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Abstract

In this paper, we present an unsupervised learning framework for analyzing activities and interactions

in surveillance videos. In our framework, three levels of video events are connected by Hierarchical

Dirichlet Process (HDP) model: low-level visual features, simple atomic activities, and multi-agent

interactions. Atomic activities are represented as distribution of low-level features, while complicated

interactions are represented as distribution of atomic activities. This learning process is unsupervised.

Given a training video sequence, low-level visual features are extracted based on optic flow and then

clustered into different atomic activities and video clips are clustered into different interactions. The

HDP model automatically decide the number of clusters, i.e. the categories of atomic activities and

interactions. Based on the learned atomic activities and interactions, a training dataset is generated to

train the Gaussian Process (GP) classifier. Then the trained GP models work in newly captured video to

classify interactions and detect abnormal events in real time. Furthermore, the temporal dependencies

between video events learned by HDP-Hidden Markov Models (HMM) are effectively integrated into GP

classifier to enhance the accuracy of the classification in newly captured videos. Our framework couples

the benefits of the generative model (HDP) with the discriminant model (GP). We provide detailed

experiments showing that our framework enjoys favorable performance in video event classification in

real-time in a crowded traffic scene.

I. INTRODUCTION

High-level video event classification is an important issue in computer vision and have attracted

great attention in recent years [1] due to their significant practical values such as security
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monitoring, traffic controlling, etc. Most existing approaches focused on recognition of an

individual activity [2], or a collective activity [3] in clean backgrounds. This task remains

challenging in a crowded public scene due to a large number of agents with different activities

at the same time, and complicated interactions such as traffic flows at a busy junction. Moreover,

a surveillance video captured from a crowded scene normally is low-quality.

Discriminant models such as GP models and SVM are the most popular approaches to classify

video event [4], [5], [6], [7] because of their advantage in terms of classification accuracy.

However, they are supervised model and a training data set with manual label is necessary

in advance. Besides, they are feature-based approaches. They have high requirement in the

applicability and the preciseness of features to ensure their performance. The most widely used

features include HOG feature, flow-based features, etc.

Generative models especially the topic models such as LDA [8] and HDP [9], [10] have

achieved great progress in high-level video event recognition in the complex surveillance scenes.

They effectively learn activities and interactions from non-labeled video by analyzing semantic

relationships instead. However, they have serious limitations-consuming computation and work

in batch. Besides, most existing methods neglect the temporal dependencies between activities

and interactions [9].

Inspired by the power of generative and discriminative models, in this paper, we propose a

method to combine the HDP models and the GP models to realize unsupervised video behavior

classification in real-time in a complex and crowded traffic scene. The first step is unsupervised

learning the activities using HDP models and traffic states using HDP-HMM, respectively. Based

on their learning results, we construct feature vectors to represent activities and traffic states in

a new way. A training set is then generated with these feature vectors to feed the GP models.

In addition, the temporal dependencies between two states are integrated into our GP models to

enhance classification accuracy.

The major contributions of this paper are following. First, we effectively combine unsupervised

generative model HDP with supervised discriminant model GP, to realize unsupervised classifi-

cation of video event. Second, we integrate transition information between two states with GP

models to enhance the accuracy of classification. Third, we provide detailed experiments showing

that our framework enjoys favorable performance in video event classification in real-time in a

crowded traffic scene.



II. RELATED WORK

Topic models have received increasing attention to analyze activity in surveillance video [8],

[11], [10], [12], [9], [7]. However, [12], [9] are offline and batch procedures and temporal depen-

dencies are neglected. [8], [11] used latent Dirichlet allocation (LDA) models to infer activities

in a video, which requires predefined number of clusters. It is hard to give a proper number

of possible activities that may occur in a video from a crowded scene. Besides, their models

perform Gibbs sampling in each newly captured video clip to estimate the joint distribution. It

is time consuming and especially inefficient in an online model.

GP models have been applied for human motion analysis and activities recognition [4], [13]

because of its robustness and high accuracy in classification. However, GP models are supervised.

They must be fed with manually labeled data set. On the other hand, GP models require proper

features to model events such as the most widely used trajectories [14], [15]. However, tracking-

based methods depend crucially on the performance of detection and tracking which is costly or

even impossible in our complex and crowded scene. Li et al. [6] proposed to detect anomalies

in crowds utilizing Gaussian process regression models, which adopts HOF features to describe

motion patterns. But their work is unable to analyze individual activity and interaction occurring

in the surveillance scene. Hu et al. [16] combined the HDP model with One-Class SVM by

using Fisher kernel. Tang et al. [17] proposed an alternative method to combine features for

complex event recognition. However, this method is unfeasible in a surveillance video because

of the low-quality video and too many objects. The low-level visual features are much more

applicable in this scene.

III. VISUAL FEATURES REPRESENTATION

Our datasets are surveillance videos from complex and crowded traffic scenes and captured by

a fixed camera. They contain a large quantity of activities and interactions. Many unavoidable

problems such as occlusions, a variety object types, small size of objects challenge detection and

tracking based methods. In such case, using the local motions as low-level features is a reliable

way. Firstly, the optical flow vector for each pixel between each pair of successive frames is

computed using [18]. A proper threshold is necessary to reduce noise: the intensity of a flow

is greater than the threshold is deemed as reliable. Similar to [9], [10], [19] we spatially divide

the camera scene into non-overlapping square cells of size 8 × 8 pixels to get rough position

features. We average all the optical flow vectors in the cell and quantize it into one of the 8
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Fig. 1: An overview of our proposed framework. It’s roughly divided into 3 parts. In the first

part (in the green block), visual words are generated based on location in the image plane and

direction to represent quantized motion information. Then, the HDP models learn the activity

patterns in an unsupervised way (in the blue block). Finally, the learned patterns are used to

train the GP models (in the red block) for our final goal of this work: activity recognition and

anomaly detection.

directions (Fig. 4(c)) as a local motion feature. A low-level feature is defined as the position

of the cell (x, y) and its motion direction. The image size of the two QMUL datasets [8] is

360 ∗ 288, thus they have 12960 words, while the MIT dataset [9] (480 ∗ 720) has 43200 words.

Each word is represented by an unique integer index. The input videos are uniformly segmented

into non-overlapping clips for 75 frames each (3 seconds) and each video clip is viewed as a

document which is a bag of all visual words wt occurring in the tth clip. The whole input video

is a corpus.

IV. MODEL

Our first task is to infer the typical activities and traffic states from given video. The low-level

features are the exclusive motion information that can be directly observed from the input video.

An activity is a mixture of local motions that frequently co-exist in the same clips (or documents).
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Fig. 2: A graphical representation of HDP model. It consists of two Dirichlet Processes. The

first one is used to generate a global set of activities and the second one is used to sample a

subset of activities from the global set for a clip. Finally, visual words are drawn from

activities.

Thus, it is equivalent to infer topics in word-document analysis. Moreover, a traffic state is a

combination of frequently co-occurring activities (i.e. interactions). This makes it possible to

infer traffic states using topic model, too.

The HDP [20] is an unsupervised non-parametric hierarchical Bayesian topic model and was

originally proposed for word-document analysis. It clusters the frequently co-occurring words

within the same documents into the same topics. Furthermore, different from the other clustering

topic models, such as LDA [21], HDP is able to automatically determine the number of clusters.

The rest of this section will show how to use HDP model to infer typical activities and traffic

states from the input video. Based on the output of HDP models, we propose a method to

construct feature vectors to represent activities with visual words and traffic states with typical

activities. Afterward these will be used to train classifier to recognize complicated traffic activities

in surveillance video.

A. Learning activities using HDP

The possible activities are inferred by HDP whose standard graphical representation is shown

in Fig. 2 [20]. The global random measure G0 = {θ1...θ∞} is a global list of activities that is

shared by all clips. Its distribution is a Dirichlet Process (DP) with concentration parameter λ

and Dirichlet prior H:

G0|γ,H ∼ DP (γ,H) (1)



G0 can be expressed using the stick-breaking formulation [20]:

G0 =
∞∑

k=1

π0kδφk , (2)

φk|γ ∼ H, (3)

πk = π′k

k−1∏

l=1

(1− π′l), (4)

π′k ∼ Beta(1, λ), (5)

where {φk}∞k = 1 are parameters of multinomial distributions over words in the codebook

corresponding to activity θk, i.e. the word probability vector and the sum of its entries equals

1. δφk is the Delta function at point φk. {πk} are random probability measures (mixtures over

topics) and Σ∞k=1πk = 1. For convenience, the random probability measure of π defined from (2)

to (5) is abbreviated with πk ∼ GEM(γ), where GEM stands for Griffiths-Engen-McCloskey

distribution [22]. The multinomial distribution φk over words in the codebook is generated from

H . Therefore, H is interpreted as a distribution over multinomial distributions and thus can be

defined as a Dirichlet distribution:

H = Dir(D0), (6)

φk|γ ∼ Dir(D0). (7)

G0 is the prior distribution for the second DP. For each clip t, Gt is a random measure which

is drawn from the second DP with concentration parameter α and Dirichlet prior G0 :

Gt|α,G0 ∼ DP (α,G0). (8)

In our case Gt describes the multinomial distribution of active topics in clip t, i.e. it is a subset

of the global activities G0. We express it using the stick-breaking representation again:

Gt =
∞∑

k=1

πtkδφk , (9)

φk|α,G0 ∼ G0, (10)

πtk = π′tk

k−1∏

l=1

(1− π′tl), (11)

π′tk ∼ Beta(1, α). (12)



For the ith word in document t, a topic θti is first drawn from Gt and then the word xti is

drawn from multinominal distribution Multi(xti;φθti) (i.e. the multinominal distribution over

words in codebook corresponding to topic θti ). We notice that, different Gt has the same φk

as G0, i.e. different clips share the same set of topics and statistical strength. We apply Gibbs

sampling schemes to do inference under an HDP model, which is a generally applied method

in topic model. Fig. 6 shows the learned typical activities by HDP models for QMUL Junction

Dataset [8].

The hyper-parameters γ and α are empirically predefined. They are priors on the concentration

of the word distribution within topics. They influence the the number of activities in G0 and Gt.

The parameter D0 for the Dirichlet distribution is also set empirically.

Although HDP models decide the number of topics automatically, some of the explored

activities are unrepresentative. Because some very rare motion need to be explained by an

individual activity. They could be noise or rare events. Such learned activities could lead to

ambiguous or even misleading analysis of interactions. Therefore, the unrepresentative activities

need to be removed. The total number of words that are assigned to activity k is noticed as nk

throughout the training video. The occurrence ratio of activity k is computed as

rk =
nk

n1 + · · ·+ nK
. (13)

We rank {r1, · · · , rK} in decreasing order as {r′1 ≥ · · · ≥ r′K} and calculate the accumulated

sum as

R′j =

j∑

i=1

r′i (14)

The representative activity (topic) set is selected as

θtypical , {θj|R′j ≤ 0.99}, 1 ≤ j ≤ K, (15)

B. Learning states using HDP-HMM

A busy traffic junction is normally regulated by traffic lights: different traffic states occur

sequentially and circulatory in a certain order. Hidden Markov model (HMM) [23] is an efficient

method to explore the latent states and their transition information. HMM can be explained as a

doubly stochastic Markov chain and is essentially a dynamic variant of a finite mixture model.
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Fig. 3: A graphical representation of the HDP-HMM model.

[20] replaced the finite mixture with a Dirichlet process and proposed the HDP-HMM model

which is illustrated in Fig. 3. Its stick-breaking formalism is:

β ∼ GEM(γ), (16)

τk ∼ DP (α, β), (17)

φk ∼ H (18)

yt|yt−1 ∼Multi(τyt−1), (19)

xt|yt = si ∼Multi(φsi). (20)

where yt ∈ S = {s1, · · · , sNs} is the state of the tth clip and S is the set of possible states

and Ns is the total number. xt is the observation set (visual words). In this case, each vector

τk = {τkl}l=1···L is one row of the Markov chain’s transition matrix from state k to the other

states and L is the number of states. For a better illustration, we denote these transition matrix as

M = {mi,j}i,j=1···L throughout this paper. Given the state yt, the observation xt is drawn from

the mixture component φsi indexed by yt. Gibbs sampling schemes are applied to do inference

under this HDP-HMM. Fig. 7 shows the typical traffic states learned by HDP-HMM for QMUL

Junction Dataset [8].

The same as the activity learning using HDP model, the traffic states learned by HDP-HMM

also involve some unexpected results. The typical traffic states are selected in the similar way

as described in Sec. IV-A.

C. Representation of Activities and Video Clips

Activity Representation: Each activity θk is characterized by a multinominal distribution

{φk} over the words in codebook. The probability of ith word in activity θk is denoted as pkxi



and pkx = {pkxi}Nx
i=1, ΣNx

i=1pkxi = 1 and Nx is the size of codebook. Similar to the operation in

Sec.IV-A which selects the representative activity, we also select the representative visual words

to represent each activity in the same way: pkx is sorted in descending order p′kx = {p′kx1 ≥
· · · ≥ p′kxNx

} and then the accumulated sum of probability is calculated as:

P ′kj =

j∑

i=1

p′kxi (21)

those visual words which satisfy :

wθk = {xj|P ′kj ≤ 0.9} (22)

are chosen to represent activity θk. It is the set of the most frequently co-occurring words in

the same activity. The words falling into the rest 10% are viewed as noise or rare motion.

Fig. 4 shows an comparison between all possible co-occurring visual words and the selected

representative words in the activity of vehicles driving downward.

Video Clip Representation: Feature vectors of activities from last step are variant in length

because the number of representative words of different activities is unexpected. They are not

suitable to be used to describe a video clip directly. We construct a feature vector to explain a

clip using learned activities in a new way as follows.

xt = {xti}Nt
i=1 denotes that there are Nt the words present in clip t totally. xt is compared

with each activity word set wθk and the percentage of intersection is calculated as:

ptk =
xt ∩wa

k

Nt

(23)

It explains the proportion of activity θk in this clip. The feature vector which explains what

happens in this clip is represented as ct = {pt1, · · · , ptK}, as shown in Fig. 7(e)-(h).

V. TRAFFIC STATES CLASSIFICATION

In this section, we first discuss how to use GP models to classify traffic states in a newly

screened video. Then we integrate the transition information learned by HDP-HMM with GP

model to enhance the classification accuracy.

A. Gaussian Process for Classification

The HDP-HMM has mined the main traffic states S from training video sequence and each

training video clip is labeled with a state label yt ∈ S, where the subscript t is the clip index. ct}



(a) All possible words (b) Dominant words (c) Colors for directions

Fig. 4: A comparison between the activity pattern before and after filtering the unnecessary

words. The visual words in the left part of image (a) seem chaotic and are filtered out. In (b),

the activity is represented better by the selected visual words. The color of the arrow denotes

the quantified motion direction, as illustrated in (c).

is the feature vector of clip t given by Eq. (23). Now the training data set (C,y) is constructed

to train the discriminative model- GP. Our task is labeling a new coming video clip c∗ to a traffic

state with the highest probability P (y∗|C,y, c∗). For simple illustration the binary classification

with two traffic states yt ∈ {−1,+1} is considered here. The binary classification is easily

extended to multiple classification by using the one-against-all or one-against-one strategy.

The general formulation of probability prediction for a new test sample given the training data

(C,y) under a GP model is:

p(y∗ = +1|C,y, c∗) =

∫
p(y∗|f ∗)p(f ∗|C,y, c∗)df ∗, (24)

where p(f ∗|C,y, c∗) is the distribution of latent variable ft corresponding to sample c∗. It is

obtained by integrating over he latent variable f = (f1, . . . , fT ):

p(f ∗|C,y, c∗) =

∫
p(f ∗|C,y, c∗, f)p(f |C,y)df (25)

where p(f |C,y) = p(f |y)p(f |C) / p(y|C) is the posterior over the latent variables. p(y|C) is

the marginal likelihood (evidence), p(f |C) is the GP prior over the latent function, which in GP

model is a jointly zero mean Gaussian distribution and with the covariance given by the kernel

K.

The non-Gaussian likelihood in Eq. (25) makes the integral analytically intractable. We have to

resort to either analytical approximation of integrals or Monte Carlo methods. Two well known



analytical approximation methods are very suitable for this task, namely the Laplace [24] and

the Expectation Propagation (EP) [25]. They both approximate the non-Gaussian joint posterior

as a Gaussian one. In this paper we adopt the Laplace method since its computation cost relative

lower than EP with comparable accuracy. As introduced in [26] the mean and variance of f ∗

are obtained as follows:

p(f ∗|C,y, c∗) = N (µ∗, σ∗), (26)

with µ∗ = k(C, c∗)TK−f̃ , (27)

σ∗2 = k(c∗, c∗)− k(C, c∗)T (K + W−)k(C, c∗), (28)

where W
4
= −∇∇ log p(y|̃f) is diagonal. K denotes a T × T covariance matrix between T

training points. k(C, c∗) is a covariance vector between T training video clips C and test clip

c∗, while k(c∗, c∗) is covariance for test clip c∗, and f̃ = arg maxf p(f |C,y). Given the mean

and variance of latent variable f ∗ for test clip c∗, we compute the prediction probability using

Eq. (24).

The covariance function and its hyper-parameters Θ crucially affect GP models performance.

The Gaussian radial basis function (RBF) is one of the most widely used kernels due to its

robustness for different types of data and is given as below:

KRBF (ci, cj) = σ2exp(− ‖ci − cj ‖2
2l2

). (29)

Θ = [σ, l] is the hyper-parameter set for RBF. We optimize the hyper-parameters using Conjugate

Gradient method [27].

B. Integration of Transition Information into GP Classifier

The input video is segmented into clips along time. It can not be ensured that each clip is

precise in a traffic state interval. In practice, sometimes the transition of two states occur in a

clip, as shown Fig. 5(a). In the other cases, the scene is silent in some clips: there are very few

motions, as shown Fig. 5(a). In these two cases, the GP classifier is hard to exactly classify the

states. Fortunately, a crowded traffic scene is normally regulated by traffic lights. The transition

between two traffic states is rule-based, e.g., the transition from state Fig. 7(a) to state Fig. 7(c)

is impossible. The transition information from Sec. IV-B makes significant sense here.



(a) imperfect clip segmentation (b) too few motions

Fig. 5: Examples of confused traffic states. (a) Imperfect segmented clip may contain motion

information belonging to different states. (b) A silent clip contains too few useful motion

information. Both of these two cases make the system hard to determine the right state.

We define a state energy for clip t as follows:

E(yt = si|yt−1 = sj) = − log{p(yt|ct)} (30)

+β log{msi,sj}(1− δ(yt, yt−1))

yt = arg min
yt=si

E(yt|yt−1) (31)

where p(yt|ct) is the likelihood of the tth clip labeled as state si given by Eq. (24). msi,sj is

the transition probability from state sj (state of last clip) to si, and δ(yt, yt−1) = 1, if yt =

yt−1, else 0. β is the weight of transition energy and is set experimentally as 0.1. It means

that, if the state does not change, we do not need to care about the transition problem. If the

transition of the states happens, we will take the transition information into account and choose

the state which has minimal state energy.

VI. ABNORMAL EVENTS DETECTION

Abnormal events identification is always one of the most interesting and desired capabilities

for automated video behavior analysis. However, dangerous or illegal activities often have few

examples to learn from and are often subtle. In other words, it is a challenging problem for

identifying abnormal events according to their motion patterns for supervised classifier. To tackle

this problem, the abnormal events should be defined at first. They are roughly categorized into

three groups.



Rare motions: The first case is the occurrence of unexpected motions. Such motions do

not belong to any typical activities. To detect such abnormal events, in clip t a word set x′t in

size N ′t is defined as the gathering of motions which are not labeled to any learned activity. If

N ′t > thword, it is confident that some abnormal motions exist during this clip.

Conflicting Activities: Second, some activities rarely co-occurred during a clip, i.e. in a

specific traffic state, some specific activities rarely occurred. For example, in the state of rightward

flow, there should not be any vehicle driving leftward. To detect such abnormal events, we use

GP regression to model the temporal relationship among different typical activities during a clip.

As we have discussed in Sec. IV-C, the feature vector of clip t is denoted as ct = {pt1, · · · , ptK}.
The value of pti has underlying relationship with the others. In other words, each value of ct

can be estimated according to the others in the same clip. Therefore, for each element pti a GP

regression model is constructed. We denote c−ptit = {pt1, · · · , ptK} as the input feature vector

of (K − 1) dimensions and pti is the corresponding output value, where c−ptit means that pti is

excluded. A probabilistic prediction about the output value pti is given by trained GP regression

model as:

f∗|C−pi ,pi, c
−pti
t ∼ N (µ, σ), (32)

µ = kT∗ (K − σ2
nI)
−1pi, (33)

σ2 = k(x∗,x∗)− kT∗ (K + σ2
nI)
−1k∗, (34)

where k∗ = k(C−pi , c−ptit ) and K = K(C−pi ,C−pi). f∗ is the predicted pti based on the other

observed activities. If the observed value pti is larger than µ+ 1.96σ, this activity will be vied

as conflicting with the others in this clip. µ is the predicted mean value, σ2 is its variance

and (−∞, µ + 1.96σ) is the 97.5% confidence interval. Notice that pti less than µ − 1.96σ

is not viewed as conflict, because in practice an activity causes conflict when its intensity is

strong enough. Each activity is modeled by one GP regression model. Therefore, totally K GP

regression models are necessary.

Illegal State Transition: Finally, a state is followed by another which is forbidden according

to the specific traffic rule. Fig. 11 shows an example of an illegal state transition caused by

an abnormal event of a fire engine interrupting the current vertical traffic flow and driving

rightward. The scene is in vertical flow in t − 1 clip and interrupted by fire engine in t clip.

During t + 1 clip the fire engine is driving cross the scene. Therefore, the t + 1 clip would

be naturally classified as rightward flow with high probability by GP classifier and the result



can be modified by Eq. (31). However, no matter based on our human understanding or the

clip’s features, this recognition is correct. According to the learned state transition rule as shown

in Fig. 7, a rightward flow only follows after the leftward flow. Hence, such case should be

determined as an abnormal event. We define a logical judgment to identify such abnormal events.

If p(yt = si|yt−1 = sj) = m(si, sj) < thword, it will be identified as an illegal state transition,

i.e. some abnormal events occur.

Abnormal Events Localization: Users are always interesting in the location of of ongoing

abnormal events. As discussed in Sec. III, each of visual words contains the position information

of its cell in the camera scene. Therefore, all visual words belonging to detected abnormal events

can be localized.

We have discussed three kinds of abnormal events and the methods to detect them, respectively.

Identifying the abnormal events caused by rare motions and illegal state transition is logic based,

which is easy to realize and convenient to apply. [11], [8] use LDA model to estimate the

likelihood by iterative sweeps of the Gibbs sampler and detect abnormal events which has low

posterior. Different from the methods in [11], [8], for the abnormal events caused by conflicting

activities, we use GP regression to model the temporal relationship among activities during a

clip. It provides a probabilistic analysis of each activity without complex computation.

VII. EXPERIMENTS

A. Dataset

Experiments were carried out in video data from three complex and crowded traffic scenes

regulated by the traffic lights. QMUL Junction Dataset: This contains 1 hour of 25 fps video

(90000 frames) with frame size 360× 288. The video covers a busy traffic junction containing

three major flows in different directions. QMUL Junction Dataset 2: This video length is 52

minutes with 25 fps (78000 frames). The frame size is 360 × 288. This video is captured in a

busy street with particularly busy pedestrian activity. MIT Dataset [9]: It consists of 1.5 hour

of 30fps (162000 frames) with frame size 720× 480, and captures a far-field traffic scene.

For each dataset, the first 500 video clips (about 25 minute’s length) were employed to learn

the typical activities and traffic states. The rest of the video sequences were employed to simulate

online screened video to test online performance, i.e. 699 clips of QMUL Junction Dataset, 539

clips of QMUL Junction Dataset 2 and 1711 clips of MIT Dataset were used for test.



The ARD kernel was adopted in GP models and the hyper-parameters were optimized by Con-

jugate Gradient [27]. The Laplace’s approximation method [24] was applied in GP classification

models.

To infer the latent variables under the HDP and HDP-HMM, 1000 sweeps of the Gibbs sampler

were executed and the first 500 were used as burn-in. To find the best hyper-parameters (β, α)

for our task, a grid search has been performed on β, α ∈ {0.1, 0.5, 1.0, 1.52.0}. We analyzed

the results with different We got a interesting and useful outcomes: even though the number

of clusters increased with larger β and α, the numbers of typical activities and states always

converged when about least 90% of the total motions were explained. These numbers kept

consistent when β and α were both larger than 0.5. The selected typical activities and states

look similar. The additional activities and were generated to explain very rare motions. In this

thesis, we are only interested in typical activities and states and we did not use topic models

to estimate likelihood or posterior. Therefore, we did not need precise hyper-parameters for the

generative models. The hyper-parameters were fixed at β = 2, α = 0.5 for all experiments.

In actual implementation of HDP and HDP-HMM, the hyper-parameters can be optimized by

giving a vague gamma prior and sampling them using the scheme proposed in [20].

B. Learning Typical Activities and States

In QMUL Junction Dataset, the HDP models automatically learned 32 activities in this traffic

scene, among which 22 were selected as typical activities (some of them are shown in Fig. 6).

Their corresponding percentage computed by Eq. 13 are noted beneath. For a better illustration,

all possible motion flows for vehicles and pedestrians are manually painted and marked with

alphabetic letters in Fig. 6(q). They are explained as follows:

• Flow a and b: vehicles driving in vertical directions, consists of activities 1, 2, 13, etc.

• Flow c and e: vehicles making a left turn and driving out of the scene. It can be explained

by activities 6, 20, and 16 respectively.

• Flow d: vehicles turning left from the left entrance. It is explained by the upper part of

activity 4.

• Flow f and g: vehicles making a right turn in the middle of the junction during the vertical

flow, shown as activities 9 and 12.

• Flow h (leftward) and i: vehicles driving leftward and part of them making a right turn. It

is dominated by activities 3, 17 and 19.
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Fig. 6: (a)-(p) Some dominant activities and their percentages discovered by HDP models. (q)

Manually labeled legal vehicles driving lanes (red lines) and pedestrians walking lanes (yellow

dash lines).

• Flow h (rightward) and j: vehicles driving rightward and part of them making a right turn.

It mainly consists of activities 4, 6, 10, 15 and 18.

• Flow k, l and m: pedestrian crossing the road. Activities 15, 17, 18 and 22 show these

behaviors.

For QMUL Junction Dataset 2 and MIT Dataset, 21 and 24 typical activities are learned

respectively. Due to space constraint, they are not shown and discussed here.

The HDP-HMM automatically learned 9 traffic states. 4 of them are selected as typical states

which have the highest percentage among all training clips, as illustrated in Fig. 7(a)-7(d) and

their corresponding average feature vectors in the training video shown in Fig. 7(e)-7(h). Fig. 7(i)

is the state transition graph with transition probabilities and directions. The are explained as

follows

• Vertical flow: Activities 1 and 2 dominate in this interaction. The activities topics such as 5,

8 and 10 related to vertical traffic activities have also relative high values in the histogram.
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Fig. 7: (a)-(d) are typical traffic states learned by HDP-HMM model and (e)-(h) are their

corresponding average components of typical activities. (i) is the state transition graph noted

with transition probabilities and directions.

• Leftward flow: It is absolutely dominated by topic 3. Activities 7, 12, 17 and 19 are also

important components. The feature values of activities 11, 17 and 22 are relative high

because of pedestrians.

• Rightward flow: It mainly consists by activities 4, 6 and 10. Activities 1, 8 and 9 overlap

this flow. The feature values of activities 15 and 18 are relative high because of pedestrians.

• Left and right turn: This state happens during the state of vertical flow, when the vertical

flow temporally terminates. It is a complicated interaction among a couple of topics, such

as activities 1, 3, 6, 7, 8 and 12.

The learned typical traffic states in QMUL Junction Dataset 2 are shown in Fig. 8(a)-8(d)

and the states of MIT Dataset are shown in Fig. 8(e)-8(i). QMUL Junction Dataset 2 has two

main flows and 4 typical states: vehicles driving vertical without (Fig. 8(c)) or with (Fig. 8(d))

pedestrian; vehicles making a turn at the crossing without (Fig. 8(a)) or with (Fig. 8(b)).

The traffic scene in MIT Dataset is relative less busy and interactive than the first QMUL

scene: Fig. 8(e) explains a vertical flow. Vehicles from bottom may make a left turn; Fig. 8(e)

explains a rightward flow and vehicles making a left turn and driving upward; Fig. 8(g) explains
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Fig. 8: Typical traffic states learned by HDP-HMM model for QMUL Junction Dataset 2

(a)-(d) and MIT Dataset (e)-(i).

a horizontal flow in two directions. Vehicles may make a left turn in this state; Fig. 8(h) explains

vehicles driving downward from top and pedestrian crossing the road; Fig. 8(i) illustrates that,

vehicles stop behind the crosswalk and pedestrian cross the road.

C. Traffic States Recognition

The GP classifier was firstly trained with learned activities and states. The screened video

sequence was segmented into clips of 75 frames each.

Our experimental results are compared with the other popular methods: Dual-HDP model [9],

Markov Clustering Topic Models(MCTM) [8], LDA and HMM. They adopted diverse length

of video clip ranging from 1 second to 10 seconds. The experimental results are directly cited

from [19] (for QMUL Dataset) and [9](for MIT Dataset). From the comparison in Tab. I we

see that our model outperforms other three popular methods in terms of classification results

in the QMUL Dataset. In contrast to the Dual-HDP model in the MIT Dataset as listed in

Tab. II, our methods also achieved better classification results. Furthermore, Dual-HDP model



State
MCTM LDA HMM Ours

L R V VT L R V VT L R V VT L R V VT

Left .99 .00 .00 .01 .49 .44 .00 .06 .98 .00 .01 .01 1.0 .00 .00 .00

Right .00 .94 .01 .05 .00 1.0 .00 .00 .00 .92 .08 .00 .00 .99 .00 .01

Vertical .00 .00 .77 .22 .01 .17 .82 .00 .02 .01 .69 .28 .00 .00 .98 .00

Vertical-Turn .31 .05 .20 .43 .01 .21 .30 .46 .49 .04 .32 .15 .05 .00 .00 .95

Average Accuracy .78 .69 .69 .98

TABLE I: Comparison of Classification results between our methods and others popular

methods for QMUL Juction Dataset: The results of MCTM, LDA and HMM are cited

from [19].

State
Dural-HDP Ours

a b c d e a b c d e

M
an

ua
lly

la
be

l a 149 0 2 0 0 610 4 5 0 3

b 8 74 4 2 11 3 402 0 2 0

c 10 3 60 1 2 3 2 304 2 0

d 4 0 2 88 11 7 8 10 222 0

e 4 2 6 5 92 6 5 4 8 102

TABLE II: Classification performance for the MIT Dataset.

is a batch processing. To validate our method, we have executed one more experiment in the

QMUL Junction Dataset 2. The results is listed in Tab. III.

It is worth point out that some clips were falsely recognized by traditional GP classifier and

corrected by our model. For example, it is ambiguous to determine whether the state in Fig. 9

belongs to state Fig. 8(e) or Fig. 8(f) only based on its appearance. It was falsely classified as the

second one with higher probability by GP classifier. Because its previous clip is in the state as

Fig. 8(e), it is successfully corrected by using transition information, as described in Sec. V-B.



Our Classification
M

an
ua

lly
la

be
l

a b c d

a 86 2 1 2

b 2 264 0 4

c 0 0 188 2

d 0 2 0 76

TABLE III: Classification performance for QMUL

dataset 2.
Fig. 9: Example of falsely classified

by GP classifier.

D. Anomaly Detection

Then the proposed framework’s performance of detecting the abnormal events defined in

Sec. VI is evaluated in each dataset. In the scene of QMUL Junction Dataset, the main abnormal

events include Jaywalking, illegal U-turn and emergencies caused by ambulances, fire engines and

police cars. Fig. 10 illustrates two detected abnormal events caused by rarely occurring motions

in the QMUL Junction scene. For instance, the ambulance is driving in an absolutely forbidden

direction in the lane, whose motions have never occurred in the training data (Fig. 10(a)).

(a) Ambulance (b) Pedestrian walking in improper area

Fig. 10: Examples of abnormal events caused by rarely occurring motions. In the training

dataset such motions have rarely or never occurred. They do not belong to any typical

activities. The red boxes highlight the abnormal agents.



Vertical flow in t− 1 clip Fire engine presents in t clip Rightward flow in t+ 1 clip

Fig. 11: Example of abnormal event caused by illegal state transition. A fire engine interrupts

the current vertical flow. The red boxes highlight the abnormal agents.

In Fig. 11, the traffic state is forced to change in an illegal ordering due to the fire engine.

The rightward flow should not follow the vertical flow according to the learning results by HDP-

HMM models. Therefore, the clip was identified as abnormal event, even though its appearance

is definitely a right flow state.
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(a) Conversely driving car
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(b) Fire engine cuts off the flow
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(c) Illegal U-turn

Fig. 12: The first row shows three examples of detected abnormal events caused by conflicting

activities. The second row illustrate the observed values (blue bars) of each activity in given

scene respectively. The green curves (circles) note the mean predicted values m and the red

curves (crosses) equal m+ 1.96σ, i.e. the upper bounds of 97.5% confidence region.



(a) (b) (c)

Fig. 13: Falsely detected Abnormal events by the GP regression models.

Normally, abnormal events are caused by conflicting activities like Jaywalking, illegal U-turn

converse driving or aggressively cutting in other roads. We illustrate an example for each type

of such conflicting activities in Fig. 12. The conflicting activities were detected by our GP

regression models as discussed in Sec. VI. If the observed value (blue bar) of any activities

is larger than its predicted value (green curve and circle) as 1.96σ (red curve and cross), it is

judged as a conflict activity against the others. The abnormally acting agents are marked by red

boxes. They are analyzed in detail as following (all the related atomic activities are founded in

Fig. 6):

• Fig. 12(a) shows a police car driving conversely. This counter flow induces the value of

activities 3 and 17 in the former clip, activities 3 and 19 in the latter clip.

• A fire engine cuts off the vertical flow (see Fig. 12(b)) and causes the activity 4 much

stronger than the prediction.

• In Fig. 12(c) the activity 19 is abnormal because of a vehicle making an illegal U-turn.

Some falsely detected abnormalities are shown in Fig. 13. The red double-decker bus is

detected as a U-turn agent due to its big size. In Fig. 13(c), a conflict activity is detected

occurring in the right bottom of the camera scene, because in this state, there should not be a

leftward traffic flow. However, this alarm is a misunderstanding by our models because of the

bad video clip segmentation. This clip contains the state transition and is classified as the left

and right turn state. Therefore, the GP regression models thought the activity conflicting with

others in this state and judged it as an abnormal event. Actually, this activity occurred when the

state has already changed into the state of leftward flow.



(a) Bicycle in improper region (b) Emergency of fire engine (c) Illegal U-turn

Fig. 14: Examples of missing detected abnormal events.

Fig. 14 shows some missing detected abnormal events. Because our method is beyond detect-

ing, the categories of activity agents are not considered. For example, if a pedestrian is walking

along the path of vehicles, it will not be detected as an abnormality, as shown in Fig. 14(a).

In Fig. 14(b), before the fire engine drives into the camera scene, all vehicles have stopped

and wait for its pass. Therefore, there is no activity in conflict with the fire engine. The scene

is classified as leftward state. Because of its previous state is the sate left and right turn, this

transition is legal. That is why this emergency was undetected. A car is making an illegal U-turn

in Fig. 14(c). However, its activity seems identical with others in the leftward state. Hence, it is

also not identified as an abnormal activity. The detection and tracking based approaches would

perform better in this case.

We provide a manually interpreted summary of the categories of abnormal events of each

dataset in Tab. IV. Notice that, each entire abnormal event is counted as one event, no matter

how many clips it spans. The false detection means that, a clip is detected as an abnormal clip,

but there is not any abnormal event of interest. The overall false positive rates is defined as:

FPR =
Number of falsely detected clips

Number of test clips
. (35)

From the summary of experimental results we can see that, our method successfully detected

most of the abnormal traffic events while causes low overall false positive rates in the three

benchmark datasets. However, it seems weak in detecting ”improper region” because the proposed

method is beyond object detection. In other words, it is the abnormal motions of any agent in

specific case cause the anomaly alarm rather than the category of agent. A concrete example is



Dataset Results Jaywalking Emergency Illegal

turning

Near

collision

Strange

driving

Improper

region

False

detection

Overall

TPR

Overall

FPR

QMUL

junction

GT 19 4 10 2 1 2 \
66% 2.6%

Ours 11 3 7 2 2 0 18

QMUL

junction 2

GT 21 \ \ 2 4 \ \
63% 2.1%

Ours 14 \ \ 2 1 \ 7

MIT
GT 14 \ 34 \ 1 13 \

65.7% 2.9%
Ours 7 \ 28 \ 1 5 43

TABLE IV: Summary of discovered abnormal events in different datasets. Overall true positive

and false positive rates are also given. The ”\” symbol indicates that there is not such event in

the dataset. ”Gt”, ”TPR” and ”FPR” mean ground truth, truth positive rate and false positive

rate respectively.

given in Fig. 14(a). Moreover, in the experiments we find that, our trained model own the ability

of working in real time beyond the computation bottleneck of optical flow.

VIII. CONCLUSIONS

In this paper, a novel unsupervised learning framework has been proposed to model the

activities and interactions, to recognize global interactions and to identify abnormal events in

crowded and complicated traffic scenes. Through combining the advantages of both generative

models (HDP models) and discriminative ones (GP models), the formulated approach provides

an effective solution to the problems of high-level video events recognition and abnormal events

detection. First, owing to its computation efficiency as well as comparative reliability in the

far-field surveillance data, the quantized optical flow is adopted in this work as the low-level

motion features. Then, a non-parametric generative HDP model is utilized to analyze the input

video and learn the main activities and interactions in a unsupervised way. Next, each of the

learned activities and interactions are represented as a combination of the local motions and

the combination of activities respectively. Finally, each activity and interaction, a GP model is

trained using the aforementioned representation for classification tasks and anomaly detection.

The experimental results demonstrate that the approach outperforms other popular approaches in

both classification accuracy and computation efficiency. In particular, the improved GP classifier

is capable to correct the falsely-classified clips by the original GP classifier. There are many



exciting avenues for future research. First, it will be interesting to incorporate the segmentation

methods [28] into our proposed framework. Second, we will test the proposed algorithm using

high-resolution remote sensing images, where the visual features are clear and informative [29],

[30]. Third, we would also like to compare the performance of our model to the recent CNN

model [31]. Finally, the current model only takes into account the simple temporal dependencies

within a clip in detecting conflicting activities. It could result in poor performances of abnormality

detection in scenes, of which the traffic state is quite obscure because of the absence of traffic

lights. One possible solution is to use additional GIS data to enhance the classification task and

anomaly detection.
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