of all functions ft .

Lemma4.5. Algorithm 4.3 solves ProblemEVCwith piecewise linear convex objective
functions to optimality in O(M logT) time, where M is the sum of the number of
pieces of the objective functions.

Proof. The feasibility of the algorithm follows from the convexity of the ft ’s and
the optimality follows directly from Lemma 4.4.
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Algorithm 4.3 Greedy approach pwlEVC for EVC with piecewise linear objective

1: x = Function pwlEVC( f , Z ,C)
2: Take S = {s11 , s12 , . . . , s1T} and order S non-decreasingly
3: Set xt = 0 for all t
4: while C > 0 do
5: Take the first slope s jt from S with associated t and j
6: δ ∶= min{C , z jt − z

j−1
t }

7: xt = xt + δ
8: C = C − δ
9: S = S ∖ {s jt}
10: if j < mt then
11: Insert s j+1t into the ordered set S
12: end if
13: end while
14: Return x

To prove the stated time complexity, note that the first sorting in Line 2 can be done
in time O(T logT). Furthermore, the heaviest operation in the while loop is the
insertion of the slope of a piece in the ordered vector of at most T − 1 other slopes.
This can be done in time O(logT)when using an appropriate data structure. Since
the while loop runs for at most M iterations and M ≥ T , it follows that the total
complexity is O(M logT).

Example 4.4. We apply Algorithm 4.3 to an instance of EVC with piecewise linear
objective. We take the instance of EVC described in Example 4.1 and replace the
objective functions by their piecewise linear approximations using:

» Z1 = {0, 1 12 , 2},

» Z2 = {0, 1
2 , 2},

» Z3 = {0, 1, 2},

» Z4 = {0, 1, 2},

as sets of breakpoints. The example is depicted in Figure 4.6. In the figure the 3rd
iteration of the while loop is described, where the currently completely used pieces (the
first piece of both f2 and f4) are in blue. The next piece in the ordered set S is the
first piece of f1, which is in dashed red. After this piece is completely used, the second
piece of f1 is inserted into the ordered set S. For all the iterations of the algorithm,
the ordered set S is given in Figure 4.6(j). The red crossed out slope is the first and
hence smallest slope in the set for the iteration, the corresponding piece is used in the
iteration. The slope marked in green for each iteration belongs to the piece added to
S after the piece with the red slope is completely used. This is the piece that is now
active for its corresponding time interval.
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(f) f +2

x3

(g) f +3

x4

(h) f +4

0 1 2 3 4

C

t

∑
t t′
=
1
x t
′

step 2 step 3 opt

(i) cumulative sum

Step S (x1 ,x2 ,x3 ,x4) C
Initial {s12 , s14 , s11 , s13} ( 0 , 0 , 0 , 0 ) 5
1 {s12 , s14 , s11 , s22 , s13} ( 0 , 12 , 0 , 0 ) 4 1

2
2 {s14 , s11 , s24 , s22 , s13} ( 0 , 12 , 0 , 1 ) 3 1

2
3 {s11 , s21 , s24 , s22 , s13} (1 1

2 ,
1
2 , 0 , 1 ) 2

4 {s21 , s24 , s22 , s13} ( 2 , 12 , 0 , 1 ) 1 1
2

5 {s24 , s22 , s13} ( 2 , 12 , 0 , 2 )
1
2

6 {s22 , s13} ( 2 , 1 , 0 , 2 ) 0
(j) Set S during the algorithm

Figure 4.6: Application of Algorithm 4.3 to the instance of EVC described in Ex-
ample 4.4. Figures (a)-(d) give the objective functions and (e)-(h) the derivatives.
Figure (i) gives the cumulative sum at the start of iterations two and three of the
while loop. Here, the blue pieces were used at the start of iteration two and the red
piece was used in this iteration. The table given in (j) gives the values of various
variables throughout the iterations of the while loop in the algorithm.
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In Section 4.4 we mentioned the linear time complexity algorithm of Hochbaum
and Hong [64] for Problem EVC with quadratic objective. A similar approach can
be used to solve EVC in time linear inM, the total number of breakpoints. Instead
of sorting the set of slopes of the pieces between the breakpoints, we iteratively
guess the highest slope among pieces used by an optimal solution. For this guess
we use the median slope m in the set of all slopes, which we can find in linear time
[18]. In case of an even number of slopes, we pick either of the two middle values.
After this we divide the pieces over two sets:

S1 ∶= {s
j
t ∣ s

j
t ≤ m}, (4.23a)

S2 ∶= {s
j
t ∣ s

j
t > m}. (4.23b)

We then construct a schedule x using all the pieces in S1 and calculate Ĉ ∶= ∑T
t=1 xt .

Next we consider three cases.

» If Ĉ = C we have found an optimal solution.
» If Ĉ > C, we check if we can obtain a feasible, and hence optimal, solution,
by using the piece with slopem only partially. If this is not the case we know
that an optimal solution cannot use pieces from S2 nor the piece with slope
m. Thus, we recursively call the algorithm using only the pieces in S1 ∖{m}

» If Ĉ < C, we know that an optimal solution must use all the pieces in S1.
Thus, we mark these pieces as used and recursively call the algorithm on the
pieces in S2 with C ∶= C − Ĉ, since the remaining pieces must be used for
this amount.

This approach is summarized in Algorithm 4.4, where we use similar notations as
in Algorithm 4.3.

Example 4.5. We apply Algorithm 4.4 to the instance described in Example 4.4. In
the initial application of the algorithm (recursive depth of zero), the 8 pieces are split
equally over two sets with the median piece being the second piece of f1. The pieces in
the first set S1, have a total cumulative sum Ĉ = 3 1

2 , hence all the pieces in S1 must
be fully used in an optimal solution. Thus, the algorithm is recursively called on the
pieces of in S2 with C = 1 12 . In this second application (recursive depth of one) the
pieces in S1 have a total cumulative sum of Ĉ = 2 1

2 . Furthermore, since the piece with
median slope, the second piece of f2, has a length of 1 12 , the optimal solution is found
by partially using this piece.

Corollary 4.1. Algorithm 4.4 solves Problem EVC with piecewise linear objective to
optimality in time O(M), with M = ∑i m i , i.e., the total number of pieces.

Proof. Theoptimality of the algorithm follows immediately from the fact that pieces
are used in order, hence the algorithm finds the same solution as Algorithm 4.3,
which is optimal by Lemma 4.5. The complexity of O(M) follows from the fact that
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depth S1 S2 m C Ĉ
0 {s11 , s21 , s12 , s14} {s22 , s13 , s23 , s24} s21 5 3 1

2
1 {s22 , s14} {s13 , s23} s14 1 1

2 2 1
2

(j) Set S during the algorithm

Figure 4.7: Application of Algorithm 4.4 to the instance of EVC described in Exam-
ple 4.4. Figures (a)-(d) give the objective functions and (e)-(h) the right derivatives.
Figure (i) gives the cumulative sum for the pieces in S1 in the initial application of
the algorithm. The cumulative sum of all the pieces minus the piece with median
slope is also plotted together with that of the optimal solution. The table given in (j)
gives the value of various variables in the different recursive calls of the algorithm.
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Algorithm 4.4 Median find approach mpwlEVC for EVC with piecewise linear
objective

1: x = FunctionmpwlEVC( f , Z ,C)
2: Take S as the set of slopes of all the pieces, S1 , S2 ∶= ∅ and Ĉ ∶= 0
3: Take l jt ∶= z

j
t − z

j−1
t for each piece

4: Set xt = 0 for all t
5: Take m the median of S with associated tm and jm
6: for t, j do
7: if s jt > m then
8: S2 = S2 ∪ {s

j
t}

9: else
10: S1 = S1 ∪ {s

j
t}, Ĉ = Ĉ + l

j
t , and xt = xt + l

j
t

11: end if
12: if Ĉ ≥ C then
13: if Ĉ − l jmtm ≤ C then
14: xtm = xtm − (Ĉ − C)
15: else
16: Take Ẑ the set of breakpoints for pieces in S1 ∖ {m}
17: x =mpwlSRA ( f , Ẑ ,C)
18: end if
19: else
20: Take Ẑ the set of breakpoints for pieces in S2
21: x̂ =mpwlSRA ( f , Ẑ ,C − Ĉ)
22: x = x + x̂
23: end if
24: end for
25: Return x

all the steps before a potential recursive call in the algorithm can be solved in time
linear in the number of pieces formed by the breakpoints in Z. For the first call this
number of pieces is exactly M and for subsequent, recursive calls the number is
halved each time. Hence the complexity is O(M +M/2+M/4+ . . .) = O(M).

We note that the actual running time of the median find algorithm with linear
asymptotic complexity is high for small to medium sized sets [18]. Thus, while Al-
gorithm 4.4 has a lower asymptotic complexity than Algorithm 4.3, the latter might
be more efficient in practice, particularly for decentralized energy management
applications, where the number of intervals is typically low.

As mentioned before, for Problem EVC with piecewise linear objective, which can
be solved efficiently using either Algorithm 4.3 or 4.4, we assumed that devices
can switch between different operational levels somewhere during a time inter-
val. However, excessive switching may cause undesirable wearing of the device,
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e.g., the lifetime reduction that may occur for heat pumps and compressors in air-
conditioning systems due to frequent on/off cycling or increased degradation of the
internal battery within EVs from excessive switching between different charging
and discharging currents [81]. Thus, solutions that avoid excessive switching are
desirable. Furthermore, for a solution that switches between different operational
levels it still needs to be determined when these different operational levels are used
during the time interval. The design of an approach that considers this dynamic is
outside the scope of this thesis. However, we expect that for solutions which switch
little during time intervals, such an approach has lower computationally complex-
ity and requires less communication. If we now look at the way how solutions are
produced by Algorithms 4.3 and 4.4, we see that they have xt ∉ Zt for at most one
index t. This leads to the following corollary.

Corollary 4.2. For an instance of Problem EVC with piecewise linear objective, there
exists an optimal solution x such that xt ∉ Zt for at most one t.

As a consequence, the optimal solutions we obtained for Problem EVC with piece-
wise linear objective do not cause much extra wearing of the devices over any
feasible solution to Problem dEVC.

4.6 Simulation Study

With the profile steering approach developed in Chapter 3 and the algorithms de-
scribed in this chapter specifically for the EV, we can assess the potential benefits
of our approach. We already gave an example application of the profile steering
approach in Chapter 3, in which we demonstrated the effectiveness of the approach
compared to the case where no control is applied to DERs. The simulation per-
formed in this chapter is meant to compare our approach with other approaches.
To this end we make two comparisons. First, we compare our approach with a
time-of-use (ToU) pricing scheme. The prices we use are designed such that the
highest peak in consumption of the flexible devices is shifted to the time intervals
for which the consumption by the other devices is lowest. Second, in Section 4.6.2,
we compare our approach with state-of-the-art research.

4.6.1 Comparison with Pricing

For the comparison with ToU pricing we consider a neighbourhood of 121 houses
in the Dutch town of Lochem for which measurement data is available to us. To be
able to determine the ToU prices efficiently we consider a case where only EVs are
present. We aim to determine the optimal prices that can be sent to the consumers
with respect to peak shaving, i.e., the prices that reduce the peak consumption the
most. To compute these prices we consider the base load of the neighbourhood,
i.e., the load without any EVs present. We only consider uniform prices among the
customers, i.e., we assume every customer receives the same prices. Furthermore,
we assume all EVs arrive at 18:00 and depart at 07:00 the next morning. Therefore,
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Figure 4.8: Load on the transformer in a neighbourhoodwithmany EVs for a single
day when applying either no control, profile steering, or the best possible uniform
prices.

intervals with a higher base load need to receive a higher price. To determine the
prices we sort the intervals between 18:00 and 07:00 non-decreasingly and assign
increasing prices with respect to this sorting. In this manner intervals with a high
base load receive a high price.

To simulate a highly loaded scenario we assume every household has a steerable
EV available. Furthermore, we assume that each EV has the same characteristics
for the purpose of this simulation, namely a charge requirement of 12 kWh that
needs to be satisfied with a charging power between 0 kW and 3.8 kW (i.e., we
disregard V2G). In the prices case we assume that each EV is steered to minimize
costs. We compare the ToU prices approach to our profile steering approach, which
we set to steer towards a flat profile. Furthermore, to achieve better convergence
and performance with respect to power quality we steer towards locally flat profiles
in the initial phase of the approach, i.e., in the initial phase each EV is asked to
flatten its load profile as much as possible. For completeness sake we also include
the case when no control is applied to the EVs, i.e., when they charge as soon as
possible, assuming that all vehicles arrive at 18:00.

The resulting load profiles on the transformer are given in Figure 4.8. A clear peak
is visible when the EVs arrive at home in the no control scenario. While the pricing
strategy shifts this peak away from the period with a high base load in the evening,
the peak is only slightly reduced. This is because the combined load of the EVs
charging at maximum power is far larger than the highest peak observed in the
base load. The profile steering approach is capable of flattening the load profile.

Besides the power flow through the transformer, we also simulated the power flows
through the low voltage (LV) network as we have details on the network structure in
the considered area. We give the maximum andminimum observed voltages in the
simulated network for every time interval in Figure 4.9. In both the no control and
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Figure 4.9: Lowest and highest voltages observed in the (simulated) network corre-
sponding to the load given in Figure 4.8 for the different approaches.

the pricing approach the voltages drop significantly during the charging of the EVs.
They are barely within the limits specified by power quality requirements in the
Netherlands (NEN-EN 50160:2010 [99], 207-253V). Our profile steering approach
gives much better results with respect to voltages. This is partially because we steer
towards locally flat profiles in the initial phase of our profile steering approach.

4.6.2 Comparison with State-of-the-Art

Next we compare profile steering with the state-of-the-art Triana approach pre-
sented by Hoogsteen et al. in [66], which uses pricing signals as steering signals.
We note that in this approach the pricing signals can differ between houses (and
even between devices) and are not meant to reflect actual tariffs. We extend the
scenario given above by adding a 3 kWh battery (max power 3.7 kW), 12 solar pan-
els (1.65 m2, 18% efficiency, facing south), and a smart washing machine (WM)
(to be scheduled between 08:00 and 17:00) to each house. In both approaches we
assume that the start time of the smartWM is controllable as well as the charging
and discharging of the battery. To be able to apply our profile steering approach to
theWM and battery we use approaches described in Chapters 2 and 5 respectively.
We also include the no control scenario, for completeness.

The results of the simulation are given in Figures 4.10 and 4.11. The no control case
gives a small peak when all theWMs are turned on in the morning and a very large
peak in the evening when all the EVs arrive at home. The state-of-the-art approach
gives a significant improvement in the load profile by flattening it. The resulting
voltage profile is also smoothed out significantly. The profile steering approach
gives further improvements on top of the state-of-the-art approach in the form of a
smoother load profile during the evening and night. The load of the EVs is spread
more evenly than by the state-of-the-art approach. Furthermore, the voltage profile
is also improved by our profile steering approach as the minimum voltage observed
in the grid is higher and more stable than for the state-of-the-art approach.

To get some more insight, we record some statistics on the considered grid in Ta-
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Figure 4.10: We compare the load on the transformer given by no control, state-of-
the-art research and our profile steering approach.
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Figure 4.11: Lowest and highest voltages observed in the (simulated) network cor-
responding to the load given in Figure 4.10 for the different approaches.

ble 4.3. The table shows several advantages of profile steering: the losses are reduced,
the voltage is more stable, the highest peak on the transformer is reduced, and the
maximum cable load is reduced. While such advantages are already achieved by
the state-of-the-art approach over the no control case, further improvements are
possible using our profile steering approach.

4.7 Conclusion

In this chapter we studied the problem of scheduling the charging of an EV, based
on received steering signals. Wemade the assumption that this steering signal trans-
lates into a convex and separable objective function for the considered scheduling
problem. With this assumption the problem transforms into a resource allocation
problem, which we formulated as Problem EVC.

Resource allocation problems are well studied in the literature. We listed the two
main approaches, Lagrangianmultipliermethods and pegging approaches, for such
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Table 4.3: Comparison between our profile steering approach, a state-of-the art
approaches, and no control.

No control State-of-the-art Profile steering
Total losses (kWh) 26.6 3.0 1.5
Lowest voltage (V) 201.8 219.6 223.2
Highest voltage (V) 236.9 241.5 235.7
Max. peak (kW) 563.0 174.8 131.2
Cable load (%) 143.2 53.0 32.1

problems and gave example instances of Problem EVC on which we applied these
approacheswith detailed algorithms. In particular, we studied the casewhere the ob-
jective function is convex quadratic, as this is the case for many practical scenarios.
The presented Lagrangian multiplier method has a higher asymptotic complexity
than the best known approach in the literature (O(T logT) compared to O(T)).
However, we expect the former to outperform the latter in most DEM applications
due to the fact that the number of time intervals, and hence variables, is often small.

As an extension to the classical continuous resource allocation problem, we consid-
ered the discrete EV charging problem, given as dEVC. This problem arises when
the scheduled amount of energy xt that can be charged into the battery of the ve-
hicle in interval t is no longer assumed to be continuous, but must come from a
discrete feasible set Zt . This set Zt gives the amount of energy charged into the
vehicle when a constant power value is used for the entire interval. This discrete
problem differs from the traditional discrete allocation problem, which is found of-
ten in literature, where the assumption is that xt ∈ Z (potentially with some bounds
on xt too). We showed that determining if Problem dEVC has a feasible solution is
already anNP-complete problem, even when all the feasible sets are the same, i.e.,
Zt = Z for all t and some Z.

To tackle the hard problem of discrete EV scheduling, we assumed that the vehicle
is allowed to use two ormore different possible power levels within an interval. This
results in the possibility for the vehicle to charge any amount of energy between
the lowest and highest value in Zt in interval t through the use of several differ-
ent levels throughout one interval. To adapt this change into our formulation we
modified the objective value, resulting in a problem that is equivalent to EVC with
piecewise linear objective. We showed that a greedy approach, preferring pieces
with smaller slopes, is optimal for these instances of Problem EVC with piecewise
linear objective. Furthermore, we formulated a linear-time approach for these types
of problems. However, this approach might be outperformed in practice by our
greedy approach for instances where the number of time intervals is small.

Finally, we compared the solutions found to the relaxed version of our discrete
problem, where we allow modulation between different power levels. We showed
that our algorithm obtains solutions to the relaxation of the discrete problem that
is infeasible for at most one time interval for the original (discrete) problem. This
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implies that potential device wearing due to frequentmodulation between charging
options is minimal for our given solutions.

The problems presented in this chapter do not take charging efficiency of the EV
into account. If the losses are a (fixed) fraction of the amount charged, these losses
can be accounted for by increasing the required charging by the appropriate amount.
However, more complicated relations between the amount of charging and charging
losses result in problems that fall outside the specific scope of this chapter. However,
if the losses are a convex function of the amount charged in an interval, given by
gt(xt), the problem remains a convex resource allocation problem. In this case the
resource constraint, given, e.g., by (4.1b), is replaced by:

∑
t
gt(xt) = C , (4.24)

which is similar to (4.1b) and can be solved by the pegging approach described in
Section 4.4.

Another practical limitation is that the maximum charging rate of the vehicle de-
pends on the SoC.This behaviour, seen in vehicles currently available on themarket,
is typically modelled using the constant-current constant-voltage (CC-CV) charg-
ing model [97]. Such charging means that before a certain threshold value of the
SoC is reached the current is kept constant and afterwards the voltage has to be kept
constant. In particular, this charging method means that the charging rate when
the battery is nearly full is both hard to control and low. However, the methods
discussed in this chapter still apply to the first part of the charging, which contains
the largest part of the energy to be charged. Note, that for instance, Mou et al. [97]
list the threshold value to be around 85%.

Finally, wementioned that the presentedmodels only applywhen theEV is assumed
to do no discharging to the grid, i.e., we disregard V2G. V2G applications can have
a positive impact on the grid, e.g., during a temporary high load on the grid. To
unlock the positive impact of such applications, we need to adapt the model of the
EV to ensure that the SoC is always feasible. We discuss this extension, together
with several solution methods, in the next chapter.
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1035
Energy Storage

Abstract – In this chapter we study the use of energy storage technologies
in future smart grids, specifically focussing on electric energy storage. Such
technologies will play an important role in the future smart grid, as they offer
a lot of flexibility that can be used for various goals. Our starting point is the
model of the previous chapter which we extend with the option to discharge
energy. This extended model covers different types of storage. We show that
the resulting device level problem can be solved efficiently using a divide and
conquer strategy. Furthermore, when the allowed operational levels of the
device are limited to a finite set, we obtain a reformulation for which we find
an optimal greedy approach. We demonstrate the effectiveness of the derived
approaches in a simulation study in which we study so-called soft-islanding of
a group of sixteen houses within the Dutch grid.

This Chapter is based on [TvdK:1] and [TvdK:9].
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Figure 5.1: An example application of storage to shift overproduction from PV in
the afternoon to the demand peak in the evening.
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Figure 5.2: Price trend of Li-ion storage where we display the (expected) average
costs of cells, automotive systems and stationary system. Data taken from [92].
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Figure 5.3: Deployment of grid storage systems in the US. Data taken from [61].
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5.1 Introduction

Due to the changes occurring in our electricity grid, as introduced in Chapter 2,
energy storage can play an important role in the future grid. Batteries are a prime
example of energy storage. Their potential applications in the (future) smart grid
are numerous. For example, they can support the introduction of renewables by
bridging the time gap between production and consumption or act on reserve
markets to ensure frequency stability in the grid. An example of the first is given
in Figure 5.1. As batteries are quite expensive, the economic viability of a stand-
alone battery to support the grid currently only occurs in a few rare situations [106].
However, this is likely to change in the (near) future with a continued decrease of
the prices of storage systems. As an example we illustrate the (expected) price trend
of Li-ion systems in Figure 5.2. Bloomberg [17] reported a 65 percent decrease in
battery pack costs with this trend expected to continue in the future. Furthermore,
we depict the current and expected deployment of storage systems in the US in
Figure 5.3.

Currently batteries are mainly used in appliances that require the storage of electri-
cal energy for their operation (e.g., laptops and electric vehicles (EVs)). Several of
these devices, in particular EVs, are expected to offer a large amount of flexibility
in the future grid. Although their primary flexibility is in the time and amount
of charging, their full potential is only unlocked when the internal battery can
also be used to discharge energy when this is beneficial for the grid, the so-called
vehicle-to-grid (V2G) applications in the case of EVs.

Besides the storage of electrical energy, other forms of energy storage are also en-
visioned to play an important role in the future smart grid. One example is the
storage of heat in heat buffers, which is an interesting flexibility option for mod-
ern households. Because heating is increasingly done using electricity, which is
one part of the increased electrification of our energy supply chain, heat storage
facilities will influence the electricity grid. With electricity based heating systems
the heat buffer allows the storage of the heat (hot water) produced, e.g., by a heat
pump, until it is required. This enables the system to shift the use of electricity in
time, without sacrificing user comfort. Such heat storage systems are typically less
expensive and less influenced by ageing than batteries, causing such systems to be
more widely applied. Furthermore, for several applications the house itself can also
be considered as a heat storage, using the thermal inertia of the building to, e.g.,
delay the use of electricity for heating.

Energy storage can work on a large variety of time scales. Fast reacting storage
devices, such as super capacitors and some types of batteries, can be used to ensure
balance between supply and demand in smaller systems on a short time scale. Such
systems can play an important role in future grids where this balance can no longer
be ensured through traditional means. On the other hand, long-term storage, such
as the conversion of electricity into hydrogen or synthetic gas, or the use of well-
insulated underground thermal storage tanks allows for seasonal storage of energy
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[38]. Long-term storage is particularly useful to combat the variance in seasonal
availability of renewable sources such as sun and wind, and seasonal demand varia-
tions, observed in, e.g., heating. In this thesis we focus on storage that operates on
the scale of minutes to hours, i.e., storage that can store energy within or between
days but not on longer time scales of weeks ormonths. While themodel we develop
is generally applicable to any energy carrier, we focus on batteries, both stand-alone
and inside devices such as EVs and heat buffers on a residential scale.

The remainder of this chapter is outlined as follows. In the next section we discuss
related work, where we focus on the applications of battery systems. Then, in
Section 5.3 we adapt the model introduced in the previous chapter to include state
of charge (SoC) bounds, extending the model to cover discharging. We study the
resulting optimization problem and give an efficient solution approach. Next, in
Section 5.4 we consider an application of the developed models and algorithms.
We finish with some conclusions in Section 5.5.

5.2 Related Work

The list of technologies that (potentially) offer feasible energy storage is very long.
However, not all technologies fit every application. For an overview of (most of)
the available technologies we refer the reader to one of the surveys in the area of
energy storage (e.g., [26, 41, 53, 54]). Typically, the various technologies are char-
acterized using several indicators that play an important role in their applicability.
A non-exhaustive list of these indicators is; maturity, power and energy rating,
efficiency, operational lifetime, and costs. We note that in the area of batteries
(i.e., chemical energy storage) no clear dominant technology is available. While
lead-acid and lithium-ion are by far the most popular technologies, others have
promising advantages over the most established ones and are being explored for
various applications.

As mentioned before, the applications for storage in the (future) smart grid are
near endless. The aforementioned indicators help to determine which technology
is most suitable for a particular application or set of applications. We list several
studies on the potential applications of storage systems below to give an overview.

One of the most studied applications of storage devices, specifically of batteries, in
the electricity system is their use to reduce peaks (i.e., peak shaving) in consumption
and/or production in the grid [84, 113, 116]. This is generally assumed to lead to
deferrals in grid investments [105, 110]. Furthermore, such applications usually have
the additional effect of increasing the level of self-consumption of locally produced
energy.

Another application is energy arbitrage, i.e., acting with the storage asset on the
energymarket by exploiting differences in prices in time [59, 125]. Such applications
can increase the overall system efficiency and reduce overall costs due to a reduction
in the need for inefficient and costly peak power plants. However, national energy
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prices might not reflect the situation in the local grid (e.g., congestion), causing
potential conflicts of interest between the trader and the local grid operator [102].

Besides trading energy on the day-ahead or intra-day market, storage assets can
also be used for frequency regulation, i.e., by charging or discharging more or less
power based on the frequency changes in the system [98, 123]. Only those storage
assets that can react very quickly are applicable for this case. Another application
of storage assets is the smoothing of generation profiles of renewables [43, 47, 89].
The latter application benefits the owner of the generation unit, as they usually
have to pay a penantly for deviations from their promised (i.e., predicted) profile.
Both frequency regulations as well as smoothing of generation from renewables
reduce the need for conventional spinning reserve. In turn, this potentially aids the
transition towards a system based (purely) on energy from renewable sources.

For many applications of storage technologies, the asset only has to operate for a
limited amount of time in a year. Due to this the system is free to be used for other
applications for a large portion of time, as long as the goals do not conflict, poten-
tially increasing the economic viability. Note that in several cases this combination
is not (yet) allowed by law. For example, in Europe most distribution system oper-
ators (DSOs) are not allowed to trade on the energy market, preventing an increase
in the number of viable business cases for storage devices [106].

5.3 Problem Formulation and Solution

In the previous chapter we considered the problem of scheduling an EV under
steering signals received from the profile steering decentralized energy manage-
ment (DEM) approach. We noted that we only required a single constraint on the
SoC of the internal battery because we assumed the vehicle could not discharge
to the grid. In this section we extend the problem formulation given for the EV
(Problem 4.1) to include the case when the car is allowed to discharge energy while
connected, i.e., we allow V2G applications. We first introduce the resulting mod-
ifications of the model. Next we discuss how this model can be applied to other
storage assets: a stand-alone battery and a heat producer combined with a heat
buffer. After the model introduction, we study the resulting optimization problem
and give an efficient solution approach.

5.3.1 A Model for Discharging

Themodel for buffering devices we introduced in Chapter 2 has to be adapted in the
following manner if we allow the discharging of energy from the vehicle’s battery.
Allowing discharging implies that now the outflow is also partially controllable,
namely for the time intervals that the vehicle is plugged in, whereas before the
outflow process was uncontrollable and only occurred during driving. Note that
in the case where we only consider charging, the SoC of the vehicle only had to
be considered for the last time interval. This changes when discharging is allowed,
because we can no longer assume the SoC remains feasible for all time intervals if we
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just check if enough energy is charged into the battery at the end of the scheduling
horizon.

In the following we describe the scheduling problem that arises in this situation in
more detail. As before we assume the vehicle receives a steering signal that consists
of an objective function f (x) potentially together with an lower bound xmin and an
upper bound xmax on the energy use. Recall that we assumed the objective function
to be convex and separable. Within the planning we have to ensure that the SoC
of the battery inside the vehicle remains feasible. For this, we have to related the
SoC for time interval t to the decisions made in our scheduling problem. These
decisions are given by the amounts xt′ of energy which are charged to or discharged
from the battery in interval t′ ≤ t. More precisely, to calculate the SoC for time
interval t we have to take the initial content of the storage devices together with
the cumulative sum of the values of xt′ with t′ ≤ t. In other words, the SoC for
interval t is given by∑t

t′=1 xt′ added to the initial SoC of the battery. To ensure that
the SoC of the battery is feasible for time interval t, we introduce two bounds Bt
and Ct , which we call the cumulative lower and upper bounds respectively. These
bounds restrict howmuch total (dis)charging can be done up to and including time
interval t, i.e., Bt is a lower bound and Ct is an upper bound on∑t

t′=1 xt′ . For an EV,
Bt is the initial SoC of the battery and Ct is the difference between the maximum
capacity of the battery and the initial SoC. Furthermore, the lower bound Bt can
be used to, e.g., ensure that enough energy is present in case an unplanned trip
to, e.g., the hospital has to be made, next to ensuring that the SoC stays within the
limits of the buffer. The bounds Bt and Ct on the cumulative sum replace the single
SoC Constraint (4.1b) in Problem EVC. Again we assume that the time horizon
coincides with the time window where the car is plugged in. This leads us to the
following optimization problem.

Problem 5.1 (BC).

min
x

f (x), (5.1a)

s.t. Bt ≤
t
∑
t′=1

xt′ ≤ Ct t = 1, 2, . . . , T , (5.1b)

xmin
≤ x ≤ xmax . (5.1c)

We call this problem the battery charging (BC) problem. As before, we can assume
w.l.o.g. that xmin = 0, as we can apply a translation to obtain this case. While this
might seem to imply that we assume that the battery can only charge, discharging of
energy (given by a negative value of xt) is still possible in the solution to the original
problem (after we translate the obtained solution back to original problem). This
is because we ‘push up’ the values of the solution after the translation. To illustrate
this we consider the following example instance of Problem BC.
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Example 5.1. We consider a battery that can charge or discharge at most one kWh of
energy per time interval, starts with an initial charge of one kWh, has a capacity of
two kWh, and has to be scheduled for three time intervals (we disregard the objective
function in this example and focus on the constraints). This results in an instance
of Problem BC with bounds on the charging in the interval given by xmin = −1 and
xmax = 1. Furthermore Bt = −1 and Ct = 1 for all t (at most one unit can be charged or
discharged before the battery is full/empty). To obtain an instance where xmin = 0, we
use the translation x′ = x+ 1 (in this new instance we use an apostrophe to denote the
parameters). In this case the lower bound on the energy use, given by x′min , indeed
becomes zero and the upper bound x′max becomes two. The values of Bt now differ
per interval. For interval t = 1 Constraint (5.1b) now reads B1 ≤ x′1 − 1 ≤ C1. From
this it follows that B′1 = B1 + 1 = 0 and C′1 = C1 + 1 = 2. For interval t = 2 we obtain
B2 ≤ x′1 − 1+x′2− 1 ≤ C2 from which we obtain B′2 = 1 and C′2 = 3. Finally, for interval
t = 3 we obtain that B′3 = 2 and C′3 = 4. An example of a feasible solution x′ is now
given by (0, 2, 1). This solution translates back into a schedule for the battery given
by x = (−1, 1, 0).

Note that in the above example the bounds Bt and Ct both form an increasing
sequence in t. We can assume, w.l.o.g., that this is always the case, after applying
the translation that ensures that xmin = 0. In summary, the bound Bt gives a
lower bound on the total charging and discharging of the storage device, to ensure
no more energy than is available is discharged and energy requirements for the
(uncontrollable) process is available. This implies that the difference between the
cumulative sum∑t

t′=1 xt′ and Bt gives the SoC of the storage device for time interval
t. On the other hand, the bound Ct gives an upper bound on the total charging and
discharging of the storage device to ensure the device is never charged with more
energy than it can hold.

To ease the discussion, we can assume that the SoC of the battery at the end of the
scheduling horizon has to be equal to a fixed level, given by CT , i.e., we assume
BT = CT . This is because of the following transformation. If BT < CT we add an
additional time interval T+1 to the problem with fT+1(xT+1) = 0, xmin

T+1 = 0, x
max
T+1 =

CT − BT and BT+1 = CT+1 = CT . A solution to the transformed instance can be
translated to a solution of the original problem with the same objective by discard-
ing the last time interval and vice versa. In essence this transformation adds an
additional artificial time interval T+1 at the end of the scheduling horizon. For T+1
we add an additional demand on the amount of energy that needs to be charged,
given by BT+1 (which we take equal to CT). By doing this we ensure that all feasible
solutions to the (transformed) instance do the same total amount of charging and
discharging. This makes it easier to find an optimal solution later on. For clarity
we depict the cumulative bounds Bt and Ct together with a feasible solution for
an instance which we transformed twice in Figure 5.4 and for which we give an
interpretation.

We note that Problem BC can also be used to schedule a stand-alone battery, if we
neglect losses. For such a battery both the inflow and outflowprocess are completely
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Figure 5.4: Example of how the solution to an instance of Problem BC that is trans-
formed twice (through a translation and the addition of an extra interval) can be
interpreted.

controllable. Constraints (5.1b) ensure the battery operates within feasible SoC
regions. In other words, the lower bound Bt ensures that the total amount of
charging and discharging done by the battery does not exceed the energy initially
available in the battery (the initial SoC). The upper bound Ct ensures the battery is
never charged with more energy than it can stored (i.e., with more energy than the
difference between the initial SoC and the capacity of the battery). Furthermore,
these bounds can be used to ensure that certain SoC targets are met throughout
the scheduling horizon. Constraints (5.1c) ensure the (dis)charging done does not
exceed the rated power of the device.

Furthermore, Problem BC can also be used to model a heat producer, such as a
combined heat and power (CHP) unit or a heat pump (HP), together with a heat
buffer. For such a combination of devices the inflow process is controllable through
the (controllable) operation of the heater, while the outflow is uncontrollable (heat
demand must be satisfied whenever present). This heat demand is often not given
as a single value at the end of the scheduling horizon, but by cumulative values over
time. In other words, the heating device needs to ensure enough energy is present
in the buffer to ensure the heat demand over time can be satisfied. This can also be
modelled using the cumulative bounds of ProblemBC as given inConstraints (5.1b).
For this case, the lower bound Bt gives the total heat demand up to time interval
t, which has to produced by the schedule. On the other hand, the upper bound Ct
gives the total heat demand up to time interval t plus the buffer capacity, to ensure
that the buffer is never charged with more energy than it can hold.

5.3.2 Efficiently Solving the Battery Problem

In this section we discuss an efficient solution approach for Problem BC. The base
of our solution approach is that we first generate a candidate solution y by solving
Problem EVC (from Chapter 4) with C = CT and the bounds on the resource
usage given by Constraints (5.1c). This solution will generally be infeasible for
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Figure 5.5: The cumulative sum for the candidate solution y, obtained by ignoring
the cumulative bounds, and the optimal solution x, for an instance of Problem BC.

several of the cumulative resource constraints, i.e. ∑t
t′=1 yt′ might be smaller than

Bt or larger than Ct for several t. However, this solution contains some valuable
information. Since the objective functions are convex, intuitively it seems to be
true that the constraint that is violated most in the (infeasible) candidate solution
should be tight (i.e., met with equality) in an optimal solution to Problem BC. The
reason that this statement is onlymade for themaximal violation is that making the
solution feasible for the index with maximal violation may already ensure that the
bounds for other, previously infeasible indices, are met. As an example, consider
the cumulative sum given in Figure 5.5. Because the maximum violation of the
cumulative bound occurs at time interval two for x, the charging on time interval
one is already reduced enough to ensure feasibility of the upper cumulative bound
on time interval one

A similar property is in fact proven and used in both the applications of DVFS [69]
and vessel speed optimization [71] to construct efficient algorithms. However, in
those settings the objective function is the same for every time interval, whereas
this is not always the case in our profile steering DEM approach. In the following,
we prove that this property still holds when we assume each ft to be an arbitrary
continuous and convex function.

Lemma 5.1. Consider an instance of Problem BC with CT = BT and let y be an
optimal solution to the corresponding instance of Problem EVC obtained by ignoring
the cumulative bounds for all indices except the last. Assume that y is not feasible for
the considered instance of Problem BC and let k be the index at which the cumulative
bound is maximally violated, i.e. k = argmaxt{∑

t
t′=1 yt′ − Ct , Bt −∑

t
t′=1 yt′}. Then,

there exists an optimal solution x to the considered instance of Problem BC such that,
if ∑k

t=1 yt > Ck then ∑k
t=1 xt = Ck and, on the other hand, if ∑k

t=1 yt < Bk then
∑

k
t=1 xt = Bk .

Proof. Let x be an optimal solution to the considered instance of Problem BC
and assume that∑k

t=1 yt > Ck and∑k
t=1 xt ≠ Ck . Since x is feasible, it follows that
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Figure 5.6: An example of the cumulative sum for candidate solution y and optimal
solution x with the indices l < n ≤ k < n⋆ ≤ m.

∑
k
t=1 xt < Ck . Let l be the last index before k for which the upper cumulative bound

is met by x with equality, i.e. l ∶= max{t < k ∣ ∑t
t′=1 xt′ = Ct}, and define l ∶= 0 if

this set is empty. Furthermore, let m be the first index after k for which the upper
cumulative bound is met by x with equality, i.e. m ∶= min{t > k ∣ ∑t

t′=1 xt′ = Ct}.
Note that since∑T

t=1 xt = CT by assumption, m is well defined and m ≤ T .

In the following we first show that we can find indices n and n⋆ with l < n ≤
k < n⋆ ≤ m for which yn > xn and yn⋆ < xn⋆ . Figure 5.6 gives such indices for
an example. In this example the maximum violation occurs for k = 7, while the
optimal solution has tight upper bounds for l = 5 andm = 9. Furthermore, y7 > x7
and y9 < x9, so n = 7 and n⋆ = 9. Note that, for the cumulative sum, as plotted in
Figure 5.6, the value of xt is given by the increase of the cumulative sum between
intervals t−1 and t, i.e., by the difference between the plotted value for time intervals
t and t − 1.

Since ∑l
t=1 xt = C l and ∑k

t=1 xt < Ck it follows that ∑k
t=l+1 xt < Ck − C l . Fur-

thermore, by definition of k we have ∑l
t=1 yt − C l ≤ ∑

k
t=1 yt − Ck , which implies

that∑k
t=l+1 yt ≥ Ck − C l . Combining both inequalities we obtain that∑k

t=l+1 yt >
∑

k
t=l+1 xt and hence there exists an index n with l < n ≤ k such that yn > xn . Simi-

larly, since∑m
t=1 xt = Cm and∑k

t=1 xt < Ck it follows that∑m
t=k+1 xt > Cm −Ck . Also,

since∑n
t=1 yt − Cm ≤ ∑

k
t=1 yt − Ck it follows that∑m

t=k+1 yt ≤ Cm − Ck . Combining
this we obtain that∑m

t=k+1 yt < ∑
m
t=k+1 xt and hence there exists an index n⋆ with

k < n⋆ ≤ m such that yn⋆ < xn⋆ .

From the optimality conditions stated in the previous chapter (Lemma 4.1) we
obtain that f −n (yn) ≤ f +n⋆(yn⋆). Furthermore, by the convexity of fn and fn⋆ re-
spectively it follows that f +n (xn) ≤ f −n (yn) and f +n⋆(yn⋆) ≤ f −n⋆(xn⋆). Thus we
obtain:
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f +n (xn) ≤ f −n (yn) ≤ f +n⋆(yn⋆) ≤ f −n⋆(xn⋆). (5.2)

Note that, for each t with l < t < m, we have∑t
t′=1 xt′ < Ct . This implies that taking

xn = xn + є and xn⋆ = xn⋆ − є does not violate feasibility, since l < n ≤ k < n⋆ ≤ m.
Furthermore, (5.2) implies that this change does not increase the objective value for
sufficiently small є. Summarizing, this change of the solution x increases ∑k

t=1 xt
but does not increase the objective value. As we can repeat this process with the
new solution, we finally get an optimal solution with ∑k

t=1 xt = Ck , proving the
lemma.

The proof for the case that∑k
t=1 yt < Bk and∑k

t=1 xt > Bk is symmetric.

Lemma 5.1 forms the base of our solution approach for Problem BC. In this ap-
proach, we first ignore the intermediate cumulative bounds of BC and afterwards
we iteratively satisfy the ignored constraints using a divide and conquer approach.
We start by calculating an optimal solution for the instance of EVC in which we
set C = CT . For this optimal solution, we determine the index k where this solu-
tion maximally violates the cumulative bounds. By Lemma 5.1 we know that there
exists an optimal solution for which the corresponding bound is tight at index k,
meaning that we can set both Bk and Ck to the value of the violated bound (i.e.,
either to Bk or to Ck). Note that this splits the original instance of BC into two
independent instances of BC; one for the indices up to and including k and one
for the indices after k. These problems can be solved separately following the same
procedure. Hence we can recursively solve problems of the form EVC, until we
no longer have violations of the intermediate cumulative bounds. Combining the
individual solutions of these instances then gives a solution to the original instance
of Problem BC, which is optimal by Lemma 5.1 and the fact that the individual
solutions are optimal for their respective time intervals.

This sketched procedure is summarised in Algorithm 5.1. In this algorithm we use
ft→t′ to denote the vector ( ft , ft+1 , . . . , ft′) of objective functions and similar nota-
tions for the parameters xmax , Bt , and Ct and decision variables xt . Furthermore,
optEVC(f1→T , xmax

1→T ,C) denotes a call to an algorithm that solves an instance of
EVC with objective functions f1→T , and parameters xmax

1→T and C. To solve such
problem instances one can use, for example, the Lagrangian approach or the peg-
ging approach (see Section 4.4). This algorithm outputs a solution vector x1→T that
is optimal for this instance. Example 5.2 below gives some insight in the structure
of the algorithm.

Example 5.2. Fig. 5.7 depicts an application of Algorithm 5.1. The problem instance
we use is the one from the previous chapter given in Example 4.1 with added lower and
upper cumulative bounds. These bounds are depicted in the middle plot showing the
cumulative sums. Above the cumulative sum the objective functions and derivatives
are plotted together with the original solution x to Problem EVC. This solution serves
as a candidate solution to Problem BC, however, it does not consider the cumulative
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Algorithm 5.1 Recursive algorithm optBC for problem BC

1: x1→T = Function optBC(f1→T , xmax
1→T ,B1→T ,C1→T)

2: y1→T = optEVC(f1→T , u1→T ,CT)

3: if y1→T is feasible then
4: x1→T = y1→T
5: else
6: k = argmax{∑k

t=1 yt − Ck , Bk −∑
k
t=1 yt}

7: if ∑k
t=1 yt > Ck then

8: Bk = Ck
9: Bt = Bt − Ck and Ct = Ct − Ck for t = k + 1, k + 2, . . . , T
10: else
11: Ck = Bk
12: Bt = Bt − Bk and Ct = Ct − Bk for t = k + 1, k + 2, . . . , T
13: end if
14: x1→k = optBC(f1→k , xmax

1→k ,B1→k ,C1→k)
15: xk+1→T = optBC(fk+1→T , xmax

k+1→T ,Bk+1→T ,Ck+1→T)
16: end if
17: Return x1→T

bounds. This candidate solution is not feasible, since∑2
t=1 xt > C2. Based on this, we

split the problem in two subproblems. In the first subproblem, we have to decrease
x1 and/or x2. Note that by doing this we obtain x′1 < u1 and thus we find λ1 with
f ′1 (x′1) = f ′2(x′2) = λ1. In the second subproblem we increase x3 and x4. Doing this
gives us x′4 = u4, thus we find λ2 such that f ′3(x′3) = λ2 > f ′4(x′4). Combining the
solutions to the subproblems, we obtain the optimal solution x′ to Problem BC. This
solution is given in the bottom eight plots.

It remains to determine the complexity of Algorithm 5.1. Let FEVC(T) denote the
complexity of the algorithm optEVC( f1→T , u1→T ,CT), called by optBC to solve an
instance of EVC with T intervals. Furthermore, let FBC(T) be the complexity of
Algorithm 5.1 for instances with T intervals. We then obtain the following recursive
relation for FBC(T):

FBC(T) = O(T) + FEVC(T) + FBC(k) + FBC(T − k) (5.3)

Assuming that the asymptotic complexity of FEVC(T) is at least linear in T (i.e,
FEVC(T) has has a complexity of Ω(T), see the Appendix for a background), it
follows that FEVC(k) + FEVC(T − k) ≤ FEVC(T). This implies that FBC(T) =
O(T2 + TFEVC(T)). We note that, for the case that the objective functions are
quadratic, Hochbaum and Hong [64] provide an O(T) algorithm to solve Prob-
lem EVC. Combining this with our approach yields a complexity of O(T2) for
problem BC with quadratic objective.
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Figure 5.7: Example of the application of Algorithm 5.1. Figures (a)-(d) depict the
objective functions with their respective derivatives given in (e)-(h) for the original
solution to the obtained instance of EVC, with the cumulative sum given in (i).
After splitting the instance at t = 2 (the obtained solution is infeasible for interval
t = 2) we obtain the solution depicted in (j)-(q).
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5.3.3 Discrete Buffer

In the previous chapter, we considered a variant of problem EVC, where we re-
stricted the feasible set of the decision variable xt to a discrete set Zt for every t.
The same restriction can be applied to problem BC. As Problem BC is more general
than EVC, it readily follows from Lemma 4.3 that this problem is alsoNP-hard. As
for Problem EVC, we again consider the case where we allow convex combinations
of the points in Zt . This leads to the following problem:

Problem 5.2 (dBC).

min
y

T
∑
t=1

Ft(xt) =
T
∑
t=1

m t

∑
j=0

y j
t ft(z

j
t), (5.4a)

s.t. Bt ≤
t
∑
i′=1

xt ≤ Ct t = 1, 2, . . . , T , (5.4b)

xt =
m t

∑
j=0

y j
tz

j
t t = 1, 2, . . . , T , (5.4c)

m t

∑
j=0

y j
t = 1 t = 1, 2, . . . , T , (5.4d)

y j
t ≥ 0 t = 1, 2, . . . , T ; j = 0, 1, . . . ,mt , (5.4e)

We call this problem the discrete battery charging (dBC) problem. By similar reason-
ing to that in the previous section wemay again assume that BT = CT . Furthermore,
similarly to the equivalence between dEVC and EVC in the previous chapter, this
problem is equivalent to an instance of BC with piecewise linear objectives. Thus,
combining Algorithm 5.1 from above and Algorithm 4.3 from the previous chap-
ter gives us an algorithm that runs in time O(T2 + TM logT), which reduces to
O(TM logT) since T ≤ M (recall thatM denotes the total number of pieces of the
objective functions, i.e., M = ∑T

t=1 mt). Furthermore, combining Algorithms 5.1
and 4.4 gives an algorithm that runs in time O(T2 + TM) = O(TM).

Similarly to the greedy approach for Problem EVC with piecewise linear objective,
presented in the previous chapter, we now construct a greedy approach to solve BC
with piecewise linear objective that prefers pieces with a smaller slope. Againwe use
an ordered set S for the slopes of the next pieces to be used for every time interval,
from which we greedily pick the first (i.e., the one with smallest slope). However,
note that we also need to satisfy the cumulative bounds Bt and Ct for every t.
Furthermore, note that to satisfy the lower bound Bt , only pieces of the functions
ft′ with t′ ≤ t are of relevance. Therefore, we iteratively build up a solution that
satisfies the lower bounds B1 , B2 , . . . , Bk in iteration k. To do this, during iteration
k, we only consider pieces of the functions f1 , f2 , . . . , fk and increase the use of
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these pieces until∑k
t=1 xt = Bk . This means that, in iteration k, we only add pieces

of ft with t ≤ k to the set S.

It remains to incorporate the upper cumulative bound Ct . We note that, for a given
solution x, we cannot increase the use of the pieces of function ft by more than
Ct⋆ − ∑

t⋆
t′=1 xt′ for every t⋆ ≥ t, since otherwise we violate the upper bound Ct⋆ .

Thus, to ensure feasibility, we introduce a variable Vt ∶= mint⋆≥t{Ct⋆ − ∑
t⋆
t′=1 xt′}

to track how much we can increase xt , using the pieces of ft , without violating the
upper bounds Ct ,Ct+1 , . . . ,CT . Note that Vt depends on ∑t⋆

t′=1 xt′ for all t⋆ ≥ t,
which in turn depends on xt′ for all t′ ≤ t⋆. Thus, after we increased the use of
the pieces of some ft⋆ by δ, we need to update Vt for every t. Furthermore, note
that whenever we increase xt⋆ by δ,∑t

t′=1 xt′ is also increased by δ for every t ≥ t⋆.
This implies that Vt decreases by exactly δ for every t ≥ t⋆. On the other hand, for
t < t⋆, we note that Vt−1 = min{Vt ,Ct −∑

t−1
t′=1 xt′}. This can be used to iteratively

update Vt⋆−1 ,Vt⋆−2 , . . . ,V1.

Finally, to obtain a better complexity, similar to the approach we took in Algo-
rithm 4.3, we only consider at each moment in the algorithm at most one piece
per function ft . The resulting procedure is summarized in Algorithm 5.2, where
we use the same notation as in the algorithms previously presented in this thesis.
Example 5.3 demonstrates an application of the algorithm.

Example 5.3. Figure 5.8 depicts an application of Algorithm 5.2. For this instance we
added the cumulative bounds used in Example 5.2 to the instance used in Examples 4.4
and 4.5 in the previous chapter. A colour coding is used to denote (parts of) the pieces
that are used in each iteration of the main for loop of the algorithm. The same colour
coding is used in the plot that depicts the cumulative sum up to interval k for each
of the partial solutions constructed. Furthermore, the solution marked in the top
plots is the optimal solution the algorithm produces after completion. In the table the
values of various variables used inside the algorithm are given for each iteration of the
while loop in the algorithm. Furthermore, Sstar t denotes the set S at the start of the
considered iteration of the while loop, and Send the set S at the end of the iteration.
New additions to S are depicted in green. In particular we note that s22 is deleted from
S at the end of iteration 4, since V2 = 0. Thus the algorithm must use s13 instead to
ensure that the bound B3 is met.

Lemma 5.2. The greedy approach for BCwith piecewise linear convex objective, given
inAlgorithm 5.2, gives an optimal solution to BCwith piecewise linear convex objective
functions. The algorithm runs in time O(TM).

Proof. The feasibility of the algorithm follows from the fact that the pieces are
added in increasing order and that any new piece is either the first piece of an
objective function (Line 5) or a piece for which the previous piece is already fully
used (Line 26). Also, note that the lower cumulative bounds are satisfied since
the constructed solution enforces this for every index in the main for loop of the
algorithm (Lines 4 - 32). Finally, note that in every step of the main for loop, Vt ≤
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Algorithm 5.2 Greedy approach pwlBC for BC with piecewise linear convex objec-
tive
1: x1→T = Function pwlBC( f1→T , Z , xmax

1→T , B1→T ,C1→T)

2: S = ∅
3: Vt = Ct and xt = 0 for all t
4: for k=1,2,. . . ,T do
5: Insert s1k into S such that S remains ordered non-decreasingly
6: R ∶= Bk −∑

k
t=1 xk

7: while R > 0 do
8: Take t and j such that s jt is the first piece from S
9: δ ∶= min{R,Vt , z

j
t − z

j−1
t }

10: xt = xt + δ
11: R = R − δ
12: for l=t,t+1,. . . ,T do
13: Vl = Vl − δ
14: end for
15: W ∶= Vt .
16: for l=t-1,t-2,. . . ,1 do
17: W = min{W ,Vl}

18: Vl =W
19: end for
20: for s j

′

t′ ∈ S with Vt′ = 0 do
21: S = S ∖ {s j

′

t′}

22: end for
23: if δ = z jt − z

j−1
t then

24: S = S ∖ {s jt}
25: if j < mt and Vt > 0 then
26: Insert s j+1t into the ordered vector S
27: end if
28: else if Vt > 0 then
29: z j−1t = z

j−1
t + δ

30: end if
31: end while
32: end for
33: Return x1→T
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0 1 2 3 4
t

∑
t t′
=
1
x t
′

k = 1 k = 2 k = 3
k = 4 B i C i

(i) cumulative sum

Iteration k Sstar t Send (x1 ,x2 ,x3 ,x4) Σ Bk (V1 ,V2 ,V3 ,V4)

Initial 0 ∅ ∅ (0 , 0 , 0 , 0) 0 0 ( 52 ,
5
2 , 4 , 5)

1 1 {s11} {s11} (1 , 0 , 0 , 0) 1 1 ( 32 ,
3
2 , 3 , 4)

2 2 {s12 , s11} {s11 , s22} (1 , 12 , 0 , 0)
3
2 2 (1 , 1 , 5

2 ,
7
2 )

3 2 {s11 , s22} {s21 , s22} ( 32 ,
1
2 , 0 , 0) 2 2 ( 12 ,

1
2 , 2 , 3)

4 3 {s21 , s22 , s13} {s13} (2 , 12 , 0 , 0)
5
2 3 (0 , 0 , 3

2 ,
5
2 )

5 3 {s13} {s13} (2 , 12 ,
1
2 , 0) 3 3 (0 , 0 , 1 , 2)

6 4 {s14 , s13} {s24 , s13} (2 , 12 ,
1
2 , 1) 4 5 (0 , 0 , 1 , 1)

7 4 {s24 , s13} {s13} (2 , 12 ,
1
2 , 2) 5 5 (0 , 0 , 0 , 0)

(j) Values of variables during the algorithm

Figure 5.8: Example of an application of Algorithm 5.2 to the instance of BC de-
scribed in Example 5.3. Figures (a)-(d) give the objective functions and (e)-(h) the
right derivatives. Figure (i) gives the cumulative sum for the different iterations of
the main for loop in the algorithm. The table given in (j) gives the value of various
variables in the different iterations of the for loop of the algorithm.
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Ct⋆ − ∑
t⋆
t′=1 xt′ for t⋆ ≥ t. Hence, in Line 9, we ensure that the upper cumulative

bounds are satisfied.

To prove optimality of the algorithm, consider an instance of BC with piecewise
linear convex objective functions. Let y be an optimal solution, and let x be the
solution produced by Algorithm 5.2. Furthermore, let t be the smallest index for
which xt ≠ yt . We consider two cases.

Case 1 xt > yt : Let t′ > t be the smallest index for which xt′ < yt′ . This index must
exist since ∑T

t=1 xt = BT = ∑
T
t=1 yt and xt > yt . Furthermore, let st and st′ be the

slopes of the pieces on which xt and xt′ lie respectively. In case xt ∈ Zt (i.e., xt
is an endpoint to two consecutive pieces), we pick the piece with xt as endpoint
and in case xt′ ∈ Zt′ we pick the piece with xt′ as begin point. By the fact that the
right and left derivatives of the convex piecewise linear functions ft and ft′ are non-
decreasing it follows that st ≥ f +t (yt) and f −t′ (yt′) ≥ st′ . Also, by the optimality
of y it follows that f +t (yt) ≥ f −t′ (yt′). Note that, since both x and y are feasible,
we can decrease xt and increase xt′ , until either xt is equal to yt or xt′ is equal to
yt′ , without violating feasibility. Finally, note that doing so does not increase the
objective value.

Case 2 xt < yt : This case can be treated completely symmetrical to the previous
case.

Note, that the above process can be repeated until x = y without increasing the
objective value. This shows that x is indeed optimal.

Finally, we show that the time complexity of the algorithm is O(TM) withM the
sum of the number of pieces of each ft , i.e. M = ∑T

t=1 mt . Note that a slope s
j
t can

only be added to and subsequently removed from S once. Furthermore, if a slope is
picked to be used in the while loop and not removed it follows that R = 0 after this
iteration and hence the while loop is finished. Finally, note that the steps inside the
while loop can all be executed in time O(T), since the size of S is never more than
T . Hence, the total complexity of the for loop in the algorithm is O(TM), which
clearly dominates the complexity of the other steps.

We note that the asymptotic complexity of Algorithm 5.2 is slightly lower than
the complexity of an algorithm that recursively applies Algorithm 5.1 using Al-
gorithm 4.3 from the previous chapter to obtain solutions for the resulting EVC
problems. However, the latter method might be more favourable in practice, specif-
ically if the number of intervals for which the cumulative bounds are tight is low,
as can be expected in many applications [143, 146]. Furthermore, the asymptotic
complexity of Algorithm 5.2 is the same as the complexity when we recursively
apply Algorithm 5.1 using Algorithm 4.4 from the previous chapter. As noted be-
fore however, the latter method is probably only efficient for large instances, i.e.,
instances where the number of breakpoints is very large.

From a practical point of view, it is again important to consider for how many
intervals t solutions to dBC use different values in the feasible set Zt (as we also
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did in the previous chapter). We obtain the following result, which is similar to
Corollary 4.2 for Problem rdEVC.

Corollary 5.1. There exists an optimal solution to dBC such that for any two indices
t < t⋆ with xt ∉ Zt , xt⋆ ∉ Zt⋆ there exists an index k in {t, t + 1, . . . , t⋆ − 1} with
∑

k
t′=1 xt′ ∈ {Bk ,Ck}. In other words, between two intervals with ‘fractional’ solutions,

x meets either the lower or upper cumulative bound tightly.

This result follows immediately from the fact that we can recursively apply Algo-
rithm 4.3 to Problem dBC by Lemma 5.1. In practice we do not expect these cumu-
lative bounds to be met often. This expectation together with Corollary 5.1 implies
that, in most practical cases, the expected number of time intervals for which two
operational values are chosen instead of one is low.

5.4 Application of Buffer Devices

In the previous section we have shown that we are capable of scheduling several dif-
ferent types of devices in the buffer class within our profile steeringDEM approach.
As a proof of concept we now present the results of a simulation study where several
of these devices are involved. The simulations were originally performed to study
the potential of soft-islanding (i.e., balancing local production and consumption
as much as possible) for a future neighbourhood of houses in the Netherlands. For
this case sixteen houses are considered where each house has its own local produc-
tion of energy in the form of rooftop photovoltaic (PV) panels and where a central
CHP unit providing heat for the entire set of houses is present. The idea behind
this setup is that the demand for heat is higher at times of the year when the PV
production is lower, causing this gap to be filled by the electricity production of the
CHP unit. The centralCHP unit is connected to a large central heat buffer. This heat
buffer decouples the production of heat and electricity by the CHP unit from the
heat demand, providing the unit with flexibility in when and howmuch it produces.
Furthermore, smart devices in the form of a washing machine (WM) (combination
of washer and dryer) and dish washer (DW) are present in each house. Finally, in a
second simulation, local storage in the form of a battery is added to each house to
determine the effect this has on the results. A schematic overview of the situation
is given in Figure 5.9.

When setting up this simulation, first reasonable sizes of both production (theCHP
unit and PV) and storage (heat buffer and batteries) were determined. The size of
the CHP unit together with the heat buffer was determined first, such that it could
always supply the thermal demand of the houses. For the analysis we constructed a
combined heat demand pattern of the spacial and hot water demands of the houses.
These heat demand patterns of the houses were generated through simulations of
the (proposed) houses [139]. The results of the analysis indicate that a CHP unit
with a maximum output of 60 kW thermal suffices to supply the neighbourhood
for all of the considered scenarios. As the typical ratio between heat and electricity
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Figure 5.9: Schematic overview of the 16 houses case; (a) gives an overview of the
grid and (b) an overview for a single house.
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output of a CHP unit is about 2:1, we used this ratio in our simulation. As the size
of the attached heat buffer has quite some impact on the flexibility of the CHP unit,
we varied this size. While the size is set to 50 kWh for the standard case to reflect
a realistic scenario in current practice, the buffer size is increased in case of smart
control to 250 kWh to increase the flexibility provided by the CHP unit.

The size of the PV systems and the batteries was chosen based on the goal to ensure
that the neighbourhood supplies its own energy as much as possible. This implies
that the PV systems are sized to cover the daily remaining electricity demand of
the neighbourhood after subtraction of the CHP production. Themost challenging
week for the considered combined system is in autumn, when PV production is low
and heat demand is also relatively low, implying that the production of electricity
from both PV and CHP is low. When analyzing data of a full year, week 43 turned
out to have the lowest combined energy production from PV and the CHP unit.
To ensure sufficient local production, the PV systems were sized to ensure enough
production is available locally this week. Using panels of which 50% face south,
25% face west and 25% face east, all at an angle of 35 degrees, with an efficiency of
16% the required size of the system is 15 m2 of PV panels per house.

To obtain the size of the batteries we first ran the simulation when no batteries
are present. The batteries have to be sized such that they are able to store enough
electrical energy from times of surplus production to provide any remaining de-
mand drawn from the grid. From the resulting power flows obtained in the initial
simulation we determined that a total storage capacity of 30 kWh is required. The
maximum storage capacity requirement occurs in week 43, as this is the most dif-
ficult week for the considered system. To ensure the required storage capacity is
met, we considered a two kWh battery for each house. Furthermore, note that the
required storage capacity is relatively low. This is a consequence of the fact that
already a lot of flexibility in electricity production from the central CHP unit with
the (large) heat buffer is present in the neighbourhood.

The electric load for the houses is based on smart meter data obtained from houses
in the Dutch town of Lochem (see [67]). For the smart appliances we used data
on the load profiles and flexibility from [121]. For the base case no smart control
is applied to theWMs and DWs. This means these devices run as soon as they are
available. Furthermore, the CHP unit is steered in such a way that it meets the ther-
mal demand of the neighbourhood with minimal changes in operational modes
(i.e., between different production levels). For the control case, where the smart
devices are utilized, we simulated both the case with and without the batteries. We
use our profile steering approach for the control cases where we steer towards a zero
profile, i.e., we minimize the import and export of electricity from the neighbour-
hood. Note that we only steer the use of electricity while only requiring the heat
production to cover the demand. Furthermore, we assume the gas requirement of
the CHP unit can always be satisfied. Finally, note that we use the algorithms for
the continuous case (i.e., Algorithm 5.1) for the control of the CHP unit combined
with the heat buffer and for the batteries.
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For the simulations we consider three different weeks; week 6 in winter, week 26
in summer and week 43 in autumn. We present the simulation results for these
weeks in Figures 5.10, 5.11, and 5.12 respectively. We see that the CHP unit does not
switch often between different production levels in the base case, as is expected.
This results in a rather erratic behaviour of the load profile of the considered system,
resulting in peaks in both export and import of electricity. The CHP follows the
electricity need of the neighbourhood as much as possible when control is applied,
meaning that it mostly runs during the evenings, when demand for electricity is
high. This causes the electric load requirements to be flattened out over the days
for as much as the included storage allows. Without battery storage a slight import
from the grid is required in both the summer and autumnweek. When the batteries
are included, the entire load profile can be smoothed enough to ensure that there
is never a remaining net demand.

Finally, note that we focus on the potential for so-called soft-islanding in this study,
where a connection to themain grid is still required and beneficial to ensure balance
on smaller time scales and to export the surplus of energy observed through the
year.

5.5 Conclusion

In this chapter we extended the model for EV charging introduced in the previous
chapter to include discharging and SoC constraints for every time interval. This
new model allows us to address cases when the EV can also discharge energy to
the grid. Furthermore, this model can be applied to a stand-alone battery or a heat
generator, such as a HP or CHP unit, combined with a heat buffer.

The extension of the model transforms the related optimization problem to include
so-called cumulative bounds. We showed that we can efficiently solve the con-
tinuous version of this optimization problem. To do so we solve an instance of
Problem EVC, presented in the previous chapter, and apply a divide and conquer
strategywhere we split the instance at the time interval where the cumulative bound
is violated themost. For the discrete variant of the problemwe considered the same
modifications as in the previous chapter, allowing convex combinations of the feasi-
ble operational levels for every time interval. We solved this discrete variant using
a greedy approach and argued that we expect that solutions in practice use convex
combinations to switch between operational levels only rarely.

As an application of the developed algorithms, we considered a case study where
sixteen houses in the Netherlands with a central CHP unit and rooftop PV are soft-
islanded, i.e., as much of the demand as possible is supplied by local production.
After the sizing of the system we applied our profile steering approach to two cases,
one with batteries installed in the houses and one without these batteries. The re-
sults show that profile steering is capable of minimizing the need to import energy
from the main grid even in difficult scenarios with low local production. Further-
more, with battery storage available the considered houses become a net exporter
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Figure 5.10: The results for the three different control cases for the 16 houses studied
for week 6 (winter).

for all of the considered time intervals of fifteen minutes. We note that a connec-
tion to the main grid in such a scenario is still required to ensure balance also on a
lower time-scale (i.e., sub-seconds and seconds) and to export the abundant energy
which is available most of the time.

The models considered in the previous chapter could easily be adapted to include
an efficiency factor for the charging of energy. As the same variable in this chap-
ter covers both charging and discharging, this extension no longer applies when
considering the models of this chapter. Furthermore, in the given models we did
not consider losses depending on the SoC of the considered buffer. These losses
are negligible for most batteries on the considered time-scales (in the order of less
than one percent [53]) However, they are of importance when considering thermal
storage. We consider this issue in the next chapter, where a model for heating,
ventilation, and air conditioning is presented that incorporates such losses.
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Figure 5.11: The results for the three different control cases for the 16 houses studied
for week 26 (summer).
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Figure 5.12: The results for the three different control cases for the 16 houses studied
for week 43 (autumn).



128



1296
Heating, Ventilation, and
Air Conditioning Systems

Abstract – A large share of our energy use is for thermal reasons, for hot tap
water and to heat or cool our environment. To provide this heating or cooling,
many heating systems exploit a thermal buffer. These systems often can bemod-
elled as storage systems. In this chapter we extend the models from previous
chapters to include an important aspect of heating and cooling systems: losses
depending on the state of charge. We modify the solution approaches found in
the previous chapter to be able to deal with the extended models. To test the
solution approaches we use data from Austin, Texas. We use this data to de-
termine the model coefficients and to study the effectiveness of profile steering
when compared to traditional deadband control.

This chapter is based on [TvdK:5].
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Figure 6.1: Distribution of the use of energy in households. The figures give a rough
global overview (average of OECD countries) and the data for two states in the US
with vastly different climates. Data taken from [75] and [133].
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6.1 Introduction

In the previous chapters we discussed buffering devices and their importance in the
future smart grid. Wemostly discussed devices that currently have only lowmarket
penetration in the residential sector such as electric vehicles (EVs) and batteries.
Furthermore, we neglected losses that depend on the state of charge (SoC) of the
system. However, these losses play an important role in heating and cooling systems.
Such systems are in general large consumers of energy, thus affecting the electricity
grid in a significant waywhen run on electricity. However, they can also offer a large
amount of flexibility to the grid. As such systems are already rather common in the
residential sector, e.g., in the form of heat pumps (HPs) and heating, ventilation,
and air conditioning (HVAC) systems, they can offer their flexibility already now
rather than in the future. This means such systems can help to tackle the challenges
existing with integrating renewables today and can increase the efficiency of our
energy supply chain.

The heat demand of typical residential customers consists of two parts: space heat-
ing and (hot) tapwater. We note that for warmer climates the space heating demand
is replaced by a space cooling demand, especially during summer months. For an
illustration of how the shares of energy consumption in households change with
different climates see Figure 6.1. In Texas the space heating requirement is quite low,
but a significant portion of the energy consumption of a household is instead used
for cooling. We focus in this chapter on this cooling demand for the warmer cli-
mates and discuss a model for the flexibility that can be provided byHVAC systems
used to cool residential buildings. However, most of the results in this chapter also
apply to space heating requirements and hot tap water demands with only minor
modifications.

To be able to use heating and cooling systems in a decentralized energymanagement
(DEM) approach such as our profile steering approach, we first need to determine
the available flexibility. In systems with a storage attached, this flexibility comes
from the fact that the storage allows the system to consume electricity and transform
it into heating or cooling energy before it is required. However, not all of these
systems have such an explicit storage attached to it. In this case there is potential
for flexibility by considering the building itself as a thermal storage unit. This allows
the system to vary the indoor temperature, within user defined comfort limits, to
adjust the electricity consumption of the cooling system when required. Most
residential HVAC systems used today aim to keep the indoor temperature within
pre-specified bounds, i.e., they use a deadband controller and thereby do not offer
any flexibility. However, with more advanced control, such a system could exploit
the flexibility by, e.g., switching on earlier to shift part of the energy requirement
from a future time interval to the current one.

Of particular importance in heating and cooling systems are losses that depend on
the SoC of the storage. For example, in a cooling scenario, houses heat up faster
when the difference between indoor and ambient temperature is higher. In this
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chapter we adapt the models from the previous chapters to include SoC dependent
losses. A further aspect we discuss is based on our statement in Chapter 2 that
an important step in a scheduling based DEM approach is operational control to
account for differences between predictions and realizations. As exact predictions
of thermal influences inside houses is near impossible, e.g., because it is dependent
on user behaviour, we pay special attention to the operational control step in this
chapter. We show that we can account for prediction errors, made by our model,
using a system based on model predictive control (MPC).

The remainder of the chapter is outlined as follows. In the next section we briefly
discuss related work on (residential) HVAC systems and their use in energy man-
agement (EM) approaches. Then, in Section 6.3 we introduce the thermal model
used in this chapter and fit the model to data from the Pecan Street Inc. [73] dataset,
detailing consumption data from houses in Austin, Texas. In Section 6.4 we formu-
late the resulting device level optimization problem first as a continuous problem
and then as a discrete problem. For both variants we give an efficient solution
method. As the thermal model we introduce may lead to significant prediction
errors, we adapt the operational control step of the profile steering approach to ac-
count for these errors in Section 6.5. We use the solutions developed in this chapter
in a simulation study in Section 6.6. Finally, we wrap up with a conclusion and
discussion in Section 6.7.

6.2 Related Work

For the control of HVAC systems it is important that the control maximizes user
comfort. This is in itself already a difficult problem to solve. To this end many
different control algorithms have been proposed and studied for HVAC systems
(see, e.g., [5]). In this chapter we focus onMPC. InMPC a model of the controlled
system, in this case a thermal model of a building or room, is used to predict the
effect of possible control actions. The controller works in discrete time steps to
determine a best schedule of control actions for a time horizon based on the used
model and a predetermined objective. From this schedule only the first control
action is used. The resulting changes in the modelled system are measured and a
new schedule is made in the next time interval based on updated information and
predictions of the model.

In [16] Bashash and Fathy studiedHVAC systems from a control theory perspective.
They aggregate the models of individual systems and show that the (simplified) ag-
gregate model is bilinear. This allows the authors to develop corresponding control
algorithms. They design a state-space feedback controller, which they verify using
numerical simulations. Their results indicate that the controller is capable of getting
the controlled HVAC systems to follow a desired load profile.

Cole et al. [32] consider both centralized and decentralized MPC for peak shav-
ing using HVAC systems. They obtain their model using actual measurements
obtained in Texas. For these measurements they develop a reduced order model
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[31]. Their objective is to reduce the costs of the energy used for cooling. The de-
centralized control is capable of achieving results very similar to the centralized
control, without requiring detailed privacy-sensitive information. Their results are
mainly based on pre-cooling, i.e., theHVAC systems are turned on when energy is
cheaper so the house is cooler when energy becomes more expensive, allowing the
system to consume less at expensive times.

Aswani et al. [9] use learning-basedMPC to reduce the overall energy consumption
of an HVAC system used to cool a computer lab. Their thermal model is linear
but nevertheless shows good results when used to predict the room temperature
depending on different operations of the HVAC system. Their focus is on energy
saving, thus reducing costs for the owner/operator of the system. Nevertheless,
their models should also be applicable in the setting of an EM approach when
slightly modified.

6.3 Thermal Model

The buffer models for the cooling systems we consider in this chapter have a similar
structure as in the previous chapter. We consider the whole structure, including
internal air volume, of the house as a ‘buffer’, that needs to be kept between temper-
ature bounds specified by the user (i.e., (one of) the occupants). This buffer heats
up due to (thermal) energy leaking into the house from the environment (inflow)
and the HVAC system cools the buffer by extracting this (thermal) energy. An
important difference is that the outflow process is now controlled, as the HVAC
system takes (thermal) energy from the room or house. Furthermore, the inflow
process is uncontrolled and (partially) depends on the SoC of the buffer, i.e., the
temperature inside the house. By this we mean that more energy flows into the
building with a higher difference between indoor and outdoor temperature, i.e.,
when the buffer has a lower SoC. A similar model applies to many heating systems,
where more energy dissipates to the environment when the temperature difference
is higher.

To integrate HVAC systems in profile steering, we need to find local feasible sched-
ules for the system. For this, we need to know the constraints for these schedules.
For HVAC systems, these constraints are user comfort constraints. In a residential
setting, these constraints are typically given by a temperature set point Tt and an
allowed maximum deviation from this set point Dt for every time interval. When
considering a system denoted bym, these constraints lead to a local feasible set Xm

given by:

Xm
∶= {xm ∣Tt − Dt ≤ Tt(xm) ≤ Tt + Dt}, (6.1)

where Tt(xm) is the indoor temperature, which depends on the schedule xm for
the system, i.e., when theHVAC system is switched on. We assume the values of Tt
and Dt are known as they can, for example, be set by the user on a thermostat or
home energy management system (HEMS). In order to determine the feasible set
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xmin

xmax

t

xm
Tt − Dt

Tt

Tt + Dt
T
t

xm Tt(xm)

Figure 6.2: Schematic overview of the interaction between HVAC unit energy con-
sumption (xm) and indoor temperature (Tt(xm)).

Xm of schedules we need to determine how the indoor temperature Tt depends on
the schedule xm , i.e., how the energy consumption of the HVAC system influences
Tt . In Figure 6.2 we give an example of how the energy consumption of an HVAC
system influences the indoor temperature. Note that we depict the use of a (perfect)
deadband controller (i.e., it switches the system on when the temperature reaches
the upper bound and switches it off again as soon as the temperature reaches the
lower bound).

In the next subsection we first specify the model we use for Tt and then fit it to data
obtained in Austin, Texas. Then, we verify the model by comparing its output with
measurements from the dataset in Subsection 6.3.2.

6.3.1 Model Determination

For our thermal model, we consider a linear discrete-time model. This agrees with
the time steps used in profile steering and has been shown to work for small sized
HVAC systems [9]. Furthermore, a linear model ensures scalability and tractabil-
ity of our system for a larger number of houses. To determine the set of feasible
schedules for the system, given by (6.1), we determine the indoor temperature Tt+1
for the next time interval based on the current indoor temperature Tt , the HVAC
average power consumption xt and the outdoor temperature Ot :

Tt+1 = aTt + bxt + cOt + dt , (6.2)

where the coefficients a, b, c, and dt are parameters of the model. Note that all
the used variables are of the current time interval t. Furthermore, we assume that
a ≥ 0, meaning that the current temperature has a positive influence on the next
time interval. Note that parameter dt varies over time and can be used to model
thermal gains and losses not captured by the other parts of the model, e.g., thermal
gains from solar radiation and human occupancy/behaviour. This is similar to the
model used for residential HVAC systems in [31]. To determine the constant dt
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from historic data, we assume that it is invariant for the same time interval on
different days, i.e., dt = dt+96 when using fifteen minute time intervals.

Note that wemay assume that the indoor temperature does not change if the HVAC
system is unused, the indoor and outdoor temperature are equal, and the other
thermal gains/losses are zero (i.e. xt = dt = 0 and Tt+1 = Tt = Ot). Thus we can
assume that:

Tt = aTt + cTt , (6.3)

from which we can conclude that a + c = 1. This allows us to rewrite (6.2) to

Tt+1 − Tt = bxt + c(Ot − Tt) + dt , (6.4)

relating the indoor temperature change between two consecutive time intervals to
the HVAC system power consumption, the difference between indoor and outdoor
temperature, and other thermal gains and losses.

To obtain the coefficients of the thermal model given in (6.2), we use data from the
Pecan Street Inc. [73] dataset, which contains detailed electricity consumption data
for a large body of houses predominantly in Austin, Texas. We combine this data
with openly accessible weather data from Austin, Texas [2]. As the focus of this
work is on cooling, we consider only data obtained in the summer of 2015, between
the 1st of June and the 31st of September. We identified a total of ten households
for which the required data is available. For each of these houses, we fit the model
given in (6.2) using linear regression.

6.3.2 Model Verification

To verify the validity of the fitted model, we are mainly interested in the predictive
power of the model, as this is exactly the purpose for which we designed the model.
To this endwe split the data of each house into two sets. For the first set, the training
set, we have chosen to use the odd numbered days and fit the coefficients of the
model using this set. The second set consists of the remaining days, which we use
to predict indoor temperatures. These indoor temperatures are then compared to
the measurements in the set, to determine the accuracy of predictions made by our
model.

The mean and standard deviation of the differences between the predicted values
and measured values in the validation set for each house are given in Table 6.1. The
average error made by the model when predicting indoor temperature changes is
nearly 0. However, the standard deviation varies from house to house and indicates
that the errors can be quite large. This is not surprising, as human behaviour can be
a large factor in the thermal gains and losses of a household [9, 45]. Furthermore,
human behaviour is in general hard to predict and erratic on the level of households.
Therefore, we believe it is not realistic to pursue a model capable of accurately
deriving the thermal gains and losses due to variations in human behaviour. Hence,
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Table 6.1: Statistics on the errors made by the thermal model given in (6.2) for ten
houses in Austin, Texas. Furthermore, we use themodel to predict the daily average
HVAC system use and compare this to the data.

House
Mean
(○C)

Standard
deviation
(○C)

Auto-
correlation

MAPE
daily

HVAC use
(%)

1 5.67 × 10−5 0.17 −0.07 7.1
2 −2.80 × 10−3 0.15 −0.28 15.6
3 1.06 × 10−4 0.11 −0.38 8.4
4 1.38 × 10−3 0.31 0.17 31.8
5 3.65 × 10−3 0.17 0.26 25.1
6 −4.21 × 10−3 0.22 −0.21 14.3
7 9.22 × 10−4 0.12 −0.27 17.4
8 5.62 × 10−4 0.11 −0.18 13.2
9 7.98 × 10−4 0.38 −0.03 312.6
10 −3.92 × 10−3 0.23 −0.31 21.0

reliable EM approaches that plan and predict the use of HVAC systems must be
able to account for these errors through other means. Later on in this chapter we
discuss how we can deal with these errors within the operational control step of
the profile steering approach.

To ensure that the model is suitable for use in profile steering, we investigate if the
model gives reasonable HVAC power consumption prediction values compared
to measured data. Using data from our validation set and (6.4) we estimate the
expected required power consumption of the HVAC system for every time interval.
As could be expected, due to the, sometimes large, errors made by the model, this
sometimes leads to inaccurate or even infeasible values. However, as the average
error made by the model is nearly zero, we consider an entire day instead, i.e., in
the case of fifteen minute intervals we estimate the HVAC energy consumption for
96 intervals. Summing (6.4) over 96 intervals and rewriting it results in:

t+96
∑
i=t

x i =
t+96
∑
i=t

Ti+1 − Ti − c(O i − Ti) − d i

b
. (6.5)

We use data from our validation set and (6.5) to estimate the HVAC power con-
sumption for complete days and compare this estimate to the measured values. The
mean absolute prediction error (MAPE) between the predicted consumption and
the measured consumption for each day in the validation set is given in column
five of Table 6.1. Generally, the prediction error made by our model is about ten to
twenty-five percent. As we use only a linear model and human behaviour is very
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hard to predict, we do not expect better predictions are possible using models of
similar complexity. The very large value for house nine stands out. We believe it is
due to the fact that the HVAC system in this house only runs sporadically. Further-
more, the daily HVAC power consumption for this house does not vary much over
the two months of data in the validation set, indicating that the HVAC system is
mainly used to compensate for thermal gains caused by other factors than outside
temperature. As these are not explicitly modelled in our thermal model, it is not
surprising that the model does not do very well in predicting the HVAC usage.

Based on the large standard deviation found for the distribution of the errors made
by the models of houses four and nine, we deemed these models unfit and excluded
them from the simulation study detailed later on in this chapter. As mentioned
before, for house nine this is believed to be due to outdoor temperatures having
very little effect on the indoor temperature. Furthermore, while the model of house
five seemed to be a decent fit, it turned out that the HVAC system in this house
has to run almost constantly to keep the building at a desirable temperature. This
indicates that the HVAC system itself is undersized for its actual use and hence
offers nearly no flexibility to any EM approach. Hence we also excluded this house
from our simulation study.

Finally, we determined if a correlation exists between the variousmodel parameters
and the error made by the model. Hereby, no significant correlation was found.
Also, we determined the autocorrelation between the time series of errors made
by the models for each of the houses. The autocorrelation with a lag of a single
time step is given in column four of Table 6.1. As this value is negative for each of
the houses for which we deemed the model decent fits, it follows that we expect a
(large) positive error to cause the error for the next time step to be negative.

6.4 HVAC Scheduling Problem

In the previous section we determined a model, given in (6.2), which relates how
the temperature inside a building or house changes depending on the current tem-
perature, on the electricity consumption of the HVAC system and on the outdoor
temperature. Furthermore, we argued that the schedule made by an HVAC system
must maintain the temperature within a deadband around a given set point. The
system now needs to locally determine an optimal schedule based on the received
steering signal and these local constraints. This results in the following optimization
problem:

Problem 6.1 (HVACS).

min
x

f (x), (6.6a)

s.t. Tt+1 − Dt+1 ≤ aTt + bxt + cOt + dt ≤ Tt+1 + Dt+1 t = 1, 2, . . . , T , (6.6b)

xmin
≤ x ≤ xmax . (6.6c)
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We call this optimization problem theHVAC scheduling (HVACS) problem. Using
the same substitution as used in the previous chapters we can again assume that
xmin = 0. We note that in Constraints (6.6b) the bounds Tt+1−Dt+1 and Tt+1+Dt+1
are for the next time interval. This is because we use a discrete thermal model,
meaning that the value Tt can be interpreted as both the temperature at the start of
time interval t and at the end of time interval t − 1. Thus, the constraints only pose
limits on the temperature at the beginning/end of time intervals and we assume
the temperature in between is well-behaved enough to not violate user comfort.

When consideringConstraint (6.6b)we note thatT1 is the temperature at the start of
the optimization horizon, which we assume to be known. Furthermore, we assume
we have reasonable predictions of the outdoor temperature Ot for t = 1, 2, . . . , T .
Now, using (6.2) to substitute Tt we obtain that (6.6b) is equivalent to:

Tt+1−Dt+1 ≤ a2Tt−1+b(axt−1+xt)+c(aOt−1+Ot)+adt−1+dt ≤ Tt+1+Dt+1 (6.7)

Now, again using (6.2) we recursively substitute Tt−1 , Tt−2 , . . . , T2 to obtain that
(6.6b) is equivalent to:

Tt+1 − Dt+1 ≤
t
∑
t′=1
[at−t

′
bxt′ + at−t

′
cOt′ + at−t

′
dt′] + atT1 ≤ Tt+1 + Dt+1 (6.8)

Defining

Bt ∶=
Tt+1 − Dt+1 − atT1 − (∑

t
t′=1 at−t

′
cOt′ + at−t

′
dt′)

b
, (6.9a)

Ct ∶=
Tt+1 + Dt+1 − atT1 − (∑

t
t′=1 at−t

′
cOt′ + at−t

′
dt′)

b
, (6.9b)

we can rewrite (6.8) to

Bt ≤
t
∑
t′=1

at−t
′
xt′ ≤ Ct t = 1, 2, . . . , T . (6.10)

If we now substitute (6.10) for (6.6b) in ProblemHVACS, we obtain a problem very
similar to Problem BC we discussed in the previous chapter. We note that, similar
to the assumption we made in the previous chapter, we can assume that BT = CT .
Furthermore, Constraints (6.10) can be interpreted as SoC constraints on a leaky
buffer. To calculate the SoC at time interval t, given by∑t

t′=1 at−t
′
xt′ , the charging

done in interval t′, given by xt′ is discounted by a factor a for every time interval
between t′ and t. In other words, a percentage of the energy stored into the buffer
in time interval t′ is lost during every time interval between t′ and t.
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In Subsection 6.4.2 we derive an efficient solution method for Problem HVACS,
which is similar to the solution we obtained for Problem BC. To do so, we first
study the problem we obtain when we drop Constraints (6.10) except for the last
time interval. This problem can be transformed into Problem EVC, as studied in
Chapter 4, using a substitution and can be solved using the same approaches. We
then solve Problem HVACS using a divide and conquer approach very similar to
the approach we used for Problem BC.

6.4.1 HVACSWithout Cumulative Bounds

We first study ProblemHVACSwhere we drop Constraints (6.10) for all but the last
time interval. This problem is given by:

Problem 6.2 (rHVACS).

min
x

f (x), (6.11a)

s.t. BT ≤
T
∑
t=1

aT−txt ≤ CT , (6.11b)

xmin
≤ x ≤ xmax . (6.11c)

We call this problem the relaxedHVAC scheduling (rHVACS) problem. If we substi-
tute yt = aT−txt andC = CT , where we note that we assumed that f (x) = ∑t ft(xt)
and BT = CT , we obtain

min
y

T
∑
t=1

ft (
yt

aT−t
), (6.12a)

s.t.
T
∑
t=1

yt = C (6.12b)

xmin
t ≤

yt
aT−t

≤ xmax
t t = 1, 2, . . . , T . (6.12c)

We observe that the function gt(yt) ∶= ft( y t
aT−t ) is convex since ft is convex. Fur-

thermore, by defining

ymin
t ∶= aT−txmin

t , (6.13a)

ymax
t ∶= aT−txmax

t , (6.13b)

and substituting this together with gt into (6.12) we obtain

min
y

T
∑
t=1

gt(yt), (6.14a)

s.t.
T
∑
t=1

yt = C , (6.14b)

ymin
≤ y ≤ ymax , (6.14c)
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which is an instance of Problem EVC (see Chapter 4). We note that, with the
substitution given above, the structure of the objective function often does not
change significantly. For instance, for quadratic objective functions, discussed in
the previous chapters, the substitution of yt = aT−txt into such objective functions
keeps the objective quadratic, meaning that the solution methods discussed in
Chapter 4 remain applicable.

For Problem EVC we have the optimality conditions stated in Lemma 4.1, from
which we obtain the following optimality conditions for Problem rHVACS.

Lemma 6.1. A solution x to Problem rHVACS is optimal if and only if it is feasible
and there exists a multiplier λ such that, for all t:

xmin
t < xt < xmax

t ⇒
f −t (xt)
aT−t

≤ λ ≤
f +t (xt)
aT−t

, (6.15a)

xt = xmin
t ⇒

f +t (xt)
aT−t

≥ λ, (6.15b)

xt = xmax
t ⇒

f −t (xt)
aT−t

≤ λ. (6.15c)

Proof. The proof follows immediately from substituting xt = y t
aT−t and gt(yt) =

ft( y t
aT−t ) and applying Lemma 4.1.

These optimality conditions intuitively state that, in an optimal solution, no two
time intervals t and t′ and δ > 0 can be found such that increasing xt by δ

aT−t and
decreasing xt′ by δ

aT−t decreases the objective while keeping x feasible. Note that
this modification to x keeps ∑T

t=1 aT−txt the same, i.e., it always keeps x feasible
with respect to Constraint (6.11b).

The above shows that, with minor modifications, we can solve Problem rHVACS
by applying any solution method applicable to Problem EVC (see, e.g., the solution
methods presented in Chapter 4). We note that instances of Problem rHVACS do
not oftenmatch to the constraints in reality. This is because we do not consider con-
straints on the SoC on other time intervals besides the last. While we could do this
for the EV in Chapter 4 because we could assume that the SoCwas a non-decreasing
function of time, this is no longer the case here as there are losses involved with
the current SoC for every interval. For example, consider an instance where it is
undesirable to draw any energy from the grid in the last few time intervals. Then,
an optimal solution to rHVACS will charge more than a total of C on the first inter-
vals, after which only energy is discharged through the losses until the final SoC is
equal to C. This potentially violates the capacity constraint of the buffer.
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6.4.2 Solution Approach for HVACS

In order to solve ProblemHVACSwe use an approach similar to the divide and con-
quer strategy formulated for Problem BC in the previous chapter. The approach is
based around a slight modification of the result given in Lemma 5.1 for Problem BC.
In our solution approach to Problem BC we first construct a candidate solution
by solving an instance of Problem EVC. Then we take the maximum violation of
the SoC-constraints in the found candidate solution and split the instance into two
separate instances by setting the lower and upper bound to the same value for the
time interval where the maximum violation occurs. The reason to take the maxi-
mum violation is that fixing the cumulative bound at larger violations can already
make it such that the solution also becomes feasible for smaller violations of the
bounds. This follows from the fact that the total charging must remain the same,
i.e., from the constraint that∑T

t=1 xt = C. In Problem HVACS this constraint now
includes a discount factor a. This factor implies that to reduce the total charging,
i.e., the SoC, on time interval t by δ the charging done at an interval t′ < t needs
to be decreased by more than δ. In other words, reducing xt by δ reduces∑t⋆

t′=1 xt′ ,
with t⋆ > t, by less than δ. To take this effect into account, we need to scale the
violations obtained in our candidate solutions to determine at which time interval
the cumulative bound of an optimal solution is tight.

Lemma 6.2. Consider an instance of Problem HVACS with CT = BT and let y be
an optimal solution to the instance of Problem rHVACS obtained by ignoring the
cumulative bounds for all indices except the last. Assume that y is not feasible for the
considered instance of Problem HVACS and define

k ∶= argmax
t
{aT−t (

t
∑
t′=1

at−t
′
yt′ − Ct) , aT−t (Bt −

t
∑
t′=1

at−t
′
yt′)} . (6.16)

Then, there is an optimal solution x to the considered instance of Problem HVACS
such that, if ∑k

t=1 ak−t yt > Ck then ∑k
t=1 ak−txt = Ck and, on the other hand, if

∑
k
t=1 ak−t yt < Bk then∑k

t=1 ak−txt = Bk .

Proof. The proof is similar to that of Lemma 5.1 given in the previous chapter. Let x
be an optimal solution to the considered instance of Problem HVACS and assume
that ∑k

t=1 ak−t yt > Ck and ∑k
t=1 ak−txt ≠ Ck . Since x is feasible, it follows that

∑
k
t=1 ak−txt < Ck . Let l be the last index before k for which the upper cumulative

bound is met by x with equality, i.e. l ∶= max{t < k∣∑t
t′=1 at−t

′
xt′ = Ct} and l ∶= 0

if this set is empty. Furthermore, letm be the first index after k for which the upper
cumulative bound is met by x with equality, i.e. m ∶= min{t > k∣∑t

t′=1 at−t
′
xt′ =

Ct}. Note that∑T
t=1 aT−txt = CT by assumption, hencem is well defined andm ≤ n.

We wish to show that there exist indices n and n⋆ such that l < n ≤ k < n⋆ ≤ m
and yn > xn and yn⋆ < xn⋆ .

We start by showing that such an index n exists. We know, by construction of k,
that
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aT−l (
l
∑
t=1

a l−t yt − C l) ≤ aT−k (
k
∑
t=1

ak−t yt − Ck) . (6.17)

Dividing both sides by aT−k we obtain

ak−l (
l
∑
t=1

a l−t yt − C l) ≤
k
∑
t=1

ak−t yt − Ck . (6.18)

From this we obtain that

Ck − ak−lC l ≤
k
∑
t=1

ak−t yt −
l
∑
t=1

ak−l a l−t yt

=
k
∑
t=1

ak−t yt −
l
∑
t=1

ak−t yt

=
k
∑
t=l+1

ak−t yt .

(6.19)

On the other hand, by assumption on x and construction of l , we have that:

k
∑
t=1

ak−txt < Ck , (6.20a)

l
∑
t=1

a l−txt = C l . (6.20b)

Multiplying (6.20b) by ak−l and combining it with (6.20a) gives

Ck − ak−lC l >
k
∑
t=1

ak−txt −
l
∑
t=1

ak−txt =
k
∑
t=l+1

ak−txt . (6.21)

If we now combine (6.19) with (6.21) we obtain

k
∑
t=l+1

ak−t yt >
k
∑
t=l+1

ak−txt . (6.22)

Since a > 0 this implies that there indeed exists an n with l < n ≤ k such that
yn > xn .

Next we show that an n⋆ with k < n⋆ ≤ m and yn⋆ < xn⋆ exists. Similar to the
derivation of (6.19) we obtain, by construction of k, that
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Cm − am−kCk ≥
m
∑

t=k+1
am−t yt (6.23)

Also, similar to the derivation of (6.21) and by assumption on x and construction
of m we obtain

Cm − am−kCk <
m
∑

t=k+1
am−txt . (6.24)

Combining (6.23) and (6.24) we obtain

m
∑

t=k+1
am−txt >

m
∑

t=k+1
am−t yt , (6.25)

which implies that there indeed exists an n⋆ with k < n⋆ ≤ m such that yn⋆ < xn⋆ .

The optimality conditions stated for rHVACS in Lemma 6.1 apply to y. Therefore,
we obtain that f −n (yn)

aT−n ≤
f +n⋆(yn⋆)
aT−n⋆ . Furthermore, by the convexity of fn and fn⋆

respectively it follows that f +n (xn)
aT−n ≤

f −n (yn)
aT−n and f +n⋆(yn⋆)

aT−n⋆ ≤
f −n⋆(xn⋆)
aT−n⋆ . Thus we obtain

f +n (xn)
aT−n

≤
f −n (yn)
aT−n

≤
f +n⋆(yn⋆)
aT−n⋆

≤
f −n⋆(xn⋆)
aT−n⋆

. (6.26)

By construction of l and m it follows that if we increase xn by є
aT−n and decrease

xn⋆ by є
aT−n⋆ for some small є > 0 the solution remains feasible. Furthermore, from

(6.26) it follows that doing so does not increase the objective value for sufficiently
small є. On the other hand, doing so increases ∑k

t=1 ak−txt . We can repeat the
above process until∑k

t=1 ak−txt = Ct . This shows that∑k
t=1 ak−t yt > Ck implies that

∑
k
t=1 ak−txt = Ck . The proof for the case that∑k

t=1 ak−t yt < Bk and∑k
t=1 ak−txt >

Bk is symmetric.

The above lemma implies that, with minimal modifications, we can apply the same
solution approachweused for ProblemBC to ProblemHVACS.Thesemodifications
entail updating k to reflect the definition as given in Lemma 6.2 and replacing the
call to an algorithm solving instance of Problem EVC to a call to an algorithm
solving instance of Problem rHVACS. Note that we argued that instance of rHVACS
can be solved by an algorithm for Problem EVC after a linear substitution. For
completeness sake we list the modified approach of Algorithm 5.1 in Algorithm 6.1,
with optHVACS denoting a call to an algorithm that solves an instance of rHVACS
to optimality.
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Algorithm 6.1 Recursive algorithm optHVACS for problem HVACS

1: x1→T = Function optBC(f1→T , xmax
1→T ,B1→T ,C1→T)

2: y1→T ∶= optrHVACS(f1→T , u1→T ,CT)

3: if y1→T is feasible then
4: x1→T ∶= y1→T
5: else
6: k ∶= argmaxt {a

T−t (∑
t
t′=1 at−t

′
yt′ − Ct) , aT−t (Bt −∑

t
t′=1 at−t

′
yt′)}

7: if ∑k
t=1 ak−t yt > Ck then

8: Bk = Ck
9: Bt = Bt − Ck and Ct = Ct − Ck for t = k + 1, k + 2, . . . , T
10: else
11: Ck = Bk
12: Bt = Bt − Bk and Ct = Ct − Bk for t = k + 1, k + 2, . . . , T
13: end if
14: x1→k = optHVACS(f1→k , xmax

1→k ,B1→k ,C1→k)
15: xk+1→T = optHVACS(fk+1→T , xmax

k+1→T ,Bk+1→T ,Ck+1→T)
16: end if
17: Return x1→T

6.4.3 Discrete Variant of HVACS

Similar to discrete variants of the EV and battery problems we formulate a discrete
variant of Problem HVACS. The discussion and results below follow to a large
extend from techniques and approaches already presented in the previous chapters.
We add them for completeness sake.

Again, the true discrete variant is NP-hard, as it is an extended version of Prob-
lem dEVC, for which we provedNP-hardness in Chapter 4. Therefore, we directly
state the variant using convex combinations.

Problem 6.3 (dHVACS).

min
y

T
∑
t=1

Ft(xt) =
T
∑
t=1

m i

∑
j=0

y j
t ft(z

j
t), (6.27a)

s.t. Bt ≤
t
∑
t′=1

at−t
′
xt′ ≤ Ct t = 1, 2, . . . , T , (6.27b)

xt =
m t

∑
j=0

y j
tz

j
t t = 1, 2, . . . , T , (6.27c)

m t

∑
j=0

y j
t = 1 t = 1, 2, . . . , T , (6.27d)

y j
t ≥ 0 t = 1, 2, . . . , T ; j = 0, 1, . . . ,mt . (6.27e)
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Note that we use Constraints (6.27b) similarly to Constraints (6.10), which are
equivalent to Constraints (6.6b) for Problem HVACS with the appropriate choice
of Bt and Ct respectively. Furthermore, recall that z

j
t denote the feasible operation

levels of the device for time interval t for j = 0, 1, . . . ,mt . Also, Ft can be rewritten
as a piecewise linear function obtained from ft by linearizing ft between each of
z jt ’s for j = 0, 1, . . . ,mt . Note that we assume that the losses on the SoC of the buffer
are independent of the order in which the different operation levels are used within
a time interval.

To solve Problem dHVACS we combine previous results. Similar to instances of
Problems dBC and rdEVC, we can rewrite an instance of Problem dHVACS to an
instance of Problem HVACS with piecewise linear objective. To solve this instance
ofHVACSwe can then apply the approach described above, i.e., we can solve this in-
stance by applying Algorithm 6.1. The time complexity of this approach is O(TM),
whereM denotes the total number of breakpoints of the piecewise linear objective
functions.

As discussed in previous chapters, this complexity result relies on an algorithm
using median find, which is rather inefficient for small to medium sized inputs. For
practical applicability, we pursue a direct approach for instances of ProblemHVACS
with piecewise linear objective functions below. As Problem HVACS closely resem-
bles problem BC, we modify the greedy approach we found for Problem BC with
piecewise linear objective. One of the important differences is that now, to satisfy
the lower cumulative bound Bt for interval t, increasing xt′ by δ for intervals t′ ≤ t
no longer has the same effect on the cumulative sum for every t′. In particular, if
we increase xt′ by δ for t′ < t, then the cumulative sum for t is increased by at−t

′
δ.

Now, to determine which piece gives the lowest increase of the objective value per
unit of increase of the cumulative sum for t, we need to discount the slopes of the
pieces for time interval t′ < t with a factor 1

a t−t′ . Note that this is exactly the result
we obtained in Lemma 6.1.

Similar to the approach given in Algorithm 5.2, we iteratively want to ensure that
the lower bounds B1 , B2 , . . . , BT are met. To ensure that ∑k

t′=1 ak−t
′
xt′ = Bk in

iteration k, we only increase the values of x1 , x2 , . . . , xk until the equality is met.
Note that if we increase xt with 1 ≤ t ≤ k by δ in iteration k, then this cumulative
sum ∑k

t′=1 ak−t
′
xt′ increases by ak−tδ. For the choice of the index t for which we

increase xt we use the piece with the lowest slope (after discounting as described
above). Thus, for iteration k, we track which of the currently active pieces for time
intervals 1, 2, . . . , k has the lowest discounted slope (for the definition of an active
piece see Subsection 4.5.3). In the algorithm we track this by using an ordered
set S. The set S contains the discounted slopes of the currently active pieces for
the intervals 1, 2, . . . , k. We note that in some cases all pieces for a time interval
may have already been used and hence no piece is active for this time interval.
Furthermore, if for some t′ ≥ t the upper cumulative bound Ct′ is met, the pieces
for time interval t can no longer be used.
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When moving from iteration k − 1 to k the pieces in S need to be discounted by
an additional factor 1

a . Since all the pieces are discounted by this same factor, the
ordering of S does not change. Furthermore, we need to add the slope of the first
piece of fk to S. Note that we do not need to discount the slope of this first piece
of fk . However, if in iteration k we completely use a piece of ft with t < k then
we need to add the next piece of ft to S. We note that this piece does need to be
discounted first by a factor ak−t before it can be added to the (sorted) set S.

The above procedure takes care of the lower bounds Bt . However, we also need to
ensure that the upper cumulative bounds, given by the values C1 ,C2 , . . . ,CT , are
respected. In Algorithm 5.2 we ensured these bounds are respected through a book-
keeping variable Vt , which tracks how much we can increase xt without violating
the cumulative upper bounds that include xt . In the following we describe how we
ensure that these bounds are respected for Problem HVACS with piecewise linear
objective. When increasing xt for some t by δ, the cumulative sum for interval
t⋆, with t⋆ > t is increased by at

⋆
−tδ. Hence, the upper cumulative bound Ct⋆ is

respected if

δ ≤
1

at⋆−t
⎛

⎝
Ct⋆ −

t⋆

∑
t′=1

at
⋆
−t′xt′

⎞

⎠
. (6.28)

Thus, to ensure that all cumulative upper bounds are met, we need to ensure that
the increase δ of xt⋆ is bounded by

δ ≤ min
t≥t⋆

⎧⎪⎪
⎨
⎪⎪⎩

1
at⋆−t

⎛

⎝
Ct⋆ −

t⋆

∑
t′=1

at
⋆
−t′xt′

⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

. (6.29)

Similar to the approach in Algorithm 5.2 we define

Vt = min
t≥t⋆

⎧⎪⎪
⎨
⎪⎪⎩

1
at⋆−t

⎛

⎝
Ct⋆ −

t⋆

∑
t′=1

at
⋆
−t′xt′

⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

. (6.30)

Note that we have

Vt−1 = min{Ct−1 −
t−1
∑
t′=1

at−1−t
′
xt′ ,

1
a
Vt} , (6.31)

for t < T and

VT = CT −
T
∑
t′=1

aT−t
′
xt′ . (6.32)

Hence we can iteratively calculate the value of Vt , starting with interval T and
working backwards, if we know the cumulative sum for each interval. To this endwe
define variables Ct to track the value of Ct −∑

t
t′=1 at−t

′
xt′ during the approach and

use this to update Vt after we increase xt for some t. The approach is summarized
in Algorithm 6.2.
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Algorithm 6.2 Greedy approach pwlHVACS for HVACS with piecewise linear con-
vex objective

1: x1→T = Function pwlHVACS(f1→T , Z , xmax
1→T ,B1→T ,C1→T)

2: S ∶= ∅, and Ct ∶= Ct , and xt ∶= 0 for all t
3: VT ∶= CT
4: for l = T − 1, T − 2, . . . , 1 do
5: Vl ∶= min{C l , 1

aVl+1}

6: end for
7: for k = 1, 2, . . . , T do
8: Multiply the elements of S by 1

a
9: Insert s1k into S such that S remains ordered non-decreasingly
10: R ∶= Bk −∑

k
t′=1 ak−t

′
xk

11: while R > 0 do
12: Take t and j such that s jt is the first piece from S
13: δ ∶= min{R,Vt , z

j
t − z

j−1
t }

14: xt = xt + δ
15: R = R − ak−tδ
16: for l = t, t + 1, . . . , T do
17: C l = C l − ak−tδ
18: end for
19: VT = CT
20: for l = T − 1, T − 2, . . . , 1 do
21: Vl = min{C l , 1

aVl+1}

22: end for
23: for j′ , t′ such that s j

′

t′ ∈ S and Vt′ = 0 do
24: S = S ∖ {s j

′

t′}

25: end for
26: if δ = z jt − z

j−1
t then

27: S = S ∖ {s jt}
28: if j < mt and Vt > 0 then
29: Insert ak−ts j+1t into the ordered vector S
30: end if
31: else if Vt > 0 then
32: z j−1t = z

j−1
t + δ

33: end if
34: end while
35: end for
36: Return x1→T
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Lemma 6.3. Algorithm 6.2 solves an instance of Problem HVACS with piecewise
linear objective functions to optimality in time O(TM), with M the total number of
breakpoints of the objective functions.

Proof. The feasibility of the algorithm follows from the fact that pieces are added
in order to the set S and the lower and upper cumulative bounds are respected, per
the discussion above.

To prove optimality of the algorithm, consider an instance ofHVACSwith piecewise
linear convex objective functions. Let y be an optimal solution, and let x be the
solution produced by Algorithm 6.2. Furthermore, let t be the smallest index for
which xt ≠ yt . We consider two cases.

Case 1 xt > yt : Let t⋆ > t be the smallest index for which xt⋆ < yt⋆ . This index
must exist since ∑T

t′=1 aT−t
′
xt′ = BT = ∑

T
t′=1 aT−t

′
yt′ . Furthermore, let st and st⋆

be the slopes of the pieces on which xt and xt⋆ lie respectively. In case xt ∈ Zt , we
pick the piece with xt as endpoint and in case xt⋆ ∈ Zt⋆ we pick the piece with xt⋆
as begin point. By the fact that the right and left derivatives of ft and ft⋆ are non-
decreasing it follows that st ≥ f +t (yt) and f −t⋆(yt⋆) ≥ st⋆ . Also, by the optimality
of y it follows from Lemma 6.1 that f +t (y t)

aT−t ≥
f −t⋆(y t⋆)
aT−t⋆ . Note that, since both x and y

are feasible, we can find a δ > 0 such that we can decrease xt by aT−tδ and increase
xt⋆ by aT−t

⋆
δ, until either xt is equal to yt or xt⋆ is equal to yt⋆ , without violating

feasibility. Finally, note that doing so does not increase the objective value.

Case 2 xt < yt :This case can be treated symmetrical to the previous case.

The above process can be repeated until x = y without increasing the objective
value. This shows that x is indeed optimal.

Finally, to show that the time complexity is O(TM), we note that the while loop
in Algorithm 6.2 is executed at most O(M) times, as was also the case for Algo-
rithm 5.2. As the steps in Algorithm 6.2 still can be executed in time O(T), the
complexity remains O(TM).

6.5 Operational Control of HVACs

In Section 6.3 we discussed a thermal model of houses in Austin, Texas and in
Section 6.4 we showed how we can schedule theHVAC systems using this thermal
model. However, as mentioned, the thermal model suffers from inaccuracies result-
ing, e.g., from human behaviour. Thus, the resulting schedules are not guaranteed
to satisfy the user thermal comfort constraints at all times.

In this section we discuss howwe can adapt the schedules in the operational control
step of the profile steeringDEM approach (see Section 2.3) to ensure that these con-
straints are met. Furthermore, in Subsection 6.5.2, we discuss how most residential
HVAC systems are currently operated and how we can simulate this behaviour in a
simulation using discrete time intervals. We will use this simulation of the current
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behaviour ofHVAC systems as a reference case for the simulation study we perform
in the next section.

6.5.1 Prediction Errors in Profile Steering

To be able to deal with prediction errors made by our thermal model, we assume
that we can accurately track the indoor temperature. Thus, the system can react
whenever the measured temperature deviates from the predicted value. The sched-
ule made by the profile steering approach specifies energy consumption per time
interval of, e.g., fifteen minutes. The thermal model predicts the resulting tempera-
ture values for these consumption values. However, it is possible that a prediction
error causes the real temperature to deviate from this predicted value and that the
system violates the thermal bounds set by the user for the next time interval. This
can happen when, for example, (much) more energy is needed for cooling than
originally predicted. In such cases we assume that the system has to switch its state
to prevent the loss of (too much) user comfort. Consequently the system uses a
different amount of energy than scheduled in the current time interval. This can
occur quite frequently if the system operates near its thermal limits, which usually
happens if the full flexibility of the system is exploited. To prevent this issue we
suggest that the thermal limits used in the scheduling phase of the profile steering
approach are taken to be stricter than the actual limits set by the user, i.e., the max-
imum allowed deviation from the set point used by our model is taken to be lower
than specified by the user.

Above we discussed howwe can ensure that not toomuch user comfort is lost in the
current time interval due to prediction errors for the next time interval(s). However,
such prediction errors also impact the available flexibility for these next time inter-
vals. Below, we discuss how we can adapt the schedule to account for this change
in flexibility. In Section 6.3 we mentioned that our model cannot accurately predict
human behaviour and that we assume that it is not realistic to expect that such
accurate predictions exist. To ensure that the system nevertheless behaves correctly
we propose to use anMPC like approach. By this we mean that new schedules are
made at every time interval, e.g., every fifteen minutes. For such a schedule, only
the first time interval is used to control the HVAC system. For the profile steering
approach this implies that a new schedule has to be made for every device, since
the available flexibility constantly changes between time intervals. These changes
in available flexibility impact the best use of flexibility of other devices, hence a full
profile steering scheduling phase has to be executed for every time interval.

If the execution of a scheduling phase of profile steering is fast enough it is possible
to implement the above procedure. This is however a costly operation from both
a computational and communication perspective. We note that particularly the
computational issue plays an important role when performing simulation studies,
which are commonly done for the analysis of EM approaches. As an alternative,
we propose to use the hierarchy of the profile steering approach to reduce the
computational complexity. Instead of rescheduling the flexibility of all devices
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in the system for every time interval for which prediction errors are made, we
propose that this is only done, e.g., for predetermined time intervals or whenever
the prediction errors are judged too large. In other steps where prediction errors
occur we propose that these errors are only taken into consideration locally through
the rescheduling of the energy use of the device (in this case the HVAC system).
For the device, a schedule can be made, using the updated parameters, that best fits
the steering signal the device received.

6.5.2 Base Case

Above we argued how we can integrate HVAC systems into our profile steering
approach using the thermal model developed earlier in this chapter. To investigate
the potential of such an EM approach, we need a reference case to compare our
results with. While we have a dataset available from Austin, Texas detailing HVAC
energy consumption values and indoor temperatures, this dataset does not give
us any information on the most vital parameter; the available flexibility. In order
to determine this flexibility using the developed thermal model we require both a
temperature set point Tt and an allowed deviation from this set point Dt .

To tackle this problem we implemented a basic form of standard control forHVAC
systems. Most residential HVAC systems are equipped with a thermostat having a
deadband controller [31, 45]. The thermostat turns the HVAC system on to max-
imum power when the temperature reaches the upper limit and turns it off once
it reaches the lower limit. However, when implementing such a controller in our
system using fifteen minute time intervals, the granularity of the intervals is too
coarse to capture the dynamics of the system if decisions can only be made at the
beginning of every time interval. This is especially the case if the room temperature
exceeds the thermal limits shortly after the start of a time interval.

To alleviate this issue we use linear interpolation to determine when the system
switches on during a time interval. At the beginning of such a time interval t we
know if the HVAC is running or not. Furthermore, we calculate the temperature
Tt+1 at the start of the next time interval using our thermal model (6.2). If this
value exceeds the thermal comfort bounds specified we use linear interpolation to
determine when the HVAC system switches on or off. For example if the system
is turned off at the start of time interval t and Tt+1 > Tt+1 + Dt+1 we estimate the
fraction τ of the time interval the system stays off by:

Tt + τ(Tt+1 − Tt) = Tt+1 + Dt+1 . (6.33)

The total energy consumption of the system for time interval t cannowbe calculated
by taking (1 − τ) times the consumption of energy if the system would run for a
full interval. This value for the energy consumption can subsequently be used in
(6.2) to calculate the resulting temperature at the start of the next time interval. The
procedure for determining when the system switches off if the lower thermal limit
is reached is similar.
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6.6 Simulation Study

In this section we discuss the results of a simulation study to investigate the po-
tential of HVAC systems using profile steering. To do this, we compare the results
from a simulation using our profile steering approach to those of a simulation with
deadband control. Furthermore, we investigate the potential of profile steering if
the errors made by our thermal model are assumed to be known a priori, i.e., we
consider profile steering where we assume the thermal model gives perfect predic-
tions. The latter gives us an upper bound on the increase in effectiveness of our
approach with a ‘perfect’ thermal model.

Within our simulation study we have to incorporate errors which are made by
our thermal model. In a real-life implementation of an EM approach, we assume
that these errors can easily be observed from local measurements, e.g., from a
thermostat. However, we do not have access to such data in a simulation. To still be
able to incorporate the errors made by our thermal model, we used the Pecan Street
Inc. dataset, described above. We split this data set in two parts, a training and a
validation part. We used the latter part to verify the obtained model. Furthermore,
we use it also to obtain errors made by our thermal model.

We construct the errors used in our simulation study as follows. To validate our
model, we compared measured temperatures in the validation part of the dataset
with predictions made by our model. The differences between measured and pre-
dicted values give us a set of prediction errors. We use these differences to construct
a sample set for the prediction error made by our model. In every time step of the
simulation we sample an error from the sample set and add it to the temperature
calculated by our model. We do this for both the profile steering approach and the
base case with deadband control. Note that it is possible that the resulting temper-
atures in either scenario violate the thermal limits, particularly if we add a large
disturbance term. In such cases the disturbance is too large to be accounted for by
the used system and we allow the temperature to violate the thermal constraints.
We believe such situations mostly occur in cases with a large influence due to hu-
man behaviour, for example a door or window being left open for a long period of
time, for which it is not feasible to expect the system to operate within its limits.

For the simulation study we consider the seven houses with reasonable thermal
models, described in Section 6.3. For these houses we also have the (uncontrollable)
load of the other devices besides theHVAC system available. For the simulation we
chose a set point of 23○ C with a maximum allowed deviation of 0.5○ C. We apply
the profile steering approach to the group of these seven houses for a full week
with the goal to flatten the load profile. Due to the prediction errors discussed
in Section 6.5 we used Dt = 0.3 for the profile steering approach. Furthermore,
for the profile steering approach we plan twelve hours ahead using fifteen minute
time intervals. We adjust the local schedule after every time step to account for
prediction errors in the thermal model. Finally, we use a full scheduling phase of
the approach every six hours, i.e., after half the scheduling horizon has elapsed.
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The results are given in Figure 6.3 (a) and Table 6.2. Note that in the figure we give
load duration curves, i.e., we sort the load values non-decreasingly, to accentuate
the difference between the approaches. The table is used to indicate the minimum
and maximum values of power attained over the scheduling horizon. The results
show a significant improvement in the load profile of the considered houses when
profile steering is applied. Furthermore, the results show that a perfect thermal
model does not significantly increase the ability of profile steering to flatten the
load profile during peak hours. However, the curve stays above zero, indicating
that all locally produced energy is consumed locally when perfect predictions are
used.

To study the effect of increasing the number of houses involved we studied two
additional cases, one with fourteen houses and another with twenty-one houses.
For these cases we replicated the thermal models of the seven houses, using the
uncontrollable load data of different weeks. In Figures 6.3 (b) and (c) and Table 6.2
the results for these cases are shown. They show that our methodology is able to
significantly flatten the aggregated profile of the houses. However, in both cases
the peak reduction can be improved upon even more when perfect predictions are
available. We believe that the discrepancy between these cases and the case with
seven houses is caused by the fact that the major peaks in the case of seven houses
are large but short, allowing the HVAC system to compensate, even in the case of
significant errors in the thermal models. These results indicate that improvements
in the thermalmodel combinedwith good humanbehaviour forecasting techniques
can further increase the potential of DSM with residential HVAC systems.

Finally, we studied the effect of varying the maximum allowed deviation from
the set point temperature in the seven houses case. The results for this case and
the used deviations Dt are given in Figure 6.4 and Table 6.2. We note that for
deadband control we only consider the scenario where we allow a deviation of
0.5○ C as the other scenarios (with higher allowed deviations) give nearly identical
results. The results show that increasing the allowed deviation improves the ability
for the system to level the load duration curve. However, further increasing the
allowed deviations gives limited improvement. We believe that this is because the
capability of reducing theHVAC system energy consumption during times of high
energy consumption of the other loads is already rather high for the studied seven
houses with an allowed deviation from the set point of 0.5○C.

6.7 Conclusion

In this chapter we considered a thermal model to determine the flexibility available
fromHVAC systems to be used by EM approaches. We used a linear thermal model
to keep the complexity of the resulting optimization problem for the device low. We
fit the model to data from the Pecan Street inc. dataset, gathered in Austin, Texas.
The prediction errors of the model are mainly due to human behaviour. As such
behaviour is hard to predict in general, we believe that the model can be used for
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Figure 6.3: The load duration curve for (a) 7, (b) 14, and (c) 21 houses for which we
control the HVAC system energy consumption to flatten the overall profile.
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Figure 6.4: Load duration curvewhen controlling theHVAC systemof sevenhouses
with different allowed deviations from the set point.

Table 6.2: The minimum and maximum power values for the simulated cases in
Figures 6.3 and 6.4.

# houses case min power max power
7 profile steering -7.6 28.8
7 deadband -7.2 35.6
7 perfect predictions 4.8 26.6
14 profile steering -5.4 56.9
14 deadband -10.0 63.8
14 perfect predictions 9.5 45.6
21 profile steering 2.3 74.2
21 deadband -17.2 95.9
21 perfect predictions 12.0 62.8
7 deadband -7.2 35.6
7 Dt ≡ 0.5 -7.6 28.8
7 Dt ≡ 0.75 -5.7 27.9
7 Dt ≡ 1 -1.6 27.3
7 Dt ≡ 2 -2.7 27.0

steeringHVAC systems in profile steering. Note that the model used in this chapter
is equivalent to a resistance capacitor (RC) model with a single resistance and a
single capacitor. These RCmodels are often used in the literature (see, e.g., [13, 138]).
However, for many buildings a higher order model, i.e., a model equivalent to
a circuit with more resistances and/or capacitors, is required to capture the full
dynamics of the systems. The integration of such higher order models into our
profile steering approach is outside the scope of this thesis and is therefore left for
future work.

We note that in any case it is important to properly deal with prediction errorsmade
on the input parameters of our profile steering approach. In Subsection 6.5.1 we
gave a method to deal with such prediction errors. We believe that further research
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on methods to deal with these prediction errors can increase the capabilities of
our approach. Furthermore, we specifically considered the case of HVAC systems.
However, the model should also be applicable to other systems where losses based
on the SoC of the storage system play an important role, such as heating systems.

Next, we considered the resulting device level optimization problem calledHVACS.
This problem has a lot of similarities with the problems considered in previous chap-
ters. We first formulated a relaxed problem wherein the cumulative bounds for all
but the last time interval are dropped. We showed that this problem, after a trans-
formation, is equivalent to Problem EVC, as studied in Chapter 4. Furthermore,
we showed that a similar result to that found for Problem BC (Chapter 5) holds for
Problem HVACS. This result allowed us to apply, after minor modifications, the di-
vide and conquer algorithm obtained for BC toHVACS. As the problems previously
studied in this thesis are also applicable to other fields outside of EM, we believe
the problems studied in this chapter could also be of value to other fields. However,
investigating if the results of this chapter can be applied elsewhere is outside the
scope of this thesis.

As mentioned, the thermal model developed in this chapter suffers from signif-
icant prediction errors. To ensure that our profile steering approach produces
feasible schedules when considering HVAC systems, we need to ensure the oper-
ational control step is robust against these errors. We argued that we can ensure
that the temperature is generally kept between bounds within the discrete time
steps by setting stricter bounds on the temperature than allowed by the user. Fur-
thermore, we deal with prediction errors by rescheduling the energy consumption
locally at the start of every time interval. Next to the local rescheduling, we also
reschedule all HVAC systems together, using a full profile steering scheduling step,
at pre-determined intervals, e.g., every few hours. Further improvements could
potentially be obtained if a rescheduling step involving all HVAC systems together
is not done at pre-determined time intervals, but whenever the schedules of the
individual HVAC systems deviate too much from their original plan. We believe
an investigation of how the system can track the deviations by devices from their
original schedules, and when and how to respond to such deviations can increase
the robustness of the profile steering approach.

We applied the approach developed in this chapter in a simulation study that com-
pares profile steering usingHVAC systems with deadband control. For this simula-
tion studywe used the samehouseswe used to obtain a thermalmodel in Section 6.3.
The results show that profile steering can significantly flatten the load profile even if
only seven houses are present. The results do not significantly improve with perfect
predictions. However, as an improvement is observed for the cases with fourteen
and twenty-one houses when perfect predictions are used, we believe this to be
an artefact of the considered scenario. A further investigation into this effect can
result in a better understanding of the dynamics of the presented profile steering
approach in the presence of prediction errors.

Simulations with a higher allowed deviation from the set point, at least for seven
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houses, indicate that the improvements in flattening of the load profile suffer from
diminishing returns. From this we conclude that it is likely that the flexibility pro-
vided by HVAC systems scales sub-linearly with the increase in allowed tempera-
ture deviations. An investigation if this is always the case can provide useful results
in determining where we can (easily) obtain the most flexibility in the current and
future grid.

Summarizing, the model developed in this chapter allows us to incorporate losses
that depend on the state of charge of the system into device level models in profile
steering. This is of particular importance in, for example, heating and cooling
applications. The devices used in these applications often have another important
constraint associated with minimum run and off times. Such constraints, while
important, are out of the scope of this work. Furthermore, the results we obtained
when simulating fourteen and twenty-one houses indicate that improvements can
be made by improving the thermal model. This indicates that further research into
this area can potentially lead to significant improvements in our profile steering
approach. We believe that this is a non-trivial problem, as a large influence on the
energy consumption in the residential sector comes from human behaviour, which
is hard to model.
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1597
Transformer Ageing and EM

Abstract – One of the important aspects of the costs of our (future) energy
supply chain are the costs of the infrastructure. In the electricity grid these
costs are to a large extent maintenance and investment costs. As one of the key
elements in the energy transition is a new energy management approach, we
study the impact such an energymanagement approach can have on the ageing
of power transformers in this chapter. For this study we use a transformer
model developed by the IEEE, and we derive charging schedules for electric
vehicles thatminimize the ageing of transformers using thismodel. We compare
the obtained results to several other charging strategies. The obtained results
indicate that flattening the load profile of a neighbourhood of houses, which
can be achieved through, e.g., profile steering, also minimizes ageing of the
transformer supplying this neighbourhood.

This chapter is based on [TvdK:6].
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Figure 7.1: The investments made by Enexis in their gas and electricity distribution
grids over the period 2011-2015. Data taken from [44].
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Figure 7.2: The operational costs made by Enexis for their distribution grids over
the period 2011-2015. Data taken from [44].
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Figure 7.3: The expected asset value for the DSOPPL in the UK over the period 2015-
2020. Note that the growth is constant, implying a near constant and significant
investment requirement. Data taken from [111].
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7.1 Introduction

In Chapter 3 we introduced our profile steering energymanagement (EM) approach.
We argued that this approach should assist in keeping the total costs of our energy
supply chain reasonable while we transition towards a systembased on clean, renew-
able resources. An important part of the total costs is the cost of the infrastructure.
For electricity this part entails the cost of maintenance and of investment in the
electricity grid. With significant penetration levels of (renewable) generation on
the customer side, the stress put on the grid, and in particular the distribution
grid, increases significantly [102]. This implies that the associated maintenance and
investment costs increase to levels much above the current values. As an example,
a total investment requirement of 49 billion euros up to 2032 is expected for the
German electricity distribution grid [19].

To get a better insight in the magnitude of the costs, we give the maintenance and
investment costs for the Dutch distribution system operator (DSO) Enexis in Fig-
ures 7.1 and 7.2. Enexis serves about 31% of the Dutch customers and is the third
largest DSO in the Netherlands. The costs have been rather stable over the last few
years. Furthermore, the costs are expected to remain stable in coming years (see
Figure 7.3 for a projection in the UK with a stable growth of asset value). How-
ever, these expectations are based on the assumption that the transition towards
an energy supply chain based on renewables does not incur heavy reinforcement
costs. To ensure this assumption holds EM approaches are generally expected to
assist in the better management of flexibility in the (distribution part of the) future
smart grid [120, 142]. Also, the maintenance and investment costs are relatively
high, meaning that even small percentile savings imply large reductions in absolute
costs. In particular, novel EM approaches can unlock such reductions in costs.

In most studies on EM the grid is implicitly assumed to benefit from the applied
approaches, while in some cases conflicts of interest can exist between the different
stakeholders [104]. Most studies on EM use the assumption that increasing local
use of locally produced energy and flattening out the demand profile decreases
stress on grid assets (see, e.g., [39, 122]). In this chapter we aim to investigate what
the best use of flexibility provided by (residential) customers actually is from a grid
perspective.

To investigate the impact of EM on the grid, we study the ageing of distribution
transformers, as these are among the most expensive assets in the distribution
grids [122]. Note that also stress on (underground) cables is an important issue,
as their replacement is costly. However, if we reduce stress on the transformer we
generally also reduce stress on the cables. To this endwe study amodel of the ageing
of transformers and use this model to determine what the best schedules for the
charging of electric vehicles (EVs) are to minimize this ageing. More specifically,
we use the transformer ageing model provided by the IEEE in their C57.91-2011
standard [4]. This model was originally designed to assist system operators in
determining the size of transformers before they are installed in (new) grids. For
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this the models relates the use of the transformer, i.e., the energy flowing through
the transformer, to the ageing of the asset. As this is also the relation we require to
determine the impact of EM approaches on the asset’s ageing, we believe the IEEE
model to be suitable for our application.

The remainder of this chapter is outlined as follows. In the next section we briefly
discuss some related work to provide some background. Then, in Section 7.3 we in-
troduce the used transformer ageingmodel. As the full model is highly complex, we
introduce a simplifying assumption that ensures that we can formulate an optimiza-
tion problem in Section 7.4 that is efficiently solvable. This optimization problem
determines the charging of EVs such that minimal ageing occurs in the transformer.
Afterwards, in Section 7.5, we validate that our simplifying assumption does not
alter the results significantly. Furthermore, we compare the minimization of trans-
former ageing to other scenarios, in particular to our profile steering approach, in
this section. Finally, we finish with some conclusions in Section 7.6.

7.2 Related Work

In this section we discuss some related work on the impact of EM on transformer
ageing. As mentioned above, few studies explicitly incorporate the ageing of grid
assets in their analysis. Most of these studies use the the model from the IEEE
standard C57.91-2011 [4], which we also use in this chapter. Below we discuss a few
publications that use this model as background to the study we perform in this
chapter.

Jargstrof et al. [78] study the effects of EM on transformer ageing in a Belgian case.
They use the IEEE model as a basis and linearize part of the model to obtain a
mixed-integer quadratic program, which they solve using a commercial solver. The
flexible devices they consider are smart white goods (dishwasher, washingmachine,
and tumble dryer) and electric heat generation systems combined with hot water
buffers. They conclude that the increase in transformer ageing is more pronounced
when the transformer is operated near or at its limits without EM applied. We note
that in this case study the available flexibility is rather limited.

In [70], Humayun et al. study a Finnish scenario, which focusses on load shifting
offered by smart white goods, HVAC systems, and refrigerators and freezers. They
steadily increase the load on the system to study the potential of EM to reduce asset
ageing when the asset is under significant stress. In particular they aim to keep the
temperature of thewinding inside the transformer below a specific threshold, as this
threshold is given by manufacturers as the maximum operating temperature under
normal conditions. Similar to Jargstrof et al. they simplify the IEEEmodel to obtain
a mixed-integer quadratic program. The authors conclude that the overall load on
transformers can be significantly increased without sacrificing transformer life if
an EM approach is used. They observed that the capability to increase transformer
life proportionally increased with the amount of flexibility available on the demand
side.
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Moghe et al. [93] consider the impact of electric driving on transformer ageing.
They use a Monte Carlo simulation with data from two major cities in the US
(Phoenix, Arizona and Seattle, Washington). They compare uncontrolled charging
(i.e., at full power upon arrival) and controlled charging of the EVs. Their control
strategy only allows a vehicle to charge when the total load on the transformer does
not exceed a predetermined threshold. Within each of the simulated (random)
scenarios they compare the resulting transformer lifetime in both cases with the
lifetime when no EVs are present. They base their results on a model using dif-
ferential equations obtained from the IEEE standard. Their results indicate that,
while the introduction of (large amounts of) EVs has adverse effects on transformer
ageing, this effect can be significantly mitigated through smart charging. We note
that their controlled charging strategy can be improved upon, potentially leading
to a further decrease in asset ageing.

7.3 Transformer Ageing Model

In this section we study the ageingmodel of transformers given by IEEE in standard
C57.91-2011 [4]. First, we give the details of the model. As this full model is complex
it is difficult to determine the best use of flexibility offered by distributed energy
resources (DERs) with respect to ageing. To arrive at a computationally tractable
problem we simplify the model. This makes the resulting optimization problem
that schedules the use of flexibility to minimize transformer ageing convex. In turn,
this allows us to use, e.g., a convex solver to calculate the optimal use of flexibility
for minimizing transformer ageing.

7.3.1 Thermal Ageing Model

The full model from the IEEE standard is based on the relation between the tem-
perature of the transformer and its degradation. In turn, the temperature of the
transformer is related to the ambient temperature and the load on the transformer.
The ageing is determined through the calculation of ageing factors for a set of time
intervals. These ageing factors indicate how much the transformer aged compared
to normal operation (which is usually at 110○C). For a given time interval t, the
ageing factor FAA

t can be calculated using:

FAA
t = e

15000
383 e

− 15000
ΘH
t +273 , (7.1)

where ΘH
t is the so called hottest spot temperature in ○C.This is the temperature of

the hottest spot on the transformer windings, i.e., the point where the transformer
is assumed to degrade the quickest.

As an example, if the ageing factor calculated over a day is 0.5, then the expected
remaining lifetime, under normal operation, of the transformer is reduced by half
a day instead of a full day. On the other hand, if the ageing factor is 3, then the
expected remaining lifetime, under normal operation, of the transformer is reduced
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by three days instead. In Figure 7.4 two scenarios of the loading of a transformer
are plotted. The top plots give the load on the transformer (as a fraction of the load
at which the transformer was rated) together with the hottest spot temperature
(we come back to this later). The bottom plots give the ageing factor calculated for
each of the hours as well as the cumulative ageing factor. This cumulative ageing
factor is around 25 for the mild overloading case, indicating that the transformer
degrades about 25 times faster than while operating under a constant load at which
it was rated. On the other hand, the cumulative factor is about 450 for the severe
overloading case, indicating that such a scenario degrades the transformer very fast
(if the transformer is expected to last 20 years under normal operating conditions
it only lasts about 16 days under severe overloading conditions).

To calculate the ageing for longer periods of time, with multiple time intervals
involved, the equivalent ageing factor FEQA is used. This factor is given by:

FEQA
=
∑t FAA

t δt
∑t δt

, (7.2)

where δt is the length of time interval t. Note that, in case all time intervals are of
equal length, FEQA is equivalent to the average of the ageing factors of the consid-
ered time intervals. Alternatively, if the time intervals are of equal length, one can
also use the sum of the individual ageing factors (as done in Figure 7.4)

The hottest spot temperature ΘH
t is calculated as:

ΘH
t = Ot + ∆ΘTO

t + ∆Θ
H
t , (7.3)

where Ot is the ambient temperature, ∆ΘTO
t is the temperature rise of the oil, used

as coolant, over the ambient temperature and ∆ΘH
t is the temperature rise of the

hottest spot on the winding over the temperature of the oil, both for time interval
t. This temperature is also plotted in Figure 7.4. ∆ΘTO

t is calculated using:

∆ΘTO
t = (∆Θ

TO ,ul t
t − ∆ΘTO , ini

t )(1 − e
−δt
τTO ) + ∆ΘTO , ini

t , (7.4)

where ∆ΘTO , ini
t is the initial temperature rise at the start of the interval, τTO is a

parameter given in minutes and ∆ΘTO ,ul t
t is the ultimate temperature rise at the

given load for the time interval, i.e., the temperature rise the oil will reach if the
transformer has to supply a load xt , given for time interval t, for a very long time
(up to infinity). If several consecutive time intervals are considered, ∆ΘTO , ini

t+1 is
assumed to be equal to ∆ΘTO

t , the temperature rise of the previous time interval.
Similarly ∆ΘH

t is calculated as:

∆ΘH
t = (∆Θ

H ,ul t
t − ∆ΘH , ini

t ) (1 − e
−δt
τw ) + ∆ΘH , ini

t , (7.5)

with the various parameters similarly defined as in (7.4). While the parameter τw
can be assumed to be independent of the temperature of the winding, the parameter
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Figure 7.4: Example of the behaviour of the hottest spot temperature for a trans-
former with (a) mild and (b) severe overloading and the ageing factor for (c) mild
and (d) severe overloading. Example data taken from [4].

τTO does depend on the initial temperature rise ∆ΘTO , ini
t and ultimate temperature

rise ∆ΘTO ,ul t
t by:

τTO = τTO ,R
(
∆ΘTO ,ul t

t
∆ΘTO ,R

t
) − (

∆ΘTO , ini
t

∆ΘTO ,R
t
)

(
∆ΘTO ,ul t

t
∆ΘTO ,R

t
)

1
n1
− (

∆ΘTO , ini
t

∆ΘTO ,R
t
)

1
n1

, (7.6)

where τTO ,R is the value of parameter τTO for the load value at which the trans-
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former was rated, ∆ΘTO ,R
t is the ultimate temperature rise of the oil for the load

value at which the transformer was rated, and n1 is an exponent based on the type
of cooling used. Note that n1 typically takes values between 0.8 and 1, where in the
case that n1 = 1, τTO is assumed to be equal to τTO ,R for any initial and ultimate
temperature rises.

Finally, ∆ΘTO ,ul t
t and ∆ΘH ,ul t

t can be calculated as:

∆ΘTO ,ul t
t (Kt) = ∆ΘTO ,R

(
(Kt)

2R + 1
R + 1

)

n1

, (7.7a)

∆ΘH ,ul t
t (Kt) = ∆ΘH ,R

(Kt)
2n2 , (7.7b)

where Kt is the ratio between the load for interval t and the load at which the
transformer is rated, ∆ΘH ,R

t is the hottest spot temperature rise over the oil at the
load at which the transformer is rated, and n2 is an exponent similar to n1, also
typically taking values between 0.8 and 1.

7.3.2 Simplifying Assumption

The parameter τTO for the top oil temperature rise, calculated by (7.6) depends,
through a complex relation, on the initial and ultimate temperature rise. Further-
more, the standard states that the relation given in (7.6) is chosen such that both the
initial rate of change of the temperature rise of the oil as well as the final tempera-
ture rise of the oil are correctly approximated by the model. However, intermediate
values of the oil temperature rise might deviate. As we are exactly interested in
these intermediate temperatures we make the following assumption.

Assumption 7.1. The effect on the ageing factors of different values of the parameter
τTO for different initial and ultimate temperature rises of the oil over the ambient
temperature can be neglected. Thus, we take τTO = τTO ,R .

The model stated in Subsection 7.3.1, i.e., without Assumption 7.1 we call the ‘full
model’. On the other hand, the model we obtain below, using Assumption 7.3.1, we
denote by the ‘simplifiedmodel’. UsingAssumption 7.1, we have a closer look at (7.4).
As noted, for consecutive time intervals we have ∆ΘTO , ini

t = ∆ΘTO
t−1 . Furthermore,

we assume that each time interval is of equal length, i.e., we take δt = δ for all t.
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Now (7.4) can be rewritten as:

∆ΘTO
t =(1 − e

−δ
τTO )∆ΘTO ,ul t

t + e
−δ
τTO ∆ΘTO , ini

t

=(1 − e
−δ
τTO ) (∆ΘTO ,ul t

t + e
−δ
τTO ∆ΘTO ,ul t

t−1 ) + e
−2δ
τTO ∆ΘTO , ini

t−1

=(1 − e
−δ
τTO )

t
∑

t′=t−1
[e

(t′−t)δ
τTO ∆ΘTO ,ul t

t′ ]

+ e
−2δ
τTO (1 − e

−δ
τTO )∆ΘTO ,ul t

t−2 + e
−3δ
τTO ∆ΘTO , ini

t−2

=(1 − e
−δ
τTO )

t
∑

t′=t−2
[e

(t′−t)δ
τTO ∆ΘTO ,ul t

t′ ]

+ e
−3δ
τTO (1 − e

−δ
τTO )∆ΘTO ,ul t

t−3 + e
−4δ
τTO ∆ΘTO , ini

t−3 .

(7.8)

Continued backwards substitution allows us to rewrite (7.4) further into:

∆ΘTO
t = (1 − e

−δ
τTO )

t
∑
t′=1
[e

(t′−t)δ
τTO ∆ΘTO ,ul t

t′ ] + e
−tδ
τTO ∆ΘTO , ini

1 , (7.9)

where ∆ΘTO , ini
1 is the temperature rise of the oil over ambient at the start of the

considered time horizon. Similarly we can rewrite (7.5) into:

∆ΘH
t = (1 − e

−δ
τH )

t
∑
t′=1
[e

(t′−t)δ
τH ∆ΘH ,ul t

t′ ] + e
−tδ
τH ∆ΘH , ini

1 , (7.10)

where ∆ΘH , ini
1 is the temperature rise of the hottest spot over the oil at the start of

the considered time interval. Note that the above equations for ΘTO
t and ΘH

t are
affine maps of ∆ΘTO ,ul t

t′ and ∆ΘH ,ul t
t′ for t′ = 1, 2, . . . , t respectively. This observa-

tion allows us to proof a convexity result for the simplified model later on.

7.4 Using EM to Reduce Transformer Ageing

As mentioned, the ageing of a transformer depends on the energy flowing through
it. As such, it can be influenced by an EM approach which is able to change the
energy profile of the neighbourhood behind the transformer. In this chapter we
focus on only a part of the load behind the transformer, namely the residential
charging of EVs, as these are novel, large loads that are expected to have a large
impact on the distribution grid [141]. We aim to optimize the charging of the EVs
such that the ageing of the transformer is minimized. We consider a setM of EVs
which offer their flexibility to the EM approach. We schedule the charging of the
EVs over a time horizon of T time intervals, which results for each EV m ∈ M in
a schedule xm = (xm1 , xm2 , . . . , xmT ). For the schedules x

m we assume that the same
local (i.e., device specific) constraints apply as we used in Chapter 4, i.e., we assume
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T
∑
t=1

xmt = C
m , (7.11a)

0 ≤ xm ≤ xmax ,m , (7.11b)

with Cm the required charge of EV m and xmax ,m the vector of upper bounds on
the charging allowed for EV m over the horizon. Based on the above we define the
local constraint set Xm to be given by:

Xm
= {xm ∣ xm satisfies (7.11)}. (7.12)

We neglect grid losses within the distribution grid, implying that the energy profile
flowing through the transformer of the neighbourhood for time interval t can be
calculated by adding the load of the EVs to the base load of the neighbourhood, i.e.,
the load of the devices that cannot be controlled. The ratio of load at interval t to
the load at which the transformer is rated can then be calculated by:

Kt =
βt +∑m xmt
R

, (7.13)

where βt is the load of the uncontrolled devices for time interval t andR is the load
at which the transformer is rated. Since we consider equal length time intervals,
minimizing transformer ageing is equivalent to minimizing the average ageing
factor over the considered time horizon. This is in turn equivalent to minimizing
the sum of the ageing factors. This leads to the following optimization problem:

Problem 7.1 (MA).

min
x
∑
t
F t
AA, (7.14a)

s.t. xm ∈ Xm
∀m ∈ M, (7.14b)

and (7.1), (7.3), (7.9), (7.10), (7.13). (7.14c)

We call this problem the minimize ageing (MA) problem and note that it uses the
simplified model. Problem MA is a nonlinear optimization problem. However,
as we show below, it is a convex optimization problem. To obtain this convexity
result, we first show that the ultimate temperature rise of both the oil and the hottest
spot is convex in the ratio of the load of any time interval to the load at which the
transformer was rated.

Lemma 7.1. Both ∆ΘH ,ul t
t and ∆ΘTO ,ul t

t are convex in the ratio Kt of the load for
time interval t and the load at which the transformer was rated.

Proof. We first consider ∆ΘH ,ul t
t , which is given by (7.7b). The second derivative

of (7.7b) with respect to Kt is given by:
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2n2(2n2 − 1)∆ΘH ,R
t (Kt)

2n2−2 , (7.15)
which is positive since n2 ∈ [0.8, 1] and (Kt)

2n2−2 is positive for Kt ≥ 0.

Next we consider ∆ΘTO ,ul t
t , which is given by (7.7a). The second derivative of (7.7a)

with respect to Kt is given by:

2n1R((Kt)
2R + 1)n1−2((2n1 − 1)(Kt)

2 + 1)
(R + 1)n1

, (7.16)

which is positive because n1 ∈ [0.8, 1].

Lemma 7.1 allows us to show that ProblemMA is a convex problem.

Theorem 7.1. Problem MA is convex for load values that keep the hottest spot tem-
perature below 7227 ○C, i.e., for all realistic load values.

Proof. For each m ∈ M, the set Xm of locally feasible schedules is convex since
(7.11a) is linear and (7.11b) is a bounding box. Thus, it remains to show that the
ageing factor is a convex function of xmt . For any given t, Kt is given by an affine
map of the xmt ’s for allm ∈ M (see (7.13)). Hence, ∆ΘH ,ul t

t and ∆ΘTO ,ul t
t are convex

in each xmt by Lemma 7.1. Furthermore, ∆ΘH
t and ∆ΘTO

t are given by increasing
affine maps of each ∆ΘH ,ul t

t′ and ∆ΘTO ,ul t
t′ respectively, for t′ ≤ t (see (7.9) and

(7.10)). Hence these are convex in each of the xmt ’s. Finally, note that ΘH
t is an

increasing affine map of ∆ΘH
t and ∆ΘTO

t (see (7.3)), hence it is convex in each of
the xmt ’s.

Next we consider FAA
t which is given by (7.1). The first derivative with respect to

ΘH
t is given by:

e
15000
383 e

15000
ΘH
t +273

15000
(ΘH

t + 273)2
. (7.17)

The second derivative is given by:

15000e
15000
383 e

15000
ΘH
t +273 (

15000
(ΘH

t + 273)4
−

2
(ΘH

t + 273)3
) . (7.18)

Note that the first derivative is strictly positive for any value of ΘH
t and the second

derivative is strictly positive for

15000
(ΘH

t + 273)4
>

2
(ΘH

t + 273)3
, (7.19)

which is true for ΘH
t < 7227, i.e., for all temperatures resulting from realistic energy

flows. Thus, the ageing factors FAA
t are indeed convex inΘH

t for any realistic loading
pattern. The theorem now follows from the fact that ΘH

t is a convex function of
each of the xmt ’s and FAA

t is a convex and increasing function of ΘH
t .
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Theorem 7.1 allows us to solve the Problem MA using a standard convex solver.
Using this, we can compare the obtained load profiles of different charging strategies
for the EVs.

7.5 Simulation Study

In this section we study the potential of an EM approach to reduce the ageing of
transformers through a simulation study using the models developed in the pre-
vious section. We use load data from a real world neighbourhood transformer in
the town of Lochem in the Netherlands to construct instances of ProblemMA that
represent scenarios with significant penetration levels of EVs. We compare the
optimization results, obtained using the simplified model, with the temperature
profile and ageing factors calculated using the full model, i.e., the model described
in Section 7.3. Furthermore, we compare the results of the optimization to an imple-
mentation of our profile steering EM approach, where we steer towards flattening
the load profile. For this comparison we calculate the ageing of the transformer
when the profile steering approach is applied. Finally, we calculate the ageing when
no coordination between the charging of the EVs is applied. For this uncoordinated
charging we consider two cases: the EVs are either charged as quickly as possible
upon arrival or their charging is equally spread over the period that the vehicle is
available for charging.

7.5.1 Considered Scenario

Asmentioned, we consider a transformer in the town of Lochem for which we have
detailed load measurements available. This transformer supplies a neighbourhood
of residential customers. The transformer is rated at 400 kVA with an average
winding rise of 65 ○C.As a test case we use data fromNovember 3rd until November
9th in 2014, for which the base load profile is given in Figure 7.5 (a) (denoted by
‘Base’). From the available data we calculate the fifteen minute averaged load values.
The temperature profile of the transformer resulting from this base load is given in
Figure 7.5 (b).

The values of the required parameters forming the base of calculating the ageing are
given in Table 7.1. Cooling of the transformer is done through natural convection,
known as ONAN, cooling. For this type of cooling, [4] suggests that the values of
the exponents n1 and n2 are set to 0.8. For the initial temperature of the top oil and
hottest spot we use an equivalent load B to the load profile of the previous day (for
details see [4]).

For the other parameters of the transformer we used values from [3] for a 65 ○C
degrees average winding rise transformer. Finally, for the ambient temperature we
used measurement data from a weather station in Eefde, near Lochem.

Next we specify the data used for the EVs in the considered scenarios. We assume
there are 50 EVs in the neighbourhood. For each EV we assume that it arrives at
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Table 7.1: Used parameter values within problemMA.

Parameter Value Parameter Value
∆ΘTO ,R 55 ○C ∆ΘH ,R 20 ○C
τTO 210 min τw 5 min
B 97897 W R 2.7

∆ΘTO , ini
1 21.0 ○C ∆ΘH , ini

1 1.53 ○C
n1 0.8 n2 0.8

a randomly selected time between 17:00 and 19:00. Furthermore we assume that
each EV has to be fully charged by a time randomly selected between 6:00 and 8:00
the next day. The total required charge and maximal charging power of each EV is
varied over the scenarios. This is done to simulate the effect of a higher penetration
of EVs as doubling the required charging and maximal charging power of each
EV is nearly the same as modelling twice as many vehicles from the transformer
perspective. As a basis, we use the scenario where each EV can charge with a
maximal power of 3.8 kW and has to charge a random amount between 10 and 15
kWhevery night. We call this scenario low penetration. Furthermore, we performed
simulations for the case that the required charging and maximal charging power
are either doubled or tripled. These scenarios are called medium penetration and
high penetration respectively.

7.5.2 Optimizing Transformer Lifetime

To optimize the transformer lifetime by controlling the charging of the EVs, we im-
plemented ProblemMA in the AIMMSmodelling software [1]. Within AIMMS we
used the CONOPT solver to produce a solution of ProblemMA. While CONOPT
only finds a local optimum, the convexity result, given inTheorem 7.1, ensures that
this is in fact a global optimum.

As discussed above, we used the simplified model in order to be able to derive our
results. To verify that our results do not deviate too far from the full model we
compare the temperatures and resulting ageing for the load profile found by the
simplified model with those obtained when using the full model. The results are
listed in Table 7.2.

For the considered scenarios and found charging profiles of the EVs using the
simplified model gives slightly lower temperature values and hence gives slightly
lower ageing. However, for the considered cases, the differences are small enough
to assume that the found charging profiles give transformer ageing results that are
almost identical with the minimum that would be obtained when using the full
model. The resulting load profiles can be found in Subfigure (a) of Figures 7.5-7.7
for the low, medium and high penetration scenarios respectively, where the curve is
denoted by ‘Opt’. Furthermore, the temperature profiles of each of these scenarios
can be found in Subfigure (b) of Figures 7.5-7.7. When minimizing transformer
ageing we observe a slight increase in the total load profile at the end of the night.
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Table 7.2: Differences between outcomes of the ageing model with the simplified
model and the full model for optimized EV charging for the scenarios.

Scenario

Maximum
absolute
temperature
difference
(○C)

Ageing
difference

(%)

light penetration 0.02 0.04
medium penetration 0.03 0.17
heavy penetration 0.09 0.65

This increase can be explained by a lower ambient temperature during these time
intervals. Finally, the increase of transformer ageing for each of the scenarios is
listed in Table 7.3. This table gives the increase in the ageing factor compared to the
ageing under the base load (i.e., with no EVs present). An increase of 100% means
that the transformer is expected to last only half as long compared to a scenario
where no EVs are present.

7.5.3 Profile Steering

For the simplified model of transformer ageing, the temperature rise of both the
oil and hottest spot is an increasing convex function of the load on the transformer
and the ageing of the transformer is an increasing convex function of the hottest
spot temperature. Therefore, flattening the load profile should intuitively reduce
the ageing of the transformer significantly. As a comparison to the presented opti-
mization directly towards transformer ageing, we implemented our profile steering
EM approach, with as goal to achieve a flat profile. As the objective we used the
Euclidean norm and a desired profile of zero energy usage. To derive the schedules
of the EVs we used the algorithms from Chapter 4. The resulting temperature and
load profiles can be found in Figures 7.5-7.7 and Table 7.3 where they are listed as
‘PS’. The profile steering approach spreads the charging of the EVs such that the
resulting profile is as flat as possible. The influence on ageing and temperature is
discussed in Subsection 7.5.5.

7.5.4 Uncontrolled Charging

For comparison, we simulated the scenarios also without a coordination mecha-
nism for the EV charging. While currently most EVs start charging at maximum
power directly when plugged-in until they are fully charged, several studies have
shown that this can cause a tremendous amount of stress on the grid [67]. Hence,
in the future, EV owners might be incentivized to spread the charging of their own
vehicle equally over the time period for which the EV is available for charging. To
assess the potential of our optimization approach we implemented both cases. The
resulting temperature and load profiles for both cases in each of the scenarios can
be found also in Figures 7.5-7.7 respectively, where ‘Max’ denotes the case of maxi-



173

C
ha

pt
er

7
–
Tr

an
sf
or

m
er

A
ge

in
g
an

d
EM

0 1 2 3 4 5 6 7

100

200

Po
w
er
(k
W
)

Base Opt PS Equal Max

(a) load

25

35

45

0 1 2 3 4 5 6 7

Time (days)

Te
m
p
(○
C
)

(b) hottest spot temperature

Figure 7.5: Results for low penetration case (note that the ‘Max’ case is clipped).

mal charging upon arrival and ‘Equal’ denotes the case of equal loading over the
entire charging interval. The increase in ageing over the base load can be found in
Table 7.3 in the rows Max and Equal.

7.5.5 Comparison of the Cases

The results of the simulation study show a very large reduction in transformer
ageing when smart charging is adopted. Specifically in the high penetration case,
the transformer ages rapidlywhen the vehicles are fully charged upon arrival. This is
mainly caused by the high peaks in this case that overload the transformer, causing
high temperatures and extreme wearing. While flat charging already significantly
decreases transformer ageing, this can be further improved by applying an EM
approach steering the EV charging.

When comparing directly minimizing transformer ageing with the profile steering
approach, we conclude that the differences in temperature and ageing are minimal.
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Figure 7.6: Results for low penetration case (note that the ‘Max’ case is clipped).

For all considered scenarios, transformer ageingminimization slightly favours time
intervals later during the night for charging. This can be explained by a lower
ambient temperature for these time intervals, which allows a slightly higher load
on the transformer with the same resulting temperature of the hottest spot and thus
the same ageing. For the considered scenarios however, an EM approach that steers
towards flattening the load profile of the neighbourhood provides adequate results
with respect to minimizing transformer ageing.

7.6 Conclusion

In this chapter we studied the ageing of an important and costly asset in the elec-
tricity (distribution) grid and how this can be influenced by an EM approach. This
research was motivated by the fact that the energy transition is expected to lead
to an increase in stress on the electricity grid, and in particular the distribution
grid. This increased stress mainly results from the electrification of our energy
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Figure 7.7: Results for low penetration case (note that the ‘Max’ case is clipped).

Table 7.3: The increase (in percentages) of the equivalent ageing factor when com-
paring the base load and the additional load caused by the different EV loading
strategies.

light
penetration

(%)

medium
penetration

(%)

heavy
penetration

(%)
Opt 20.6 76.5 200.9
PS 20.9 77.6 202.1

Equal 27.6 92.2 243.9
Max 161.0 4763.5 22306.9
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use and the introduction of local (renewable) generation. The increased stress can
cause a large increase in investments in the grid especially if the energy transition
is not handled properly. EM approaches can help to keep the energy transition
economically feasible by using flexibility to reduce the stress on the grid.

To study the impact of the electrification on our electricity grid we study the ageing
of a (distribution) transformer in this chapter. For this we use an ageing model
developed by IEEE. This model relates energy flows through the transformer to
ageing of the asset. The relation is, in its base, nonlinear. We showed that the given
relation is convex under a mild assumption. This allowed us to formulate a convex
optimization problem for the case that EV charging can be steered to minimize the
ageing of the transformer.

We compared the results of this optimization towards decreased transformer ageing
to other charging strategies in a simulation study using different levels of EV pene-
tration in a Dutch neighbourhood. The results of the simulation study indicate that
charging EVs maximally upon arrival causes the transformer to degrade rapidly.
Significant improvements are made by spreading the charging of each EV over its
complete charging horizon. Further improvements are obtained if the EV charging
is coordinated with the charging of the other EVs and the profiles of the other loads
in the neighbourhood. Finally, the results obtained when directlyminimizing trans-
former ageing and when applying our profile steering approach with a flat profile as
the target profile are very similar. This indicates that steering towards a flat profile
is beneficial for the (local) grid. As the computational complexity of directly opti-
mizing towards transformer ageing is much higher than that of the profile steering
approach, the above indicates that profile steering offers a good approach when
asset ageing is of importance and the computational power is limited.

The model used in this chapter is based on thermal properties of the transformer.
The used transformer model was originally designed to help size transformers be-
fore they are installed in (new) grids. With this goal in mind, some of the assump-
tions made in the model are on the pessimistic side. Nevertheless, we expect a
similar (convex) relation to hold between energy flows and degradation for other
assets, such as cables. The results in this chapter should extend to the assets for
which such a similar (convex) relation holds. Furthermore, we note that the results
indicating that profile steering gives near optimal results regarding transformer
degradation may also be extended to other EM approaches that flatten the profile
of a neighbourhood.
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1798
Summary and Conclusion

Abstract – This chapter is divided into three parts. First the main results of
the thesis are summarized (Section 8.1). The main results are the introduction
of an EM approach called profile steering, the development of device level mod-
els and solution methods and a brief discussion on asset ageing in the smart
grid and the multi-objective nature of our future energy system, shared by
different stakeholders. In the second section we recap on the research questions
posed in Chapter 1 and summarize the important results that answer these
questions (Section 8.2). Finally, we give some recommendations on potential
ways to improve the approach in future work to make profile steering more
viable for practical implementation in the future smart grid (Section 8.3).
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Table 8.1: Lowest obtained complexity for device level solution methods with
quadratic objective functions for both the continuous version and the relaxation
of the discrete version. T denotes the number of time intervals and M denotes
the total number of pieces in the piecewise linear approximation of the discrete
versions of the problems.

Problem Complexity (continuous) Complexity (discrete)
Electric vehicle
(Chapter 4) O(T) O(M)

Storage devices
(Chapter 5) O(T2

) O(TM)

HVAC systems
(Chapter 6) O(T2

) O(TM)

Table 8.2: Overview of our requirements on an EM approach, as listed in Chapter 2,
and a description of how profile steering satisfies them.

Requirement Description of the solution in profile steering

Scheduling
By design, the approach solves scheduling problems to deter-
mine when and how to use the flexibility available in the various
DERs.

Scalability Through the decentralized approach most of the computation is
done on a local level, allowing for heavy use of parallelism.

Heterogeneity
Because device level problems are solved locally, heterogeneity
only implies different DERs need to be able to make their own
schedule, which we showed is possible for several device classes.

Feasibility

Device schedules are made on the local level, where constraints
are known. The natural mapping between the control hierarchy
and the physical grid leads to an approachwhere grid limitations
are taken into account.

Privacy

Privacy sensitive information is only required on a local level to
make the device level schedules. As only the resulting energy pro-
file is communicated upwards and aggregated on various levels,
the approach keeps privacy sensitive information very local.
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8.1 Summary of the Obtained Results

With the shift towards an energy system based on clean renewable sources, the
system is changing, particularly in our electricity grid. An important trends is that
flexibility is lost on the production side. Traditional EM approaches depend on a
large amount of flexibility on the production side. Furthermore, these traditional
approaches do not scale to the large amount ofDERs envisioned in the future smart
grid. Therefore the traditional approaches are no longer applicable in the future
system. Thus, a new EM approach is needed to enable the energy transition towards
a sustainable energy system.

In Chapter 3 of this thesis we propose the profile steering EM approach. It is a
novel EM approach that is applicable to the future (smart) grid. Profile steering is
capable of managing the available flexibility from DERs through a decentralized
control approach. In this decentralized approach, the decisions how and when to
use flexibility are made locally (i.e., by the devices). The coordination between the
use of flexibility from different sources is achieved through steering signals. These
signals are sent by a central controller and indicate to the devices when it is useful
for the overall system goals to use their flexibility.

In Chapters 4 to 6 we studied how to make the local decisions for the devices, par-
ticularly in the profile steering approach. We assumed that the steering signals used
in our profile steering approach result in convex and separable objective functions
for the local problems. We showed that the resulting problems are resource alloca-
tion problems. In particular we studied buffering devices, which utilize an internal
storage to fulfil their primary function. In Chapter 4 we considered a device that
can only be charged, e.g., an EV. For such a device we discussed efficient solution
approaches for both the continuous and discrete variants of the problem.

In Chapter 5 we extended the buffering devices model to include discharging to
capture, e.g., stand-alone batteries and heat generators combined with heat storage.
We showed that the resulting problems can be solved using a divide and conquer
strategy in the continuous case. This resulted in an efficient solution approach us-
ing the methods developed in Chapter 4. Furthermore, we extended the approach
from Chapter 4 to the discrete case of the model including discharging. Then, in
Chapter 6 we included state of charge (SoC) dependent losses to the model. We
showed that the results from Chapter 5 also apply to this case after minor modifica-
tions. The best obtained complexity for each of the device level problems is given
in Table 8.1.

Finally, in Chapter 7 we studied a model for transformer ageing. We showed that,
under a mild assumption, we can formulate the objective of minimizing trans-
former ageing when steering the charging of EVs as a convex optimization problem.
This allowed us to calculate optimal charging strategies for the EVs with respect to
transformer ageing and compare them to other EM approaches. In particular, the
results indicate that flattening load profiles gives near optimal results with respect
to transformer ageing.
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8.2 Conclusion & Discussion

In this thesis the central research question we studied is:

How can we effectively and efficiently manage the flexibility provided by (future)
energy resources in the electricity grid to facilitate the changes occurring due to the
energy transition?

In particular we clarified effective and efficient to mean that:

An EM approach is required to employ scheduling in a scalable manner to use flex-
ibility offered by a large heterogeneous set of resources in a feasible manner at the
appropriate time while respecting user privacy.

To answer this question we first consider the sub-questions from the introduction.

How can we effectively manage the coordination of flexibility use between devices?

To effectively coordinate the use of flexibility between different DERs in the future
smart grid we introduced the profile steering approach. In this approach the de-
vices decide on the local level when and how to use flexibility. The devices make
these decisions based on steering signals. These steering signals are communicated
through a control hierarchy, where the centralized controller sends steering signals
based on the system goals. The control hierarchy reflects the physical structure of
the grid in a tree structure. We achieve this by subsequently dividing theDERs over
controllers on the different levels of the tree to achieve different groups on each
level in the control hierarchy. For example, devices in an LV grid can be grouped
according to their house, phase, and feeder. Each group is managed by a different
controller on the corresponding hierarchical level, where this controller adapts the
steering signals to ensure the devices it governs use their flexibility when this best
fits the system goals specified by the steering signals.

Using the strong resemblance between the control hierarchy and the physical grid,
we incorporated grid constraints into the approach. This is achieved through limita-
tions set on the allowed schedules of when and how flexibility is used by the group
of DERs that a controller governs. These limits correspond to the physical limits of
the corresponding asset, e.g., the total load on a cable is kept between bounds by a
controller governing all the DERs connected to this cable (or by a controller that is
situated higher in the control hierarchy).

Throughout this thesis we have shown, by means of simulations, that the profile
steering approach is capable of steering the combined energy profile of different
neighbourhoods to better fit a desired profile of the central controller. One of the
strengths of the approach is that it is not limited to a single goal or signal. Rather, a
different aspect of the obtained energy profile can be emphasized and considered by
the approach by using different steering signals. Note, that the results in this thesis
hold for any convex separable objective functions used as steering signals. These
functions cover a broad range of desired objectives in EM, e.g., cost minimization,
peak shaving, and local self consumption.
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What are the local decision problems in future EM approaches and how can we solve
them on the local level?

In profile steering, the devices make their own local decisions on when and how
to use flexibility. As scalability is an important requirement for any future EM
approach, we believe it is likely that any future EM approach requires some level of
decision making on the local level. As mentioned, the studied objective functions
cover a broad range of goals in EM and should therefore be applicable in many
situations.

We mentioned in Chapter 2 that DERs fall into four different classes, of which we
considered two. The first class we considered, the time-shiftables, can generally be
solved by an exhaustive search through the state space of potential solutions. This
means that it is possible to consider all different ways of scheduling the flexibility
use of the device and to determine the best possible schedule through comparison.
This is no longer true when considering the second class of DERs we studied; the
buffers. Assuming that the steering signals results in convex and separable objec-
tive functions, the resulting optimization problems fall into the class of resource
allocation problems. Several problems in the class of resource allocation have been
well studied in literature.

For the buffer class ofDERs we considered three types of problemswhichwe believe
cover many different (future) devices in this class. In particular we considered a
model of the charging of an EV. We extended this model to include discharging,
such that it covers vehicle-to-grid capabilities and stand-alone batteries. We further
expanded upon the extension by including SoC dependent losses. These losses play
an important role in many heating and cooling systems.

For the model and each of its extensions we considered a continuous case where
the amount of energy consumption in a time interval is limited by a lower and
an upper bound. Also, for each case we considered a discrete variant, where the
feasible amounts of energy consumption/production for a time interval are given
by a finite set. Determining if a feasible solution for the discrete variant of the EV
model exists is alreadyNP-hard and, hence, this is also the case for the considered
extensions. To circumvent this problem we instead consider a relaxation where we
allow convex combinations of energy values given in the discrete set.

For the resulting optimization problems on the device level we formulated efficient
solution approaches, whereby the efficiency of our solution approaches is two fold.
First, we show that we can solve these problems with approaches that have a low
asymptotic complexity (see Table 8.1), particularly in the case that the steering sig-
nals results in quadratic local objectives. This implies that the solution approaches
discussed in this thesis are scalable to large input sizes if needed. Furthermore, for
the studied problems we obtained solution approaches that have both a low asymp-
totic complexity and allow an efficient implementation in practice. Therefore, we
believe we showed that the developed solution approaches can be implemented
on local and low-cost controllers, ensuring that indeed the local problems can be
solved locally. Furthermore, while not detailed in this thesis, initial experiments
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showed that our solution methods for the local problems require much less time
and resources than an implementations of the same problems in (commercial)
solvers available for these problems does. This indicates that our solution methods
are indeed suitable for implementation on the (very) low cost controllers expected
to be used in devices/on the household level in the future smart grid.

Can an EM approach assist in realizing goals of different stakeholders in the (future)
smart grid?

The examples throughout this thesis show that it is indeed possible for an EM ap-
proach to realize multiple goals simultaneously. In particular, in the simulation
study performed in Chapter 5, both the total amount of energy that the group of
houses imports/exports as well as the transportation peaks are minimized. This is
mainly caused by the fact that both objectives are captured in the used objective
function (the squared Euclidean norm), combined with the assumption that stor-
age does not incur losses. Another example of such a result is given in Chapter 7.
The obtained results indicate that steering towards a flat profile assists with min-
imizing asset ageing in the local grid. Furthermore, ensuring the energy profile
of a neighbourhood is flat or follows a predetermined desired profile, as is also
possible in the profile steering approach, is beneficial for energy suppliers, as they
can generally supply such an energy profile with less costs than an arbitrary profile
(with peaks).

The profile steering approach with our developed local algorithms can also be used
to combine different objectives under the following condition. It is required that
the different objectives can be captured together into a single objective function.
This can be achieved, for example, through weighting the different objectives. Fur-
thermore, the resulting objective needs to separable and convex in order for our
solution approaches to the local problems to still be applicable.

All in all we believe that profile steering, combined with the device level solution
methods developed in this thesis, is capable of efficiently and effectively managing
flexibility provided in the future grid. Thus, the approach is capable of assisting in
facilitating the changes caused by the energy transition. Below we quickly recap on
the individual requirements that entail this efficient and effective management, as
we listed above (for an overview see also Table 8.2 on page 180).

» By design the profile steering approach is based around scheduling the use of
flexibility. In other words, the approach inherently looks ahead to determine
when it is best to use the available flexibility. This results in an approach that
is more robust than approaches that do not look ahead.

» The proposed approach is scalable, because we distribute most of the com-
putation to the device level. Furthermore, we showed that the device level
problems allow efficient solution methods, demonstrating that such solu-
tion methods can run on local, low-cost hardware. This in turn implies that
the approach is capable of exploiting parallelism in the computation of local
schedules by distributing the computation to the device level.
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» In this thesis we discussed four different classes of DERs and gave solution
approaches for devices in both the time-shiftable and buffering class. Be-
cause these device classes were designed to include devices with similar
characteristics, we believe the obtained results cover a large share of the
(future) devices in these classes. Furthermore, because of the decentralized
nature, the approach is agnostic to the specific device details; it only requires
a scheduled energy profile from the device. Thus, devices for which the so-
lution methods we presented do not apply can be incorporated as long as
they are capable of making local decisions. This implies the profile steering
approach can be applied to a large set of heterogeneous DERs.

» The feasibility of our approach is guaranteed on both the device and the grid
level. First, the devices make their own decisions. We believe it is safe to
assume that the constraints on the operation of a device are known locally,
hence the decentralized approach ensures locally feasible schedules. Second,
the control hierarchy used in the approach closely resembles the structure of
most residential grids. This allowed us to incorporate constraints on the use
of grid assets (i.e., minimum andmaximum power flows) into the approach.

» The privacy issue is partially solved through the decentralized approachwith
the proposed control hierarchy. By design, the privacy sensitive information
required to make (locally) feasible schedules is only required on the local
level. While some information can still be deduced from the resulting en-
ergy profiles, we believe the information can be sufficiently hidden through
the aggregation process used in the various levels of the control hierarchy.
Furthermore, we note that less privacy sensitive information is available to
the central controller than in many other approaches found in the literature.

8.3 Recommendations

In this final section of my thesis (disregarding the Appendix), I spend some words
on my recommendations for future work (some of which I’ll hopefully work on
myself). Looking back I think I have a great dealmore questions than at the time I
started over four years ago, but I was told this is usual for PhD students. I believe
that the work I did made a contribution to the advancement of (decentralized)
energy management, and that part of it uncovered where more work is required.
Thus, below, a non-exhaustive list of my recommendations in no particular order
is given.

The control hierarchy for the profile steering approach as proposed in Chapter 3
closely resembles the physical grid. Experiments have shown that the number of
levels in the tree used for the control structure can influence the efficiency of the
implementation. In particular, it can be beneficial to terminate the iterative phase
of profile steering aggressively by, e.g., limiting the total amount of allowed itera-
tions. Furthermore, additional benefits can potentially be obtained by searching
for more efficient implementations of the iterative phase of the profile steering ap-
proach. For example, it could be beneficial to allow multiple devices to update



186

C
hapter

8
–
Sum

m
ary

and
C
onclusion

their current schedule to their proposed schedule in the iterative phase of profile
steering, potentially resulting in faster convergence. For a further discussion on
this and some results see [126].

The aforementioned relation between the control hierarchy and the physical grid
leads to an approach that is capable of incorporating grid (capacity) constraints
directly into the distributed approach. Next to these capacity constraints, also con-
straints on the delivered power quality are of importance (e.g., the voltage level
[99]). A further integration of such constraints into decentralized energy manage-
ment (DEM) approaches is the topic of on-going work of a second PhD student in
our group working on the same project, parts of which he published in, e.g., [66].

The device level problems studied in Chapter 4 to 6 model the behaviour and avail-
able flexibility of devices in the buffer class of DERs. While the models presented
in this thesis should sufficiently represent several devices in this class, for some
devices the models potentially do not capture all important aspects. As an example,
heating devices often take some time to ramp up to their desired output and need
a period of time to achieve their maximum efficiency. Also, some devices might
be limited in how often their operational level can be switched, to prevent wearing
of these devices. How to incorporate such characteristics into the presented mod-
els and how this affects the solution approaches is an important topic for future
research to bring EM approaches closer to reality.

The device level problems studied in this thesis fall into the class of resource al-
location problems. The solution methods in this thesis use results from previous
work in this area. As resource allocation is applicable in many fields (see Subsec-
tion 4.3.1), the presented solution methods are potentially also of interest in these
fields. Therefore, it should be interesting to study other potential applications of the
found solutionmethods, for example, in the field of green computing. Furthermore,
the solution approaches presented in this thesis have a asymptotic complexity at
or near the complexity of state-of-the-art approaches. However, as mentioned in
Section 4.4 for example, the practical running time of some of these approaches is
rather high for small to medium sized instances, specifically for approaches using a
linear time version of median find [18]. An interesting topic of research is a detailed
comparison between the various presented approaches herein, other state-of-the-
art techniques, and (commercial) solvers when solving practical instances of the
local problems encountered in the EM setting.

Chapter 7, and other examples throughout this thesis, touched upon the subject
of different goals for different stakeholders. An EM approach that is capable of
bringing together the goals of all the stakeholders in the future (smart) grid is of
higher value to these stakeholders and is therefore more likely to be adopted. For
this reason, it is of particular interest to study these different stakeholders and
their goals to see if they can be aligned in a single EM approach such as profile
steering. Note that the barrier for cooperation between stakeholders is not always
of a technical nature. For example, in many countries discharging a battery to the
grid is seen as the production of energy, which network operators are by law not
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allowed to do. This results in the prohibition of network operators from properly
using a battery to support the grid. This highlights that a study into cooperation
between stakeholders should not only be of a technical nature, but should also
include the legislative aspect.

8.3.1 Dealing with uncertainty

In Chapter 2, we mentioned that an EM approach based on scheduling naturally
requires a prediction and operational control phase too. The prediction phase
is required to be able to obtain good results in the scheduling phase. As some
parameters in the EM setting are hard to predict, e.g., human behaviour on a small
scale, development of good prediction techniques together with an investigation
of how prediction errors influence the results is an important future step. However,
it should be evident that no prediction is ever going to be perfect. Hence, it is
important to consider ways to mitigate the effects of uncertain predictions.

With efficient solution methods it is in theory possible to use rescheduling to deal
with prediction errors, e.g., in case a significant deviation between predictions and
realizations is observed. We note that we briefly touched on this in Chapter 6. This
reschedulingmeans that whenever a significant deviation between a realization and
a prediction is observed, the system reschedules the flexibility use to account for
this error. We believe two aspects of such a rescheduling approach are important
to consider.

First, it is important to determine when a deviation from a prediction is significant
enough that it needs to be accounted for. Small errors generally do not cause a
change in the system’s overall performance that outweighs the burden of reschedul-
ing the use of flexibility. Also, some errors potentially cancel out on higher levels
in the control hierarchy.

The second important aspect of rescheduling is that in order to deal with prediction
errors as they are detected, sufficient flexibility must be available to correct them by
rescheduling devices. A potential way to ensure enough flexibility is available is to
use past data to give an estimation (possibly pessimistic) of the required flexibility
to deal with prediction errors. Based on this, the total flexibility incorporated in the
initial scheduling procedure may be limited to ensure that still enough flexibility is
available to deal with prediction errors later on.

Next to rescheduling, uncertainty can be dealt with in other ways. One example
is to use an online approach that only requires input parameters that are easy to
predict (see, e.g., [57]). Another potential strategy is to incorporate techniques from
robust or stochastic optimization into the scheduling approach to incorporate the
uncertainty of parameters directly into the approach. Finally, on-going research in
our group is showing that an event-based approach (similar to that presented in
[36]) using the local device algorithms presented in this thesis has the potential to
deal with prediction errors without the need to reschedule the use of devices for
which this is not preferable.
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Mathematical Background

Abstract – In this appendix we briefly introduce some mathematical back-
ground to the problems studied in this thesis. Central to the studies in this
thesis is the field of convex optimization, as many problems we study are con-
vex optimization problems. We briefly introduce several properties of convex
functions and convex optimization problems that are used throughout proofs
in this thesis. Furthermore, we consider the complexity of algorithms. To do
so we very briefly introduce the notation and the concepts of polynomial time
complexity and the complexity classes P andNP .

The content of this appendix is deeply rooted in literature, therefore we omit most of the citations and
instead refer the interested reader to textbooks such as [114] for convex analysis and [8] for complexity
theory.
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(a) Convex set (b) Non-convex set

Figure A.1: Examples of a convex set and a non-convex set.

(a) Convex function (b) Non-convex function

Figure A.2: Examples of a convex function and a non-convex function.

Figure A.3: Example of a convex function of two variables.
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A.1 Convex Optimization

Below we give a short introduction to convex optimization. For more details we
refer the interested reader to one of the many textbooks in the field, e.g., [114].

A.1.1 Convex Sets

Convex sets form the basis of convex analysis. In Rn , the convex sets are the sets
for which convex combinations of points inside the set also lie in this set. More
formally:

Definition A.1. A set S ⊂ Rn is called convex if for every x , y ∈ S and every λ ∈ [0, 1]
the point z ∶= λx + (1 − λ)y ∈ S.

Examples of both a set that is convex and a set that is not convex are given in
Figure A.1.

A.1.2 Convex Functions

A function f ∶ D → R with D ⊆ Rn is called convex if the set of points on and
above the graph of f is a convex set. This is equivalent to requiring that the line
between any two points f (x) and f (y) on the graph lies above the graph. More
formally, this gives:

Definition A.2. A function f ∶ D → R with D ⊆ Rn is called convex if, for every
x , y ∈ D and every λ ∈ [0, 1], it holds that

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y). (A.1)

Examples of both a function that is convex and a function that is not convex, both
from R to R, are given in Figure A.2. An example of a convex function from R2 to
R is given in Figure A.3

Convexity of functions is preserved by several operations, of which we list several
used throughout this thesis below (without proofs)

» If f and g are convex with the same domain, then so is h(x) ∶= f (x)+ g(x).
» If f and g are convex and g is monotonically non-decreasing, then h(x) ∶=

g( f (x)) is convex.
» If f is convex with domain D ⊂ Rm and g ∶ Rn → Rm is an affine map given
by g(x) = Ax + b with A ∈ Rm×n , then h(x) ∶= f (g(x)) = f (Ax + b) is
convex.

If f is a function from R to R, we have the following. If f is differentiable then f is
convex if and only if its derivative f ′ is a monotonically non-decreasing function.
Furthermore, if f is convex and f ′ exists, f ′ is continuous. Finally, if f ′′ exists then
f is convex if and only if f ′′ is non-negative.
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Nextwe consider the case that f is convex but not necessarily differentiable. Further-
more, we assume that the domain of f is an interval [a, b] of R. For this function
f the left and right derivatives at the point x are defined as the limit of f (x + h)/h
as h respectively increases or decreases towards zero. Formally this gives:

Definition A.3. For a function f ∶ [a, b] → R, the left derivative f −(x) and the
right derivative f +(x) are given by

f −(x) = lim
h↑0

f (x + h)
h

, (A.2a)

f +(x) = lim
h↓0

f (x + h)
h

. (A.2b)

The derivative at x exists if and only if f −(x) and f +(x) exist and are equal. As
mentioned before, if the derivative of a convex function f exists, then it is con-
tinuous. This does not necessarily hold for the left and right derivatives, however,
they are what is called left-continuous and right-continuous respectively. Here a
function is left-continuous, respectively right-continuous, in x if the limit of the
function value increasing, respectively decreasing, towards x is the same as f (x).
More formally this gives:

Definition A.4. A function f ∶ [a, b] → R is called left-continuous if, for every
y ∈ (a, b], it holds that

lim
x↑y

f (y) = f (x). (A.3)

Furthermore, f is called right-continuous if, for every y ∈ [a, b), it holds that

lim
x↓y

f (y) = f (x). (A.4)

We note that a function f ∶ [a, b] → R is continuous in x ∈ (a, b) if and only if it
is both left-continuous and right-continuous in x.

For a convex function f ∶ [a, b] → R the following properties hold (stated without
proofs).

Lemma A.1. Let f ∶ [a, b] → R be a convex function. Then the following properties
hold:

» The left derivative f −(x) exists on the interval (a, b]. Furthermore, it is
monotonically non-decreasing and left-continuous on this interval and it is
finite on (a, b), though possibly∞ at b.

» The right derivative f +(x) exists on the interval [a, b). Furthermore, it is
monotonically non-decreasing and right-continuous on this interval and it is
finite on (a, b) though possibly −∞ on a.
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» For a ≤ x < y ≤ b we have that

f +(x) ≤
f (y) − f (x)

y − x
≤ f −(y). (A.5)

» For any x with a < x < b we have that

f −(x) ≤ f +(x). (A.6)

A.1.3 Convex Optimization

In the field of mathematical optimization, problems are often formulated as

Problem A.1 (Opt).

min
x

f (x),

s.t. x ∈ X .

In Problem Opt, f is called the objective function and X the feasible set. If f is a
convex function and X a convex set, then Problem Opt is called a convex problem.
In this thesis we often consider problems written as

Problem A.2 (CO).

min
x

f (x),

s.t. g i(x) ≤ 0 ∀i ,

where f and the g i ’s are convex. We note that such problems are indeed convex
problems, as the feasible set X, given by

X = {x ∣ g i(x) ≤ 0 ∀i}, (A.7)

is a convex set.

For a convex problem a local minimizer is also a global minimizer. More formally
this can be stated as (without proof).

Lemma A.2. Let f be a convex function with convex domain D and x0 ∈ D. Fur-
thermore, let x0 be a local minimizer of f , i.e., there is a δ > 0 such that for all x with
∣∣x0 − x∣∣2 ≤ δ it holds that f (x0) ≤ f (x). Then x0 is also a global minimizer, i.e., for
every x ∈ D it holds that f (x0) ≤ f (x).

The above lemma implies that to find a global optimum of a convex problem it
is sufficient to search for a local optimum. This often means that more efficient
solution approaches exist as local minima are generally easier to find. For example,
for a differentiable function the local minima can be found by checking the points
for which the derivative equals zero.
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A.2 Complexity

In mathematics and (theoretical) computer science, the complexity of algorithms
is often of importance. To study the complexity we are interested in the number
of elementary computational steps that the algorithm requires. This complexity is
generally defined as the worst case number of (elementary) computational steps
the algorithm requires as the size of the input asymptotically grows to infinity. The
reason that the asymptote is considered is because we are often interested if an
algorithm scales to large instances. For such large instances other effects, such as
overhead or initialization, have a negligible effect. We note that the introduction
given below is very brief and refer the interested reader to a textbook on the subject
(e.g., [8]) for more information.

A.2.1 Notation

In order to talk about the (time) complexity of an algorithm, the big-O notation is
often used. A function f is called big-O of g (denoted O(g)) if the growth of f is
asymptotically bounded by that of g. Formally this gives

Definition A.5. For two functions f , g ∶ R→ R one writes

f (n) = O(g(n)) (A.8)

if and only if there exist constants k and n0 such that

∣ f (n)∣ ≤ k∣g(n)∣ ∀n ≥ n0 . (A.9)

As an example the function 2n2 + 3n + 5 is O(n2) and also O(n3),O(n4), etc., but
not O(n). This allows us to formally define the complexity of an algorithm.

Definition A.6. Let F(n) define the worst case number of elementary computational
steps required by an algorithm for instances with input size n. In other words, F(n) is
an upper bound for the number of steps the algorithm requires for an instance of size
n. Then we say that the algorithm has a complexity of O(g(n)) if F(n) = O(g(n)).

For example, the complexity of binary searching in a sorted array of length n is
O(log n) and the complexity of finding the smallest element in an unsorted array
of length n is O(n).

Complementary to the big-O notation, the big-Omega notation is often also used.
This is formally defined as

Definition A.7. For two functions f , g ∶ R→ R one writes

f (n) = Ω(g(n)) (A.10)

if and only if there exist constants k and n0 such that

∣ f (n)∣ ≥ k∣g(n)∣ ∀n ≥ n0 . (A.11)
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In other words, f (n) = Ω(g(x)) implies that f grows asymptotically at least as fast
as g.

A.2.2 Polynomial Time Complexity

An algorithm is said to be of polynomial (time) complexity if its worst case required
number of (elementary) computational steps is bounded by some polynomial in
the input size. More formally this gives

Definition A.8. An algorithm with worst case required number of (elementary) com-
putational steps F(n), where n is the size of the input, is said to have polynomial time
complexity if F(n) = O( f (n)) for some fixed polynomial f (n).

Problems for which a solution can be found by an algorithm of polynomial time
complexity are often considered ‘nice’. This is because the time to find a solution is
assumed not to grow too ‘fast’ in the input size. Note however that an algorithm
with a complexity ofO(n100) probably still takes far too long to run for any practical
size of the input. The class of problems for which an algorithm of polynomial time
complexity exists is denoted by P . For instance, finding the smallest element of
unsorted array is a problem that is in P .

Another important class of problems is the setNP . This class contains all problems
for which it is easy to verify if a solution is valid. More formally, a problem belongs
toNP if there exists an algorithm of polynomial time complexity that can check
if a given solution is valid. We consider as an example the subset sum problem.

Definition A.9. The subset sum problem is the problem that asks, given a set of n
integers S = {s1 , s2 , . . . , sn} and a goal A, if there exists a subset S′ ⊂ S that sums to
A, i.e. ∑s i∈S′ s i = A.

The subset sum problem belongs to the class NP because it can be checked in a
linear number of steps if a given subset S′ ⊂ S sums to A.

We note that any problem that belongs toP also belongs toNP . A natural question
is to ask if the classes are in fact equal (i.e., if every problem in NP also belongs
to P). This is one of the fundamental problems in current day mathematics and
computer science that has puzzled many scientists for the past decades.

Many important and practically relevant problems inNP seem easy at first hand.
In fact, many people who first encounter the subset sum problem intuitively believe
an efficient solution approach must exist. Nonetheless, so far no polynomial time
algorithm has been found for subset sum, nor for many other seemingly easy prob-
lems in the classNP . In fact, in 1971 Cook proved that some problems in this class
are so fundamental that, if they are of polynomial complexity, then all problems
in NP are [34]. These problems are called NP-complete problems. The list of
theseNP-complete problems has since that time been extended by a lot of other
problems, including the subset sum problem.
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The general consensus is that some of the problems inNP are so difficult that they
cannot be of polynomial complexity, implying that any NP-complete problem
cannot be of polynomial complexity. Hence, if a problem is shown to be NP-
complete, researchers often stop searching for a solution approach with polynomial
complexity. Instead, they turn to other techniques to try and tackle the problem,
such as approximations, heuristics or relaxations of the problem.

As a final note, the classes P and NP and the notion of NP-completeness were
originally formulated for decision problems, which are problems formulated as a
yes/no question. These classes are less suitable when considering optimization prob-
lems. This is because, to determine if a given solution to an optimization problem is
optimal, it is often necessary to solve the considered optimization problem. For op-
timization problems the notion ofNP-hardness is often used. For this notion the
corresponding decision problem to an optimization problem is considered. Such
a corresponding decision problem does not ask for an optimal solution but rather
if a solution with an objective value of at most (or at least, in case of maximiza-
tion) a given value exists. The optimization problem is said to beNP-hard if the
corresponding decision problem isNP-complete. Note that, in case the range of
the objective value of the optimization problem is small enough, this optimization
problem can be solved by a bisection search on its range using its corresponding
NP-complete decision problem. This implies that finding an efficient solution ap-
proach formanyNP-hard optimization problems is the same as finding an efficient
solution approach for (any of) their corresponding decision problems.
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199Acronyms

C CC-CV constant-current constant-voltage
CHP combined heat and power

D DEM decentralized energy management
DER distributed energy resource
DSM demand side management
DSO distribution system operator
DVFS dynamic voltage and frequency scaling
DW dish washer

E EF-Pi Energy Flexibility Platform and interface
EM energy management
EV electric vehicle

H HEMS home energy management system
HP heat pump
HV high voltage
HVAC heating, ventilation, and air conditioning

I ICT information and communication technologies

K KKT Karush-Kuhn-Tucker

L LV low voltage

M MPC model predictive control
MV medium voltage

P PHEV plug-in hybrid electric vehicle
PV photovoltaic

S SoC state of charge

T TE transactive energy
ToU time-of-use
TSO transmission system operator

U UCP unit commitment problem

V V2G vehicle-to-grid

W WM washing machine
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201List of Symbols

βt Base load for time interval t

∆ΘH
t Temperature rise of hottest spot over oil

∆ΘH , ini
t Initial temperature rise of hottest spot

∆ΘH ,R
t Ultimate temperature rise of hottest spot at rated load

∆ΘH ,ul t
t Ultimate temperature rise of hottest spot

∆ΘTO , ini
t Initial temperature rise of oil

∆ΘTO ,R
t Ultimate temperature rise of oil at rated load

∆ΘTO ,ul t
t Ultimate temperature rise of oil

∆ΘTO
t Temperature rise of oil over ambient

δt Length of time interval t

ℓ Length of a program of a time-shiftable

x̂ Candidate Energy schedule

p Energy profile of a program of a time-shiftable

x Scheduled energy profile, potentially aggregated

xmax Upper bound on the scheduled energy use

xmin Lower bound on the scheduled energy usage

M Set of devices

R Rated load of transformer

T Set of time intervals

Tt Temperature set point for interval t

τw Time parameter for hottest spot temperature change

τTO ,R Value of τTO for rated load

τTO Time parameter for oil temperature change

ΘH
t Hottest spot temperature

Bt Lower cumulative bound (SoC bound)
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C Required charging of EV

Ct Upper cumulative bound (SoC bound)

Dt Allowed deviation from set point for interval t

f Objective function

FEQA Equivalent ageing factor for multiple time intervals

Ft Objective of Problem rdEVC

FAA
t Ageing factor for time interval t

Kt Ratio of load on transformer to rated load

m Device/index denoting the devices

mt Index of the last (largest) discrete feasible point for xt
n1 Exponent for oil temperature rise based on the type of cool-

ing used

n2 Exponent for hottest spot temperature rise based on type of
cooling used

Ot Outdoor temperature

s jt Slope of the piece between breakpoints z j−1t and z jt
t Time interval/index denoting the time interval

ta Arrival time interval of a time-shiftable

td Deadline for starting of a time-shiftable

ts Start time of the program of a time-shiftable

Tt Indoor temperature

Tt(xm) Indoor temperature for interval t

X Set of grid constraints

Xm Set of local (i.e., technical and user) constraints

y j
t Convex multiplier for interval t and point z jt

z jt Feasible discrete point for xt
Zt Set of the feasible points for xt
BC Battery charging problem (Problem 5.1

dBC Discrete battery charging

dEVC Discrete EV charging problem

EVC EV charging problem



203

LI
ST

O
F
SY

M
BO

LS

HVACS HVAC scheduling problem

rdEVC Relaxed discrete EV charging problem

rHVACS Problem HVACS with the cumulative bounds dropped ex-
cept for the last time interval
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