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Formal Methods and Tools, University of Twente, The Netherlands
†E-mail: e.j.j.ruijters@utwente.nl (E. Ruijters), m.i.a.stoelinga@utwente.nl (M. I. A. Stoelinga)

∗Corresponding author at: Universiteit Twente, t.a.v. Enno Ruijters, Vakgroep EWI-FMT, Zilverling, P.O. Box 217, 7500 AE Enschede

Abstract

Fault tree analysis (FTA) is a very prominent method to analyze the risks related to safety and economically critical
assets, like power plants, airplanes, data centers and web shops. FTA methods comprise of a wide variety of modelling
and analysis techniques, supported by a wide range of software tools. This paper surveys over 150 papers on fault tree
analysis, providing an in-depth overview of the state-of-the-art in FTA. Concretely, we review standard fault trees, as
well as extensions such as dynamic FT, repairable FT, and extended FT. For these models, we review both qualitative
analysis methods, like cut sets and common cause failures, and quantitative techniques, including a wide variety of
stochastic methods to compute failure probabilities. Numerous examples illustrate the various approaches, and tables
present a quick overview of results.
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1. Introduction

Risk analysis is an important activity to ensure that
critical assets, like medical devices and nuclear power plants,
operate in a safe and reliable way. Fault tree analysis
(FTA) is one of the most prominent techniques here, used
by a wide range of industries. Fault trees (FTs) are a
graphical method that model how failures propagate through
the system, i.e., how component failures lead to system
failures. Due to redundancy and spare management, not
all component failures lead to a system failure. FTA inves-
tigates whether the system design is dependable enough.
It provides methods and tools to compute a wide range of
properties and measures.

FTs are trees, or more generally directed acyclic graphs,
whose leaves model component failures and whose gates
failure propagation. Figure 1 shows a representative ex-
ample, which is elaborated in Example 1.
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Concerning analysis techniques, we distinguish between
qualitative FTA, which considers the structure of the FT;
and quantitative FTA, which computes values such as fail-
ure probabilities for FTs. In the qualitative realm, cut sets
are an important measure, indicating which combinations
of component failures lead to system failures. If a cut set
contains too few elements, this may indicate a system vul-
nerability. Other qualitative measure we discuss are path
sets and common cause failures.

Quantitative system measures mostly concern the com-
putation of failure probabilities. If we assume that the
failure of the system components are governed by a prob-
ability distribution, then quantitative FTA computes the
failure probability for the system. Here, we distinguish
between discrete and continuous probabilities. For both
variants, the following FT measures are discussed. The
system reliability yields the probability that the system
fails with a given time horizon t; the system availability
yields the percentage of time that the system is opera-
tional; the mean time to failure yields the average time
before the first failure and the mean time between failures
the average time between two subsequent failures. Such
measures are vital to determine if a system meets its de-
pendability requirements, or whether additional measures
are needed. Furthermore, we discuss sensitivity analysis
techniques, which determine how sensitive an analysis is
with respect to the values (i.e., failure probabilities) in the
leaves; we also discuss importance measures, which give
means to determine how much different leaves contribute
to the overall system dependability.

While SFTs (standard, or static, fault trees) provide a
simple and informative formalism, it was soon realised that
it lacks expressivity to model essential and often occur-
ring dependability patterns. Therefore, several extensions
to fault trees have been proposed, which are capable of
expressing features that are not expressible in SFTs, like
spare management, different operational modes, and de-
pendent events. Dynamic Fault Trees are the best known,
but extended fault trees, repairable fault trees, fuzzy fault
trees, and state-event fault trees are popular as well. We
discuss these extensions, as well as their analysis tech-
niques.

In doing so, we have reviewed over 150 papers on fault
tree analysis, providing an extensive overview of the state-
of-the-art in fault tree analysis.

Organization of this paper As can be seen in the table
of contents, this paper first discusses standard fault trees
in Section 2, and then extensions that increase the expres-
siveness of the model. Dynamic fault trees, as the most
widely used extension, is discussed in depth in Section 3,
while other extensions are presented in Section 4.

For each of the models, we present the definition and
structure of the models, then methods for qualitative anal-
ysis, and then methods for quantitative analysis (if appli-
cable to the particular model). In each section, we dis-
cuss standard techniques is depth, while less common tech-

niques are presented more briefly. Definitions of repeatedly
used abbreviations and jargon can be found in Appendix
A.

Note that all literature references in the electronic ver-
sion are clickable, and that the reference list refers, for
each paper, to the pages where that paper is cited.

1.1. Research Methodology

We intend for this paper to be as comprehensive as
reasonable, but we cannot guarantee that we have found
every relevant paper.

To obtain relevant papers, we searched for the key-
words ’Fault tree’ in the online databases
Google Scholar (http://scholar.google.com),
IEEExplore (http://ieeexplore.ieee.org),
ACM Digital Library (http://dl.acm.org),
Citeseer (http://citeseerx.ist.psu.edu),
ScienceDirect (http://www.sciencedirect.com),
SpringerLink (http://link.springer.com),
and SCOPUS (http://www.scopus.com). Further arti-
cles were obtained by following references from the papers
found.

Articles were excluded that are not in English, or deemed
of poor quality. Furthermore, to limit the scope of this sur-
vey, articles were excluded that present only applications
of FTA, present only methods for constructing FTs, or
only describe techniques for fault diagnosis based on FTs,
unless the article also presents novel analysis or modeling
techniques. Articles presenting implementations of exist-
ing algorithms were only included if they describe a con-
crete tool.

1.2. Related work

Apart from fault trees, there are a number of other for-
malisms for dependability analysis [37]. We list the most
common ones below.

Failure Mode and Effects Analysis Failure Mode and
Effects Analysis (FMEA) [144, 36] was one of the first sys-
tematic techniques for dependability analysis. FMEA, and
in particular its extension with criticality FMECA (Failure
Mode, Effects and Criticality Analysis), is still very popu-
lar today; users can be found throughout the safety-critical
industry, including the nuclear, defence [174], avionics [73],
automotive [11], and railroad domains. These analyses of-
fer a structured way to list possible failures and the conse-
quences of these failures. Possible countermeasures to the
failures can also be included in the list.

If probabilities of the failures are known, quantitative
analysis can also be performed to estimate system reliabil-
ity and to assign numeric criticalities to potential failure
modes and to system components [174].

Constructing an FME(C)A is often one of the first
steps in constructing a fault tree, as it helps in determin-
ing the possible component failures, and thus the basic
events [168].
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HAZOP analysis A hazard and operability study (HA-
ZOP) [105] systematically combines a number of guide-
words (like insufficient, no, or incorrect) with parameters
(like coolant or reactant), and evaluates the applicability
of each combination to components of the system. This
results in a list of possible hazards that the system is sub-
ject to. The approach is still used today, especially in
industrial fields like the chemistry sector.

A HAZOP is similar to an FMEA in that both list
possible causes of a failure. A major difference is that an
FMEA considers failure modes of components of a sys-
tem, while a HAZOP analysis considers abnormalities in
a process.

Reliability block diagrams Similar to fault trees, reli-
ability block diagrams (RBDs) [127] decompose systems
into subsystems to show the effects of (combinations of)
faults. Similar to FTs, RBDs are attractive to users be-
cause the blocks can often map directly to physical compo-
nents, and because they allow quantitative analysis (com-
putation of reliability and availability) and qualitative anal-
ysis (determination of cut sets).

To model more complex dependencies between compo-
nents, Dynamic RBDs [61] include standby states where
components fail at a lower rate, and triggers that allow
the modeling of shared spare components and functional
dependencies. This may improve the accuracy of the com-
puted reliability and availability.

OpenSESAME The OpenSESAME modeling environ-
ment [182] extends RBDs by allowing more types of inter-
component dependencies, common cause failures, and lim-
ited repair resources. This is mostly an academic approach
and sees little use in industry.

SAVE The system availability estimator (SAVE) [85] mod-
eling language is developed by IBM, and allows the user to
declare components and dependencies between them using
predefined constructs. The resulting model is then ana-
lyzed to determine availability.

AADL The Architecture Analysis and Design Language
(AADL) [165] is an industry standard for modeling safety-
critical systems architectures. A complete AADL speci-
fication consists of a description of nominal behaviour, a
description of error behaviour and a fault injection speci-
fication that describes how the error behaviour influences
the nominal behaviour.

Such an AADL specification can be used to derive an
FMEA table [90] in a systematic way. One can also au-
tomatically discover failure effects that may be caused by
combinations of faults [72]. If failure rates are known,
quantitative analysis can also determine the system relia-
bility and availability [36].

UML Another industry standard for modeling computer
programs, but also physical systems and processes, is the
Unified Modeling Language (UML) [156]. UML provides
various graphical models such as Statechart diagrams and

Sequence diagrams to assist developers and analysts in de-
scribing the behaviours of a system.

It is possible to convert UML Statechart diagrams into
Petri Nets, from which system reliability can be computed
[25, 20]. Another approach combines several UML dia-
grams to model error propagation and obtain a more ac-
curate reliability estimate [138].

Möbius The Möbius framework was developed by Sanders
et al. [59, 158] as a multi-formalism approach to modeling.
The tool allows components of a system to be specified
using different techniques and combined into one model.
The combined model can then be analyzed for reliability,
availability, and expected cost using various techniques de-
pending on the underlying models.

1.3. Legal background

FTA plays an important role in product certification,
and to show conformance to legal requirements. In the Eu-
ropean Union, legislature mandates that employers assess
and mitigate the risks that workers face [2]. FTA can be
applied in this context, e.g. to determine the conditions
under which a particular machine is dangerous to work-
ers [96]. The U.S. Department of Labor has also accepted
the use of FTA for risk assessment in workplace environ-
ments [132].

Similarly, the EU Machine Directive [1] requires man-
ufacturers to determine and document the risks posed by
the machines they produce. FTA is one of the techniques
that can be used for this documentation [93].

The transportation industry has also adopted risk anal-
ysis requirements, and FTA as a technique for perform-
ing such analysis. The Federal Aviation Administration
adopted a policy in 1998 [74] requiring a formalized risk
management policy for high-consequence decisions. Their
System Safety Handbook [75] lists FTA as one of the tools
for hazard analysis.

2. Standard Fault Trees

As discussed in the previous section, it can be necessary
to analyze system dependability properties. A fault tree
is a graphical model to do so: It describes the relevant
failures that might occur in the system, and how these
failures interact to possibly cause a failure of the system
as a whole.

Standard, or static, fault trees (SFTs) are the most ba-
sic fault trees. They have been introduced in the 1960s at
Bell Labs for the analysis of a ballistic missile [71]. The
classical Fault Tree Handbook by Vesely et al. [177] pro-
vides a comprehensive introduction to SFTs. Below, we
describe the most prominent modelling and analysis tech-
niques for SFTs.

3



System Failure

G1G1 In Use (U)

G2

G3 B

G4 G5

C1 PS
G6

C2PS

M1 M2 M3

2/3

Figure 1: Example FT of a computer system with a non-redundant
system bus (B), power supply (PS), redundant CPUs (C1 and C2)
of which one can fail with causing problems, and redundant memory
units (M1, M2, and M3) of which one is allowed to fail; failures are
propagated by the gates (G1-G6). PS is somewhat darker to indicate
that both leaves correspond to the same event.

(a)
Intermediate

event
(b) Transfer

in
(c) Transfer

out
(d) Undeveloped

event

Figure 2: Images of non-basic events in fault trees

2.1. Fault Tree Structure

A fault tree is a directed acyclic graph (DAG) consist-
ing of two types of nodes: events and gates. An event is
an occurrence within the system, typically the failure of a
subsystem down to an individual component. Events can
be divided into basic events (BEs), which occur sponta-
neously, and intermediate events, which are caused by one
or more other events. The event at the top of the tree,
called the top event (TE), is the event being analyzed,
modeling the failure of the (sub)system under considera-
tion.

In addition to basic events depicted by circles, Fig-
ure 2 shows other symbols for events. An intermediate
event is depicted by a rectangle. Intermediate events can
be useful for documentation, but do not affect the analy-
sis of the FT, and may therefore be omitted. If an FT is
too large to fit on one page, triangles are used to transfer

(a) AND gate (b) OR gate

k/N

(c) k/N gate
(d) INHIBIT

gate

Figure 3: Images of the gates types in a standard fault tree

events between multiple FTs to act as one large FT. Fi-
nally, sometimes subsystems are not really BEs, but insuf-
ficient information is available or the event is not believed
to be of sufficient importance to develop the subsystem
into a subtree. Such an undeveloped event is denoted by a
diamond.

2.1.1. Gates

Gates represent how failures propagate through the
system, i.e. how failures in subsystems can combine to
cause a system failure. Each gate has one output and one
or more inputs. The following gates are commonly used in
fault trees. Images of the gates are shown in Figure 3.

AND Output event occurs if all of the input events occur,
e.g. gate G3 in the example.

OR Output event occurs if any of the input events occur,
e.g. gate G2 in the example.

k/N a.k.a. VOTING, has N inputs. Output event occurs
if at least k input events occur. This gate can be
replaced by the OR of all sets of k inputs, but us-
ing one k/N gate is much clearer. Gate G6 in the
example is a 2/3 gate.

INHIBIT Output event occurs if the input event occurs
while the conditioning event drawn to the right of
the gate also occurs. This gate behaves identically
to an AND-gate with two inputs, and is therefore not
treated in the rest of this paper. It is sometimes used
to clarify the system behaviour to readers. Gate G1
in the example is an INHIBIT gate.

Several extensions of FTs introduce additional gates
that allow the modelling of systems that can return to
a functional state after failure. These ‘Repairable Fault
Trees’ will be described in Section 4.3. Note that other
formalisms (including standard FTs) include repairs, but
do not model them with additional gates.

Other extensions include a NOT-gate or equivalent, so
that a component failure can cause the system to go from
failed to working again [110], or a functioning component
can contribute to a system failure. Such a system is called
noncoherent. It may indicate an error in modeling [177],
however some systems naturally exhibit noncoherent be-
haviour: For example, the combination of a failed safety
valve and a functioning pump can lead to an explosion,
while a failed pump always prevents this.
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Example 1. Figure 1 (modified from Malhotra and Trivedi
[120, 14]) shows a fault tree for a partially redundant com-
puter system. The system consists of a bus, two CPUs 3
memory units, and a power supply. These components are
represented as basic events in the leaves of the tree, B, C1,
C2, M1, M2, M3, and PS respectively. The top of the
tree (labeled System Failure here) represents the event of
interest, namely a failure of the computer system.

As stated, gates represent how failures propagate from
through the system: Gate G1 is an Inhibit-gate indicating
that a system failure is only considered when the system is
in use, so that faults during intentional downtime do not
affect dependability metrics.

The OR gate G2, just below G1, indicates that the fail-
ure of either the bus (basic event B) or the computing sub-
system causes a system failure. The computing subsystem
consists of two redundant units combined using an AND
gate G3 so that both need to fail to cause an overall fail-
ure. Each unit can fail because either the CPU (C1 or C2)
fails or the power supply (PS) fails. Note that the event PS
is duplicated for each subtree, but still represents a single
event.

A failure of the memory subsystem can also cause a
unit to fail, but this requires a failure of two memory units.
This is represented by the 2/3 gate G6. This gate is an
input of both compute subsystems, making this a DAG, but
the subtree could also have been duplicated if the method
used required a tree but allowed repeated events.

2.1.2. Formal definition

To formalize an FT, we use GateTypes =
{And ,Or} ∪ {VOT(k/N) | k,N ∈ N>1, k ≤ N}. Following
Codetta-Raiteri et al. [52], we formalize an FT as follows.

Definition 2. An FT is a 4-tuple F = 〈BE , G, T, I〉, con-
sisting of the following components.

• BE is the set of basic events.

• G is the set of gates, with BE ∩ G = ∅. We write
E = BE ∪G for the set of elements.

• T : G 7→ GateTypes is a function that describes the
type of each gate.

• I : G→ P(E) describes the inputs of each gate. We
require that I(g) 6= ∅ and that |I(g)| = N if T (g) =
VOT(k/N).

Importantly, the graph formed by 〈E, I〉 should be a directed
acyclic graph with a unique root TE which is reachable
from all other nodes.

This description does not include the INHIBIT gate,
since this gate can be replaced by an AND. The INHIBIT
gate may, however, be useful for documentation purposes.
Also, intermediate events are not explicitly represented,
again because they do not affect analysis.

Some analysis methods described in Sections 2.2 and
2.3 require the undirected graph 〈E, I〉 to be a tree, i.e.,
forbid shared subtrees. In this paper, an FT will be con-
sidered a DAG. An element that is the input of multiple
gates can be graphically depicted in two ways: The ele-
ment (and its descendants) can be drawn multiple times,
in which case the FT still looks like a tree, or the element
can be drawn once with multiple lines connecting it to its
parents. Since these depictions have the same semantics,
we refer to these elements as shared subtrees or shared BEs
regardless of graphical depiction.

2.1.3. Semantics

The semantics of an FT F describes, given a set S of
BEs that have failed, for each element e, whether or not
that element fails. We assume that all BEs not in S have
not failed.

Definition 3. The semantics of FT F is a function πF :
P(BE) × E 7→ {0, 1} where πF (S, e) indicates whether e
fails given the set S of failed BEs. It is defined as follows.

• For e ∈ BE, πF (S, e) = e ∈ S.

• For g ∈ G and T (g) = And, let
πF (S, g) =

∧
x∈I(g)

πF (S, x).

• For g ∈ G and T (g) = Or, let
πF (S, g) =

∨
x∈I(g)

πF (S, x).

• For g ∈ G and T (g) = VOT(k,N), let

πF (S, g) =

( ∑
x∈I(g)

πF (S, x)

)
≥ k.

Note that the AND gate with N inputs is semantically
equivalent to an VOT(N/N) gate, and the OR gate with
N inputs is semantically equivalent to a VOT(1/N) gate.

In the remainder of this paper, we abbreviate the inter-
pretation of the top event t by stating πF (S, t) = πF (S).

It follows easily that standard FT are coherent, i.e.
if event set S leads to a failure, then every superset S′

also leads to failure. Formally, S ⊆ S′ ∧ πF (S, x) = 1 ⇒
πF (S′, x) = 1.

2.2. Qualitative analysis of SFTs

Fault tree analysis techniques can be divided into quan-
titative and qualitative techniques. Qualitative techniques
provide insight into the structure of the FT, and are used
to detect system vulnerabilities. We discuss the most
prominent qualitative techniques, being (minimal) cut sets,
(minimal) path sets, and common cause failures. We recall
the classic methods for quantitative and qualitative fault
tree analysis presented by Lee et al. [110] as well as many
newer techniques.

In Tables 1, 2, 3, and 4 (Pages 7, 9, 9, and 15 re-
spectively), we have summarized the qualitative analysis
techniques that we discuss in the current section.
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Quantitative techniques are discussed in Section 2.3.
These compute numerical values over the FT. Quantita-
tive techniques can be further divided into importance
measures, indicating how critical a certain component is,
and stochastic measures, most notably failure probabili-
ties. The stochastic measures are again divided into those
handling single-time failure probabilities and continuous
time ones; see Section 2.3.

2.2.1. Minimal cut sets

Cut sets and minimal cut sets provide important in-
formation about the vulnerabilities of a system. A cut set
is a set of components that can together cause the system
to fail. Thus, if an SFT contains cut sets with just a few
elements, or elements whose failure is too likely, this could
result in an unreliable system. Reducing the failure prob-
abilities of these cut sets is usually a good way to improve
overall reliability. Minimal cut sets are also used by some
quantitative analysis techniques described in Section 2.3.

This section describes three important classes of cut
set analysis: Classical methods which are based on ma-
nipulation of the boolean expression of the FT, methods
based on Binary Decision Diagrams, and others. Table 1
summarizes these techniques.

Definition 4. C ⊆ BE is a cut set of FT F if πF (C) = 1.
A minimal cut set (MCS) is a cut set of which no subset
is a cut set, i.e. formally C ⊆ BE is an MCS if πF (C) =
1 ∧ ∀C′⊂C : πF (C ′) = 0.

Example 5. In Figure 1, {U,B} is an MCS. Another cut
set is {U,M1,M2,M3}, but this is not an MCS since it
contains the cut set {U,M1,M2}.

Denoting the set of all MCS of an FT F as MC(F ),
we can write an expression for the top event as∨
C∈MC(F )

∧
x∈C x. This property is useful for the analysis

of the tree, as described below.

Boolean manipulation
The classical methods of determining minimal cut sets

are the bottom-up and the top-down algorithms [177].
These represent each gate as a Boolean expression of BEs
and/or other gates. These expressions are combined, ex-
panded, and simplified into an expression that relates the
top event to the BEs without any gates. This expression
is called the structure function. At every step, the expres-
sions are converted into disjunctive normal form (DNF),
so that each conjunction is an MCS.

Example 6. In Figure 1, the expression for the TE G1 is
U ∧G2, and that for G2 is B ∨G3. Substituting G2 into
G1 gives G1 = U ∧ (B ∨ G3). Converting to DNF yields
G1 = (U ∧B)∨ (U ∧G3). Continuing in this fashion until
all gates have been eliminated results in the minimal cut
sets. This is the top-down method.

The bottom-up method begins with the expressions for
the gates at the bottom of the tree. This method usually
produces larger intermediate results since fewer opportu-
nities for simplification arise. As a result, it is often more
computationally intense. However, it has the advantage of
also providing the minimal cut sets for every gate.

Binary Decision Diagrams
An efficient way to find MCS is by converting the fault

tree into a Binary Decision Diagram (BDD) [3]. A BDD
is a directed acyclic graph that represents a boolean func-
tion f : {x1, x2, . . . xn} → {0, 1}. The leaves of a BDD
are labeled with either 0 or 1. The other nodes are la-
beled with a variable xi and have two children. The left
child represents the function in case xi = 0; the right child
represents the function xi = 1. BDDs are heavily used in
model checking, to efficiently represent the state space and
transition relation [55, 47].

To construct a BDD from a boolean formula, one can
use the Shannon expansion formula [3] to construct the
top node.

f(x1, x2, · · · , xn) = (x1 ∧ f(1, x2, · · · , xn))

∨ (¬x1 ∧ f(0, x2, · · · , xn))

We now let x1 be the top node, and f(0, x2, · · · , xn)
and f(1, x2, · · · , xn) the functions for its children. Recur-
sively applying this expansion until all variables have been
converted into BDD nodes yields a complete BDD.

SF

E1 E2 E3 E4

E1

E2

0

E3

1

0

0

E3

1

E4

0

1

1

0

0

1

1 E4

0

1

1

0

0

1

1

Figure 4: Example conversion of SFT to BDD

Example 7. Figure 4 shows the conversion of an FT into
a BDD. Each circle represents a BE, and has two children:
a 0-child containing the sub-BDD that determines the sys-
tem status if the BE has not failed, and a 1-child for if it
has. The leaves of the BDD are squares containing 1 or
0 if the system has resp. has not failed. For example, if
components E1 and E4 have failed, we begin traversing the
BDD at its root, observe that E1 has failed, and follow the
1-edge. From here, since E3 is operational we follow the
0-edge. E4 has failed, so here we follow the 1-edge to reach
a leaf. This leaf contains a 1, so this combination results
in a system failure.
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Author Method Remarks Tool
Vesely et al. [177] Top-down Classic boolean method MOCUS [83]
Vesely et al. [177] Bottom-up Produces MSC for gates MICSUP [137]
Coudert and Madre [55] BDD Usually faster than classic methods MetaPrime [56]
Rauzy [147] BDD Only for coherent FTs but faster than [55] Aralia [146]
Dutuit and Rauzy [67] Modular BDD Faster for FTs with independent submodules DIFTree [64]
Remenyte et al. [150, 151] BDD Comparison of BDD construction methods -
Codetta-Raiteri [50] BDD Faster when FT has shared subtrees -
Xiang et al. [187] Minimal Cut Vote Reduced complexity with large voting gates CASSI [187]
Carrasco et al. [40] CS-Monte Carlo Less complex for FTs with few MCS -
Vesely and Narum [178] Monte Carlo Low memory use, accuracy not guaranteed PREP [178]

Table 1: Summary of methods to determine Minimal Cut Sets of SFTs

Cut Sets can be determined from the BDD by starting
at all 1-leaves of the tree, and traversing upwards toward
the root. The set of all BEs reached by traversing a 1-
edge from a particular leaf forms one CS. The CS may not
be minimal, depending on the algorithm used to construct
the BDD. Rauzy and Dutuit [146] provide a method to
construct BDDs encoding prime implicants, from which
MCSs can be directly computed.

The BDD method was first coined by Coudert and
Madre [55] as well as Rauzy [147]. Sinnamon et al. [164]
improve this method by adding a minimization algorithm
for the intermediate BDD. While the conversion to a BDD
has exponential worst-case complexity, it has linear com-
plexity in the best case. In practice, BDD methods are
usually faster than boolean manipulation. This is strongly
influenced by the fact that BDDs very compactly represent
boolean functions with a high degree of symmetry [154],
and fault trees exhibit this symmetry as the gates are sym-
metric in their inputs. A program that analyzes FTs using
BDDs has been produced by Coudert and Madre [56].

The conversion of an FT to a BDD is not unique: De-
pending on the ordering of the BEs, different BDDs can
be generated. Good variable ordering is important to re-
duce the size of the BDD. Unfortunately, even determining
whether a given ordering of variables is optimal is an NP-
complete problem [24]. Figure 5 shows how a different
variable ordering affects the size of the resulting BDD.

Remenyte and Andrews [150, 151] have compared sev-
eral different methods for constructing BDDs from FTs,
and conclude that a hybrid of the if-then-else method [147]
and the advanced component-connection method by Way
and Hsia [185] is a good trade-off between processing time
and size of the resulting BDD.

Improvements to BDD Tang and Dugan [172] pro-
pose the use of zero-suppressed BDDs to compute MCSs.
This approach is more efficient than those based on classic
BDDs in both time and memory use.

Dutuit and Rauzy [67] provide an algorithm for finding
independent submodules of FTs, which can be converted
separately to BDDs and analyzed, reducing the computa-
tional requirements for analyzing the entire tree.

If subtrees of an FT are shared, then the approach by

Codetta-Raiteri [50] called ‘Parametric Fault Trees’ can be
used. This method performs qualitative and quantitative
analysis on such a tree without repeating the analysis for
each repetition of a subtree.

Miao et al. [125] have developed an algorithm to deter-
mine minimal cut sets using a modified BDD, and claim its
time complexity is linear in the number of BEs, although
their paper does not seem to support this claim. More-
over, this result seems incorrect to us, since the number of
MCSs is already exponential in the number of BEs.

Other methods For FTs with voting gates with many
inputs, a combinatorial explosion can occur, since a k/N
voting gate means each combination of k failed compo-
nents results in a separate cut set. Xiang et al. [187]
propose the concept of a Minimal Cut Vote as a term in
an MCS to represent an arbitrary combination of k ele-
ments. This method is of linear complexity in the number
of inputs to a voting gate, while the BDD approach has
exponential complexity.

For relatively large trees with few cut sets, the algo-
rithm by Carrasco and Suñé [40] may be useful. Its space
complexity is based on the MCSs, rather than the com-
plexity of the tree like for BDDs. However, according to
the article this method does seem to be slower than the
BDD approach.

In practice, it is often not necessary to determine all
of the MCSs: Cut sets with many components are usually
unlikely to have all these components fail. It is often suf-
ficient to only find MCSs with a few components. This
may allow a substantial reduction in computation time by
reducing the size of intermediate expressions [110].

Due to the potentially very large intermediate expres-
sions, the earlier methods for finding MCSs can have large
memory requirements. A Monte Carlo method can be used
as an alternative. In the method by Vesely and Narum
[178], random subsets of components are taken to be failed,
according to the failure probabilities. If a subset causes a
top event failure, it is a cut set. Additional simulations
reduce these cut sets into MCSs. While the memory re-
quirements of the Monte Carlo method are much smaller,
the large number of simulations can greatly increase com-
putation time. In addition, there is a chance that not all
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Figure 5: Example of how variable ordering affects BDD size. The
upper BDD has 13 vertices, the lower BDD has 9. Other orderings
are possible, but are not obvious.

MCSs are found.

2.2.2. Minimal path sets

A minimal path set (MPS) is essentially the opposite
of an MCS: It is a minimal set of components such that,
if they do not fail, the system remains operational.

Definition 8. P ⊆ BE is a path set of FT F if
π(F,BE\P ) = 0.

Example 9. In Figure 1, an MPS is {B,C1,M1,M2, PS}.

Similarly to MCSs, a fault tree has a finite number of
MPSs. If we denote the set of all MPSs of a fault tree as

MP(F ) =

{
P ⊆ BE

∣∣∣∣∣ π(F,BE\P ) = 0 ∧
∀P ′⊂P : π(F,BE\P ′) = 1

}

then we can write a boolean expression for the TE as

TE =
∧

P∈MP (F )

∨
x∈P

x

Minimal Path Sets can, like MCSs, be used as a start-
ing point for improving system reliability. Especially if the

system has an MPS with few elements, improving such an
MPS may improve the reliability of many MCSs.

Analysis Any algorithm to compute MCSs can also be
used to compute MPSs. To do so, the FT is replaced by
its dual: AND gates are replaced by OR gates, OR gates
by AND gates, k/N voting gates by (N-k)/N voting gates,
and BEs by their complement (i.e. ‘component failure’ by
‘no component failure’). The MCSs of this dual tree are
the MPSs of the original FT [15].

2.2.3. Common cause failures

Definition Another qualitative aspect is the analysis of
probable common cause failures (CCF). These are sepa-
rate failures that can occur due to a common cause that
is not yet listed in the tree. For example, if a component
can be replaced by a spare to avoid failure, both this com-
ponent and its spare are in one cut set. If the spare is
produced by the same manufacturer as the component, a
shared manufacturing defect could cause both to fail at
the same time. If such common causes are found to be too
likely, they should be modeled explicitly to avoid overesti-
mating the system reliability.

Analysis Although CCF analysis is not possible using au-
tomated methods from the FT alone, since CCF depend
on external factors not modeled in the tree, experts may
try to determine whether any cut sets have multiple com-
ponents that are susceptible to a common cause failure.
Such an analysis relies on expert insight, and is therefore
quite informal.

P S

CP S

Figure 6: Example FT showing the addition of common cause C of
events P and S.

Common causes can be added to an FT by inserting
them as BEs and replacing the BEs they affect by OR-
gates combining the CCF and the separate failure modes.
An example is shown in Figure 6, where common cause C
of event P and S is added.

2.3. Quantitative analysis of SFT: Single-time

Quantitative analysis methods derive relevant numer-
ical values for fault trees. Stochastic measures are wide
spread, as they provide useful information such as failure
probabilities. Importance measures indicate how impor-
tant a set of components is to the reliability of the system.
Moreover, the sensitivities of these measures to variations
in BE probabilities are important.
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Table 2: Applicability of stochastic measures to different FT types

Author Measures Remarks Tool
Vesely et al. [177] Reliability Valid for infrequent failures -
Barlow and Proschan [15] Reliability Exact calculation based on MCS KTT [178]
Rauzy [147] Reliability Exact, Uses BDDs for efficiency -
Stecher [169] Reliability Efficient for shared subtrees -
Bobbio et al. [23] Reliability Allows dependent events DBNet [130]
Durga Rao et al. [65] Reliability Monte Carlo, allows arbitrary distributions DRSIM [65]
Aliee and Zarandi [5] Reliability Fast Monte Carlo, requires special hardware -
Barlow and Proschan [15] Availability Translation to reliability problem -
Durga Rao et al. [65] Availability Monte Carlo, allows arbitrary distributions DRSIM [65]
Amari and Akers [7] MTTF Assumes exponential failure distributions -
Schneeweiss [161] MTBF Exact method based on boolean expression SyRePa [160]
Amari and Akers [7] MTBF Assumes exponential failure distributions -

Table 3: Summary of qualitative analysis methods for SFTs

Moreover, stochastic measures can be used to decide
whether it is safe to continue operating a system with
certain component failures, or whether the entire system
should be shut down for repairs.

The next section first describes some basic probability
theory, and then provides definitions and analysis tech-
niques for several measures applicable to single-time FTs.

2.3.1. Preliminaries on probability theory

A discrete random variable is a function X : Ω → S
that assigns an outcome s ∈ S to each stochastic ex-
periment. The function P[X = s] denotes the probabil-
ity that X gets value s and is called the probability den-
sity function. We consider Boolean random variables, i.e.
s ∈ {0, 1} where s = 1 denotes a failure, and s = 0 a work-
ing FT element. If X1, X2, . . . Xn are random variables,
and f : Sn → S is a function, then f(X1, X2, . . . Xn) is a
random variable as well.

2.3.2. Modeling failure probabilities

The single-time approach does not consider the evolu-
tion of a system over time: a fixed time horizon is consid-
ered, during which each component can fail only once. We
assume that the failures of the BEs are stochastically inde-
pendent. If the FT has shared subtrees, then the failures
of the gates are not independent.

The BE are equipped with a failure probability function
P : BE → [0, 1] that assigns a failure probability P (e)
to each e ∈ BE, see Figure 7. Then, each BE e can be

associated with random variable Xe ∼ Alt(P (e)); that is
P(Xe = 1) = P (e) and P(Xe = 0) = 1 − P (e). Given a
fault tree F with BEs {e1, e2, . . . en}, the semantics from
Definition 3 yields a stochastic semantics for each gate
g ∈ G, namely as the random variable πF (Xe1 , . . . , Xen , g).
We abbreviate the random variable for the top event of FT
F as XF .

Note that under these stochastic semantics, it holds for
all g ∈ G that

• Xg = mini∈I(g)Xi, if T (g) = And,

• Xg = maxi∈I(g)Xi, if T (g) = Or,

• Xg =

( ∑
i∈I(g)

Xi

)
≥ k, if T (g) = VOT(k/N).

2.3.3. Reliability

The reliability of a single-time FT is the probability
that the failure does not occur during the (modeled) life
of the system [15].

Definition 10. The reliability of a single-time FT F is
defined as Re(F ) = P(XF = 0).

The reliability of a fault tree F with BEs e1, . . . en can
be derived from the non-stochastic semantics by using the
stochastic independence of the BE failures:
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P(XF = 1)

=
∑

b1,...,bn∈{0,1}

P(XF = 1|Xe1 = b1 ∧ . . . ∧Xen = bn)

· P(Xe1 = b1 ∧Xen = bn)

=
∑

b1,...,bn∈{0,1}

πF (b1, . . . , bn)Pb1(e1) · . . . · Pbn(en) (*)

Here, P1(e) = P (e) and P0(e) = 1− P (e). Computing
(*) directly is complex. Below, we discuss several methods
to speed up the reliability analysis.

Bottom up analysis For systems without shared BEs,
failure probabilities can be easily propagated from the bot-
tom up, by using standard probability laws. If the input
distributions X1, X2, . . . Xn of a gate G are all stochasti-
cally independent (i.e., there are no shared subtrees), then
we have

P[XAND(X1, . . . Xn) = 1]

= P[X1 = 1 ∧ . . . ∧Xn = 1]

= P[X1 = 1] · . . . · P[Xn = 1]

For the OR, we use

P[XOR(X1, . . . Xn) = 1]

= 1− P[XOR(X1, . . . Xn) = 0]

= 1− P[X1 = 0 ∧ . . . ∧Xn = 0]

= 1− (1− P[X1 = 1]) · . . . · (1− P[Xn = 1])

The VOT(k/N) gate is slightly more involved. It is possible
to rewrite the gate into a disjunctions of all possible sets
of k inputs, obtaining

P[XVOT(k/N)(X1, . . . Xn) = 1]

= P[(X1 = 1 ∧ . . . ∧Xk = 1)

∨ (X1 = 1 ∧ . . . ∧Xk−1 = 1 ∧Xk+1 = 1)

. . .

∨ (Xn−k = 1 ∧ . . . ∧Xn = 1)]

however, expanding this into an expression of simple prob-
abilities requires the use of the inclusion-exclusion princi-
ple and results in very large expressions for gates with
many inputs where k is neither very small nor close to N .
It is more convenient to recursively define the voting gate:

P[XVOT(0/N)(X1, . . . Xn) = 1] = 1

P[XVOT(N/N)(X1, . . . Xn) = 1] = P[XAND(X1, . . . Xn) = 1]

P[XVOT(k/N)(X1, . . . Xn) = 1]

= P
[
(X1 = 1 ∧XVOT(k-1/N-1)(X2, . . . Xn) = 1)

∨ (X1 = 0 ∧XVOT(k/N-1)(X2, . . . Xn) = 1)
]

= P[X1 = 1] · P[XVOT(k-1/N-1)(X2, . . . Xn) = 1]

+ P[X1 = 0] · P[XVOT(k/N-1)(X2, . . . Xn) = 1)]

0.1108

0.012 0.1

0.40.3 0.1

Figure 7: Example FT showing the propagation of failure probability
in a single-time FT.

Example 11. Figure 7 shows an example of how such
probabilities propagate. Failure of the AND-gate requires
all inputs to fail, which has a probability of 0.3 · 0.4 · 0.1 =
0.012. The OR-gate fails if any input fails, i.e. remains
operational only if all inputs do not fail. This has proba-
bility 1− (1− 0.012)(1− 0.1) = 0.1108.

This approach does not work when BEs are shared,
since the dependence between subtrees is not taken into
account. To take an extreme example, consider an AND-
gate with two children that are actually the same event
with failure probability 0.1. Clearly, the unreliability of
this gate is also 0.1, but propagating the probabilities as
independent would give an incorrect unreliability of 0.01.

Binary Decision Diagrams As discussed in Section 2.2.1,
BDDs can be used to encode FTs very efficiently. In addi-
tion to the qualitative analysis already discussed, Efficient
quantative analysis is also possible.

To construct a BDD for computing system reliability,
one can use a method similar to Shannon decomposition
[147]:

P(f(x1, x2, · · · , xn)) = P(x1)P(f(1, x2, · · · , xn))

+ P(¬x1)P(f(0, x2, · · · , xn))

A caching mechanism is used to store intermediate re-
sults [145], as intermediate formulas often occur is more
than one subdiagram. This algorithm can be applied even
to non-coherent FTs, and has a complexity that is linear
in the size of the BDD.

Rare event approximation For systems with shared
events, the total unavailability of the system can also be
approximated by summing the unavailabilities of all the
MCSs. This rare event approximation [168] is reasonably
accurate when failures are improbable. However, as fail-
ures become more common and the probability of multi-
ple cut sets failure increases, the approximation deviates
more from the true value. For example, a system with
10 independent MCSs, each with a probability 0.1, has an
unreliability of 0.65, whereas the rare event approximation
suggests an unreliability of 1.
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Example 12. Considering Figure 1 and assuming all ba-
sic events have an unavailability of 0.1, the probability of
a failure of gate G6 can be approximated as Pfail(G6) ≈
Pfail({M1,M2}) +Pfail({M2,M3}) +Pfail({M1,M3}) =
0.03. As the actual probability is 0.028, the approximation
has slightly overestimated the failure probability.

If some cut sets have a relatively high probability, this
rare event approximation is no longer accurate. If no com-
ponent occurs in more than one cut set, the correct proba-
bility may be calculated as Pfail(F ) = 1−

∏
C∈MC(F )(1−

Pfail(C)).
If some components are present in many of the cut sets,

more advanced analysis are needed. An exact solution may
be obtained by using the inclusion-exclusion principle to
avoid double-counting events. Alternative methods may
be more efficient in special cases, such as the algorithm
by Stecher [169] which reduces repeated work if the FT
contains shared subtrees.

An algorithm using zero-suppressed BDDs [145] closely
resembles the calculation of MCSs, but instead computes
system reliability using the rare event approximation. This
method has a complexity linear in the size of the BDD, and
is more efficient than first computing the MCSs and then
the reliability.

Bayesian Network analysis In order to accurately cal-
culate the reliability of a fault tree in the presence of sta-
tistical dependencies between events, Bobbio et al. [23]
present a conversion of SFT to Bayesian Networks. A
Bayesian Network [19] is a sequence X1, X2, . . . , Xn of
stochastically dependent random variables, where Xi can
only depend on Xj if j < i. Indeed, the failure distribution
of a gate in a FT only depends on the failure distributions
of its children. Bayesian networks can be analyzed via
conditional probability tables P[B|Aj ] by using the law of
total probability: for an event B, and a partition Aj of the
event space, we have

P[B] =
∑
j

P[B|Aj ]P[Aj ]

For example, if X4 depends on X3 and X2, then parti-
tioning yields P[X4 = 1] =

∑
i,j∈{0,1} P[X4 = 1|X3 =

i∧X2 = j]P[X3 = i∧X2 = j]. The values P[X4 = 1|X3 =
i∧X2 = j] are given by conditional probability tables, and
P[X3 = i ∧X2 = j] are computed recursively.

Example 13. Figure 8 shows the conversion of a simple
FT into a Bayesian Network. The BEs A, B, and C are
connected to top event T and assigned reliabilities. Gates
have conditional probabilities dependent on the states of
their inputs. All nodes can have only states 0 or 1 cor-
responding to operational and failed, respectively. Classic
inference techniques [19] can be used to compute P (T = 1),
which corresponds to system unreliability. Alternatively, if
it is known that the system has failed, the inference can
provide probabilities of each of the BEs having failed.

T

X A

CB D

P(T = 1|A = 1 ∨X = 1) = 1

P(A = 1) = 0.1

P(X = 1|B = C = D = 1) = 1

P(B = 1) = 0.3

P(C = 1) = 0.4

P(D = 1) = 0.1

Figure 8: The BN obtained by converting the FT in Figure 7 to a
Bayesian Network

In addition, Bobbio et al. [23] allow BEs with multiple
states: Rather than being either up or failed, components
can be in different failure modes, such as degraded opera-
tional modes, or a valve that is either stuck open or stuck
closed. The Bayesian inference rules work the same for
multiple-state fault trees, but lead to larger conditional
probability tables. Also, Bobbio et al. [23] model common
cause failures by adding a probability of a gate failing even
when not enough of its inputs have failed, although this
has the disadvantage of making the potential failure causes
less explicit. Finally, gates can be ‘noisy’, meaning they
have a chance of failure. For example, the failure of one el-
ement of a set of redundant components may have a small
change of causing a system failure.

An important feature of Bayesian Network Analysis is
that, not only can it compute the probability of the top
event given the leaves, it can compute the probabilities of
each of the leaves given the top event. This is very useful
in fault diagnosis [109, 108], where one knows that a failure
has occurred, and wants to find which leaves are the most
like causes. Additional evidence can also be given, such as
certain leaves that are known not to have failed.

Monte Carlo simulation Monte Carlo methods can also
be used to compute the system reliability. Most techniques
are designed for continuous-time models [57, 65] or quali-
tative analysis [178], but adaptation to single-time models
is straightforward. Each component is randomly assigned
a failure state based on its failure probability. The FT is
then evaluated to determine whether the TE has failed.
Given enough simulations, the fraction of simulations that
does not result in failure is approximately the reliability.

2.3.4. Expected Number of Failures

Definition The Expected Number of Failures (ENF) de-
scribes the expected number of occurrences of the TE
within a specified time limit. This measure is commonly
used to evaluate systems where failures are particularly
costly or dangerous, and where the system will operate for
a known period of time.

A major advantage of the ENF is that the combined
ENF of multiple independent systems over the same times-
pan can very easily be calculated, namely ENF (S1 ,S2 ) =
ENF (S1 ) + ENF (S2 ). For example, if a power company
requests a number of 40-year licenses to operate nuclear
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power stations, it is easy to check that the combined ENF
is sufficiently low.

Analysis Since a single-time system can fail at most once,
it is easy to show that the ENF of such a system is equal
to its unreliability. Let NF denote the number of failures
system F experiences during its mission time, so that

E[NF ] =
∑
i

i · P[NF = i]

= 0 · P[NF = 0] + 1 · P[NF = 1]

= 0 + P[XF = 1]

= Re(F )

2.4. Quantitative analysis of SFT: continuous-time

Where single-time systems treat the entire lifespan of a
system as a single event, it is often more useful to consider
dependability measures at different times. Provided ade-
quate information is available, continuous-time fault trees
provide techniques to obtain these measures. This section
provides, after a description of the basic theory, definitions
and analysis techniques for these measures.

2.4.1. Modeling failure probabilities

Continuous-time FTs consider the evolution of the sys-
tem failures over time. The component failure behaviour is
usually given by a probability function De : R+ 7→ [0, 1],
which yields for each BE e and time point t, the prob-
ability that e has not failed at time t. In practise, the
failure distributions can often be adequately approximated
by inverse exponential distributions, and BEs are specified
with a failure rate R : BE 7→ R+, such that R(e) = λ ↔
De(t) = 1− exp(−λt).

If components can be repaired without affecting the
operations of other components, BEs have an additional
repair distribution over time. Like failure distributions, re-
pair distributions are often exponentially distributed and
specified using a repair rate RR : BE 7→ R+. More gen-
erally, BEs can be assigned repair distributions as RDe :
R+ 7→ [0, 1]. More complex and realistic models of repairs
are discussed in section 4.3, this section does not consider
such models.

Like for the single-time case, we can use random vari-
ables Xe to describe failures of basic events, and derive a
stochastic semantics for the FT. However, due to the pos-
sibility of repair, it is helpful to introduce some additional
variables. Consider a BE e with a failure distribution De

and repair distribution RDe. Now we take Fe,1, Fe,2, . . . as
the relative failure times, and Qe,1, Qe,2, . . . as the relative
repair times, with Qe,1 = 0 for convenience. It follows that
P[Fe,i ≤ t] = De(t) and P[Qe,i ≤ t] = RDe(t) for i > 1.
We can now define the random variables Xe and Xg.

For basic events, Xe(t) is 1 if t is some time after a
failure, and before the subsequent repair. We can rewrite
this as follows:

Xe(t) = 1 iff

∃i

∑
j<i

(Qe,j + Fe,j) ≤ t ∧Qe,i +
∑
j<i

(Qe,j + Fe,j) > t


⇔∃i

∑
j<i

(Qe,j + Fe,j) ≤ t ∧ t−Qe,i <
∑
j<i

(Qe,j + Fe,j)


⇔∃i

t−Qe,i ≤∑
j<i

(Qe,j + Fe,j) ≤ t


For gates, Xg(t) is defined analogously to the single-

time case. To summarize, we have the following definition:

Definition 14.

Xe(t) =

1 if ∃i : t−Qe,i <
∑
j<i

(Qe,j + Fe,j) ≤ t

0 otherwise

Xg(t) =


mini∈I(g)Xi(t) if T (g) = And

maxi∈I(g)Xi(t) if T (g) = Or( ∑
i∈I(g)

Xi(t)

)
≥ k if T (g) = V ote(k/N)

Depending on the failure distributions, the random
variables of the BEs can have relatively easy distributions.
For example, a BE with exponentially distributed failures
with rate λ has probability P(Xe(t) = 0) = 1− exp(−λt).
The distributions of the gates typically do not follow con-
venient distributions.

Given the definition of Xi, classic statistical methods
may be used to analyze the FT. For example, the availabil-
ity of an FT F is described as A(F ) = limt→∞ E(XF (t)),
as explained in section 2.4.3.

This method of analysis can be applied to FTs with
arbitrary failure distributions, even if the BEs are statis-
tically dependent on each other. Unfortunately, the al-
gebraic expressions for the probability distributions often
become too large and complex to calculate, so other tech-
niques have to be used for larger FTs.

2.4.2. Reliability

Definition The reliability of a continuous-time FT F is
the probability that the system it represents operates for a
certain amount of time without failing. Formally, we define
a random variable YF = max {t|∀s<tXF (s) = 0} to denote
the time of the first failure of the tree. The reliability of the
system up to time t is then defined as ReF (t) = P(YF > t).

Analysis In continuous-time systems, the reliability in a
certain time period can be calculated by conversion into a
single-time system, taking BE probabilities as the proba-
bility of failure within the specified timeframe.
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Monte Carlo methods can also be used to compute sys-
tem reliability. In the method by Durga Rao et al. [65],
random failure times and, if applicable, repair times are
generated according to the BE distributions. The system
is simulated with these failures, and the system reliability
and availability recorded. Given enough simulations, rea-
sonable approximations can be obtained. Modifying the
method to record other failure measures is trivial.

For higher performance than conventional computer
simulation, Aliee and Zarandi [5] have developed a method
for programming a model of an FT into a special hardware
chip called a Field Programmable Gate Array, which can
perform each MC simulation very quickly.

2.4.3. Availability

Definition The availability of a system is the probability
that the system is functioning at a given time. Avail-
ability can also be calculated over an interval, where it
denotes the fraction of that interval in which the system
is operational [15]. Availability is particularly relevant for
repairable systems, as it includes the fact that the sys-
tem can become functional again after failure. For non-
repairable systems, the availability in a given duration may
still be useful. The long-run availability always tends to 0
for nontrivial non-repairable systems, as eventually some
cut set will fail and remain nonfunctional.

Definition 15. The availability of FT F at time t is de-
fined as AF (t) = E(XF (t)). The availability over the in-

terval [a, b] is defined as AF ([a, b]) = 1
b−a

∫ b
a
XF (t)dt. The

long-run availability is AF = limt→∞AF ([0, t]) or equiva-
lently, AF = limt→∞AF (t) when this limit exists.

Analysis As the availability at a specific time is a simple
probability, it is possible to treat the FT as a single-time
FT, by replacing the BE failure distribution with the prob-
ability of being in a failed state at the desired time. The
single-time reliability of the resulting FT is then the avail-
ability of the original. Failure probabilities of the BE are
usually easy to calculate, also for repairable FTs [15].

Long-term availability of a system can be calculated
the same way, provided the limiting availability of each
BE exists. This is the case for most systems.

Availability over an interval cannot be calculated so
easily. Since this availability is defined as an integral over
an arbitrary expression, no closed-form expression exists
in the general case. Numerical integration techniques can
be used should this availability be needed.

2.4.4. Mean Time To Failure

Definition The Mean Time To Failure (MTTF) describes
the expected time from the moment the system becomes
operational, to the moment the system subsequently fails.

Formally, we introduce an additional random variable
ZF (t) denoting the number of times the system has failed
up to time t.

Definition 16. To define ZF (t), we first define the failure
and repair times of the gate:

Qg,1 = 0

Fg,i = min{t > Qg,i|Xg(t) = 1} −Qg,i
Qg,i = min{t > Fg,i−1|Xg(t) = 0} − Fg,i−1

We then define Zg(t) of a gate as:

Zg(t) = max

i ∈ N

∣∣∣∣∣∣
∑
j≤i

(Qg,j + Fg,j) ≤ t


Now ZF (t) = ZT (t) with T being the TE of FT F .

The MTTF up to time t is then MTTFF (t) = AF (t)·t
ZF (t) .

The long-run MTTF is MTTFF = limt→∞MTTFF (t).
In repairable systems the time to failure depends on the

system state when it becomes operational. The first time,
all components are operational, but when the system be-
comes operational due to a repair, some components may
still be non-functioning. This difference is made explicit by
distinguishing between Mean Time To First Failure (MT-
TFF) and MTTF.

To illustrate this difference, consider the FT in Figure
9. Here, failures will initially be caused primarily by com-
ponent 3, resulting in an MTTFF slightly less than 1

10 .
In the long run, however, component 1 will mostly be in
a failed state, and component 2 will cause most failures.
This results in a long-run MTTF of approximately 1.

E3

E1 E2

λ = 100
µ = 10000

λ = 1
µ = 1

λ = 10
µ = 10

Figure 9: Example FT of a repairable system where MTTF and
MTTFF differ significantly. Failure rates are denoted by λ, repair
rates by µ.

While MTTF and availability are often correlated in
practise, only the MTTF can distinguish between frequent,
short failures and rare, long failures.

Analysis Many failure distributions have expressions to
immediately calculate the MTTF of components. For ex-
ample, a component with exponential failure distribution
with rate λ has MTTF 1

λ . For gates, however, the combi-
nation of multiple BE often does not have a failure distri-
bution of a standard type, and algebraic calculations pro-
duce very large equations as the FTs become more com-
plex.
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Amari and Akers [7] have shown that the Vesely failure
rate [176] can be used to approximate the MTTF, and can
do so efficiently even for larger trees.

2.4.5. Mean Time Between Failures

Definition For repairable systems, the Mean Time Be-

tween Failures (MTBF) denotes the mean time between
two successive failures. It consists of the MTTF and the
Mean Time To Repair (MTTR). In general, it holds that
MTBF = MTTR + MTTF.

The MTBF is defined similarly to the MTTF except
ignoring the unavailable times. Formally, MTBFF (t) =
t

ZF (t) , and in the long run MTBFF = limt→∞MTBFF (T ).

The MTBF is useful in systems where failures are par-
ticularly costly or dangerous, unlike availability which fo-
cuses more on total downtime. For example, if a railroad
switch failure causes a train to derail, the fact that an ac-
cident occurs is much more important than the duration
of the subsequent downtime.

The MTTR is often less useful, but may be of interest
if the system is used in some time-critical process. For
example, even frequent failures of a power supply may not
be very important if a battery backup can take over long
enough for the repair, while infrequent failures that outlast
the battery backup are more important.

Analysis An exact value for the MTBF may be obtained
using the polynomial form of the FT’s boolean expression,
as described by Schneeweiss [161]. The Vesely failure rate
approximation by Amari and Akers [7] can also be used.

2.4.6. Expected Number of Failures

Definition Like in a single-time FT, the ENF denotes the
expected number of times the top event occurs within a
given timespan. For repairable systems, it is possible for
more than one failure to be expected.

Analysis The ENF of a non-repairable system is equal to
its unreliability. The ENF of a repairable system can be
calculated from the MTBF using the equation ENF (t) =

t
MTBF(t) , or using simulation.

2.5. Sensitivity analysis

Quantitative techniques produce values for a given FT,
but it is often useful to know how sensitive these values
are to the input data. For example, if small changes in
BE probabilities result in a large variation in system reli-
ability, the calculated reliability may not be useful if the
probabilities are based on rough estimates. On the other
hand, if the reliability is very sensitive to one particular
component’s failure rate, this component may be a good
candidate for improvement.

If the quantitative analysis method used gives an al-
gebraic expression for the failure probability, it may be

possible to analyze this expression to determine the sensi-
tivity to a particular variable. One method of doing so is
provided by Rushdi [157].

In many cases, however, sensitivity analysis is per-
formed by running multiple analysis with slightly different
values for the variables of interest.

If the uncertainty of the BE probabilities is bounded,
an extension to FT called a Fuzzy Fault Tree can be used
to analyze system sensitivity. This method is explained in
Section 4.1.

2.6. Importance measures

In addition to computing reliability measures of a sys-
tem, it is often useful to determine which parts of a system
are the biggest contributors to the measure. These parts
are often good candidates for improving system reliability.

In FTs, it is natural to compute the relative impor-
tances of the cut sets, and of the individual components.
Several measures are described below, and the applicabil-
ity of these measures is summarized in Table 4.

MCS size An ordering of minimal cut sets can be made
based on the number of components in the set. This order-
ing approximately corresponds to ordering by probability,
since a cut set with many components is generally less
likely to have all of its elements fail than one with fewer
components. Small Cut sets are therefore good starting
points for improving system reliability.

Stochastic measures For a more exact ordering, the
stochastic measures described above can also be calculated
for each cut set, and used to order them.

For systems specified using exponential failure distri-
butions, the probability W (C, t)∆t of cut set C causing a
system failure between time t and ∆t is approximately the
probability that all but one BE of C have failed at time t
and that the final component fails within the interval ∆t.
If we write the failure rate of a component x as λx, and
we write Rex(t) for the reliability of x up to time t, the
probability of cut set C causing a failure in a small interval
can be approximated as

W (C, t)∆t ≈
∑
x∈C

λx∆t
∏

y∈(C\{x})

Rey(t)


Cancelling the ∆t on both sides gives

W (C, t) ≈
∑
x∈C

λx ∏
y∈(C\{x})

Rey(t)


This approximation is only valid if the other cut sets have
low failure probabilities, but can then be used to order
cut sets by the rate with which they cause system failures.
The full derivation of this approximation is provided by
Vesely et al. [177].
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Author Measure Remarks
Various Cut set size Very rough approximation
Various Cut set failure measure Specific to each failure measure
Vesely et al. [176] Cut set failure rate Applicable to exponential distributions
Birnbaum [21] Structural importance Based only on FT structure
Jackson [98] Structural importance Also for noncoherent systems
Andrews at al. [8] Structural importance Also includes repairs
Contini et al. [54] Init. & Enab. importance For FTs with initiating and enabling events
Hong and Lie [92] Joint Reliability Importance Interaction between pairs of events
Armstrong [9] Joint Reliability Importance Also for dependent events
Lu [118] Joint Reliability Importance Also for noncoherent systems
Vesely-Fussell [82] Primary Event Importance BE contribution to unavailability
Dutuit et al. [66] Risk Reduction Factor Maximal improvement of reliability by BE

Table 4: Summary of importance measures for cut sets and components

Structural importance Other than ranking by failure
probability, several other measures of component impor-
tance have been proposed. Birnbaum [21] defines a system
state as the combination of all the states (failed or not) of
the components. A component is now defined as critical
to a state if changing the component state also changes
the TE state. The fraction of states in which a compo-
nent is critical is now the Birnbaum importance of that
component.

Formally, an FT with n components has 2n possible
states, corresponding to different sets χ of failed compo-
nents. A component e is considered critical in a state χ of
FT F if π(F, χ ∪ {c}) 6= π(F, χ\{c}).

Jackson [98] extended this notion to noncoherent sys-
tems, in a way that does not lead to negative importances
when component failure leads to system repair. An addi-
tional refinement was made by Andrews and Beeson [8], to
also consider the criticality of a component being repaired.

The Vesely-Fussell importance factor VFF (e) is de-
fined as the fraction of system unavailability in which com-
ponent e has failed [82]. Formally, VFF (e) = P (e ∈
S|πF (S) = 1). An algorithm to compute this measure
is given by Dutuit and Rauzy [66].

The Risk Reduction Worth RRFF (e) is the highest in-
crease in system reliability that can be achieved by increas-
ing the reliability of component e. It may be calculated
using the algorithm by Dutuit and Rauzy [66].

Initiating and enabling importance In systems where
some components have a failure rate and others have a fail-
ure probability, Contini and Matuzas [54] introduce a new
importance measure that separately measures the impor-
tance of initiating events that actively cause for the TE,
and enabling events that can only fail to prevent the TE.

To illustrate this distinction, consider an oil platform.
If the event of interest is an oil spill, the event ‘burst pipe’
would be an initiating event, since this event leads to an oil
spill unless something else prevents it. The event ‘emer-
gency valve stuck open’ is an enabling event. It does not
by itself cause an oil spill, it only fails to prevent the burst
pipe causing one. The distinction is not usually explicit in

the FT, since both these events would simply be connected
by an AND gate.

Initiating events often occur only briefly, and either
cause the TE or are quickly ‘repaired’. Repair in this case
can also include the shutdown of the system, since that
would also prevent the catastrophic TE. In contrast, en-
abling events may remain in a failed state for along time.

Due to this difference, overall reliability of such a sys-
tem can be improved by reducing the failure frequency of
initiating events, or by reducing the frequency or increas-
ing the repair rate of enabling events. This is one reason
for the distinction between the two in the analysis.

Joint importance To quantify the interactions between
components, Hong and Lie [92] developed the Joint Reli-
ability Importance and its dual, the Joint Failure Impor-
tance. These measures place greater weight on pairs of
components that occur together in many cut sets, such as
a component and its only spare, than on two relatively
independent components. This may be useful to identify
components for which common cause failures are particu-
larly important.

Armstrong [9] extends this notion of the Joint Reliabil-
ity Importance to include statistical dependence between
the component failures, and proves that the JRI is always
nonzero for certain classes of systems. Later, Lu [118] de-
termines that the JFI can also be used for noncoherent
systems.

2.7. Commercial tools

In addition to the academic methods described in this
section, commercial tools exist for FTA. The algorithms
used in these tools are usually well documented. Several
of these programs also allow the analysis of dynamic FTs,
which will be explained in Section 3.

This subsection describes several commonly used com-
mercial FTA tools. This list is not exhaustive, nor in-
tended as a comparison between the tools, but rather to
give an overview of the capabilities and limitations of such
tools in general.
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A.L.D. RAM Commander A.L.D. produces an FTA
program as part of its RAM Commander toolkit [60]. This
program can automatically generate FTs from FMECAs,
FMEAs, or RBDs, and allows the user to generate a new
FTA. It supports continuous and single-time FT, and can
combine different failure distributions in one FT. Repairs
are also supported.

The only supported qualitative analysis is the genera-
tion of minimal cut sets.

For qualitative analysis, the tool can compute reliabil-
ity and expected number of failures up to a specified time
bound, and availability at specific times as well as long-run
mean availability. Failure frequency up to a given time is
also supported. Moreover, the program can compute the
importances and sensitivities of the BEs.

EPRI CAFTA CAFTA (Computer Aided Fault Tree
Analysis) [70] is a tool developed by EPRI for FTA. It
supports single- and continuous-time FTs, including non-
coherent FTs and the PAND gate from dynamic FTs.
Continuous-time BEs can have various probability distri-
butions, including normal and uniform distributions. Sev-
eral models of CCF are also included.

CAFTA can compute cut sets. For quantitative anal-
ysis, the program can compute reliability, and several im-
portance and sensitivity measures.

Isograph FaultTree+ The Isograph FaultTree+ program
[97] is one of the most popular FTA tools on the market. It
performs quantitative and qualitative fault tree analysis.
It can analyze FTs with various failure distributions, and
can replace BEs by Markov Chains to allow the user to
arbitrarily closely approximate any distribution [99]. Dy-
namic FTs and Non-coherent FTs including NOT gates
can also be analyzed.

Qualitatively, the program supports minimal cut set
determination and the analysis of common cause failures.
A static analysis is also supported for errors such as circu-
lar dependencies.

All the quantitative measures described in Section 2.4
can be calculated by FaultTree+. The program can also
determine confidence intervals if uncertainties in the BE
data are known. Without such information, sensitivity
analysis can still be performed by automatic variation of
the failure and repair rates. Importance measures that
can be computed over the BE are the Fussell-Vesely, Birn-
baum, Balow-Proschan, and Sequential importances.

ITEM ToolKit The ITEM ToolKit by ITEM software [166]
supports FTA, as well as other reliability and safety anal-
yses, such as Reliability Block Diagrams [61].

This program uses Binary Decision Diagrams for its
analysis, but can also perform an approximation method.
The analysis supports non-coherent FTs, and several dif-
ferent failure models for BEs.

Qualitative analysis can determine minimal cut sets,
and has four methods for common cause failure analysis.

Quantitative analysis supports reliability and availabil-
ity computation. Uncertainty analysis of the results can be

performed if input uncertainties are known, and sensitivity
analysis even if they are not. The program can also com-
pute importance measures, although for which measures is
not specified.

OpenFTA The open-source tool OpenFTA [133] can per-
form basic FTA. It only supports non-repairable FTs, and
allows only single-time BEs and BEs with exponentially
distributed failure times.

OpenFTA supports minimal cut set generation, deter-
ministic analysis of system reliability, and Monte Carlo
simulation to determine reliability.

ReliaSoft BlockSim ReliaSoft’s BlockSim program [149]
can analyze Reliability Block Diagrams [61] and FTs.

Quantitative analysis can determine exact reliability of
the system, including the changes in reliability over time.
If information about possible reliability improvements is
available, the program can compute the most cost-effective
improvement strategy to obtain a given reliability.

Availability of repairable systems can be approximated
using discrete event simulation. Given information about
repair costs and spare part availability, the analysis can de-
termine the most effective maintenance strategy for a cost
or availability requirement, as well as the optimal spare
parts inventory.

BlockSim supports the determination of minimal cut
sets, but does not appear to offer other quantitative anal-
ysis options.

PTC Windchill FTA The Windchill FTA program by
PTC [141] allows the design and analysis of fault trees
and event trees, including dynamic FTs. The program
supports non-coherent FTs, as well as different failure dis-
tributions for the BEs.

Windchill FTA can compute minimal cut sets, as well
as several methods for determining common cause failures.

Qualitative measures than can be computed include
reliability, availability, and failure frequency. These can be
determined using exact computations or by Monte Carlo
simulation. The Birnbaum, Fussell-Vesely, and Criticaly
importances of BEs can also be computed.

RiskSpectrum FTA The software suite RiskSpectrum
[53] by Lloyd’s Register Consulting includes an FTA tool.
The overall suite is designed for probabilistic safety assess-
ment, and includes tools for FMEA and human reliability
analysis. RiskSpectrum FTA supports static fault trees
with CCFs.

The analysis tool can perform qualitative analysis pro-
ducing MCSs, and quantitative analysis including reliabil-
ity and availability, as well as sensitivity and importance
measures and time-dependent analysis.

3. Dynamic Fault Trees

Traditional FT can only model systems in which a com-
bination of failed components results in a system failure,
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Figure 10: Example of a DFT, equivalent to subtree G3 in Figure 1

(a) PAND
gate (b) FDEP gate (c) SPARE gate

Figure 11: Images of the new gates types in a DFT

regardless of when each of those component failures oc-
curred. In reality, many systems can survive certain failure
sequences, while failing if the same components fail in a
different order. For example, if a system contains a switch
to alternate between a component and its spare, the fail-
ure of this switch after it has already activated the spare
does not cause a failure.

The most widely used way of including temporal se-
quence information in FT is the dynamic fault tree or
DFT [62]. The next subsection explains the DFT formal-
ism in detail.

Since a DFT considers temporal behaviour, the meth-
ods used for the analysis of static FT cannot be directly
used to analyze DFT. An overview of the various quantita-
tive methods is shown in Table 5. The qualitative methods
are listed in Table 6. Details of qualitative and quantita-
tive analysis methods are given in Sections 3.3 and 3.4.

3.1. DFT Structure

The structure of a DFT is very similar to an FT, with
the addition of several gate types shown in Figure 11. The
new gates are:

PAND (Priority AND) Output event occurs if all inputs
occur from left to right.

FDEP (Function DEPendency) Output is a dummy and
never occurs, but when the trigger event on the left
occurs, all the other input events also occur.

SPARE Represents a component that can be replaced
by one or more spares. When the primary unit fails,
the first spare is activated. When this spare fails, the
next is activated, and so on until no more spares are
available. Each spare can be connected to multiple
Spare gates, but once activated by one it cannot be
used by another. By convention, spares components
are ordered from left to right.

Example 17. An example of a DFT is shown in Fig-
ure 10. This DFT has the same cut sets as the subtree
rooted at G3 of Figure 1, but has a more intuitive infor-
mal description: M3 is clearly shown as a shared spare for
M1 and M2. Also, the system does not directly depend on
the power supply PS. Instead, the failure of PS triggers a
failure of both CPUs, which more accurately describes the
system and eliminates the shared event.

BEs can have an additional parameter α called the dor-
mancy factor. This parameter is a value between 0 and 1,
and reduces the failure rate of the BE to that fraction of
its normal failure rate if the BE is an inactive input to a
SPARE gate [29]. For example, a spare tire will not wear
out as fast as one that is in operation. For BEs that are
not inputs to a SPARE gate, α has no effect.

The introduction of the PAND gate means that a DFT
is not generally coherent: An increase in the failure rate of
the right input to a PAND can increase the reliability of
the gate. Since the inputs to PAND gates are commonly
also inputs to other subtrees, non-coherence is often in-
dicative of a modeling error or suboptimal system design.

In non-repairable DFTs the FDEP gate can be removed
by replacing its children by an OR gate of the child and
the FDEP trigger. In repairable DFT the applicability
of this approach depends on the definition of the FDEP
gate: If failures triggered by the FDEP require separate
repairs, the transformation is not correct. If repair of the
FDEP trigger also restores the triggered components to
operation, the transformation does preserve the behaviour.

Definition 18. A DFT is a tuple DF = 〈BE , G, T, I〉,
where BE and G are the same as in a static FT (and we
still write E = BE ∪G). The function T still denotes the
gate type, but now T : G 7→ DGT , with the set of dynamic
gates DGT = GateTypes ∪ {FDEP ,PAND ,SPAR}. I is
replaced by an input function: I : G 7→ E∗ yielding an
ordered sequence of inputs to each gate.

Since the output of the FDEP gate is a dummy output
and not relevant to the behaviour of the FT, it is often use-
ful to use a pruned input function which does not include
FDEP inputs [30].

Some types of DFT have additional gates, which are
not included in the rest of this paper. Such gates are:

Hot spare Special case of SPARE gate, where the dor-
mancy factor of the spares is 1, i.e. the spare failure
rate is the same as the normal failure rate [62].
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Cold Spare Special case of SPARE, with a dormancy
factor of 0, i.e. spares cannot fail before activated [62].

Priority OR Fails when the leftmost input fails before
the others [180]. Can be replaced by a PAND and
an FDEP.

Sequence enforcing Prohibits failures of inputs until all
inputs to the left have failed [27]. Can be replaced
by (cold) SPARE provided the inputs are not shared
with other gates.

One-shot PDEP Special case of the FDEP gate, where
the occurrence of the trigger event has some prob-
ability of causing a failure of the dependent events
[140].

Persistent PDEP Special case of the FDEP gate, where
the occurrence of the trigger event causes an increase
in the failure rates of the dependent events [140].

3.1.1. Stochastic Semantics

This section presents the formal semantics of DFTs in
terms of random variables, pinning down the stochastic be-
haviour of a DFT model in a mathematically precise way.
Such a semantics did not exist yet, which is surprising,
since it forms the basis of the analysis methods.

We focus on non-repairable DFTs where all children
of FDEP and SPARE gates are BEs: extensions with re-
pair or general FDEPs and SPAREs require novel research
and fall outside the scope of this survey. In particular, re-
pairable PAND gates can be interpreted in several ways
[22, 87]: If the second input to a PAND is repaired but
fails again it is unclear from the informal description if the
PAND should fail. Similar discussions exist for other dy-
namic gates [51]. Also, the semantics is not clearly defined
if the children of a SPARE or FDEP gate are (potentially
shared) subtrees.

G1 G2

E2 E3

G3

E1

E4

Figure 12: Example of a dynamic fault tree, failure of E1 may cause
nondeterministic allocation of E4.

We decorate every BE e with a failure distribution
De : R+ 7→ [0, 1] such that De(t) yields the probability
that BE e fails within time t. Additionally each BE has
a dormancy factor αe which determines how much slower
the component degrades when it is an inactive spare. We
now define the independent event failure times just like
for SFTs, namely Fe ∼ De. Later, we will define FDe to
be the actual failure time, which includes corrections for

time spent as a dormant space, and for failures caused by
functional dependencies.

If BEs simultaneously fail for multiple SPARE gates,
these gates may attempt to claim the same spare. In
this case, the activation order of the SPARE gates is non-
deterministic. In Figure 12, the failure of E1 causes the
failure of either G1 or G2, but does not specify which.
Analysis tools often provide some resolution of this nonde-
terminacy, but different tools make different choices, pos-
sibly resulting in unexpected differences in results between
different analyses of the same system.

First we define the claiming semantics of the SPARE
gates. The goal here is twofold: (1) we need to determine
which set of inputs needs to fail for the gate to fail, since
the gate may fail when other inputs have not failed but are
claimed by other gates, and (2) we need to determine the
times at which each spare component is claimed, to com-
pute the correct failure times including dormancy factors.

Later, we will define Suc(e) to be the set of all BEs
that are claimed as an immediate result of the failure of e.
First, we define C : N × G 7→ BE ∪ {⊥} to be either the
BE claimed by a specific SPARE gate due to the failure of
one of its inputs, or ⊥ if the failure of this input causes the
gate to fail, and therefore not claim any other BE. C(i, g)
is a strategy that fixes a particular activation order and
claiming gate.

Intuitively, we distinguish tree cases resulting from the
failure of a spare BE e:

• If e is the rightmost input, no other BE can be acti-
vated

• If all BEs to the right of e are already claimed, i.e.
activated as a result of another BE that failed before
e, the gate cannot claim any BEs.

• Otherwise, there is a leftmost spare f that has not
yet been claimed, and this spare will be claimed
when e fails. Note that the failure time of f may
be before e, in which case yet another BE may be
claimed immediately upon claiming f .

Formally, C(i, g) =

⊥ if i = |I(g)| − 1

⊥ if for e = I(g)i,

∀j>i∃f 6=eI(g)j ∈ Suc(f) ∧ FDf ≤ FDe
I(g)j if for e = I(g)i,

j = arg min
j>i

@f 6=eI(g)j ∈ Suc(f) ∧ FDf ≤ FDe

We now define the successor set Suc(e) and predecessor
Pre(e) of an event. Every spare component e has exactly
one predecessor, which is the BE whose failure immedi-
ately causes e to be claimed and activated by one of its
parent gates. For notational convenience, let us denote the
set of SPARE parent gates as PSP(e) = {g ∈ G|T (g) =
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SPARE ∧ e ∈ I(g)}. Now

Suc(e) = {C(i, g) | e = I(g)i ∧ g ∈ PSP(e) ∧ C(i, g) 6=⊥}
Pre(e) = f where e ∈ Suc(f)

The actual failure time of a BE, possibly delayed from
the time predicted from its failure distribution due to dor-
mancy, can be computed depending on the failure time of
its predecessor as

FSe =


Fe if ∀g∈PSP (e) : e = I(g)0

FDPre(e) if Fe

α ≤ F
D
Pre(e)

Fe + (1− α)FDPre(e) otherwise

Moreover, the effect of possible early failures as a result
of FDEP gates needs to be considered:

FDe = min

(
{FSe } ∪

{
Ft

∣∣∣∣∃g,t :
T (g) = FDEP
∧ t = I(g)0 ∧ e ∈ I(g)

})
For the sake of clarity, we do not consider FTs where BEs
are functionally dependent on themselves, directly or in-
directly.

For notational convenience, let C(g) = {i|i = I(g)0 ∨
@e : i ∈ C(e, g)} denote the set of events that are claimed
by SPARE gate g at any time. Also, let Ord(s) = ∀n<|s|−1 :
FDsn ≤ FDsn+1

denote whether the failures of all events in
s occur in the order they are listed, with |s| denoting the
length of sequence s.

Finally, we can determine the failure times of the gates

Fg =



max{FDi ∈ R|i ∈ I(g)} if T (g) = AND

min{FDi ∈ R|i ∈ I(g)} if T (g) = OR

min

{
t ∈ R

∣∣∣∣∣ ∑i∈I(g)Xi(t) ≥ k

}
if T (g) = VOT(k/N)

∞ if T (g) = FDEP

max{FDi ∈ R|i ∈ S(g)} if T (g) = SPARE

max{FDi ∈ R|i ∈ I(g)} if T (g) = PAND

and Ord(I(g))

∞ otherwise

and FDg = FSg = Fg. The state of an element can be
described as

Xx(t) =

{
1 if FDx ≤ t
0 otherwise

3.2. Analysis of DFT

The remainder of this section explains the various anal-
ysis techniques applicable to DFTs, and the measures they
compute.

Measures of interest Most of the values that can be
computed for classic FT can still be used in the analysis
of DFT; the reliability, availability, and MTTF are still of
interest.

T

P B S P

Figure 13: Example of a DFT with temporal sequence requirements.
The system fails if both the primary (P) and backup (B) fail, or if the
primary fails when the switch (S) to enable the backup has already
failed.

DFT are generally non-repairable, so measures that are
only applicable to repairable systems are not generally ap-
plicable to DFT. Some extensions to DFT, such as that
by Boudali et al. [27], do allow repairs, and then measures
such as MTBF become useful.

Cut set analysis is less useful for DFT, as CS do not
include sequence information. A variant of cut sets, called
cut sequences and explained below, can be used, but im-
portance measures over these are not well developed.

3.3. Qualitative analysis

Cut sets and sequences A simple form of qualitative
analysis of a DFT can be performed by employing the
same techniques as used for SFT; namely by replacing the
PAND and SPARE gates by AND gates, and the FDEP
gates by OR gates. This analysis will not capture the
temporal requirements of the tree. Nonetheless, the cut
sets can be used to improve system reliability, since at
least one cut set must completely fail for a system failure
to occur.

Example 19. In Figure 13, this method replaces the PAND
gate on the right by an AND gate. The resulting cut sets
are {P,B} and {S, P}. These cut sets can be useful, as
preventing the failures of every cut set still prevents system
failure. However, unlike in the SFT, the failure of {S, P}
does not necessarily cause a system failure, depending on
the ordering of the failures.

To capture these temporal requirements, Tang et al.
[172] introduced the notion of ‘cut sequences’ as the dy-
namic counterpart to cut sets. A cut sequence is a se-
quence of failures which cause a system failure. Formally,
a sequence 〈e1, e2, . . . , en〉 is a cut sequence of the DFT D
if, given failure times Fe1 < Fe2 < · · · < Fen , XD(Fen) = 1
according to the semantics of Section 3.1.1.

Tang et al. [172] also showed that these cut sequences
can be determined by replacing the dynamic gates by static
gates, determining the minimal cut sets, and then adding
any sequencing requirements to the cut sets.

For example, the DFT in Figure 13 has cut sequence
set (CSS) {〈S, P 〉, 〈P,B〉, 〈B,P 〉}. The sequence 〈P, S〉 is
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not a cut sequence since the failure of S after P does not
trigger the PAND gate.

Zhang et al. [192] offer a more compact way of rep-
resenting cut sequences, by adding temporal ordering re-
quirements to cut sets. This allows one representation to
cover multiple cut sequences at once, where some events
are ordered independently of other events. This method
would represent the CSS of Figure 13 as
{{S, P, S < P}, {P,B}}.

Liu et al. [114] provide an alternative method to deter-
mine cut sequences by composition of the cut sequences of
the subtrees. This method reduces the amount of repeated
work if the same components are present in multiple cut
sets. Additionally, they show [116] that the cut sequences
can be used to perform quantitative analysis.

A different definition of qualitative analysis for repairable
DFT is provided by Chaux et al. [45]. The complex-
ity of this method is based on the length of the longest
non-looped sequence of failures and repairs in the system.
This definition defines a language of failure and repair se-
quences, and provides a means for constructing a finite
automaton that generates all sequences of failures and re-
pairs in which the final state in a system failure. To keep
the language finite, only the sequence up to the first sys-
tem failure is considered.

Another algebraic method for determining and express-
ing cut sequences was developed by Merle et al., by extend-
ing the structure function used for static FTA (described in
section 2.2.1) to first include the Priority-AND gate [122]
by allowing a ‘before’ relation as a boolean primitive. This
method is subsequently developed to include the other
DFT gates [124, 121, 123]. The structure function can sub-
sequently be used to perform quantitative analysis [121].

Considering again Figure 13, the FT has the boolean
expression (P ∧B)∨(S∧P ∧(S < P )). This expression can
be simplified using the law A ∧ (A < B) = (A < B) into
(P ∧B) ∨ (P ∧ (S < P )). This is the minimal disjunctive
normal form, showing that P ∧B and P ∧ (S < P ) are the
minimal sets of failures and sequence dependencies that
yield a top event failure.

More recently, Rauzy [148] proposed a variant of Mi-
nato’s Zero-Suppressed BDD [95] to include ordering in-
formation. This variant can be used to find the minimal
cut sequences of DFT, and the author believes that more
efficient algorithms for other analyses can be based on this
representation.

3.4. Quantitative analysis

This section describes analysis techniques for quanti-
tative measures of DFTs. The definitions of the measures
have already been explained in sections 2.3 and 2.4, so we
will only state which measures can be computed by each
technique.

Algebraic analysis The structure function obtained by
qualitative analysis can also be used for quantitative anal-

ysis. Applying the inclusion-exclusion principle to the cut
sets, we obtain

P(T ) = P(P ∧B) + P(P ∧ (S < P ))− P(P ∧B ∧ (S < P ))

Now, expressions for the probabilities can be substi-
tuted [124], giving the failure probabilities at time t in
terms of the BE failure distributions De(t) and failure
probability density functions de(t):

P(T )(t) = DP (t) ·DB(t)

+

∫ t

0

dP (u)DS(u)du−DB(t) ·
∫ t

0

dP (u)DS(u)du

For larger DFTs, many repeated integrations make this
approach computationally impractical.

Analysis by Markov Chains

SF

A

B
E1

λ1 = 1

E2

λ2 = 2

E3

λ3 = 3

S0

S1

f 1

S2

f2

S3

f
3

S4f2 S10

f3

S5f3 S11

f2

S6f1 S12

f3

S7f3 S13

f1

S8f1 S14

f2

S9f2 S15

f1

Figure 14: Example conversion of DFT to a Continuous Time
Markov Chain. States corresponding to system failures (goal states)
are indicated by a double circle. Transition fi denotes the failure of
BE Ei, and occurs with rate λi.

The first method proposed to analyze DFT was by
Dugan et al. [62, 63], and computes the unreliability of the
system during a time window [0, t]. This method converts
the DFT into a Markov Chain, in which the states repre-
sent the history of the DFT in terms of what components
have failed and, where needed, in what order. Since the
number of failed subsets grows exponentially in the num-
ber of BEs, this method is not practical for very complex
systems.

Example 20. Figure 14 shows a simple DFT converted
into a Markov Chain. From the starting state S0, in which
all components are operational, three transitions are possi-
ble representing the failures of the three BEs. After the
failure of the first BE, two more BEs can fail, and fi-
nally the last BE fails. If all three BEs have failed, and
E2 failed before E3, system failure occurs, which corre-
sponds to the circled (goal) states in the MC. In the other
states the system is still operational. Existing tools such
as PRISM [107] can be used to compute the probability of
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reaching a goal state within a certain time, corresponding
to system unreliability.

The MC in Figure 14 could be reduced without affect-
ing the computed probabilities. For example, from S3 no
goal state can ever be reached. It is therefore acceptable
to replace S3 by an absorbing state to reduce the complex-
ity of further analysis. A full discussion of minimization
techniques is beyond the scope of this paper, but several are
listed in [12].

Codetta-Raiteri [48] presents a transformation of DFTs
to Stochastic Petri Nets [46], which are in turn analyzed by
conversion to Markov Chains. Although this method still
suffers from a combinatorial explosion when constucting
the Markov Chain, the Petri Nets are much smaller and
easier to understand and extend.

Compositional analysis of DFT Boudali et al. [27, 29]
use a different method to calculate the reliability of a DFT,
which reduces the combinatorial explosion in many com-
mon cases. They provide a compositional semantics for
DFT, i.e. each DFT element is interpreted as an Interac-
tive Markov Chain [91] and the semantics of the DFT is
the parallel composition of the elements. The papers pro-
vide several reduction techniques to minimize the resulting
Markov Chain. In addition, it allows DFT to be extended
with repairable components and mutually exclusive events.

The analysis is performed by converting a DFT into
an Input/Output Interactive Markov Chain for analysis.
This model is constructed by computing the parallel com-
position of the I/O IMCs for parts of the tree, down to
individual gates and events. Since intermediate models
can be analyzed to remove unnecessary states, the total
I/O IMC can be much smaller than the Markov Chain
produced by earlier methods, and the combinatorial ex-
plosion is reduced.

The program DFTCalc was developed by Arnold et al.
[10] to analyze reliability and availability of DFT using the
I/O IMC methodology.

Example 21. Figure 15 shows the I/O IMC equivalents
of the basic event E1 and the gate A of the DFT in Fig-
ure 14. Below that, the parallel composition of the two
elements are shown. This composition behaves as if the
two separate elements are ran in parallel, with the output
signal of the BE (fE1

!) permitting the transition with input
signal fE1

? in the gate’s IMC.
Observe that input signal fB? is still present in the

composition, allowing this IMC to be composed with gate B
later. Similarly, output action FE1 ! allows the later com-
position with other gates in which E1 is an input. If no
such gates exist, the IMC can be minimized by removing
these output transitions.

Unlike traditional Markov Chains, I/O IMC are capa-
ble of modeling nondeterminism between actions. Guck et
al. [87] use this approach to model maintenance strategies

λ = 2 fE2 !
ME2 =

fE2
?

fE3 ?

fE3 ? fB !
MB =

ME2
||MB =

λ = 2

fE
3 ?

fE2 !

fE
3 ?

fE3?

λ = 2 fE2 !

fB !

fE
2 !

Figure 15: Example conversion of part elements E1 and A of the
DFT in figure 14 to an I/O Interactive Markov Chain. Input signals
are denoted by a question mark, output signals by an exclamation
mark.

where it is not specified which of multiple failed compo-
nents to repair first.

Pullum and Dugan [142] developed a program to divide
a DFT into independent submodules for computing relia-
bility. Submodules containing only static gates can then
be solved using a traditional BDD method, while submod-
ules containing dynamic gates can be solved using Markov
Chain analysis.

Example 22. Suppose we are computing the availability
at time t of the DFT in figure 14. We can convert the en-
tire DFT into a Markov Chain such as the figure shows, but
only the subtree rooted at B is dynamic. We can therefore
replace this subtree by a fictional node B∗ and use a BDD
to determine the minimal cut sets of the tree, which is only
{E1, B

∗}. Following section 2.4.3, the availability of the
tree is given by ASF (t) = AE1

(t) · AB∗(t). Markov chain
analysis can now be used to compute the value AB∗(t), and
AE1

(t) is the same as for a static fault tree.

An algebraic method for quantitative analysis is intro-
duced by Long et al. [117], which can compute availability
at a specific time and ENF per unit time. It uses a sys-
tem of logic called ‘Sequential Failure Logic’ to describe
the temporal restrictions within cut sets. Unfortunately,
the equations produced are difficult to solve due to many
multiple integrals, and only a special case where all failure
and repair rates are identical is presented.

Han et al. [89] also modularize a DFT and use BDD
for the static submodules, but use the approximation by
Amari et al [6] to solve the dynamic submodules. This
avoids the state-space explosion problem of analysis by
conversion to Markov Chain, while retaining a reasonable
degree of accuracy.

Later, Liu et al. [115] proposed a method to modu-
larize DFT further, by also collapsing static subtrees of a
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dynamic gate, but keeping additional information about
the probability distribution of these subtrees.

Yevkin [189] provides additional modularization tech-
niques, which can convert static subtrees and some dy-
namic subtrees into equivalent BEs, reducing the complex-
ity of further analysis.

Analysis using Dynamic Bayesian Networks The
method by Bobbio et al. [23] of converting an SFT into
a Bayesian Network (described in Section 2.3.3) was later
improved by Montani et al. [128] by using a Dynamic
Bayesian Network (DBN) to analyze DFTs.

In this approach, the DBN is evaluated at many points
in time, with the state probability distributions carried
over from each timestep to the next. By also allowing
nodes to have probabilities conditional on their own state
in the previous timestep, dynamic behaviour can be in-
cluded in the analysis. Due to the discretization, results
from this method are not exact. Results can be made ar-
bitrarily accurate, but at the cost of a sharp increase in
computation time required. Only non-repairable FTs are
analyzed by this method, however Portinale et al. [140]
propose a similar method for repairable FTs. Other exten-
sions from the earlier BN work such as noisy gates remain
applicable.

The Bayesian Network method has been extended by
Boudali and Dugan [31] to model DFT gates. This method
can produce results equivalent to solving a discretized ver-
sion of the Markov Chain corresponding to the DFT, but
can also be extended with dependent component failures
and multi-state components by changing the produced DBN.
No comparison between this method and the method by
Montani et al. [128] is presently available.

Example 23. Figure 16 shows the dynamic bayesian net-
work of the DFT in figure 14. Gates {A,B} and basic
events {E1, E2, E3} form the nodes of the network, while
input relations in the DFT form one-way conditional prob-
abilities. Basic events are not repairable, and thus remain
failed if they were failed in the previous timestep. Other-
wise, the probability of their failure in the current timestep
depends on their failure rate. This explains the first two
conditional probability rules.

The next two rules give the behaviour of the PAND gate
B. If it was failed in the previous timestep (i.e. B[k−1] =
1, it remains failed (i.e. B[k] = 1). Otherwise, it fails if
both inputs are failed, and E3 was not failed earlier. Note
that behaviour on simultaneous failure is deterministic in
this model (namely the PAND gate fails on simultaneous
failure of its inputs).

Finally, the state of and AND gate A is determined
purely by its inputs.

As for other analysis methods, computational require-
ments can be reduced by modularizing the FT and us-
ing more efficient methods for the static subtrees. Such
an approach combining BDD and DBN was proposed by
Rongxing et al. [153].

E1[k]

E2[k]

E3[k]

A[k]

B[k]

E1[k − 1]

E2[k − 1]

E3[k − 1] B[k − 1]

P
[
Ei[k] = 1|Ei[k − 1] = 1

]
= 1

P
[
Ei[k] = 1|Ei[k − 1] = 0

]
= δλi

P
[
B[k] = 1|B[k − 1] = 1

]
= 1

P
[
B[k] = 1|E2[k] = E3[k] = 1
∧ E3[k − 1] = 0

]
= 1

P
[
A[k] = 1|E1[k] = 1 ∧B[k] = 1

]
= 1

Figure 16: Dynamic Bayesian Network corresponding to the DFT
in Figure 14 with timestep δ. Default rules with probability 0 have
been omitted.

Since a BN allows arbitrary conditional probabilities
to be specified, it is possible to include failure rates of
gates in addition to that implied by the tree structure.
This improves accuracy and reduces the effect of modeling
errors. Such an approach was described by Graves et al.
[86]. This is useful, since many real-life systems record
component failures at an intermediate level, rather than
diagnosing every fault to the level of the BE.

Other approaches Mo [126] described a method for con-
verting a DFT into a multiple-valued decision diagram
(MDD) to compute the reliability of non-repairable sys-
tems. In this approach, subtrees containing only static
gates are directly converted into MDDs, while subtrees
with dynamic gates are solved by conversion into a CTMC
before the results are included in the MDD. This approach
reduces the state-space explosion problem in many com-
mon cases, but in the worst case of a dynamic gate as the
TE a full CTMC still needs to be solved.

A purely algebraic approach is suggested by Amari et
al. [6], which calculates the probability distribution at ev-
ery gate by appropriately combining the distributions of
the inputs. While this approach gives exact results and
does not suffer from the state-space explosion effect com-
mon when using Markov Chains, only a subset of trees
satisfying particular rules can be analyzed this way.

Ni et al. [131] propose a different algebraic method for
describing the DFT structure, which produces a boolean-
like expression of the DFT. This method allows minimal
cut sequence determination as well as quantitative analy-
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sis.

Simulation Quantitative analysis can be performed by
Monte Carlo simulation. Failures and/or failure times are
sampled from their respective distributions, and the effect
these failures have on the system are calculated.

Quantitative Monte Carlo analysis can be performed
using the method by Durga Rao et al. [65], which can
also be applied if the components are individually inde-
pendently repairable.

Boudali et al. [26] developed a program to analyze
DFT using Monte Carlo simulation. It allows BE failure
distributions to change over time, and even based on dif-
ferent clocks for different BE, resulting in non-Markovian
models. This is useful when, for example, a system takes
time to warm up and this affects the failure rates.

If the minimal cut sets have already been determined,
Liang et al. [112] propose a Monte Carlo method for com-
puting the unreliability of an RFT. This approach allows
the failure and repair rates to follow arbitrary distribu-
tions, but still does not allow repair policies other than
independent component repair.

Zhang et al. [193] showed that it is possible to con-
vert a DFT to a Petri Net, on which quantitative analysis
can be performed by simulation. Exact analysis on Petri
Nets is normally done by conversion into Markov Chains,
still resulting in a state-space explosion. Simulation, how-
ever, can be performed directly on the Petri Net, although
the benefits compared to simulation of the untransformed
DFT are not stated.

If very high performance is required, it is possible to
construct a hardware circuit to perform Monte Carlo Sim-
ulations much faster than normal computer simulation.
Such an approach is described by Aliee and Zarandi [4].

Rajabzadeh and Jahangiry [143] propose a conversion
of a DFT into an analogue electronic circuit, which out-
puts a voltage corresponding to the system failure prob-
ability. This approach does require an approximation for
some of the gates, and the accuracy on larger models is
not demonstrated.

A method for the analysis of the sensitivity of various
model parameters is provided by Ou and Dugan [134].

4. Other Fault Tree extensions

While dynamic fault trees are the most popular exten-
sion to static fault trees, several other ways of extending
FTs have been proposed. The extensions can be approxi-
mately divided into several categories. (1) fault trees using
fuzzy numbers can be used in cases where failure proba-
bilities or behaviour are not known exactly. (2) Several
extensions allow fault trees to model systems where basic
events are stochastically dependent, such as when a fail-
ure of one component increases the failure rate of another
component. (3) Repairable Fault Trees can represent more
complex repairable systems than the simple repair rates in
classic FT. (4) The temporal relations between events are

10.40.20,0

1
low medium

0.80.6

high

Figure 17: Example of fuzzy membership functions of the sets ‘low’,
‘medium’, and ‘high’

important. Dynamic fault trees include certain temporal
dependencies, but other extensions have been proposed as
well. (5) In particular, State/Event Fault Trees were in-
troduced to model systems and components with a state
that varies over time, and where this state affects the con-
sequences of component failures or the failure rates. (6)
Miscellaneous extensions, e.g. integrating Attack Trees
with FTs.

These extensions are discussed in sections 4.1 through
4.6, respectively. An overview of the extensions can be
found in Tables 7 (page 31) and 8 (page 32).

4.1. FTA with fuzzy numbers

Fault trees using fuzzy numbers were introduced by
Tanaka et al. [171] as a way to reduce the problem that
failure probabilities of components are often not exactly
known. Fuzzy numbers represent uncertainty by not spec-
ifying an exact number, but rather a range which contains
the true value. Alternatively, they can be used as input to
the FT, in which case they specify categories to which a
probability belongs, to a greater or lesser degree.

Example 24. For example, suppose we would like experts
to specify a failure probability using the categories ‘high’,
‘medium’, and ‘low’. It is possible to set exact endpoints
and ask the experts to rate any value between 0 and 0.2 as
low, this has two disadvantages: First, linguistic descrip-
tions are commonly used so that the expert does not need
to estimate an exact probability, and giving endpoints rein-
troduces that requirement. Second, if the expert estimates
a probability to be approximately 0.2, the expert must de-
cide whether this is low or medium, and the model does
not capture the uncertainty that the expert may have.

Alternatively, we can describe the categories as fuzzy
subsets of the interval [0, 1]. Figure 17 shows possible
membership functions for the categories. Here, for exam-
ple, the value 0.1 is said to be fully a member of ‘low’
and no member of either other category. Thus experts are
assumed to always classify 0.1 as low. The value 0.3 is
partly a member of ‘low’ with membership 0.5, signifying
that half of the experts would classify 0.3 as low.
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Author Method Remarks
Tang et al. [172] Cut sets Postprocessing to convert cut sets to cut sequences
Liu et al. [114, 116] Composition Reduces work for shared components
Zhang et al. [192] Cut sequences More compact representation of CSS
Chaux et al. [45] Language theory Allows repairs up to first TE occurrence
Merle et al. [121] Algebraic Also allows quantitative analysis
Rauzy [148] ZBDD Starting point for other analyses

Table 6: Overview of DFT qualitative analysis methods

Mahmood et al. [119] have conducted a literature re-
view exploring different variations of Fuzzy Fault Trees,
and various methods for their analysis. A brief overview
is provided below.

FTs are often specified using fuzzy numbers for the
probabilities or possibilities of basic events. A common
method is to use fuzzy set theory: A fuzzy set has a mem-
bership function which gives, for any argument, the degree
to which that argument is a member of the given fuzzy set.
In this context, BE probabilities are given as a fuzzy subset
of the interval [0, 1].

The membership function of a fuzzy subset of the real
numbers is similar to the probability density function of
a probability distribution. The difference is that where
a PDF gives the probability of a variable having a value
given the distribution this variable belongs to, the mem-
bership function gives the degree to which a value belongs
to a fuzzy set, without making a claim regarding the likely
values of variables given the fuzzy set.

If a fuzzy number contains only one possible value, it
is the same as a conventional or crisp number.

Singer [163] provides a method for computing the TE
fuzzy probability if the membership function can be speci-
fied in a special form called an L-R type. This is a function
that is symmetric about some point on the probability axis
except for a scaling factor, and can be represented by a
function of the form

m(p) =

{
L(p) = f

(
c−p
l

)
if p < c

R(p) = f
(
p−c
r

)
if p >= c

Where f : R 7→ R is some function, c is the point of
symmetry, and l and r are scaling factors.

This method is frequently applicable since many com-
mon probability distributions (including the normal, uni-
form, and triangular distributions) can be described in this
form.

An alternative method is described by Lin et al. [113],
in which some of the BEs are described by multiple fuzzy
numbers obtained from different experts. These fuzzy
numbers could, for example, be derived from natural lan-
guage expressions describing the events from ‘very prob-
able’ to ‘very improbable’. This method combines these
multiple fuzzy probabilities into one crisp probability for
the BE, and then analyses the FT as normal.

When multiple probability estimates are available, Kim
et al. [104] offer a method to use these to calculate ‘op-

timistic’ and ‘pessimistic’ fuzzy probabilities for the TE.
This approach may be useful when each expert gives only
small uncertainties due to natural variation in components,
but different experts give these uncertainties over different
ranges, for example due to different opinions of the likeli-
hood of human error.

If the membership functions for the BE probabilities
are themselves uncertain, this may be included in the model
using ‘intuitionistic fuzzy set theory’, as described by Shu
et al. [162, 111]. In this model, two membership functions
describe an upper and lower bound on the membership.
This can be used if, for example, a probability is believed
to lie between 0.4 and 0.6, but it is not known what value
in this range is the most likely.

Ren and Kong [152] provide a means for analyzing an
FT when not only the BE probabilities are uncertain, but
also the effects of component failure on the rest of the sys-
tem. In this framework, components can have multiple
states rather than only operational and failed. Each gate
can also have multiple states, and these states can be trig-
gered by various combinations of input states. This can
model a system which can continue operating after certain
component failures, but only in a degraded way. Such a
degradation can have other effects on the gates above it.

An alternative approach to uncertain network struc-
ture is the introduction of noisy gates [23]. These gates
have some probability of failing when the standard gate
would not, or vice versa. For example, a computer with
redundant hard drives may fail to detect and correct cer-
tain errors, leading to a system failure even though the
backup drive is perfectly functional.

In repairable FTs, uncertainty can exist not only in the
BE failure rate but also in the repair rate. A system for
accounting for this uncertainty in calculating the overall
system availability is given by El-Iraki and Odoom [69].

If the failure probabilities are very uncertain, Huang et
al. [94] offer a method based on possibility measures that
may offer better results than probability-based fuzzy num-
ber approaches. In this method, basic events are specified
with possibilities representing estimated lower bounds on
the failure probabilities. In this context, the possibility of
the TE can be calculated quite efficiently.

It is also possible to model the probabilities as them-
selves being random variables with a normal distribution.
As Page and Perry [135] showed, this allows a better quan-
tification of the uncertainty in the result, although it may
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require more assumptions on the part of the FT designer.
More generally, Forster and Trapp [79] suggest that BE

probabilities can be specified as intervals, within which
the actual probabilities are sure to lie. Their method uses
Monte Carlo simulation treating these intervals as bounds
on a uniform distribution (although they mention that ar-
bitrary distributions may be used) to compute the second-
order probability mass function for the TE probability.

Importance measures for fault trees with fuzzy num-
bers Aside from the TE probability, it can also be useful
to determine which components have the greatest effect
on this probability. Several methods for determining this
have been developed.

Furuta et al. [81] suggested to extend the structural
importance to be calculated using fuzzy probabilities, and
named the resulting value the fuzzy importance.

Alternative measures were suggested by Suresh et al.
[170], which also include the amount of uncertainty con-
tributed by each component. The Fuzzy Importance Mea-
sure of a component i is defined as
FIM (i) = ED [Qqi=1, Qqi=0], where ED denotes the Eu-
clidean distance between two fuzzy numbers, Qqi=1 is the
TE probability if event i has an occurrence probability of
1, and Qqi=0 is the TE probability if event i has a proba-
bility of 0.

Similarly, the Fuzzy Uncertainty Importance Measure
is defined as FUIM (i) = ED [Q,Qqi=0], where Q is the
TE probability. This measure ranks a component as more
important if its probability is less certain.

Finally, if the distributions of the BE probabilities can
be bounded with certainty, for example based on manu-
facturer specifications, it is possible to use Interval Arith-
metic to obtain exact bounds on the distribution of the
TE probability, as shown by Carreras and Walker [41].

Analysis methods measures for fault trees with
fuzzy numbers Since the structure of most fuzzy FT is
the same as that of classic FT, qualitative analysis can be
performed without change. Some extensions, such as the
multistate FT by Ren and Kong [152], require different
methods.

One of the first methods proposed to analyze a Fuzzy
Fault Tree is to determine the minimal cut sets, and per-
form a standard quantitative analysis using the Extension
Principle developed by Zadeh [190] to perform arithmetic
on fuzzy numbers.

The use of the Extension Principle is computationally
intensive for larger trees, and cannot be applied if repeated
events are allowed in the tree. Soman and Misra [167] offer
an alternative method to calculate the top event probabil-
ity, called a ‘resolution identity’ using the ‘α-cut’ method,
which does allow repeated events and has lower computa-
tional requirements.

Guimarẽes and Ebecken [88] present a computer pro-
gram named FuzzyFTA that can calculate the FIM and
FUIM of any gate using either the fuzzy logic approach
using α-cut or a Monte Carlo Simulation. The results of
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DEFINE FAILDEP pump1:

CAUSE = P1.slow;

EFFECT = RATECHANGES P2:*2;

END

DEFINE FAILDEP pump2:

CAUSE = P2.slow;

EFFECT = RATECHANGES P1:*2;

END

Figure 18: Example of an extended FT. Pumps P1 and P2 have
failure modes ‘stopped’ and ‘slow’. Either pump stopping or both
pumps slowing leads to failure. Either pump slowing accelerates
failure of the remaining pump.

these methods are in agreement, although the fuzzy ap-
proach provides more information and is quicker.

Another approach described by Wang et al. [183, 184]
is the conversion of the FT into a Bayesian Network and
performing analysis using fuzzy numbers on the resulting
BN. It is shown that this approach can give the same re-
sults as traditional FT analysis, but it also has the addi-
tional flexibility provided by BN.

4.2. Fault Trees with dependent events

Classic FT assume that the BE are all statistically in-
dependent. This is often not true in practice, as events
can have common causes, or the failure of one component
can accelerate the failure of another.

Dynamic gates in DFTs can model some dependencies,
as was explained in Section 3.

Buchacker [38, 39] suggests to modify Fault Trees into
‘extended Fault Trees’ that allow components to have states
other than fully operational and fully failed. This allows
the modeling of gradual degradation of a component over
time, as well as components that can fail in multiple ways
that have different interactions with other failures. In ad-
dition, this model adds dependencies between components
affecting failure and repair rates. Figure 18 shows an ex-
ample of an extended FT with multi-state components and
dependent failure rates.

Another approach for systems with multistate compo-
nents is provided by Zang et al. [191]. This approach
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represents the overall system by multiple fault trees, each
of which is a fault tree for a particular failure state of
the overall system. These trees are then combined into a
single multistate decision diagram with dependent nodes,
and analyzed to determine the overall probability of the
system reaching each failure state.

Twigg et al. [173] suggest a method to specify mutually
exclusive events. An example of a model where this is
useful, is a valve that can fail open or closed. Since these
failure modes cannot occur at the same time, a traditional
FT cannot correctly model this component.

Yet another design is provided by Vaurio [175], in which
mutually dependent events are replaced by groups of in-
dependent events, such that a traditional analysis of the
FT gives the correct results. A drawback of this approach
is that each group of n dependent events is replaced by
2n − 1 independent events, which results in a combinato-
rial explosion if many events depend on each other.

For models with particularly complex interdependen-
cies, Bouissou [33, 35] offers a formalism called Boolean
logic Driven Markov Processes (BDMP) as an extension
to fault trees. In this formalism, events are described by
Markov Processes with designated failure states. Then,
events in the FT can cause these events to switch to dif-
ferent processes, for example to increase the failure rate if
another component fails.

In addition to analyzing the resulting Markov Chains
to obtain reliability and availability, it is possible to ex-
tract cut sequences from a BDMP [44], and to construct a
Finite State Automaton with equivalent behaviour to the
BDMP [43].

Besides Markov Processes, Bouissou [34] also describes
the option to replace BEs with Petri Nets, although no
method is described for switching these due to external
events. This method can improve the modeling of DFT
spare gates with shared spare components.

4.3. Repairable Fault Trees

To analyze the reliability of a system over a long pe-
riod of time, it is often useful to include the possibility of
repairing or replacing failed components during this time.
These repairs may extend the time before a system failure
occurs, such as when a failed redundant part is replaced,
or they may return a failed system to normal operation.

Sometimes the simple repair rate model presented in
section 2.4.1 is not sufficient. Bobbio et al. [22] introduced
Repair Boxes which can be connected to a gate, and begins
repairs on the BEs of the subtree of that gate only when
the gate fails. Raiteri et al. [52] extended these repair
boxes to allow different repair policies to be used in the
model. The resulting tree is called a Repairable Fault
Tree (RFT). Figure 19 shows an example of an RFT.

In this formalism, each BE e has a failure rate FR(e),
which is the parameter of an exponential distribution that
determines the time until the component fails.
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Figure 19: Example of an RFT, repairs on the shared components
are only initiated when the entire system fails. CPUs 1 and 2 are
repaired when their respective compute node fails.

Each RB is connected to one or more BE to repair, and
one incoming BE or gate. When the incoming event oc-
curs, the repair box is activated and begins repairs on the
outgoing components according to the repair policy. Ev-
ery component also has a repair rate that is the parameter
of another exponential distribution modelling the time to
repair the component.

Repair policies can be very simple, even equivalent to
the simple repair rates model, or more complex, for ex-
ample restricting the number of components that can be
repaired simultaneously.

The major advantage of this approach is that it al-
lows modelling of more realistic systems, and analysis of
what repair strategies are best. A disadvantage is these
trees cannot be quantitatively analyzed using combinato-
rial methods.

Flammini et al. [77] added the possibility of giving
priority to the repair of certain components, based on the
repair rate, failure rate, or level of redundancy of the com-
ponents. Other priority schemes can also be implemented
within this system.

A different extension is provided by Beccuti et al. [16,
18], which adds nondeterminism to the repair policies.
This models cases where, for example, a mechanic individ-
ually decides which component to repair first. Conversion
to Markov Decision Process allows optimal policies to be
automatically derived from the FT when costs of unavail-
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ability, failures, and repairs are provided. A parametric
version [17] of the formalism allows for more efficient mod-
eling and analysis if the FT contains subtrees that differ
only in the parameters of the BEs.

Leaving repair policies nondeterministic also allows the
computation of an optimal repair policy, by associating
costs with unavailability, failures and repairs. Becutti et
al. [18] show that such an optimal policy can be computed
by converting the FT into a Markov Decision Process.

Analysis RFTs can be analyzed to obtain the same mea-
sures that apply to classic FTs with repair rates.

Traditional qualitative analysis of an RFT is gener-
ally less useful, since such an analysis would ignore the
repairability aspect.

Quantitative analysis is more useful, but also more dif-
ficult: Combinatorial methods are no longer sufficient, as
the evolution of the system over time has to be considered.

For systems where each component can be individually
and simultaneously repaired at a constant rate, Balakrish-
nan and Trivedi [13] proposed to convert the model into a
Markov Chain, although this method uses an approxima-
tion to reduce computational requirements.

Another approximation is provided by Dutuit and Rauzy
[68], although this approximation can also only be used in
models with a constant repair rate. The approximation
is shown to give results close to the exact solution and
several other approximations.

The more general analysis method proposed by Rai-
teri et al. [52] is to convert the RFT into a Generalized
Stochastic Petri Net, and then translate this into a Markov
Model. Existing analysis tools for Markov Models can then
be applied. Flammini et al. [76] show that this method
can be used on parts of a system while the non-repairable
parts can be analyzed using traditional methods.

If the FT contains subtrees that can be effectively pa-
rameterized, the method by Bobbio et al. [22] of convert-
ing the FT into a Stochastic Well-Formed Net (a coloured
version of a Generalized Stochastic Petri Net) and then
into a Markov Chain may be more efficient, although this
formalism only allows relatively simple repair boxes. A
later extension by Codetta-Raiteri [49, 51] combines Para-
metric, Dynamic, and Repairable FTs, allowing complex
repair policies, and also performs quantitative analysis by
conversion to a Stochastic Well-Formed Net.

A later alternative is offered by Portinale et al. [140],
which translates an RFT into a Dynamic Bayesian Net for
analysis. This method also allows complex repair policies,
as well as components with several different failure modes
and statistically dependent failure probabilities.

For performing very fast Monte Carlo simulations, Kara-
Zaitri and Ever [103] developed a method for generating a
hardware model of the system in a Field Programmable
Gate Array, which can perform each Monte Carlo run
many times faster than a conventional computer simula-
tion.

4.4. Fault trees with temporal requirements
Dynamic fault trees allow for the inclusion of certain

types of temporal information, but for some systems this
is not enough. Several other ways have been proposed that
offer more flexibility.

One way that has been proposed by Wijayarathna et
al. [186] is to add an AND-THEN gate. This gate’s output
event occurs if the second input occurs immediately after
the first. For example, a fire safety system might have
backup systems that take time to deploy, so a primary
system fault before a fire is not a failure, nor is a fault
after a fire has already been extinguished. Only a fault
immediately after a fire starts (perhaps caused by the fire)
causes a system failure.

Walker and Papadopoulos [179, 180] have suggested ex-
tending static FTs with Priority-AND, Priority-OR, and
Simultaneous-AND gates. These allow the same temporal
relations to be enforced as a dynamic fault tree, but also
allow a requirement for simultaneous faults. Such a simul-
taneous fault is most likely caused by a shared dependency.
This method can model any system that can be modeled
using the AND-THEN gate. A reduction procedure also
described by Walker and Papadopoulos [181] can be used
to simplify the analysis.

An advantage of this system is that it can still be qual-
itatively analyzed using algebraic methods, rather than
needing to be converted into a Markov Model or other
state-space system.

Another construction is described by Schellhorn et al.
[159], which extends classic FTs with cause-consequence
OR- and Inhibit-gates, and synchronous and asynchronous
cause-consequence AND-gates. In this model, the classic
(called decomposition gates or D-gates) are true if their
condition is true at all times. The cause-consequence gates
(or C-gates) are true for some indeterminate period after
their condition is met.

This construction cannot be used for quantitative anal-
ysis, as the C-gates do not have well-defined times at which
they are true. Qualitative analysis is possible, as it is
proven that the prevention of at least one event from ev-
ery cut set prevents the TE in this model, just like in a
static FT.

If timing information is needed beyond the sequence of
events, several other extensions can be used. Gluchowski
[84] adds Duration Calculus [42] to FT. This formalism
allows reasoning about situations where delays are impor-
tant. Unfortunately, it has not yet been proven that the
gate formulas are decidable, and automated analysis tools
cannot currently analyze the dynamic portion of these
trees.

Another formalism is the Temporal Fault Tree (TFT)
by Palshikar [136]. This formalism adds several gates cor-
responding to operators in Propositional Linear Temporal
Logic (PLTLP), such as PREV n, which is true if the in-
put event has been true for the last n amount of time, and
the SOMETIME-PAST, which is true if its input has ever
been true.
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Figure 20: State-event fault tree example of two computer processes
P1 and P2, which fail approximately once every 10 hours. The watch-
dog process W restarts any failed process once per hour. System
failure occurs when both P1 and P2 are down.

TFT can impose many types of requirements on the
event sequence, but have the disadvantage of requiring the
user to understand the formalism of temporal logic.

Qualitative analysis of TFTs is performed by convert-
ing them into regular FTs with additional events for the
PLTLP gates, and post-processing the resulting cut sets
to recover the temporal requirements.

4.5. State-Event Fault Trees

Kaiser and Gramlich [101, 102] have proposed to ex-
tend Fault Trees by combining them with Finite State Ma-
chines. Such a State-Event Fault Tree (SEFT) allows for
greater modularity, and keeps the diagram more readable
than a traditional FT of a complex system. In addition,
it can model systems and components that have different
states with different failure modes. Computer programs
are good examples of such systems.

SEFT have states and events. States describe condi-
tions that last for some time, while events occur instanta-
neously. The two can be linked, as events can cause tran-
sitions between states, and a transition between states is
an event. Like in an FT, gates can be used to require
conditions before an event occurs. An SEFT distinguishes
between a History-AND gate and a Sequential-AND or
Priority-AND gate, in that the latter requires the input
events to occur in a given order.

A later paper by Kaiser [100] adds delay gates, to model
events and state transitions that occur some time after an
initiating event, conditional probability gates, that cause
the output event to occur with some probability every time

the input event occurs, and a set of adapter gates that
allow certain translations between states and events.

Analysis of SEFT can be performed by translating them
into Deterministic and Stochastic Petri Nets, and using ex-
isting tools to analyze the resulting DSPN.

Förster and Kaiser [78] provide a more efficient way
of performing this analysis, by dividing the SEFT into
modules, and converting any static modules found into
Component Fault Trees (CFT). A hybrid analysis can then
be performed combining BDD for the CFT and DSPN
for the dynamic submodules, which is more efficient than
using a DSPN for the entire tree.

Xu et al. [188] introduce formal semantics for SEFT,
and provide a method based on these semantics to deter-
mine MCS. This method extends Interface Automata [58]
to Guarded Interface Automata, and translates an SEFT
into a GIA Network. From this network the cut sequences
can be determined and reduced into a minimal cut se-
quence set.

Another method for qualitative analysis is provided by
Roth et al. [155], which converts the SEFT into an ex-
tended Deterministic and Stochastic Petri-Net (eDSPN),
on which a reachability analysis can be performed to iden-
tify event sequences that result in failure.

4.6. Miscellaneous FT extensions

One particular extension that does not fit these cate-
gories was proposed by Fovino et al. [80], and integrates
Attack Trees with FT. Attack Trees describe vulnerabili-
ties in a system that an attacker could exploit, and coun-
termeasures that could remedy these vulnerabilities.

Since an outside attack could cause a system failure,
the combination of AT with FT may provide a better es-
timate of the system failure probability, assuming proba-
bilities for attack scenarios can be provided.

The integration is performed by designating certain
BEs as attack nodes, and decorating these BEs with at-
tack trees. The attack trees are then individually and sepa-
rately analyzed to determine the probability of a successful
attack. Once this analysis is complete, the FT is analyzed
by substituting the computed probabilities into the BEs.

Attack trees are sufficiently different from fault trees
that we consider them beyond the scope of this paper.
An overview of attack trees and related methodologies has
been written by Kordy et al. [106].

4.7. Comparison

Tables 7 and 8 summarize the various extensions de-
scribed above, with strong points denoted with a plus. The
meaning of the headers is as follows:

Uncertainty How well the formalism can describe sys-
tems with uncertain probabilities and/or structure.

BE Dependence How well the method can model sys-
tems in which the basic events are not statistically
independent.
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Temporal Requirements How well the formalism can
include requirements on the sequences or durations
of events.

Repairable To what extent the method can include re-
pairable components and descriptions of repair strate-
gies.

Multi-state Whether the model can include components
with more states than just failed or not.

BE Prob. distribution Whether the model can describe
systems in which the basic events have failure distri-
butions other than constant probability and inverse
exponential failure rate.

5. Conclusions

We have given an extensive overview of fault tree anal-
ysis methods. Our exposé treated a wealth of available
modelling techniques, being static fault trees and their
extension; qualitative and quantitative analysis methods;
and commercial and academic tools.

This overview lead to several observations and direc-
tions for future research.

First of all, as is often the case with modelling lan-
guages, fault tree analysis suffers — mildly — from the
tower-of-babel-effect: whereas the (static) fault tree for-
malism was coined as a relatively simple and intuitive mod-
eling language, a “wild jungle” of different formalisms and
techniques nowadays exist: Therefore, it would be valu-
able to know which of the SFT extensions are most useful
in practice. Similarly, it would be useful to identify which
FT measures are most useful in practice. Also, a compara-
tive case study that compares FT analysis with other risk
analysis methods such as reliable block diagrams, AADL,
UML/Marte provides useful insight in the capabilities and
limitations for fault tree analysis. Thus, we suggest exten-
sive field studies here.

In terms of tool support, an overarching and industry-
strength tool, that combines the most common SFT ex-
tensions, with the most common FT analysis measures is
a valuable addition.
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Appendix A. Glossary and notation

Mathematical notations

• ∅: Empty set

• P(X): Power set of X

• P(X): Probability of X

• E(X): Expected value of X

• BE : Set of BEs

• G: Set of gates

• E: Set of elements (BE ∪G)

• T (g): Type of gate g

• I(g): Inputs of gate g

• Re(F ): Reliability of F .

Definition of terms and abbreviations

Availability Fraction of time a system is in a functioning
state.

BE Basic Event; leaf node of an FT, typically denoting a
component or a specific failure mode of one compo-
nent.

BDD Binary Decision Diagram

Coherent system System where the failure of a compo-
nent never prevents a system failure.

CCF Common Cause Failure; event where a single cause
results in multiple BEs failing.

Cut Set Set of BEs such that, if all events in a cut set
occur, the top event will occur.

DAG Directed Acyclic Graph.

DFT Dynamic Fault Tree; FT with additional gates for
dynamic behaviour.

FT Fault Tree; graphical model describing failure propa-
gation behaviour through a system.

FTA Fault Tree Analysis; the computation of measures
of interest from an FT.

Gate Intermediate node in an FT, describing how failures
of its children combine.

Intermediate Event Event caused by one or more BEs,
see also ‘Gate’.

MCS Minimal Cut Set.

MTBF Mean Time Between Failures.

MTTF Mean Time To Failure.

MTTFF Mean TIme To First Failure.

MTTR Mean TIme To Repair.

RB See Repair Box

SFT Static (or Standard) Fault Tree; fault tree with only
boolean gates.

Shared subtree Element of a fault tree, together with
its descendants, which is an input to multiple gates.

TE Top Event; root node of an FT, representing the fail-
ure of the system being analyzed.
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