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Abstract

Across-the-space parallelism still remains the most mature, convenient and natural way to parallelize large scale prob-
lems. One of the major problems here is that implicit time stepping is often di2cult to parallelize due to the structure
of the system. Approximate implicit schemes have been suggested to circumvent the problem (M.A. Botchev et al.,
Appl. Numer. Math. 31 (3) (1999) 239). These schemes have attractive stability properties and they are also very well
parallelizable.

The purpose of this article is to give an overall assessment of the parallelism of the method. c© 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Over the last two decades, substantial progress has been made in the development of highly paral-
lelizable methods for time-stepping integration. In Section 2, we give a brief survey of these methods.
Across-the-space based parallelism, which is also called domain-decomposition or across-the-problem
parallelism, still remains the most popular way to parallelize large scale problems. Our method, which
is of the “across-the-space” type, is designed for parallel computing. In fact, it has the parallelism
of an explicit scheme, yet, its stability properties are much better.

Large scale implicit time stepping leads to the necessity to solve large (sparse) linear systems.
This is usually realized by a direct method, and direct methods for sparse matrices are often di2cult
to parallelize. Application of accurate iterative schemes for the linear solves in implicit time-stepping
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codes may sometimes lead to a signiEcant improvement in performance on a sequential computer
(see e.g. [16,10]), but it may as well lead to high CPU-times if the iterative schemes converge
slowly. We will consider situations where stability is important, in particular where the time-step is
restricted by stability constraints rather than by accuracy requirements.

A simple approach is to perform only a modest number of iterations for the linear solves. The
use of a few steps of a minimal residual iterative scheme, for example, GMRES [28,3], is attractive
in this context. This combination is referred to as minimal residual approximate implicit (MRAI)
time stepping [5]. The main di?erence with the conventional use of iterative techniques is that the
number of iterative solution steps per time-step does not depend on the accuracy required for the
time-stepping. Of course, this may lead to loss of stability, and therefore the step size for the time
stepping is adjusted adaptively to assure stability.

A natural way to derive an MRAI scheme is to start from a given implicit scheme. The resulting
approximated implicit scheme can be interpreted as explicit and, hence, is not unconditionally stable.
However, the minimum residual solver leads to a di?erent explicit method per time-step and it turns
out that the succession of di?erent explicit solvers leads to improved global stability [5]. The stability
control proposed in [5] allows for e2cient automatic selection of the step size.

In fact the only di?erence between MRAI and classical explicit schemes is the inclusion of
a minimum residual step in the former. The advantage of this approach is an intrinsically high
parallelism of MRAI, at the price of only a modest loss in stability as compared with a fully
implicit scheme. The aim of this article is to give an overall assessment of the parallelism of the
method, including its minimum residual solver part.

The outline of our paper is as follows. Existing parallel time-stepping methods are brieOy surveyed
in Section 2. In Section 3, we describe the MRAI time-stepping scheme. In Section 4, we discuss
parallel aspects of these schemes. Numerical experiments are presented in Section 5.

2. Parallel time stepping: a short overview

Here we discuss brieOy various approaches for parallel time stepping. For more detailed surveys
we refer to, e.g. [7,8,30,35].

Three major types of parallelism are usually distinguished within parallel time-stepping schemes:
parallelism across the space, parallelism across the method, and parallelism across the time (termi-
nology introduced by Gear [35]).

Parallelism across the space, or domain decomposition based parallelism, is the most simple and
widely used approach. However, across-the-space parallelization of implicit schemes is in general
not straightforward. The reason is that the structure of the problem often inhibits e2cient parallel
solution of the implicit relations by linear direct solves. A naive domain decomposition parallelization
is possible where for each of the subdomains an independent time stepping process is applied and
the subdomains only exchange their boundary values. Such a technique is used in some applications
but it may lead to problems with stability and with load balancing for the processors (see e.g. [39]).

Iterative methods can be successfully exploited for cases where the structure of the problem does
not allow to perform e2cient direct linear solves in parallel. Note that iterative linear solves may
be attractive even on sequential computers [16,10,9,29]. Very often preconditioning is indispensable
to achieve high performance with iterative methods. For a survey of various parallel preconditioning



M.A. Botchev, H.A. van der Vorst / Journal of Computational and Applied Mathematics 137 (2001) 229–243 231

techniques, see for instance [15,3]. One problem with iterative methods is to decide when to stop
the iterations. Too few as well as too many iterations are not desirable, the Erst leads to instability,
the second means a waste of CPU time. The MRAI scheme circumvents this problem.

Another type of parallelism—across the method—suggests a special time-stepping scheme where
work for the solution on the next time level can be (partially) done in parallel [7,8,30,35]. Indepen-
dent of the size of the system, be it a single equation or a system of millions of ODEs, parallelism
of the method is determined only by the selected scheme. In particular, in the class of Runge–Kutta
and general linear methods one can identify a family of such parallel schemes. For the best methods
of this type, one can expect performances comparable with those for the best sequential schemes on
one processor and signiEcant gain in parallel mode (see for instance experiments with the PSIDE
code [14]): the speed up is less than the number of stages. A large number of stages is possible but
would lead to schemes of higher accuracy and that is often not e2cient.

Across-the-time (or across-the-steps) parallel methods form a relatively young family of parallel
schemes. The idea behind the approach is to try to solve simultaneously at di?erent time levels.
For example, if a conventional implicit scheme is solved with an iterative method, one can proceed
in time with the current iterative approximation without waiting until all the iterations are done.
Because usually not many iterations are needed per time step, such time parallelism is restricted
[35,40]. Nevertheless, this restriction can be eliminated for special multigrid iterations. Two popular
classes of parallel across-the-time multigrid methods are multigrid waveform relaxation methods
[27,23] and parabolic multigrid methods [17,6]. Multigrid waveform relaxation methods possess nice
speed-up properties both in time and space [24]; they are more robust than the parabolic multigrid
method [38]. A serious drawback for both approaches, however, is that they require a substantial
amount of problem-dependent programming. Both approaches also require much computer memory.

Another recently proposed class of implicit schemes possessing inherent parallelism are Krylov-
solver-based exponential integrators [20,21]. For certain class of the problems, such as highly oscil-
latory systems, these methods can be very successful. However, if a good preconditioning is available
for the Jacobian matrix, the standard implicit time integration is usually more e2cient [19,26].

3. MRAI time stepping

Suppose that we are, due to stability considerations, interested in an implicit scheme for the
solution of a sti? system of ODE’s

dy
dt

= f (t; y); y|t=0 = y0 ∈ RN ; (1)

for example, the Euler Backward (EB) scheme

yn+1 − yn = �f (tn+1; yn+1): (2)

One needs to solve the nonlinear equation (2) in order to obtain the solution yn+1 on the next time
level tn+1. This is usually done by linearization and solving the resulting Jacobian equation

(I − �J )(yn+1
(1) − yn+1

(0) ) = �f (tn+1; yn+1
(0) ) + yn − yn+1

(0) ;

J =
@f
@y

(tn+1; yn+1
(0) );

(3)
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with yn+1
(0) an initial guess, that has to be chosen carefully in order to have order consistency (see

later).
In a Newton process this procedure is iteratively repeated until yn+1

( j) is close enough to the wanted
solution yn+1.

The basic idea behind the MRAI time stepping [5] is as follows: at each time step, for one or
more Newton iterations, we solve (3) approximately with k steps of GMRES [28,3]. The value for
k is taken small (say 5). Since the GMRES process involves only explicit matrix-vector operations
with I−�J , the resulting time stepping is explicit, and this makes MRAI schemes easy to parallelize.

Analysis in [5] shows that for a consistent scheme, an initial guess yn+1
(0) for the iterative process

has to be taken appropriately. For example, yn+1
(0) can be taken as the solution obtained with one step

of the Euler Forward scheme. The approach can also be followed for higher order implicit schemes.
In that case, we obtain yn+1

(0) from one step of an explicit scheme of the same (higher) order.
Unlike other approaches for the usage of iterative methods in implicit time stepping, in MRAI

schemes one does not control the residual reduction achieved in GMRES; the number of iterations
k is simply kept Exed, for instance k = 5. A problem in conventional approaches is that it is often
not clear what tolerance for the residual reduction stopping criterion should be used; for a too strict
tolerance an unnecessary amount of computational work has to be done, and, on the other hand, a
too modest tolerance might lead to instability.

With only k GMRES steps we lose, of course, the unconditional stability and to monitor this loss,
we need a step size control. We will now describe the MRAI step size control proposed in [5].

Let the initial vector yn+1
(0) be computed with an Euler Forward step. First, k GMRES steps are

performed for system (3). As a result, k+1 Krylov basis vectors, forming columnwise an orthogonal
matrix Vk+1, and a small (k + 1) × k projection matrix H̃ are constructed, with

Vk+1(I − �J )Vk = H̃ :

It is easy to check that H̃ is of the form

H̃ = I − �H ;
Vk+1JVk = H;

(4)

which means that H is a projection matrix for J . It is also easy to show that the Krylov basis matrix
Vk+1 does not depend on �.

Next, the step size control is applied. Let H̃ denote the matrix H̃ of which the last row is skipped.
As it has been argued in [5], the scheme is stable provided that the smallest eigenvalue �min of matrix
H̃

−T
(H̃

T
H̃) satisEes

�min 6 8:

In fact, the eigenvalues of H̃
−T

(H̃
T
H̃) increase monotonically with increasing �, so we are looking

for a � such that function �min(�) remains below 8 but not too small, since we want a � as large as
possible. For a proper �, we simply solve a scalar equation

�min(�) = 8 − �; 0¡��1 (5)

numerically, for instance with the secant iterative method. Each iteration involves computation of H̃
for a new trial value of � (cf. (4)) and the solution of a small eigenvalue problem for the matrix
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H̃
−T

(H̃
T
H̃). This can be implemented with LAPACK [1]. Note that we do not have to solve (5)

accurately because any � for which �min 6 8 guarantees stability. Usually a practical value of � is
found with three secant iterations.

We emphasize that the overall work for the step size control is proportional to k3 only. Moreover,
if in (3) we take f (tn; yn) instead of f (tn+1; yn+1

(0) ), which does not reduce the order of the scheme,
a new good value of � can be immediately applied for the current step. A small adjustment in the
order of computations is then needed: we compute the initial vector yn+1

(0) = yn + �f (tn; yn) already
when a good � has been found and, at the beginning of the step, we start the GMRES process with
vector J f (tn; yn). (Note that the residual for yn+1

(0) , substituted in (3), is �2J f (tn; yn).)
A second order MRAI scheme with a similar economical step size control is described in [5]. For

other higher order schemes it is not always possible to apply a recent value of � immediately on
the current time step while still avoiding work of order N . But, of course, it is always possible to
apply the computed � for the next time step, and this works well in practice.

Numerical tests and comparisons of the MRAI schemes with other time-stepping strategies (as in
[32,9]) can be found in [4,5]. The MRAI time stepping has been used with success in the general
purpose MHD solver VAC [25,33].

Note that if the Jacobian J is not available explicitly, then its action on a vector is approximated
by the directional di?erence,

J (tn+1; yn+1
( j) )C ≈ f (tn+1; yn+1

( j) + �C) − f (tn+1; yn+1
( j) )

�
; �=

√
�CTyn+1

( j)

‖C‖ ; (6)

where � is the Ooating point relative machine accuracy.

4. Parallel aspects

The structure of MRAI with respect to parallelism is fairly simple. There are two CPU-time
intensive components

1. function evaluations with f (FEVALs);
2. the GMRES part.

Parallelization of GMRES has been well studied (see e.g. [3,37,15]). The main problem is the
communications for the inner products but, as we see from Table 1, this part of the algorithm scales
perfectly well for low values of k. For larger values of k, other tricks for the inner products are
possible if the vector lengths are not large enough [2,13].

Now we consider in some more detail the parallelism of the complete MRAI scheme for ODE’s
where the right-hand side is a partial di?erential operator. In this case, we will assume that (6) is
used for the evaluation of Jacobians. Let Tp denote the CPU time required to advance one time step
with the MRAI scheme in parallel on p processor elements (PEs). We will derive estimates for the
speed-up Sp = T1=Tp.
Tp mainly consists of the CPU times spent for the k(k + 1)=2 + k inner products, the k + 1

Jacobian-vector products, and 1 function evaluation (FEVAL). We separate the part of Tp that is
spent for the inner products. As we have seen, this part of the computations is well parallelizable.
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Table 1
Speed-up for modiEed and classical Gram–Schmidt on the Cray T3E for the orthogonalization
part of GMRES(7); N = 80 000, PE stands for “processor element”

# of PEs ModiEed Gram–Schmidt Classical Gram–Schmidt
(35+1 communications) (s) (7+1 communications) (s)

1 0.424 0.423
2 0.214 0.213
4 0.106 0.104
8 0.047 0.047

Each new Jacobian-vector product costs one FEVAL and one inner product. Thus, in total, there
are k(k + 1)=2 + 2k + 1 inner products. Assume that it takes fT1 CPU-time, with 0 6 f 6 1, to
compute all of them by one PE. The remainder of T1 is necessary for k+ 2 FEVALs, each of which
takes tfeval1 by 1 PE. This means that

T1 = fT1 + (k + 2)tfeval1 ;

and, because the inner product part is almost perfectly parallelizable,

Tp =
fT1

p
+ (k + 2)tfevalp : (7)

Assume, for simplicity, that the communications required to perform a FEVAL are not overlapped
with other computations, then

tfevalp =
tfeval1

p
+ tcomm

p ;

where tcomm
p is the total time spent for communication in a FEVAL. Hence, we have that

Sp =
T1

Tp
=

p
1 + (k + 2)p tcomm

p =T1
;

Sp =
p

1 + (1 − f)ptcomm
p =tfeval1

: (8)

The meaning of the ratio ptcomm
p =tfeval1 = : �p is motivated by observing that tfevalp = (1 + �p)tfeval1 =p,

in other words, the ratio simply shows the communication overhead in FEVAL.
Suppose that 1 FEVAL compares in costs approximately with F inner products. Then, the value

1−f, which is the total FEVAL costs divided by the total costs (for FEVALs and inner products),
can be estimated as

1 − f =
(k + 2)F

k(k + 1)=2 + 2k + 1 + (k + 2)F
: (9)

For a typical value for the number of GMRES iterations in MRAI codes, k = 5, we have that

1 − f =
7F

26 + 7F
: (9′)
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Table 2
Estimates for the FEVAL communication time tcomm

p for 1D (three-point stencil), 2D (Eve-point
stencil, N = n× n), and 3D (seven-point stencil, N = n× n× n). p PEs are logically arranged
as p× 1,

√
p×√

p, or p1=3 × p1=3 × p1=3 grid

Problem dimension Grid of PEs Communication time tcomm
p

1D 1D const(N ;p)
2D 1D ∼ √

N , const(p)
2D 2D ∼ √

N , ∼ 1√
p

3D 1D ∼ N 2=3, const(p)
3D 2D ∼ N 2=3, ∼ 1√

p

3D 3D ∼ N 2=3, ∼ 1
p2=3

We now consider the situation that corresponds to the model problem described in the next
section. We will specify the values tcomm

p and F in the expressions (8), (9). It will be clear from
the presentation how the speed-up analysis can be applied for other cases.

Suppose that (1) stems from the spatial discretization of a PDE, and the function f is a 3D
di?erential operator discretized on the regular seven-point stencil. Let the 3D grid be distributed
among the set of PEs, logically arranged in a 2D processor grid, so that each PE possesses the grid
nodes in one direction. Assume for simplicity that N = n3 and p=

√
p×√

p, with
√
p an integer.

In the FEVAL operation, each PE Erst successfully sends and receives four messages, and then
the FEVAL computations are performed. These four send=receive calls are performed in parallel,
therefore

tcomm
p = c1

N 2=3

√
p

+ c2; (10)

where c1 and c2 are computer dependent constants. The term N 2=3=
√
p corresponds to the amount

of data sent: if the processor grid becomes denser, for example,
√
p is increased by a factor of

two, then, evidently, the messages become two times shorter. Of course, if the start-up time term
c2 was zero, this would also reduce the tcomm

p by a factor of two. As we see, the communication
time decreases as the number of PEs increases. According to Table 2, this is also the case for other
discretized PDEs, provided that the PEs are logically organized in square 2D or cubic 3D grids.

Because the seven-point stencil leads to at least 7 multiplications and 6 additions for the FEVAL
operation at each grid point, the FEVAL expenses are F ¿ 6:5. We took F = 7. With (9′) we
get 1 − f ≈ 0:7. Substitution of this, in combination with (10), into the speed-up estimate (8)
leads to

Sp =
p

1 + 0:7(c1N 2=3√p+ c2p)=tfeval1

: (11)

To determine c1 and c2, we have run a simple code with a single call to the FEVAL subroutine,
where tcomm

p is measured explicitly. The code has been executed twice, with di?erent numbers p,
and this resulted in a system of two equations in c1 and c2. The value of tfeval1 can also be measured
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Fig. 1. Ratio (MRAI speed-up)=(ideal speed-up)×100% versus the problem size N on the IBM SP2 for di?erent number
of PEs (solid line—p= 4, dashed line—p= 16, dash-dotted line—p= 64).

directly. Such a direct timing has the advantage that the predicted speed-up corresponds exactly to
the particular computer, compiler, FEVAL implementation, etc. Since the actual performance may
depend on the problem size N , it is safer to redo the timings for a new value of N .

However, it is often reasonable to assume that the performance depends only mildly on N , so
that tfeval1 is directly proportional to the problem size: tfeval1 = c3N , c3 a constant. Substitution of the
last expression into (11) gives an explicit dependence of the speed-up on the problem size N and
the number p of PEs:

Sp(N ;p) =
p

1 + 0:7(c1N 2=3√p+ c2p)=c3N
: (12)

In Fig. 1, we have depicted the dependence (12) for the IBM SP2 with parameters c1, c2, c3,
estimated for N = 64 000. The plot shows how large the problem size N should be for a good
e2ciency Sp(N ;p)=p. To have an e2ciency of at least 50%, N should be at least 105 for p= 16,
and 7 × 105 for p= 64.

To adapt the speed-up estimates for a di?erent problem (i.e., for a di?erent FEVAL), one has only
to estimate the FEVAL expenses according to (9), and adjust the communication time expression
(10) (see Table 2).

We note that the estimate (10), and similar estimates as presented in Table 2, can be reformulated
in terms of the hardware parameters rc∞ and tc0 (the asymptotic communication bandwidth and the
latency, respectively). These parameters, together with the scalar performance rs∞, can be useful for
further performance analysis. For further information, we refer the reader to [22,36].

5. MRAI performance

In this section, we test how the MRAI strategy competes with other time-stepping techniques on
a sequential computer.
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In [5], we presented numerical experiments with 2D and 3D problems demonstrating superiority
of the MRAI-based Euler Backward (EB) scheme tested against EB with direct and iterative linear
solvers. In these experiments, di?erent stopping criteria for the iterative solver were tried and, for the
whole range of the stopping criteria, the iteration-based EB performed worse than the MRAI-based
EB scheme.

The fact that for grid based 2D and 3D problems MRAI strategy outperformed implicit time
stepping with direct linear solves can be explained as follows. An attractive feature of the direct
methods is that the LU factors can typically be reused for several time steps. According to the
estimates in [10], for a 3D seven-point stencil discretization problem, each sparse LU factorization
costs O(N 2) Oops, and, at each time step, forward=backward substitution solve adds O(N 4=3) Oops
to this amount. Let us assume that for the corresponding MRAI scheme the step size is in average
20 times smaller than the fully implicit variant of which the MRAI is derived (which is in practice
often a pessimistic estimate for MRAI), and that an LU factorization is made only once per 10 time
steps. Even for this strongly biased, in favor of direct methods, situation (these two values, 20 and
10, are hardly possible to occur simultaneously since for larger step sizes the LU factorization has
to be updated more often) one still has a substantial gain with the MRAI approach where the work
per step is just O(N ). Similar conclusions, although less pronounced, can be made for the 2D case.
Moreover, direct sparse methods are much more di2cult to parallelize [15], so that the picture will
be even less favorable for them on a parallel computer.

Here we present tests where an experimental MRAI-modiEed sti? ODE solver LSODE (the
LSODE=MRAI code) is compared with RKC [32,31] and VODPK [9] codes.

The LSODE code is a black-box sti? integrator [18], in which the variable-order implicit backward
di?erentiation formulas are used with a Newton process, and the inner linear solves are done by
direct methods from LINPACK. In the MRAI version of the code, linear solves have been replaced
by a Exed number of GMRES steps, and the Jacobian evaluation (i.e., the Jacobian action on a vec-
tor) can be done according to (6). These techniques are similar to those employed in the VODPK
code [9], the di?erence is that in the VODPK code convergence of GMRES is controlled. In both
EB=MRAI and LSODE=MRAI codes, the number of GMRES steps was k = 5 (this is our default
value).

Combination of two step-size control mechanisms in the LSODE=MRAI code, namely the MRAI
stability step-size control and the LSODE accuracy step-size control, often leads to a too stringent
control. Therefore, in the LSODE=MRAI code, the MRAI step-size control is incorporated in a
relaxed form: only when the actual step size exceeds the step size WtMRAI suggested by MRAI by
factor 5 or more, the allowable step size is restricted by 5WtMRAI.

RKC is based on Runge–Kutta–Chebyshev formulas [34] and is intended for mildly sti? problems
with real-spectrum Jacobians. The code needs at most 7 vectors of storage (typically 2–3 times less
than for VODPK or LSODE=MRAI) and thus is especially attractive when the memory requirements
are an issue.

5.1. 3D heat conduction

This test problem is a linear heat conduction problem over the 3D unit cube [32]. The inhomo-
geneous term is chosen in order to have the analytical solution tanh(5(x + 2y + 1:5z − 0:5 − t))
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Table 3
Results for the 3D heat conduction example

Code Error CPU fevals=steps Error CPU fevals=steps

tol = 10−1 tol = 10−4

LSODE=MRAI 1.8 42.9 307=25 3:1 × 10−4 1280 10 567=606
D-VODPK 6.4 46.4 322=25 1:9 × 10−3 737 5001=570
VODPK 1.1 116.7 760=79 4:8 × 10−4 1087 7449=876
RKC 2:0 × 10−3 240 2687/22 7:9 × 10−6 2062 9716=338

tol = 10−2 tol = 10−5

LSODE=MRAI 0:14 151 1165=75 9:4 × 10−6 2995 24 373=1959
D-VODPK 0:23 163 1120=77 2:9 × 10−4 1172 7848=1050
VODPK 2:1 × 10−2 344 2296=233 5:5 × 10−5 1395 8798=1062
RKC 3:7 × 10−4 627 4340=61 9:6 × 10−7 3371 14 638=763

tol = 10−3 tol = 10−6

LSODE=MRAI 1:4 × 10−3 445 3427=204 5:4 × 10−6 5693 45 979=6070
D-VODPK 6:2 × 10−2 619 4228=399 code failed
VODPK 3:7 × 10−3 1052 7126=716 2:7 × 10−6 2255 12 903=1525
RKC 5:2 × 10−5 1195 6375=143 1:5 × 10−7 5270 21 197=1557

which provides initial and boundary conditions for the test. The spatial discretization with central
di?erences on a grid of 79× 39× 39 yields a system of N = 120 159 equations. The integration was
done for 0 6 t 6 tEND = 5:0.

The LSODE=MRAI code was used with matrix-free Jacobian evaluation. In this mode, the code
required 16 N -vectors to store (6 of which for the MRAI part).

We used VODPK in two modes: with diagonal scaling preconditioning (D-VODPK) and without
preconditioning. All VODPK parameters were set to the default values. The code required than 18
N -vectors of storage.

For the RKC code, all the parameters were set to their default values, except that we explicitly told
the code an estimate for the spectral radius of the Jacobian (this is not crucial for the performance
of the code, however). The RKC code required only 4 N -vectors to store.

The results of comparative runs on one processor of the SGI Origin 2000 are presented in Table
3 and in Fig. 2. The absolute and relative tolerances are equal and given by parameter tol. In
the table, columns “error”, “CPU” and “fevals=steps” contain the maximum di?erence in computed
and exact solution at t = tEND = 5:0, CPU time in seconds, number of calls to the right-hand side
function f and steps made, respectively. The error reported in the table is measured with respect to
a reference solution computed with a stricter tolerance [32].

As can be seen from the results presented, the LSODE=MRAI code is the best for not stringent
tolerance requirements tol ¿ 10−3, when stability is of more concern than accuracy. For these
tolerances, LSODE=MRAI outperforms even preconditioned VODPK (note that LSODE=MRAI is
used without preconditioning).
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Fig. 2. A log–log plot of CPU time versus error for the 3D heat conduction example (the ∗-line is LSODE=MRAI, the
+-line is preconditioned VODPK, the ×-line is VODPK, and the -line is RKC).

For more stringent tolerances, performance of LSODE=MRAI is less impressive though still better
than performance of preconditioned VODPK. We note that the LSODE=MRAI code can be tuned
to have a better performance for more stringent tolerances; this can be achieved by performing a
smaller number of minimum residual steps k for higher accuracy requirements.

The RKC code appears to be the best when high accuracy is needed. However, for relaxed
tolerances RKC has serious di2culties. That the problem is too sti? for RKC can be seen from the
number of used internal stages reported by the code [32,31]: for tol = 10−1 number of internal
stages in RKC exceeds 200.

5.2. Testing parallel performance of MRAI

In our test runs we have used two MRAI codes. The Erst one is based on the simple EB
scheme (we refer to this code as EB/MRAI), the second one is the LSODE=MRAI code described
in the previous section. This choice is quite representative since EB is a simple implicit scheme
(still actively used in practice), whereas LSODE is a quite advanced code based on higher-order
schemes.

We note that the above mentioned RKC and VODPK codes virtually possess high parallelism
too. However, the RKC code is in general less attractive since it is not applicable for problems
with Jacobians with complex spectrum (as, for example, in advection–di?usion problems). The
VODPK concept is specially developed for the inexact Newton method framework, to be applied
for higher order time stepping. Our simpler MRAI approach is of interest for a wider class of
schemes.

Our model problem is the 3D heat equation problem from the previous section. For the same
standard seven-point stencil Enite di?erence discretization, the spatial grid 40 × 40 × 40 leads to
a system of size N = 64 000. The numerical integration was done for t ∈ [0; 0:7]. In those runs,
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Table 4
CPU time (s) for the 3D heat equation model problem on the Cray T3E and IBM SP2

# of EB=MRAI LSODE=MRAI

PEs Cray T3E IBM SP2 Cray T3E IBM SP2

1 404.2 426.6 55.8 58.3
2 202.8 221.2 28.0 30.3
4 101.8 115.8 14.0 15.7
8 50.0 61.4 7.0 8.4

16 24.8 31.4 3.4 4.4
32 13.2 23.1 1.8 3.3
64 7.4 — 1.0 —

speed-ups of which are presented below, the tolerance parameter in the LSODE=MRAI code was
chosen as 10−3. With this tolerance, the code requires 22 steps with 283 FEVALs.

The simple EB=MRAI code (based on the EB scheme) needs 2212 FEVALs to Enish the compu-
tation within 316 time steps. The step size � was chosen each time step according to the technique
described in Section 3.

For our model problem, we have parallelized the LSODE=MRAI and EB=MRAI codes using the
MPI communication library [12]. The 3D grid was distributed among the PEs in two dimensions,
so that each PE has the whole range of nodes in z-direction. The FEVAL subroutine includes four
send and four receive calls to exchange information with the neighboring PEs.

For the predicted speed-up values, we have used the relation (11), with the estimated parameters
c1, c2 (Section 4), which were

Cray T3E: c1 = 6:1 · 10−7; c2 = 2:3 · 10−4;

IBM SP2: c1 = 3:0 · 10−6; c2 = 6:6 · 10−3:

We estimated the parameter F (cf. (9)) for this problem as F ≈ 9. We note that in the LSODE=MRAI
code the number of FEVALs per time step varies, so that our speed-up predictions (which formally
are valid for the EB=MRAI code) have only approximate values for LSODE=MRAI.

The speed-up results are presented in Table 4 and in Fig. 3. Exactly the same codes have been
executed on the Cray T3E and IBM SP2, but, as we see, the speed-ups for the IBM SP2 are smaller.
This is by no means a surprise since the communication start-up time (the latency) is larger for this
computer. Indeed, if we assume that the speed of computations on one PE of the Cray T3E and IBM
SP2 is approximately the same (which turns out to be realistic), then the di?erence in the speed-ups
is due to the di?erent values of the tcomm

p . According to (10), and the estimated values of c1, c2, for
su2ciently large p the communication is about 30 times faster on the Cray T3E. This is probably
not only because of the faster communication start-ups, but also due to the well optimized MPI
library on the Cray T3E (in our limited experience, on the Cray T3E, the MPI-based codes often
perform only slightly less than codes based on the Cray’s native communication library SHMEM
[11]).



M.A. Botchev, H.A. van der Vorst / Journal of Computational and Applied Mathematics 137 (2001) 229–243 241

Fig. 3. Speed-up results for the Cray T3E (predicted: -·-, observed: o) and IBM SP2 (predicted: ---, observed: *).

6. Conclusions

The recently proposed MRAI time stepping approach can be viewed as an attempt to obtain
a parallelizable cheap alternative for implicit schemes, preserving stability properties as much as
possible [5].

Experiments on the Cray T3E and the IBM SP2 parallel computers and analysis show that the
MRAI schemes possess the parallelism of explicit schemes, i.e., the speed-up is restricted only by
the function evaluation operations in (1).

Hence the MRAI approach seems to be an attractive tool for parallel time stepping for the situations
where the step size is restricted by stability rather than accuracy.
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