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� Wind speed and ambient concentra-
tions were main predictors in above-
ground modes.

� Ambient PM concentrations
explained more variability than wind
speed.

� Wind speed had a strongest effect on
bus concentrations compared to car
and walking.

� Underground line and train's type of
windows explained 90% of the vari-
ation in PM.

� PM in bus was better explained by
ambient concentrations at high
spatial resolution.
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We investigated the determinants of personal exposure concentrations of commuters’ to black carbon
(BC), ultrafine particle number concentrations (PNC), and particulate matter (PM1, PM2.5 and PM10) in
different travel modes. We quantified the contribution of key factors that explain the variation of the
previous pollutants in four commuting routes in London, each covered by four transport modes (car, bus,
walk and underground). Models were performed for each pollutant, separately to assess the effect of
meteorology (wind speed) or ambient concentrations (with either high spatial or temporal resolution).
Concentration variations were mainly explained by wind speed or ambient concentrations and to a lesser
extent by route and period of the day. In multivariate models with wind speed, the wind speed was the
common significant predictor for all the pollutants in the above-ground modes (i.e., car, bus, walk); and
the only predictor variable for the PM fractions. Wind speed had the strongest effect on PM during the
bus trips, with an increase in 1 m s�1 leading to a decrease in 2.25, 2.90 and 4.98 mg m�3 of PM1, PM2.5

and PM10, respectively. PM2.5 and PM10 concentrations in car trips were better explained by ambient
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concentrations with high temporal resolution although from a single monitoring station. On the other
hand, ambient concentrations with high spatial coverage but lower temporal resolution predicted better
the concentrations in bus trips, due to bus routes passing through streets with a high variability of traffic
intensity. In the underground models, wind speed was not significant and line and type of windows on
the train explained 42% of the variation of PNC and 90% of all PM fractions. Trains in the district line with
openable windows had an increase in concentrations of 1 684 cm�3 for PNC and 40.69 mg m�3 for PM2.5

compared with trains that had non-openable windows. The results from this work can be used to target
efforts to reduce personal exposures of London commuters.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In urban environments, transport emissions frequently cause
exceedances of air quality limits, particularly at roadside moni-
toring locations (EEA, 2016) and the impact of transport-related
emissions on public health has been demonstrated (Beelen
et al., 2014; HEI, 2010; Hoek et al., 2013). The exposure to
ambient particulate matter (PM) is ranked 12th in the Global
Burden of Disease and was associated with a global annual esti-
mate of 2.9 million deaths in 2013 (GBD 2013 Risk Factor
Collaborators, 2015). In Europe alone, the exposure to PM2.5 was
responsible for 432,000 premature deaths in 2012 (EEA, 2015).

Traffic-related air pollution is a complex mixture of gaseous
compounds and particles that can come directly from the exhaust
(Viana et al., 2008); brake and tire wear (Thorpe and Harrison,
2008); resuspension of previously deposited particles on the
pavement (road dust; Amato et al., 2009); and formed through
physical and chemical processes (e.g. secondary aerosols; Bahreini
et al., 2012). Commuters can face higher concentrations in close
proximity to traffic (Adams et al., 2001b; Buonanno et al., 2012;
Dons et al., 2012; Kumar and Goel, 2016; Kumar et al., 2014;
Morawska et al., 2008; Moreno et al., 2015b; Rivas et al., 2016;
Zhu et al., 2002; Zuurbier et al., 2010), and especially during
morning rush hours (G�omez-Perales et al., 2007; Moreno et al.,
2009).

Studies have shown that commuters come in contact with
highly variable concentrations of atmospheric pollutants and face
short-time extreme peak concentrations during their commutes
that result in significant contributions to their total daily exposure
(12e32% of daily exposure; Dons et al., 2011; Rivas et al., 2016;
Williams and Knibbs, 2016). For instance, Dons et al. (2012)
found that 62 individuals from Belgium spent 6% of their day
commuting while receiving 21% of their daily-integrated exposure
and 30% of their dose of black carbon (BC) during this time.
Moreover, Smith et al. (2016) demonstrated how the inclusion of
commuting time is crucial for correctly establishing the exposure,
with commuters being more highly exposed in comparison to
those who stay at home.

There is a growing literature of exposure assessment during
commuting (Adams et al., 2001b; Kaur et al., 2005; Kingham et al.,
2013; Kumar and Goel, 2016; McNabola et al., 2008; Moreno et al.,
2015b; Namdeo et al., 2014; Zuurbier et al., 2010). These studies
compare air pollutant concentrations among different transport
modes and identify parameters that affect concentrations. Other
studies assessed the effect of meteorological variables on personal
concentrations in transport microenvironments, such as wind
speed or ambient temperature, through correlation analysis
(Kingham et al., 1998; Knibbs and de Dear, 2010). However, only a
handful of studies, as summarised in Table 1, have attempted to
identify and quantify the determinant factors of BC, ultrafine
particle number concentrations (PNC), PM1, PM2.5 or PM10
concentrations in different transport microenvironments. For
example, Adams et al. (2001a) found that wind speed and route
choice were determinants of the personal PM2.5 concentrations
during commutes by bicycle, bus and car in London, while
transport mode was not a significant factor. Also in London, Kaur
and Nieuwenhuijsen (2009) assessed the effects of traffic in-
tensity, wind speed, temperature and transport mode as de-
terminants of PNC and PM2.5 during walking, cycling and trips
made by buses, cars and taxis. Their models explained 62% of the
variation of PNC, with transport mode, traffic counts, temperature
and wind speed being the significant predictor variables; and only
9% of PM2.5, with transport mode being the only significant pre-
dictor variable and with little effect of traffic intensity.
Weichenthal et al. (2008) also observed wind speed and tem-
perature to significantly determine PNC in walking, bus and
automobile environments in Montr�eal. Moreover, the analyses
performed by De Nazelle et al. (2012) in a commuting study car-
ried out in Barcelona that included walking, cycling, buses and
cars indicated that BC concentrations were explained by transport
mode and background concentrations, PNC by transport mode
and period of the day and PM2.5 only by transport mode.

All these studies contribute to the understanding of factors
determining the exposures while travelling in different transport
modes. However, much of the observed variation in exposure
remains unexplained (Weichenthal et al., 2008) and there are
some inconsistencies across different studies. Hence, further
research is required to understand the factors that explain the
variability in the exposures during commuting. Unravelling the
relative roles of determinant factors is key for developing suc-
cessful strategies for air quality management in transport micro-
environments. In addition, models for air pollutants during
commuting are required to explore their potential health effects
or possible environmental injustices in population-based studies
(Sioutas et al., 2005) and can be incorporated into larger models
assessing the daily exposure at an individual level.

The overall objective of this work is to assess the determinants
of personal concentrations of BC, PNC, PM1, PM2.5 and PM10 during
commuting through regression modelling. We identified and
quantified the contribution of key factors that explain the varia-
tion of the aforementioned pollutants in four different commuting
routes, each covered by four different transport modes (car, bus,
underground and walking) in London. The present work is a
comprehensive study, which includes several air pollutants and
assesses multiple predictor variables. For instance, no previous
study has evaluated the effect of the determinants on personal
concentrations of multiple fractions of PM in transport
microenvironments.

http://creativecommons.org/licenses/by/4.0/


Table 1
Summary of past studies on the determinants of personal exposure to BC, PNC or PM.

Area of study Pollutant(s) Predictor variables
explored*

Statistical analysis Author (year)

London (UK) PM2.5 Transport mode, route,
wind speed, wind
direction, precipitation,
temperature,
atmospheric pressure,
relative humidity,
traffic counts, fixed
monitoring site
concentrations, bus
shell type

General Linear Model (LM). Adams et al. (2001a)

Montr�eal (Canada) PNCa Period of the day, car
windows open, wind
speed, temperature

Bayesian Model Averaging (BMA) Weichenthal et al. (2008)

London (UK) PM2.5, PNCa Transport mode, wind
speed, wind direction,
temperature, relative
humidity, traffic
counts

General Linear Model (LM) Kaur and Nieuwenhuijsen (2009)

Barcelona (Spain) BC, PNCb, PM2.5, CO and CO2. Transport mode, route,
period of the day,
wind speed, wind
direction, temperature,
relative humidity,
fixed monitoring site
concentrations

ANOVA De Nazelle et al. (2012)

Beijing (China) PM2.5, CO Transport mode, route,
temperature, relative
humidity, fixed
monitoring site
concentrations

Linear Mixed-Effects Models (LMM) Huang et al. (2012)

Fort Collins (USA) PM2.5, PNCc BC, CO Transport mode, route Linear Mixed-Effects Models (LMM) Good et al. (2015)

*Variables in bold are significant predictors for at least one pollutant in one of the transport modes assessed in the study.
a Particle size range 20e1 000 nm (P-Trak model 8525, TSI).
b Particle size range 10e1 000 nm (CPC model 3007, TSI).
c Particle size range 10e700 nm (DiSCmini, Matter Aerosol).
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2. Methodology

2.1. Route description

The routes between four Origin-Destination (OD) pairs were
covered by car, bus and underground in London (Fig. 1), where bus
and underground routes included walking segments as the access
mode. We selected routes to represent typical commutes for resi-
dential areas with different levels of income deprivation measured
using the income subscale of the Index of Multiple Deprivation
(IMD; Department for Communities and Local Government, 2015).
The origin and destination location were selected as zones from a
geographical zone system called Lower Layer Super Output Areas
(LSOA) used to disseminate aggregate statistics from the UK census,
including commuting data. The 2015 IMD also uses the LSOA
geography.

The destination was the same for all the routes. We selected the
City of London (the central borough of Greater London, which is the
financial district) as our destination point since it is the area with
the highest employment density (Fig. 1). To select the origin, all
LSOA included in Greater London were classified into four different
groups according to the Income Score from the IMD: Group 1 to
Group 4, from most to least deprived origin area. Although the
income deprivation of the area of origin was used to select the
routes, this dimension will not be explored in this work because it
has been discussed in our previous work (Rivas et al., 2017). We
selected an area of origin in each of the four deprivation groups,
which was at the average distance for that deprivation group.
Table 2 shows the different London boroughs where origin points
were located, together with the OD distance and the route speci-
fications for each transport mode (i.e., main roads used for car, and
the underground and bus lines). Note that the distance between the
origin and destination increased from Group 1 to Group 4. Finally,
for each of the four OD pairs, we selected the fastest route for each
transport mode to be monitored (Routes 1 to 4; Fig. 1). The fastest
travel mode was the underground (43e56 min), followed by car
(49e66 min) and then the bus (67e108 min). The same under-
ground lines in opposite directionwere monitored for Routes 1 and
3 (Northern line), and for Routes 2 and 4 (District line). In all the
underground routes, few sections were not covered (above
ground). Round trips (corresponding to two single trips) were
monitored for BC, PNC, PM1, PM2.5 and PM10. Sampling was only
carried out during weekdays at three different time periods:
morning, afternoon and evening hours starting at 07:45, 12:00 and
16:30 h local time, respectively. An extended description of the
route selection can be found in Rivas et al. (2017).
2.2. Data collection

2.2.1. Instrumentation
We monitored BC, PNC, PM1, PM2.5 and PM10 in different

transport microenvironments. BC concentrations were monitored
using a MicroAeth AE51 (AethLabs, USA). The MicroAeth provides
BC concentrations derived from measurements of the rate of
change in absorption of transmitted light at 880 nm due to
continuous collection of aerosol deposit on the filter. The effect of



Fig. 1. Location of the routes selected for air pollutant monitoring in different transport modes. UB station is the urban background air quality monitoring station of Sir John Cass
School in London.

Table 2
Borough of origin, distance to the destination and main roads (for car routes) or lines (for underground and bus routes) followed for each of the routes and mode of transport.
The destination was in the City of London.

Route Borough of origin Euclidean distance from origin to destination
(km)

ROUTE

Car
(main road ID)

Underground (line) Bus
(line #)

Route 1 Haringey 7.7 A10 þ A501 Victoria þ Northern 76
Route 2 Newham 9.4 A11 þ A1209 District 325 þ 25
Route 3 Barnet 11.5 A1þA1200 Northern 113 þ 23
Route 4 Wandsworth 12.2 A3036 þ A3200 District 156 þ 344
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filter loading was kept to a minimum by replacing the filter strip
before every trip and setting a flow rate of 100 ml min�1. The time-
base was set to 10 s and the original data was post-processed with
the Optimised Noise-reduction Averaging algorithm (Hagler et al.,
2011). PNC in the 0.02e1 mm size range were measured by means
of a P-Trak model 8 525 (TSI Inc., USA) operating at a flow rate of
0.7 l min�1 with a time resolution of 10 s. PM1, PM2.5 and PM10 mass
concentrations were monitored with a GRIMM EDM 107 aerosol
spectrometer (GRIMM Technologies Inc., Germany). The instru-
ment provided data every 6 s but these data points were averaged
to 10 s afterwards to match the averaging period of the rest of the
instruments. The position of the field worker was obtained on a
second basis (i.e. 1 Hz) with a Global Positioning System (GPS)
Garmin Oregon 350 (Garmin Ltd., USA). For the quality assurance,
all the instruments employed for our measurements were rather
new or recently factory calibrated to ensure the quality of the
collected data. They have been successfully employed in past
studies for personal exposure assessment (Azarmi and Kumar,
2016; De Nazelle et al., 2012; Kaur et al., 2005; Rivas et al., 2016).
The instruments were carried in a backpack that was specially
conditioned and the inlets were positioned at the breathing height
(~1.6 m) of the field worker.
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2.2.2. Measurements in the different transport modes
Fieldwork was carried out over a total of 40 sampling days be-

tween 25 February and 17 June 2016 at 3 different daytime periods.
Car measurements were carried out with a petrol-fuelled Peugeot
208 Active 1.2 VTI 82 HP (registered in 2013). The windows of the
car were always kept closed and the ventilation was set at 50% fan
velocity with no air recirculation. The backpack containing the in-
struments was placed in the front passenger seat. In the public
transport modes (i.e. bus and underground), the backpack was
carried on the back while standing and placed on the lap in a way
that the inlets were at breathing height if the field worker could
have a seat. In buses, the field worker always sat in the first or
second row of seats behind the rear door in the lower deck of the
bus. If no seats were available, the field worker was standing within
the same area. In the underground, the field worker was always at
the midpoint carriage of the underground. Since we had no control
over ventilation, we registered the information about ventilation
conditions and other parameters (e.g. whether the windows in the
underground trains were openable) that might influence air
pollutant concentrations.

For each trip (in all transport modes), the fieldworker wrote
down all the movements in a time-location diary, which allowed to
identify the time spent at each part of the route (e.g., walking to the
bus/underground station, inside the car, bus or underground train).
We monitored a total of 232 single trips, 38% of which were made
by car, 41% by underground, and 21% by bus. A total of 225 h of trip
monitoring data, involving 10 s averaged 80,720 data points, were
available. After discarding the lost data, 98.7% of the data points for
PM, 99.4% for BC and 91.9% for PNC remained for analysis. From the
10 s data, we calculated the geometric mean (GM) for each single
trip, which was the input for the regression analyses (n¼ 82 for car,
n ¼ 42 for bus, n ¼ 87 for underground, and n ¼ 130 for walking).
We calculated the GM instead of the arithmetic mean because of
the left-skewed distribution of the personal monitoring data.

2.3. Variables

2.3.1. Dependent variables
The GM concentrations of BC, PNC, PM1, PM2.5 and PM10 per

single trip were the dependent variables. We constructed a
different model for each transport mode and pollutant, only
considering the time spent inside the vehicle. We also calculated
the GM of the concentrations faced during the walking time to the
bus stop and the underground station to identify the predictor
variables while walking. BC was not assessed in the underground
trips since concentrations in the underground are overestimated as
a result of the interference of Fe in the BCmeasurements (Gilardoni
et al., 2011; Moreno et al., 2015b; Rivas et al., 2017).

2.3.2. Predictor variables
Meteorological data at Heathrow airport (latitude: 51.479,

longitude: �0.449; 25 m above the sea level) was provided by the
UK MetOffice, at a 1 h time resolution for the following variables:
temperature (�C), relative humidity (%) and wind speed (m s�1;
Table 3). We selected the Heathrow weather station as it collects
the weather information at 25 m above the mean sea level and
therefore it keeps the measurements free from the local ground-
level turbulence. These characteristics are expected to be repre-
sentative of the overall London area. The hourly meteorological
data were matched up with the averaged trip pollutant concen-
trations by taking the time-weighted average of the corresponding
hours. Meteorological data from Heathrow airport has been
employed in other studies regarding air quality modelling in
Greater London (Beddows et al., 2015; Gulliver et al., 2011) and in
our previous studies (Al-Dabbous and Kumar, 2014; Goel and
Kumar, 2016).
We obtained ambient concentrations at a 15min time resolution

for PM2.5 and PM10 from the Sir John Cass School urban background
(UB) station in the City of London (latitude: 51.514,
longitude:�0.078). As for themeteorological parameters, the time-
weighted average of the corresponding hours was matched upwith
the measured concentrations in the transport microenvironments.

Moreover, modelled ambient PM2.5 and PM10 daily average
concentrations were provided by the Cambridge Environmental
Research Consultants (CERC) for each day of fieldwork at a high
spatial resolution (approximately 300m). Themodel employedwas
the ADMS-Urban dispersion model (CERC, 2016; McHugh et al.,
1997), which combines the basic ADMS dispersion model
(Carruthers et al., 1994; which requires meteorological data) with
an integrated street canyon model, a chemistry model and a traffic
emissions database (CERC, 2015). The ADMS-Urban has been vali-
dated with data from around the world (Hanna et al., 2001; Heist
et al., 2013; Jerrett et al., 2005) and is widely used for modelling
air quality on scales ranging from large urban areas to street level
(Athanassiadou et al., 2010; Gulliver and Briggs, 2005; Smith et al.,
2016). The model output files consist of a regular grid of points at
approximately 300 m resolution in addition to a large number of
near-road receptors that account for the high concentration at
street scale. From these files, we generated a raster file (25 m res-
olution) with the Inverse Distance Weighting (IDW) interpolation
for both PM2.5 and PM10 using ArcGIS 10.1 (Esri Inc.). The GPS data
points from each monitored trip made by bus and car were then
used to extract the concentrations at each specific location. Finally,
we calculated the GM for each trip with valid GPS data (Table 3). In
order to match the modelled concentration maps and the actual
measured concentrations, for these specific models we discarded
the data that lacked an associated GPS position due to a bad satellite
signal and then recalculated the measured GM of PM10 and PM2.5
for each trip. The GPS had no signal in the underground and,
therefore, we could not assess the underground concentrations
against the modelled ambient concentrations. From the 132 trips
made by bus or car, we discarded <10% of the data points for 76% of
the trips due to unavailable GPS data. In 8% of the trips, the data
discarded was >50%. However, since the trips were long and the
data was spatially matched, all the trips were included in the
models, with the exception of three trips where more than 80% of
the data had to be discarded due to unavailable GPS data.

Other characteristics of the trips were also evaluated: routes,
period of the day, and line and type of windows in the underground
trains (the latter two combined into a single variable; Table 3). The
route is a qualitative variable with four categories that corresponds
to the 4 origin-destination routes (Routes 1 to 4; Fig. 1). Period of
the day has three categories: morning, afternoon and evening. The
line and the type of windows in the underground trains is a qual-
itative variable including four categories: District line with trains
with non-openable windows (NOW), District line with openable
windows (OW), Northern Line with OW and Northern þ Victoria
Line with OW. The justification for combining lines and types of
windows into a single variable is that only trains with OW circulate
in both the Northern and Victoria line and a single variable makes
the discussion more straightforward. The results of the models are
identical if the line and type of windows are included as two
separate categorical variables.

2.4. Statistical analysis methods

Pearson correlation coefficients (r) and scatterplots were pro-
duced to assess the relationship between trip concentration and
individual meteorological variables and ambient concentration, as
well as to test possible collinearity between the potential predictor



Table 3
Predictors variables explored in themodels. The type of variable is indicated and, in case of categorical variables, the different categories are listed and the reference category is
indicated.

Variable Type Categories Reference category

Route Categorical Route 1 Route 1
Route 2
Route 3
Route 4

Period of day Categorical Morning Morning
Afternoon
Evening

Line and type of windowsa Categorical District line with non-openable windows (N.O.W.) District with N.O.W.
District line with openable windows (O.W.)
Northern line with O.W
Northern þ Victoria line with O.W.

Temperature (�C)b Continuous
Relative Humidity (%)b Continuous
Wind speed (m s�1)b Continuous
ADMS ambient concentration (mg m�3)c Continuous
UB ambient concentration (mg m�3)d Continuous

a Only for the underground trips.
b From Heathrow, original data at 1 h resolution.
c Only PM2.5 and PM10 and for bus, car and walking trips with valid GPS data. Matched by route and day. Data at 1-day resolution.
d From the UB air quality monitoring station of Sir John Cass School, original data at 15 min resolution.
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variables. Correlations were considered statistically significant at a
p-value <0.05.

The non-normality of the concentration data requires the use of
non-parametric models (such as the Generalised Linear Models,
GLM; McCullagh and Nelder, 1989) or the decimal log-
transformation of the concentrations. Although the distributions
of the trip concentrations were slightly skewed (mainly for PM2.5
and PM10), we used untransformed concentration to support the
interpretations of the results.

We estimated linear regression models with analysis of covari-
ance (ANCOVA), which allows the input of categorical and contin-
uous variables. In a linear regression, the model assumes that the
dependent variable (e.g. GM concentration of each trip) is a linear
function of the independent variables with a normally distributed
random error. Eq. (1) describes the model as follows:

Yi ¼ aþ b1X1i þ b2X2i þ…þ bnXni þ εi (1)

where Yi is the dependent variable (e.g. GM concentration) for trip
i; Xi are the predictor variables for trip i (e.g., wind speed, period of
the day); a is the intercept; b is a regression coefficient (slope); and
εi is the model residual normally distributed with mean 0 and
variance s2. We excluded those variables violating the assumptions
of the linear regression (e.g. collinearity). Moreover, only significant
variables (p-value <0.05) were included in the final models.
Adjusted R2 were used to evaluate the goodness of fit of the models.

For cross-validation purposes, a subset of a total of 20 trips (8 for
car, 8 for underground and 4 for bus) was used for validating the
analysis and were, therefore, excluded from the models. Statistical
analysis was performed using the R statistical software (v 3.0.2, R
Core Team, 2016) and the packages openair (Carslaw and Ropkins,
2012) and car (Fox and Weisberg, 2016). ArcGIS 10.1 (Esri Inc.)
was employed for the extraction and interpolation of the ADMS-
Urban modelled concentrations from the airTEXT maps corre-
sponding to our routes.
3. Results and discussions

3.1. Correlations with the continuous explanatory variables

Table 4 shows the descriptive statistics for BC, PNC, PM1, PM2.5
and PM10 trip measured concentrations, as well as for PM2.5 and
PM10 concentrations extracted from the ADMS maps (ADMS
Ambient PM2.5 and PM10) and from the UB monitoring station (UB
Ambient PM2.5 and PM10); and for the meteorological parameters.
The means showed in Table 4 were calculated from the previously
averaged trip data. Concentrations of all PM fractions were much
higher in the underground trains (e.g. PM2.5 ¼ 50.7 mg m�3) than in
the above-ground modes (e.g.: PM2.5 ¼ 7.4 mg m�3 for car and
13.2 mg m�3 for bus) which is in accordance with previous studies
(Adams et al., 2001b; Cartenì et al., 2015; Martins et al., 2016). The
main source of PM in the underground environment is the me-
chanical abrasion between rails, wheels and brakes, which results
in very high concentrations of particulate iron, and the hindered
dispersion in such a confined environment (Moreno et al., 2015a;
Rivas et al., 2017). PM concentrations while walking were similar
to buses with the exception of PM10, which were higher on the
buses. On the other hand, the absence of combustion sources such
as vehicular emissions in the underground led to lower PNC than in
the above-ground modes, as also observed previously (Moreno
et al., 2015b). BC concentrations were highest in bus trips, and
lowest in walking trips. For the models including ambient con-
centrations from the ADMS maps, we discarded concentration data
when there was no GPS signal. Therefore, the trips with valid GPS
data included fewer data points, which can be translated into a
shorter period monitored, especially for the bus trips (average
monitored time: 70.9 min for bus trips; 54.6 min for the bus trips
after the data without GPS information was discarded), but we
confirmed that this did not significantly affect average concentra-
tions (Table 4). In a previous study, we identified potential factors
affecting the concentrations in the different transport microenvi-
ronments (Rivas et al., 2017), while the focus in this work is to
identify and quantify the statistically significant predictor variables
in order to build an explanatory model of the concentrations faced
for travels by car, bus, underground and walking.

Fig. 2 presents the scatterplots and the Pearson correlation co-
efficient for all the potential meteorological predictor variables and
pollutants concentrations while Supplementary Information, SI,
Fig. S1 shows similar results for the correlations with log-
transformed concentrations. The strongest significant (p-value
<0.05, 2-tailed) linear associations in the car (r ¼ �0.64 for BC;
r ¼ �0.59 for PNC; r ¼ �0.57 for PM1, PM2.5 and PM10), bus
(r ¼ �0.71 for BC; r ¼ �0.63 for PNC; r ¼ �0.70 for PM1; r ¼ �0.71
for PM2.5; r ¼ �0.54 for PM10) and walking (r ¼ �0.53 for BC;
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r¼�0.31 for PNC; r¼�0.35 for PM1; r¼�0.35 for PM2.5; r¼�0.27
for PM10) were observed for wind speed. Wind speed affects the
dilution and transport of vehicular emissions (Kumar et al., 2008)
and explains the negative correlation. Previous studies including
the assessment of personal exposures in cars, buses and walking
have also reported this negative linear association between wind
speed and in-transit air pollutants (Briggs et al., 2008; De Nazelle
et al., 2012; Kaur and Nieuwenhuijsen, 2009; Knibbs et al., 2011;
Weichenthal et al., 2008). Ambient temperature showed a signifi-
cant positive association for all the pollutants in the buses
(r ¼ 0.37for BC; r ¼ 0.55 for PNC; r ¼ 0.53 for PM1; r ¼ 0.55 for
PM2.5; r ¼ 0.23 for PM10) and walking (r ¼ 0.32 for BC; r ¼ 0.27 for
PNC; r ¼ 0.26 for PM1; r ¼ 0.29 for PM2.5; r ¼ 0.37 for PM10) trips,
while no linear relationship was observed for car (r ¼ 0.17 for BC;
r ¼ 0.20 for PNC; r ¼ 0.08 for PM1; r ¼ 0.09 for PM2.5; r ¼ 0.12 for
PM10) and underground (r ¼ �0.01 for BC; r ¼ 0.01 for PNC;
r ¼ �0.01 for PM1; r ¼ �0.02 for PM2.5; r ¼ �0.01 for PM10) travels.
Although the ambient temperature was positively correlated with
most of the pollutants in buses and while walking, both tempera-
ture and relative humidity were not further explored in the
multivariate analysis due to their dependence on the period of the
day (morning periods exhibited lower temperatures and higher
relative humidity, Fig. S2). The highest concentrations in the
morning were more affected by the higher traffic intensity than the
ambient temperature and relative humidity conditions. Previous
commuting studies uniformly found a negative correlation be-
tween temperature and air pollutant concentrations (De Nazelle
et al., 2012; Kaur and Nieuwenhuijsen, 2009; Laumbach et al.,
2010; Weichenthal et al., 2008).

In the underground, only PNC was significantly associated with
wind speed (r ¼ �0.36) Fig. 2c) and its correlation was much
weaker than those for bus (r ¼ �0.63) and car (r ¼ �0.59). Wind
speed was not significantly correlated with the PM fractions in the
underground (r ¼ �0.16 for PM1 and PM2.5; r ¼ �0.19 for PM10). PM
emissions are very high in the underground environment, espe-
cially for PM2.5 and PM10, and outweigh the contribution of outdoor
PM. Thus, a small effect is expected from outdoor wind speed.
However, Adams et al. (2001a) found an unexpected strong rela-
tionship between PM2.5 concentrations in the underground and
ambient wind speed (r ¼ �0.60), which may be due to enhanced
natural ventilation during the windy time spans. To the best of our
knowledge, no other study has attempted to evaluate the effect of
wind speed on the underground concentrations. BC correlations are
presented in the figure for the underground dataset, although we
did not assess them due to their overestimation by the Fe inter-
ference in underground environment (Section 2.2).

Fig. 3 presents the scatterplots and the Pearson correlation co-
efficient for themeasured trip averaged GM concentrations of PM2.5
and PM10 concentration against (i) the concentrations obtained
from a UB station close to the destination at a high time resolution
but for a single point in space (trip-averaged); and (ii) the trip-
averaged concentrations obtained from the ADMS maps, which
are spatially matched through the GPS position of the actual trip
but the modelled concentrations are daily averages (thus, low time
resolution). Both PM fractions in car, bus and walking trips are
strongly correlated with both the UB (car: r ¼ 0.90 for PM2.5;

r ¼ 0.60 for PM10, bus: r ¼ 0.72 for PM2.5; r ¼ 0.74 for PM10, car:
r ¼ 0.82 for PM2.5; r ¼ 0.70 for PM10) and ADMS ambient (car:
r¼ 0.54 for PM2.5; r¼ 0.52 for PM10, bus: r¼ 0.87 for PM2.5; r¼ 0.61
for PM10, car: r ¼ 0.82 for PM2.5; r ¼ 0.57 for PM10) PM. The indoor/
outdoor ratios for in-vehicle (car and bus only) concentrations and
ambient ADMS concentrations of PM2.5 and PM10 are presented in
SI Table S1 for each Route. Very low I/O ratios (<0.4) were observed
in all the routes for the car trips, since the car windows were closed
and the filtering system was successful in removing the coarser



Fig. 2. Scatterplots and Pearson correlation coefficient between pollutant trip-averaged concentration and meteorological variables for (a) car, (b) bus, (c) underground and (d)
walking trips. Black numbers indicate significant correlation coefficients at p-values <0.05. Temp ¼ Temperature, RH ¼ Relative Humidity, WS ¼ Wind Speed.
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particles. The ratios for PM2.5 in bus trips were always between 0.7
and 0.8, while the ratios become >1.0 for PM10 (between 1.4 and
1.7) indicating the importance of the PM10 resuspension. Under-
ground PM concentrations are not significantly correlated (p-value
>0.05) with ambient concentrations and therefore have not been
further explored in the multivariate regression models.

In the case of car measurements, the correlation coefficients
indicate that concentrations in cars are better explained by data
with a higher temporal resolution although not spatially matched
(data from a single UB monitoring station; r ¼ 0.90 for the UB
ambient PM versus r ¼ 0.54 for the ADMS for PM2.5; Fig. 3), while
bus trip concentrations are better explained if the spatial variation
is taken into account evenwith a lower time resolution (r¼ 0.72 for
the UB ambient PM versus r¼ 0.87 for the ADMS for PM2.5; Fig. 3). A
possible explanation for this could be that buses take more resi-
dential roads, and therefore there is a higher variability among the
different sections of the route, which can be only taken into account
when being spatiallymatched. On the other hand, car routes always
used main streets and, therefore, higher temporal resolution be-
comes more important since it accounts for the traffic variation
within the day. Correlations for PM2.5 during walking are similar for
both types (high temporal or high spatial resolution) of ambient
PM2.5 concentrations (r ¼ 0.82 in both cases). For PM10, a higher
temporal resolution (r ¼ 0.70) seems to catch the PM10 variability
during walking trip better than a higher spatial resolution
(r ¼ 0.57).
3.2. Multivariate regression models including meteorology

Concentrations during commuting times might be affected by
more than just one variable, therefore we performed multivariate
regression models assessing the effect of wind speed together with
other possible predictor variables. Table 5 shows the results for the
above-ground modes (car, bus and walking) from the linear
regression models in which we assessed the predictor variables of
route, period, and wind speed (for the equivalent models with log-
transformed concentrations see SI Table S2). Only significant vari-
ables (p-value <0.05) were included in the models and presented
here. SI Table S3 presents the equations describing the models. The
route was a significant factor only for BC in car and PNC in buses.
Similarly, Good et al. (2015) compared alternative and direct routes
by car and found lower BC concentrations in the alternative routes
but little differences in PNC and PM2.5. For PNC, the selected route
for the bus trips was an important factor that explained 30% of the
variation (Table 5, Fig. 4). The traffic intensity of the route and the
street and built environment characteristics affecting the disper-
sion of pollutants (and therefore the background concentrations)
might be behind the differences between the routes reported in the
model results (Ai and Mak, 2015; Amato et al., 2009; Choi et al.,
2016; Dons et al., 2013; Goel and Kumar, 2016, 2015a; Weber
et al., 2006; Xu et al., 2016). Although PM is influenced by traffic
emissions, especially the PM1 and PM2.5 fraction, there are several
other sources affecting its concentration and its spatial distribution



Fig. 3. Scatterplots and Pearson correlation coefficient between in-vehicle, urban background (UB) ambient (high temporal resolution) and modelled (ADMS; high spatial reso-
lution) ambient PM2.5 and PM10 for (a) car, (b) bus, (c) walking and (d) underground trips. The correlations were made for trip-averaged PM concentrations. Black numbers indicate
significant correlation coefficients at p-values <0.05. Temp ¼ Temperature, RH ¼ Relative Humidity, WS ¼ Wind Speed.
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is more homogeneous than for traffic tracers (Minguill�on et al.,
2012), which explain why the route was not a determinant factor
for PM. Receptor modelling at an urban background site in London
indicated that traffic contributed to 4.5% of total PM10 concentra-
tions (non-exhaust emissions excluded) while the traffic source
contributed to 45% of PNC (Beddows et al., 2015). At traffic sites, the
contribution of traffic emissions is expected to be higher in both PM
mass concentrations and PNC. BC is also considered as a better
tracer of traffic emission than PM mass (Reche et al., 2011; WHO,
2012).

The period of the day was also significant for PNC (13% of
explained variation) and BC (12%) in car trips, but not for bus and
walking trips (Fig. 4). Morning trips were used as the reference in
the models, with afternoon and evening trips showing negative
regression coefficients for both pollutants. This indicates that
morning trips will show the highest concentrations, followed by
evenings (b ¼ �1.30 for BC and b ¼ �2 249 for PNC; Table 5). Af-
ternoon trips show the lowest concentrations (b¼�1.67 for BC and
b ¼ �2 974 for PNC). A peak for PNC and BC has been previously
observed during the morning in urban environments, exhibiting
the impact of traffic emissions during this period (Costabile et al.,
2009; Morawska et al., 2008; P�erez et al., 2010; Weichenthal
et al., 2008). We would also expect this factor to influence bus
and walking concentrations, but they were not statistically



Table 5
Regressionmodels and ANCOVA for car, bus and walking trips. Separate models were performed for each pollutant and transport mode. The regression coefficients (b) for each
of the predictor variables included in the model (only significant variables) and the intercept (a) are shown. The Adjusted R2 for the entire model is presented. n ¼ number of
measurements included in the model; p-value(F) ¼ value for the ANCOVA F test, significance set at p-value <0.05; R2 ¼ ratio of the sum of squared residuals of the corre-
sponding variable to the total sum of squares.

CAR BUS WALKING

ANCOVA ANCOVA ANCOVA

b p-value(F) R2 b p-value(F) R2 b p-value(F) R2

Model for BC Adjusted R2 ¼ 0.51, n ¼ 83 Adjusted R2 ¼ 0.49, n ¼ 42 Adjusted R2 ¼ 0.27, n ¼ 128

Route
(reference: Route 1)

0.033 0.07

Route 2 �1.19
Route 3 0.00
Route 4 �0.69

Period
(reference: Morning)

<0.001 0.12

Afternoon �1.67
Evening �1.30

Wind Speed �0.48 <0.001 0.25 �1.22 <0.001 0.50 �0.49 <0.001 0.28
Intercept 8.47 10.53 4.30

Model for PNC Adjusted R2 ¼ 0.44, n ¼ 74 Adjusted R2 ¼ 0.56, n ¼ 40 Adjusted R2 ¼ 0.09, n ¼ 125

Route
(reference: Route 1)

0.001 0.30

Route 2 �4 284
Route 3 �1 121
Route 4 �1 379

Period
(reference: Morning)

0.001 0.13

Afternoon �2 974
Evening �2 249

Wind Speed �724 <0.001 0.25 �1 176 0.003 0.16 �580 <0.001 0.09
Intercept 14,538 16,324 10,077

Model for PM1 Adjusted R2 ¼ 0.31, n ¼ 79 Adjusted R2 ¼ 0.48, n ¼ 42 Adjusted R2 ¼ 0.12, n ¼ 129

Wind Speed �1.50 <0.001 0.32 �2.25 <0.001 0.49 �1.74 <0.001 0.12
Intercept 15.15 18.44 18.77

Model for PM2.5 Adjusted R2 ¼ 0.32, n ¼ 79 Adjusted R2 ¼ 0.49, n ¼ 42 Adjusted R2 ¼ 0.12, n ¼ 129

Wind Speed �1.54 <0.001 0.33 �2.90 <0.001 0.50 �1.95 <0.001 0.13
Intercept 15.89 24.87 23.04

Model for PM10 Adjusted R2 ¼ 0.31, n ¼ 79 Adjusted R2 ¼ 0.28, n ¼ 42 Adjusted R2 ¼ 0.06, n ¼ 129)

Wind Speed �1.62 <0.001 0.32 �4.98 <0.001 0.30 �2.45 0.002 0.07
Intercept 17.09 59.22 40.82
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significant and, therefore, finally excluded from the models. In the
study from De Nazelle et al. (2012), time of the day was also a
significant factor explaining the variation of BC (13%) and PNC (5%)
in Barcelona (Spain).

Wind speed was the common significant predictor for car, bus
and walking for all pollutants; it was the only predictor variable for
the PM fractions. De Nazelle et al. (2012) found wind speed to
explain 6% of the variation of BC concentrations but this factor was
not important for PNC or PM2.5, while in our case it explains be-
tween 16% and 50% of the variability in the bus trips, between 25
and 33% in car trips, and between 7 and 28% for walking trips.
However, Kaur and Nieuwenhuijsen (2009) and Weichenthal et al.
(2008) identified wind speed as a significant determinant of PNC in
line with our findings. In all cases, the models indicate a decrease in
concentrations with increasing wind speed. Weichenthal et al.
(2008) observed that an increase in wind speed of 1 m s�1 resul-
ted in a decrease of mean PNC exposures by 223 cm�3 and
229 cm�3 for bus and car modes, respectively, indicating an iden-
tical effect of wind speed in both transport modes. We found a
stronger effect, with an increase of 1m s�1 resulting in a decrease of
724 cm�3 for car and 1176 cm�3 for buses. Likewise, for BC and PM
the effect of wind speed is also stronger in buses than in cars,
probably because the diluting effects of wind affect more
importantly those vehicles with open windows. There is a consis-
tent increment in the absolute value of the regression coefficient as
the particle size increased from PM1 to PM10, especially during the
bus trips: an increase in 1 m s�1 in wind speed involves a decrease
of 2.25, 2.9 and 4.98 mg m�3 for PM1, PM2.5 and PM10 respectively
(Table 5). Previous studies at roadside traffic monitoring stations
observed that for low wind speeds (<2.5 m s�1) there was a
decrease in concentrations of the coarse PM fraction (PM2.5-10) with
increasing wind speed due to dispersion; on the other hand, PM2.5-

10 concentrations increased with higher wind speeds (>4.5 m s�1)
due to wind-driven resuspension (Charron and Harrison, 2005;
Cheng and Li, 2010; P�erez et al., 2010). This dynamics led to a
smooth U-shape trend when plotting PM2.5-10 concentrations
against wind speed. Our in-vehicle and walking PM10 concentra-
tions do not show this U-shape when plotted against ambient wind
speed (Fig. 2), but the fact that wind speed explained much less
variation for PM10 (Table 4) than for PM1 and PM2.5 might be
explained by the wind driven re-suspension of PM2.5-10.

The intercepts for PM in car trips are very similar between the
different fractions, while it increases importantly from PM1 to PM10
in bus and walking modes. Windows in the buses were generally
open while car measurements were carried out with the windows
closed and the outside air getting inside the cabin through the
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Fig. 4. Explained variation by each factor included in the models for car, bus, walking, and underground.
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filtering system. This filtering system is more efficient for coarse
particles (Kumar and Goel, 2016), which results in quite similar
concentrations in car and bus for PM1 (as well as for BC and PNC)
while being higher for PM2.5 and much higher for PM10 in buses.
Likewise, Huang et al. (2012) reported lower PM2.5 concentrations
during the commute in taxi compared with buses. Weichenthal
et al. (2008) also assessed the determinant factors in buses and
cars in Montr�eal. They did not observe the opening of windows as a
significant determinant of PNC exposures, indicating that these
pollutants can easily reach the interior of the car and bus cabins
regardless of the windows opening (Goel and Kumar, 2016, 2015a,
2015b).

The multivariate models for walking trips indicate that only
wind speed was a significant predictor for all the pollutants
(Table 5). Wind speed explained between 7 and 28% of the variation
in the concentrations (Fig. 4). The R2 of the walking models was
lower or much lower than for the other transport modes. This
might be due to the shorter duration of thewalking trips or because
there are other parameters (such as whether the wind direction
was blowing perpendicularly from the street towards the
commuter position or vice-versa) affecting the concentrations
during walking that we have not considered due to unavailability of
data.

Table 6 shows the results for the underground dataset with the
period of the day, lines and types of windows on the underground
train, and wind speed as possible predictor variables (SI Table S4
shows the models with log-transformed concentrations). From all
these variables, lines and types of windows were the main and only
significant predictor for all pollutants, with the exception of wind
speed, which was also significant in the PNC model (although
explaining little variation). Lines and types of windows explained
42% of the variation for PNC while a much larger variation for PM1
(90%), PM2.5 (91%) and PM10 (89%). District trains with OW had an
increase in concentrations of 1 684 cm�3 for PNC, 11.52 mg m�3 for
PM1, 40.69 mg m�3 for PM2.5 and 63.33 mg m�3 for PM10 than trains
with NOW. In trains with OW, outside-train pollutants can easily
enter inside the carriage. Higher concentrations have also been
reported in trains with OW in underground systems from other
cities (Cartenì et al., 2015; Martins et al., 2016). Trains circulating in
the Northern and Victoria line were always equipped with OW and
concentrations in those trains were always higher than trains in the
district line. For instance, after subtracting the estimate for District
line with OW from the estimate for trains in the Northern line with
OW (bNorthern OW e bDistrict OW) we can observe how trains in the
Northern line have an additional 1 287 cm�3 PNC, 29.17 mg m�3 for
PM1, 60.47 mg m�3 for PM2.5, and 107.38 mg m�3 for PM10 in com-
parison with District trains with OW. Factors that affect concen-
trations in the underground tunnels, such as the proportion of the
sections that go above-ground, the total length of the line tunnel or
different ventilation systems in the tunnels, might explain the
differences in concentration between the underground lines. In the
multivariate analysis, the wind speed was only significant (p-value
<0.05) for the PNC model and explained only 7% of the variation.
The results for the underground could be easily incorporated to
other models such as the London Hybrid Exposure Model (Smith
et al., 2016) for PM2.5 to estimate more accurately exposures on
trips in the underground (that particular model uses average con-
centrations for all underground trips).

3.3. Regression model including ambient concentrations

We performed a linear regression of measured PM2.5 and PM10
concentrations during car, bus and walking trips against two
different sets of ambient PM2.5 and PM10 data. One of the sets



Table 6
Regression models and ANCOVA for the underground trips. Separate models were
performed for each pollutant and transport mode. The regression coefficients (b) for
each of the predictor variables included in the model (only significant variables) and
the intercept (a) are shown. The Adjusted R2 for the entire model is presented.
n ¼ number of measurements included in the model, p-value(F) ¼ value for the
ANCOVA F test, significance set at p-value <0.05; R2 ¼ ratio of the sum of squared
residuals of the corresponding variable to the total sum of squares.

UNDERGROUND

ANCOVA

b p-value(F) R2

Model for PNC Adjusted R2 ¼ 0.50, n ¼ 80

Line
(reference: District NOW)

<0.001 0.42

District OW 1 684
Northern OW 2 971
Northern þ victoria OW 3 045

Wind Speed �352 0.002 0.07
Intercept 6 193

Model for PM1 Adjusted R2 ¼ 0.89, n ¼ 86

Line
(reference: District NOW)

<0.001 0.90

District OW 11.52
Northern OW 40.69
Northern þ victoria OW 63.33

Intercept 13.66

Model for PM2.5 Adjusted R2 ¼ 0.91, n ¼ 86

Line
(reference: District NOW)

<0.001 0.91

District OW 23.05
Northern OW 83.52
Northern þ victoria OW 110.91

Intercept 16.26

Model for PM10 Adjusted R2 ¼ 0.88, n ¼ 86

Line
(reference: District NOW)

<0.001 0.89

District OW 63.75
Northern OW 171.13
Northern þ victoria OW 193.85

Intercept 26.93
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corresponds to the PM concentrations measured in a single UB
monitoring station close to the destination, which comprises data
at a high time resolution (15 min time resolution) but lacks spatial
coverage. The other set is the data obtained from the ADMSmodels
with a high spatial resolution, but at low temporal resolution (daily
averages). Further information regarding those variables is avail-
able in Section 2.3. Models for the underground were not per-
formed, owing to the absence of a linear relationship with ambient
concentrations (Fig. 3). We could not assess other pollutants due to
the lack of ambient concentration data.

Table 7 shows the results for the above-ground modes (car, bus
and walking) from the linear regression and ANCOVA models
where the variables route, period, and either UB or ADMS ambient
concentration were explored (see SI Table S5 for models with log-
transformed concentrations). The route was not a significant
explanatory variable for any of the models. The period was some-
times included in the model, although always explaining little of
the variation (2e13%), especially for the models with the UB
ambient concentration (2e8%).

Ambient concentrations were the main predictor variables,
explaining between 26 and 81% of the variation. UB ambient con-
centrations predicted PM2.5 concentrations in car trips much better
than location specific ADMS concentrations (adjusted R2 ¼ 0.82
versus 0.32). Our car routes mainly took main and busy roads. This
might indicate that for main roads, the variation of concentrations
is more importantly affected by the temporal than by the spatial
variability. Contrary, PM2.5 concentrations for the bus trips were
much better predicted by the ADMS than from the single UB
monitoring station (R2 ¼ 0.80 vs 0.50) concentrations, although
similar R2 was obtained for PM10 for the ADMS (R2 ¼ 0.48) and UB
(R2 ¼ 0.53). The routes for the bus lines usually take more resi-
dential roads, and the ADMS datawould help to capture thewithin-
city variability between the main and the less busy streets. This fact
indicates that the variability in concentrations between main roads
and small streets is much higher than between different main
roads.

Walking trips were better predicted by the UB ambient con-
centrations (R2 ¼ 0.74 and 0.51 for UB ambient PM2.5 and PM10,
respectively) although the fit on the models including the ADMS
ambient concentrations was also good for PM2.5 (R2¼ 0.67 and 0.30
for ADMS ambient PM2.5 and PM10, respectively).

The models for PM2.5 obtained a better fit than for PM10, with
the exception of the bus with the UB ambient PM where the
adjusted R2 were very similar. Wewould expect a lower fit for PM10
in the car because the filtering system of the vehicle hinders the
entrance of particles in the coarse fraction (PM2.5-10; Kumar and
Goel, 2016).

3.4. Extrapolation: validation of the models

A subset of a total of 20 trips (8 for car, 8 for underground and 4
for bus) were not included in the models for subsequent validation.
SI Table S6 shows the descriptive statistics for the trips used for
validation, which are similar to the ones used to build the models
(Table 4). A limitation of this validation is that few samples were
extracted from the original dataset to avoid discarding of too much
data for constructing robust models. Although the number of
samples are relatively lower for validation, this exercise gives
reasonably good insight on the performance of the models.
Therefore, the following validation is merely informative and
should be generalised with caution.

Table 8 shows the equation and the R2 obtained for the corre-
lations between the measured and the modelled air pollutant
concentrations. For the ease of comparison, we included the
adjusted R2 from the multivariate models.

Regarding the models with meteorology, the models for the
underground showed the best results when assessing the goodness
of fit (Table 8). For the underground models, only one categorical
variable was included (except for wind speed in the case of PNC).
Just knowing the underground line and if the windows in the train
are open allows a good prediction of concentrations. However, this
model fails to capture the variability within the line (Fig. S3) that
might be affected by other factors that we did not consider (such as
the frequency of sweeping the platform surfaces or cleaning the
train trails). The correlation for BC concentrations for the car mode
is moderate, but weak for PNC and especially for the PM fractions.
The validation of the concentration in bus trips is made based on
only four observations, and in some cases, it is driven by a simple
data point. Moreover, the flat slopes indicate that the model is not
able to capture the variability of the actual concentrations. As ex-
pected because of the low adjusted R2 of themodels for thewalking
trips, very weak correlation were observed for this travel mode.
Further variables such as the relative direction, parallel or
perpendicular, of the wind speed to the street; or the distance to
the centre of the street for walking modes, which are not included
in this study could be explored to explain the remaining variability.

In the case of the models including ambient concentrations, the
R2 for the car, bus and walk were moderate to good (0.30e0.80).
PM2.5 and PM10 concentrations in transport microenvironments



Table 7
Regressionmodels and ANCOVA for car, bus and walking trips. Separatemodels were performed for each pollutant and transport mode. The regression coefficients (b) for each
of the predictor variables included in the model (only significant variables) and the intercept (a) are shown. The Adjusted R2 for the entire model is presented. n ¼ number of
measurements included in the model; p-value(F) ¼ value for the ANCOVA F test, significance set at p-value <0.05; R2 ¼ ratio of the sum of squared residuals of the corre-
sponding variable to the total sum of squares.

CAR BUS WALKING

ANCOVA ANCOVA ANCOVA

b p-value(F) R2 b p-value(F) R2 b p-value(F) R2

Measured vs. UB ambient PM

Model for PM2.5 Adjusted R2 ¼ 0.82, n ¼ 77 Adjusted R2 ¼ 0.50, n ¼ 18 Adjusted R2 ¼ 0.74, n ¼ 89

Period (ref: Morning) 0.018 0.02 <0.001 0.08
Afternoon �2.02 �5.68
Evening �1.65 �5.10

UB Ambient PM2.5 0.68 <0.001 0.80 0.65 <0.001 0.52 1.00 <0.001 0.67
Intercept 0.76 4.16 5.21

Model for PM10 Adjusted R2 ¼ 0.35, n ¼ 78 Adjusted R2 ¼ 0.53, n ¼ 41 Adjusted R2 ¼ 0.51, n ¼ 124

Period (ref: Morning) 0.025 0.03
Afternoon �5.98
Evening �2.02

UB Ambient PM10 0.2 <0.001 0.36 0.7 <0.001 0.54 0.7 <0.001 0.47
Intercept 2.8 22.4 12.7

Measured vs. ADMS ambient PM

Model for PM2.5 Adjusted R2 ¼ 0.32, n ¼ 80 Adjusted R2 ¼ 0.80, n ¼ 40 Adjusted R2 ¼ 0.67, n ¼ 43

Period (ref: Morning) 0.039 0.06
Afternoon �2.56
Evening �3.58

ADMS Ambient PM2.5 0.48 <0.001 0.28 1.16 <0.001 0.81 1.58 <0.001 0.68
Intercept 1.08 �6.16 �11.33

Model for PM10 Adjusted R2 ¼ 0.31, n ¼ 80 Adjusted R2 ¼ 0.48, n ¼ 40 Adjusted R2 ¼ 0.30, n ¼ 43

Period (ref: Morning) 0.039 0.06 0.015 0.13
Afternoon �2.63 �3.47
Evening �3.87 �11.15

ADMS Ambient PM10 0.35 <0.001 0.26 1.39 <0.001 0.40 2.1 <0.001 0.32
Intercept 1.65 10.54 �12.7
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were by far better predicted by ambient concentrations than by
wind speed.

4. Summary, conclusions and future work

It is known that commuters can face very high and variable
concentrations but the determinants of these high concentrations
are still not fully understood. In this work, we identified and
quantified key drivers of the exposure during commuting in four
different routes in London. We performed linear regression models
with ANCOVA to assess the determinants of the mean concentra-
tion faced while travelling by car, bus, underground or walking. We
developed separate multivariate models for the dependent vari-
ables of wind speed and ambient concentrations to avoid collin-
earity. We could not assess other meteorological parameters such
as ambient temperature due to their dependence on the period of
the day.

Wind speed was a significant predictor variable of all pollutants
for the above-ground modes (car, bus and walk) but not for the
underground. A decrease in concentration was observed with
increasing wind speed, for example, an increase of 1 m s�1 resulted
in a decrease in PNC of 724 cm�3 for the car and 1176 cm�3 for the
buses, probably because the diluting effects of wind affect more
importantly those vehicles with open windows. For PM, the abso-
lute value of the wind speed coefficients increased together with
particle size, especially for the bus trips; models predicted a
decrease of 2.25, 2.90 and 4.98 mg m�3 for PM1, PM2.5 and PM10,
respectively, for each unit of increase in wind speed (m s�1). Wind
speed explained between 7 and 50% of the variability and was the
only significant predictor for PM concentrations. On the other hand,
the route was a significant predictor variable for BC in car
(explaining 7% of the variability) and for PNC in buses (30% of the
variability). Different traffic intensity, type of fleet and speed of the
traffic flow in each of the routes and the effect of built environment
on pollutant dispersion might affect on-road concentrations of
traffic-related pollutants such as BC and PNC. Time of the day was
also a significant predictor variable for BC and PNC in car trips.

Surprisingly, our results showed that around 90% of the con-
centration variations in the PM fractions (42% in PNC) in the un-
derground trips were explained by the underground line and by the
type of windows. District trains with openable windows had an
increase in concentrations of 1 684 cm�3 for PNC, 11.52 mg m�3 for
PM1, 40.69 mg m�3 for PM2.5 and 63.33 mg m�3 for PM10 than trains
with non-openable windows. Wind speed explained only 7% of the
PNC in the underground.

Ambient concentrations were predictor variables for PM2.5 and
PM10 trip concentrations, explaining between 26 and 81% of the
variation in the above-ground modes (car, bus and walking).
Ambient concentrations were a better predictor of in-transit PM2.5

and PM10 concentrations than wind speed (e.g., for PM2.5: r ¼ 0.90,
r ¼ 0.72, r ¼ 0.82 for correlations with ambient concentrations;
r ¼ �0.57, r ¼ �0.71, r ¼ �0.35 for correlations with wind speed;
car, bus and walking respectively). Ambient PM concentrations at a
high temporal resolution from a single monitoring station
explained a higher variation of concentrations in car trips than daily
averages spatially matched, while the contrary was observed for
bus trips. This is due to the bus routes running through streets with
a high variety of traffic intensities, which is captured only by



Table 8
Equation and R2 from the correlation between the measured pollutant concentration and the modelled concentrations obtained by using the models including meteorology
and ambient concentrations (models detailed in Tables 6e8). The adjusted R2 from the models is also shown for comparison. In bold are the values with R2 � 0.30.

Correlation modelled vs measured Model

n Equation
(y ¼ modelled; x ¼ measured)

R2 Adjusted R2

For the models with meteorology (shown in Tables 6 and 7)

Car
BC 8 y ¼ 0.35x þ 3.33 0.31 0.51
PNC 8 y ¼ 0.21x þ 8 028.4 0.12 0.44
PM1 8 y ¼ 0.14x þ 7.40 0.04 0.31
PM2.5 8 y ¼ 0.13x þ 7.92 0.03 0.32
PM10 8 y ¼ 0.10x þ 8.88 0.02 0.31

Bus
BC 4 y ¼ �0.05x þ 7.37 0.50 0.49
PNC 4 y ¼ 0.25x þ 9 080 0.21 0.56
PM1 4 y ¼ �0.02x þ 12.29 0.05 0.48
PM2.5 4 y ¼ �0.02x þ 16.89 0.02 0.49
PM10 4 y ¼ �0.10x þ 4 934 0.34 0.28

Walking
BC 12 y ¼ 0.22x þ 2.08 0.21 0.27
PNC 11 y ¼ �0.02x þ 8 170 0.01 0.09
PM1 12 y ¼ �0.01x þ 12.76 0.00 0.12
PM2.5 12 y ¼ 0.00x þ 16.12 0.00 0.12
PM10 12 y ¼ 0.03x þ 31.24 0.02 0.06

Underground
PNC 7 y ¼ 0.52x þ 2 684 0.45 0.50
PM1 8 y ¼ 1.07� e 6.00 0.93 0.89
PM2.5 8 y ¼ 1.08� e 9.75 0.96 0.91
PM10 8 y ¼ 1.07� e 20.43 0.95 0.88

For the models with UB ambient concentrations (shown in Table 7)

Car
PM2.5 8 y ¼ 1.59x þ 5.88 0.49 0.82
PM10 8 y ¼ 0.67x þ 2.24 0.57 0.35

Bus
PM2.5 2 e e 0.50
PM10 4 y ¼ 0.04x þ 37.69 0.00 0.53

Walking
PM2.5 8 y ¼ 0.53x þ 4.36 0.85 0.74
PM10 11 y ¼ 0.49x þ 13.47 0.52 0.51

For the models with ADMS concentrations (shown in Table 7)

Car
PM2.5 8 y ¼ 0.24x þ 6.55 0.05 0.32
PM10 8 y ¼ 0.22x þ 7.35 0.04 0.31

Bus
PM2.5 4 y ¼ 0.20x þ 10.20 0.27 0.80
PM10 4 y ¼ 2.12� e 49.78 0.46 0.48

Walking
PM2.5 4 y ¼ 0.34x þ 11.39 0.34 0.67
PM10 4 y ¼ 0.70x þ 18.02 0.54 0.30
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location-specific concentrations (high spatial resolution).
Further possible explanatory variables (such as the relative di-

rection e parallel or perpendicular e of the wind speed to the
street; the distance to the centre of the street for walking modes;
traffic intensity and composition, travel speeds, road size, type of
fuels) could also be included in future studies in order to explain
the remaining unexplained component of the variation of con-
centrations in commuting exposures and to better assess if a the
most deprived are also the most exposed while commuting.
Nevertheless, in some cases, themodels were able to explain a large
component of the variation in concentrations (especially in the
underground trips), and this information can be used to reduce
personal exposures of London commuters as well as to extrapolate
the estimates of exposure at a population level for other in-
vestigations such as epidemiological studies. Furthermore, under-
standing the variation in concentration could contribute to more
efficient and inclusive air quality policies in urban centres and
better urban planning. Finally, a policy relevant addition to this
study would be to measure the personal exposure of cyclists for
different routes, given Transport for London's ambitions to develop
cycling as an integral part of London's transport system.
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