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Abstract

This paper presents the analysis of PCA-LDA behavior for face recognition using
Singular Value Decomposition (SVD). The experimental results is shown to ana-
lyze face recognition performance, i.e. the impact of number of subjects, images
per subject, training set size, and trade-off between the number of subjects and
the number of images per subject on recognition performance, in relation with
the number of PCA-LDA coefficients. The comparison of three classifiers, i.e.
Euclidean Distance, Cosine Similarity, and Likelihood Ratio, are presented to
obtain knowledge about their characteristics. All experimental evaluations are
in the verification context. Based on the experimental results, the larger number
of subjects and images per subject produced the better recognition performance.
Regarding the number of subjects and images per subject trade-off, its indicated
both of them influence the recognition performance. Otherwise, the image size
also affect to recognition performance. PCA-LDA can perform low resolution
image well up to 15x15 pixels and breaks down afterward. Regarding the p and
{ coefficients, PCA-LDA has different behavior for each classifier.

1 Introduction

Face recognition based on eigenfaces or Principal Component Analysis (PCA) was
introduced by M.Turk and A.Pentland [1]. This method reduced the dimensionality by
transforming the features from a higher dimensionality space to a lower dimensionality
space. The PCA projects face images onto a feature space spanned by the eigenfaces
that are the eigenvectors of the covariance matrix of the vector space of face images.
The recognition is performed by measuring similarity using classification techniques.
Still in the linearly projection area, Fisherfaces or Linear Discriminant Analysis (LDA),
introduced by Belhumeur et al[2], maximizes the ratio of the within class and the
between class to obtain the best separation of the classes. The dimensionality reduction
is done by choosing the most significant coefficients: p largest PCA eigenvalues and [
smallest LDA eigenvalues from remaining p.

Commonly, there are many LDA improvements implemented in Biometrics appli-
cations. Veldhuis et al.[3] demonstrated the feasibility of hand-geometry recognition
based on contour parameters. The integrating LDA with likelihood ratio as classifier
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was presented in Veldhuis[4] and Spreeuwers et al[5]. Moreover, Sharma et al.[6] pro-
posed a two-stage linear discriminant analysis technique that regularize the between-
class scatter and within-class scatter matrices in parallel to produce two orientation
matrices, which is concatenated afterward. Still in the context of LDA improvement,
loeffe [7] presented the probabilistic LDA by modelling both within class and between
class variations to solve recognition problems on classes that unseen before. On the
other hand, in the context of LDA performance analysis, Zanetti et al.[8] presented the
reports on the impact of the number of individuals, the number of images per individ-
ual, and trade-off between them to face recognition. However, there are no explanation
about PCA-LDA behavior in relation with the number of coefficients.

This paper presents the behavior of PCA-LDA on three classifiers and analyzes the
effect of the number of subjects, the number of images per subject, images size, and
trade-off between the number of subjects and the number of images per subject on
recognition performance. This paper is organized as follows: Section 2 presents the
PCA for face recognition. Section 3 continues to LDA and its implementation. Section
4 deals with Similarity Score. The experiments and results are showed in the section 5
and 6, followed by the conclusion at the end of paper.

2 Principle Component Analysis for Face Recogni-
tion

PCA is a statistical approach, introduced by M.Turk et al [1], used to extract the
most relevant features to describe faces. In PCA, every image in the training set is
represented as a linear combination of weighted eigenvectors called eigenfaces. PCA
can be written as:

k
M, ~ pg + Z u;w; (1)
i=1
where k is the number of eigenfaces (eigenvectors) and k < d. Then, the weight w; can
be computed easily because of orthonormality as:

wj = wy" (M — ) (2)

where w; are weighted features, u; are the eigenvectors, M are facial images with
dimensionality d, and pug is the average of the training set.

These eigenvectors are obtained from the covariance matrix of a training set. The
weights are obtained after selecting a set of most relevant Eigenfaces. For the verifi-
cation recognition, the score is obtained by projecting a test image onto the subspace
spanned by the eigenfaces and then classification is done by calculating the similarity
score.

2.1 Training

Below are the steps to train PCA as feature extraction for face recognition:

1. Prepare the training faces.
Obtain face images, preprocess them to get centered face in the same size with
dimension d.

2. Prepare dataset.
For every face image in the database, transform into a vector m; with size d x 1
and place into a training set M.

M; = {m;, my, m3, ..., m,} (3)
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where n is the number of training samples. So, My is an d X n matrix.

. Compute the average of face vector.
The average of face vector py can be calculated by using the following formula:

1 n
po=—_ m; (4)
iz

. Centering the data (subtract the average face vector).
To get centered data, the face vector is subtracted by the average of face vector.
Then, the result is stored in Z .

Z; = m; — g (5)

and for matrix A:
A ={2,,725,Z3,...,7,} (6)

Now, the size of A is d X n.

. Calculate the covariance matrix.
The covariance matrix can be obtained by following formula:

C:

1 & 1
SN Z:Z" = ——AAT (7)
n—1:= n—1

Now the size of matrix C is d x d.

. Calculate the Eigenvectors and Eigenvalues.
The matrix C has size d x d, so it will have d eigenvalues. For this case, the
computationally intensive is very hard because of a large dimensional matrix.

PCA reduces the dimensionality by calculating eigenvectors of matrix AT A. Both
of AAT and AT A have the same eigenvalues \. If u; is eigenvector of AAT and v;
is eigenvector of AT A, then the relation of u; and v; is described in the following

equations:
ATAVi = )\iVi (8)

Multiplying both sides by A,
AATAv; = MAv; (9)

From this equation, Av; are the eigenvectors of C = AA” and both of AT A and
AAT have same eigenvalues )\;, thus:

u; = Av; (10)

We can use Singular Value Decomposition (SVD), that is a robust approach,
to calculate eigenvalues and eigenvectors. SVD is a decomposition of a real or
complex matrix that factorize a matrix into three matrices A = USV?. The
columns of U and V are orthonormal and the matrix S is a diagonal matrix with
positive real entries. Both columns of U and V form an orthogonal set. The
matrices U and V are also called left singular vectors and right singular vectors.
The SVD theorem states:

Anzd == Un:vnSndegxd (11)
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where
U'U =1,.,, (12)

VIV = 1,4 (13)

Calculating the SVD consists of finding the eigenvalues and eigenvectors of AA”
and ATA:

(a) The eigenvectors of AT A make up the columns of V,
(b) The eigenvectors of AA” make up the columns of U.

(c) The singular values in S are square roots of eigenvalues from AA” or ATA.

The singular values of matrix S is a diagonal matrix and arranged in descending
order. The singular values are always real numbers. If the matrix A is a real
matrix, then U and V are also real.

7. Choose only K eigenvectors corresponding to the K largest eigenvalues and
project into eigenspace.

2.2 Recognition Procedure

Face recognition can be done by projecting a new facial image onto eigenspace by
following formula:

Wi = uiT(Mnew - /~Lt> (14)

where 1 = 1,2,3,.., K and wu; is the eigenvectors corresponding with K largest eigen-
values. The last step of PCA feature extraction is to form feature vector:

Qo =[w wr ws ... wg]’ (15)

Finally, the recognition is done by calculating the similarity score between two feature
vectors and comparing two thresholds.

3 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) based face recognition was introduced by Bel-
humeur et al. [2]. The LDA aim is to find out the best projection of original data
matrix on a lower dimensional space by maximizing the ratio of the within class and
the between class variances. The technique is to model the space and make it feasible
using PCA, then transform the space using LDA in such away that the components
are ordered with respective discriminative properties. The feature reduction is done by
discarding the least discriminative components. The figure 1 shows how LDA works by
projecting the dataset into two rotates axes. Projection to the lower right axis achieves
the maximum separation between the categories and projection to the lower left axis
yields the worst separation. There are some publications [7][9][10][11] that present the
detail tutorial of LDA and its implementation for face recognition. They also described
some weaknesses of LDA and introduced their solutions.

PCA-LDA can be implemented using SVD decomposition[3][5][12]. The sub section
below will discuss how PCA and LDA produce a transformation matrix to obtain a
feature vector.
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Figure 1: LDA projection

3.1 PCA Transformation

Suppose we have a training set of data consist of n face images. Then, the n sample
vectors m; of the face images with dimension d are ordered in an n X d matrix M. If
the zero mean of matrix M is Z and the mean of M is jy, then the covariance matrix
of Z is defined by: .

n—1

C; = 77" (16)

The SVD decomposition of Z is:
Z =US,V,T (17)

Where Uy and Vi are the left and right singular vectors (i.e. the eigenvectors of 77"
and Z"Z respectively) and unitary matrices (i.e. UUy" = I and V, Vi’ =1I). S;
is a diagonal matrix with the singular values of Z, which are the square roots of the
eigenvalues of ZZ”. Then, the equation of Cy becomes:

S¢S
¢ tlUtT - UtEtUtT (18)

1
77" = U,

C, =
¢ n—1 n—

So, the transformation that whitens the total distribution is:

T, =+vn— 1S, 'U" (19)

Because:
T,C. T, =1 (20)
The next step is to transform all sample vectors m; by T;.
m; = Ty (m; — i) (21)
5

137



3.2 LDA Transformation

We assume that the within distribution of all subjects is normal with the same within
class covariance C,,, but different means and that the total distribution of all faces
is normally distributed with total covariance C;. The within class covariance C,, are
then calculated from the transformed data. If there are various classes ¢ in the sample
vectors and each class has n. samples, so the mean of each class can be obtained by
summing over the sample vectors of the specic class and dividing by the number of
samples of the specic class:

1
Hei = n. Z m; (22)
C i:m;Ec
So, the zero mean of vector mj is:
Zei = mi — Hei (23)

The within class covariance C,, can be estimated by ordering the class zero mean vector

Z¢i into an n X d matrix Zg:

C, = LZCZCT (24)
1

n —

Using SVD decomposition, we can obtain:

1
C, = Z.Z.' =U,
n—1 n—

Svalv U,’ =U,%,U,” (25)

And the transformation that decorrelates the within distribution is:
Ty = UWT (26)
Finally, the total transformation T is the product of the two transformations:
T=T,T, = U, vVn - 1S, 'U," (27)
The best discrimination in LDA is obtained by projecting the vectors on the subspace
with the ¢ smallest eigenvalues. If the dimensionality of first transformation (T;) is
reduced to p, then the dimensionality of second transformation (Tg) is reduced to
¢. This means only the smallest ¢ eigenvalues of the p remaining eigenvalues and
corresponding eigenvectors are used resulting the final transformation (T). So, the

optimum performance is obtained by seeking the ¢ smallest eigenvalues from the best
p largest eigenvalues or we can write:

Tpr = ToTp = UWZT VIl — 1Stp71UtpT (28)

Where Ty is a d x £ transformation matrix. Thus, the features can be extracted using
this transformation matrix.

4 Similarity Scores

There are so many methods to calculate similarity scores. This paper presents the use
of Euclidean Distance, Cosine Similarity, and Likelihood Ratio as classifiers.
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4.1 Euclidean Distance

In mathematics, Euclidean Distance is a distance between two points in the straight
line. The calculation refers to the old literature as Pythagorean metric. So, the distance
between two vectors r and x can be written as:

d(r,x) = > (ri — z;)? (29)

%

4.2 Cosine Similarity

The cosine similarity measures the cosine of the angle between two vectors or points.
The cosine similarity is defined as:

ri'x

d(r,x) (30)

eIl

4.3 Likelihood Ratio

The likelihood ratio can be regarded as a score and the decision if two facial images
are of the same subject is taken by comparing this score to a threshold [3][5]. A simple
expression for the log of the likelihood ratio can be calculated by first applying a trans-
formation T that de-correlates and scales the total distribution such that it becomes
white and simultaneously de-correlates the within distribution. This transformation is
obtained using the singular values and vectors of C; and C,,. The derivation of the
likelihood ratio, see [5], then becomes:

LR(x,y) =x"Ax+y Ay + (x +y)'T(x +y) (31)
Where:
A=1-%,"! (32)
r=x, 22, '+ 3,12, (33)
Sp=1-35, (34)

All required parameters above are obtained from previous equation, i.e. X, derivation
in equation 25, see Linear Discriminant Analysis section.

5 Experiments

The experiments are conducted using FRGC v2 dataset. The FRGC consists of con-
trolled and uncontrolled images. In these experiments, we used only controlled images.
Firstly, the registration is applied to align the faces in the FRGC v2 dataset. It is an
important preprocessing step for face recognition. The face properties, i.e. eyes, nose,
mouth, and face, are detected automatically using Viola-Jones cascade detectors[13].
The registration refers to the eyes position and transform the face image using geomet-
ric transformation and linear interpolation. Moreover, the ellipse mask is applied to
focus the recognition on face area without hair and ears. Then, the histogram equal-
ization is performed to overcome the illumination problem[14]. The figure 2 shows the
result of each face registration step.

The equal-error rate is used as verification rate for performance measurement. The
four types of experiments were performed in different conditions and situations:
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Histogram Equalization

Ellipse Masking

Figure 2: Face Registration

1. The Impact of Number of Subjects to Recognition Performance

This experiment is used to know the impact of number of subjects to recognition
performance, in relation with the behavior on three classifiers: Euclidean Dis-
tance, Cosine Similarity, and Likelihood Ratio. The dataset was separated into
3000 samples for training and 500 samples for testing with image size 50x50 pix-
els. First, we took 500 samples from 25 subjects to train the system. Then, the
classifier parameters and the transformation matrix was calculated from training
set and applied into testing set. So, the similarity scores were obtained from
testing set. The next step was to extend the number of subjects on training set,
i.e. 1000, 2000, and 3000 samples. The behavior of PCA-LDA was obtained by
analyzing p and /¢ coefficients on three classifiers.

2. The Impact of Number of Images per Subject

The training set was divided into 4 subsets to analyze the impact of number of
images per subject. We took 25 subjects with various numbers of images per
subject, i.e. 2, 5, 10, and 20 images per subject respectively. The recognition
performance was obtained from testing set with 500 samples from 25 subjects.
The likelihood ratio classifier was used in this experiment. Based on the results of
experiment 1 on 500 training set and likelihood classifier, the p and ¢ coefficients
is defined to 28 and 23.

3. The Impact of Number of Images per subject and Number of Subjects trade off
The third experiment was conducted to find a trade off between number of images
per subject and number of subjects. In this experiment, we used 400 training set
from various subjects(i.e. 200, 80, 40, and 20) and various images number per
subject(i.e. 2, 5, 10, 20). The p coefficient is defined to 200 and the observation
is done along ¢ axis.

4. The Impact of Image Size
An image contains information as much as its resolution or size. The aim of this
experiment is to know the impact of image size, i.e. 200x200, 100x100, 50x50,
40x40, 30x30, 25x25, 20x20, 15x15, 12x12, and 10x10, to recognition performance.
The 2000 training set from 100 subjects and the 500 testing set from 25 subjects
were used to verify the performance. The PCA-LDA coefficients are defined as:
p=100 and ¢=25.

6 Results

6.1 The Impact of Number of Subjects to Recognition Per-
formance

The results showed a valley, as an optimal area, along ¢ coefficient axis at £ < s — 1
on Euclidean and Cosine classifier. In this case, s represents the number of subjects.
The valley became smaller for bigger training set and disappeared for training set more
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Figure 3: LDA coefficients using Euclidean Distance on various dataset at p=400
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Figure 4: LDA coefficients using Euclidean Distance on various dataset at {=25

than 2000. Similarly, PCA-LDA with likelihood ratio has optimal area at ¢ < s — 1.
After that point, the performance line becomes flat or there are no contribution to
recognition. It is happened because PCA-LDA maximizes the ratio of the between
class and the within class which has the optimum dimension at d < (p,s — 1) [3]. The
detail explanation for each classifier can be seen in the sub section below.

6.1.1 Euclidean Distance

Based on the performance observation on all parameters, we obtained the behavior of
PCA-LDA on Euclidean Distance classifier. The results showed a valley with a bump
at LDA coefficient ¢ = s — 1. figure 3 showed the bump position at ¢ coefficient on
dataset with various number of subjects. The bump size is vice versa with the number
of subjects. The bigger the number of subject, the smaller the bump size. But, the
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T T

Minimum EER= 00127(‘ L =30 on 3000 training set
Minimum EER=0.01707@ L = 48 on 2000 training set
Minimum EER=0.02117@ L = 398 on 1000 training set
Minimum EER=0.0245@ L = 387 on 500 training set

0.2

Equal Error Rate (EER)

200
LDA coefficients

Figure 5: LDA coefficients using Cosine Similarity on various dataset at p=400
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Figure 6: LDA coefficients using Cosine Similarity on various dataset at =25

bump disappeared on 3000 training set. It means that we have to provide minimum
2000 training set to get a representative training set. However, the optimal performance

was always in the range of £ =10 to 50.

The next observation for p coefficient, we took /=25 and observed the performance

for all p coefficients.

As shown in figure 4, the graphics showed that the trend of

optimal performance was in the range p=80 to 120. The number of subjects also gave
an impact to recognition performance. The 500 training set produced high fluctuation
and the worst performance. Otherwise, the larger the training set, the better and the

more stable the performance.
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Figure 7: LDA coefficients using Likelihood Ratio on various dataset at p=400

6.1.2 Cosine Similarity

Similar with the Euclidean Distance, The LDA coefficient observation showed that
Cosine has a bump at LDA coefficient £ = s — 1 and the bump size becomes smaller
on bigger dataset. Whereas, the ¢ observation at p=400 is shown in the figure 5. The
optimal area was in the range /=10 to 100. But, the trend on all dataset went down to
the minimum EER after the bump. For example, the minimum EER on 500 dataset
was reached at =387 and 1000 dataset at {=398. It was possible for all dataset to
have lower EER at higher ¢ coefficient, because the limitation of our observation was
400 coefficients.

Regarding the observation on p coefficient, as shown in the figure 6, the optimal
performance for Cosine was reached at p=70 to 200. The graphics showed the perfor-
mance of Cosine on all p coefficient at ¢=25. The trends for all dataset were similar,
except for the dataset 500. It had high fluctuation and the EER raised rapidly.

6.1.3 Likelihood Ratio

The observation of LDA performance on Likelihood classifier can be seen in the figures
7 and 8. Figure 7 showed that the ¢ coefficients become flat at £ > s — 1. As the proof
in [3], a higher dimensionality ¢ > subject — 1 did not contribute to the Likelihood
ratio. So, the optimal area of Likelihood ratio was in the dimension d < (p,s —1). On
the other hand, the optimal performance on p observation, as shown in figure 8, was
in the range p=50 to 200 for dataset larger than 1000.

6.2 The Impact of Number of Images per Subject

Table 1 showed the impact of images per subject to recognition performance. The
EER was growing down while the number of images per subject was increased for all
classifiers. It means that the addition of number of images per subject will produce
the better performance. However, the different of EER between them becomes smaller
with double increase in the number of images. So, the more addition of images per
subject will not give contribution significantly to recognition, but only give the risk of
slower computation.

11
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The Performance of Likelihood to Various Dataset @ L=25
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Figure 8: LDA coefficients using Likelihood Ratio on various dataset at (=25

Table 1: Impact of Images per subject

Subjects | Images per Equal Error Rate(EER)
Subject | Likelihood | Cosine | Euclidean
25 2 0.2890 0.1724 0.1946
25 5 0.1113 0.1512 0.1751
25 10 0.1019 0.1264 0.1610
25 20 0.0974 0.1224 0.1495

6.3 The Impact of Number of Images per subject and Number
of Subjects trade off

Table 2: Number of images per subject and number of subjects trade off

Subjects | Images per | Minimum Equal Error Rate(EER)
Subject | Likelihood | Cosine | FEuclidean
200 2 0.3567 0.0573 0.172
80 5 0.0969 | 0.0556 0.112
40 10 0.0858 0.0504 0.101
20 20 0.0988 0.0758 0.112

The analysis of recognition performance on ¢ coefficients at p = 200 was shown in
the figures 9,10, and 11. The optimal performance on three classifiers indicated the
same characteristics: the 200x2 training set produced the worst performance, the 80x5
and 20x20 training set produced the similar performance, and the 40x10 yielded the
best performance. The minimum Equal Error Rate on three classifiers, as shown in the
table 2, also indicated that the best combination was the training set from 40 subjects
with 10 images per subject. So, both of the number of subjects and the number of
images per subject give contribution to recognition.

12
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The Performance of Likelihood to Various Dataset @ P=200
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Figure 9: The impact of number of images per subject and number of subjects trade
off on Likelihood classifier

The Performance of Cosine to Various Dataset @ P=200
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Figure 10: The impact of number of images per subject and number of subjects trade
off on Cosine classifier

6.4 The Impact of Image Size

The results of this experiment were shown in the table 3. They showed that PCA-LDA
can perform face recognition on very low resolution images up to 15x15 pixels. But, the
performance will break down for the resolution less than 15x15 pixels. It was caused by

the less information in the very small image. So, the PCA-LDA can not discriminate
it well.
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The Performance of Euclidean to Various Dataset @ P=200
T T T T

0.4 T

T T
Minimum EER=0.1715@ L = 93 on 200x2 training set
Minimum EER = 0.1118@ L = 19 on 80x5 training set

| Minimum EER = 0.1013@ L = 18 on 40x10 training set
0.35 ll Minimum EER = 0.1118@ L = 19 on 20x20 training set |

o )
9 &
T ——==
I
J
I |

Equal Error Rate (EER)
=)
E
T
S
M
~
p:
|

01 1= -

I I 1 I I I I 1 1
0 20 40 60 80 100 120 140 160 180 200
LDA coefficients

Figure 11: The impact of number of images per subject and number of subjects trade
off on Euclidean classifier

Table 3: The Impact of Image Size

Image Size or Equal Error Rate(EER)
Resolution | Likelihood | Cosine | Euclidean
200 x 200 0.0178 0.0190 0.0324
100 x 100 0.0181 0.0198 0.0355

50 x 50 0.0176 0.0212 0.0295
40 x 40 0.0157 0.0209 0.0306
30 x 30 0.0166 0.0202 0.0324
25 x 25 0.0142 0.0177 0.0298
20 x 20 0.0163 0.0164 0.0372
15 x 15 0.0184 0.0165 0.0379
12 x 12 0.0259 0.0219 0.0443
10 x 10 0.1401 0.1470 0.1432

Conclusion

The behaviors of PCA-LDA on three classifiers were presented in this paper. For
all classifier, the larger number of subjects will give the better performance. The
number of images per subject also produced the performance as well as the number
of subjects. The higher number of images per subject the better performance we
obtained. Regarding the number of images per subject and number of subjects trade
off, it indicated that both of them have contribution to recognition.

Regarding the p and ¢ coefficients, PCA-LDA has different behavior for each clas-
sifier. Firstly, Likelihood ratio had optimal performance at dimension d < (p,s — 1)
and p in the range 50 to 200 for large training set, i.e. 2000 samples or more than 2000
samples. For the small training set,i.e. less than 2000, p coefficient was close to s — 1
with p > s — 1. The next classifiers, Euclidean and Cosine, have a bump at £ = s — 1
and form a valley at ¢ < s —1 as optimal areas. The Cosine has optimal areas at /= 10
to 100. The trend of cosine line is growing down after the bump and it is possible to
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reach the minimum EER at higher ¢ coefficients. The Euclidean has different behavior
with Cosine, the ¢ coefficients have optimal area at 10 to 50. ¢ were saturated after
the bump for £ > s — 1. Otherwise, the optimal range of p coefficients is p=80 to 120
for Euclidean and p=70 to 200 for Cosine classifier.

The PCA-LDA also has good performance on low resolution images. It can perform
well up to 15x15 pixels resolution, but the performance will break down afterward.
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