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This research addresses the question as to whether or not the Normalised Difference Vegetation Index (NDVI) is
scale invariant (i.e. constant over spatial aggregation) for pure pixels of urban vegetation. It has been long recog-
nized that there are issues related to the modifiable areal unit problem (MAUP) pertaining to indices such as
NDVI and images at varying spatial resolutions. These issues are relevant to usingNDVI values in spatial analyses.
We compare two different methods of calculation of a mean NDVI: 1) using pixel values of NDVI within feature/
object boundaries and 2) first calculating themean red andmean near-infrared across all feature pixels and then
calculating NDVI.We explore the nature andmagnitude of these differences for images taken from two sensors, a
1.24 m resolution WorldView-3 and a 0.1 m resolution digital aerial image. We apply these methods over an
urban park located in the Adelaide Parklands of South Australia. We demonstrate that the MAUP is not an
issue for calculation of NDVI within a sensor for pure urban vegetation pixels. This may prove useful for future
rule-based monitoring of the ecosystem functioning of green infrastructure.
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1. Introduction

The Normalised Difference Vegetation Index (NDVI) is a numerical
indicator used to characterize the greenness of live vegetation (Rouse
et al., 1974a; Tucker, 1979). NDVI has been used in numerous studies
of plant extent and magnitude using satellite imagery (Leon et al.,
2012). The NDVI of a multispectral image takes advantage of the differ-
ential reflection characteristics of two bands, namely chlorophyll ab-
sorption in the Red band and the high reflectivity of plant cell
structure in the near-infrared (NIR) band (Fensholt and Proud, 2012;
Glenn et al., 2008; Glenn et al., 2010; Vina et al., 2011). NDVI can be cal-
culated on a per pixel basis and is simply: (NIR − Red)/(NIR + Red).
Healthy or dense vegetation absorbs more visible light and reflects a
large portion of the NIR while unhealthy and sparse vegetation reflects
more visible and less NIR (Dutta et al., 2015;Mulmi et al., 2016). This re-
sults in highNDVI valueswhere there is a high density of healthy ‘green’
vegetation. NDVI values can vary from −1.0 to +1.0. The potential of
NDVI time series to investigate and record the difference between nat-
ural and anthropogenically designed flora has made this one of the
most well-known and frequently used indices in vegetation studies
(Blaes et al., 2016; Lanorte et al., 2014; Wang et al., 2011).

Ratios or differences using energy from two bands were first devel-
oped by Jordan (1969) to assess green vegetation spectral features for
estimating energy accumulation in plant canopies, biomass, and the
leaf area per unit ground (LAI, leaf area index). The provenance of the
Table 1
Review of MAUP studies.
After Davis (2012).

Authors Scale
aggregate
problem

Zoning
problem

Hotspot Moving
window

Upscaling OSA (
specifi
analys

Dark and Bram (2007) X X
Ratcliffe and McCullagh
(1999)

X X X

Shriner et al. (2006) X X
Mu and Wang (2008) X
MacEachren (1982) X
Bhati (2005) X
Hipp (2007) X
Hayward and Parent
(2009)

X X

Jelinski and Wu (1996) X X
Gotway and Young
(2002)

X X X

Nakaya (2000) X X
Hay, Parceau, Dube,
and Bouchard (2001)

X X X X

Pawitan and Steel
(2009)

X X

Tagashira and Okabe
(2002)

X X

Chainey, Thompson,
and Uhlig (2008)

X X X

Gatrell, Bailey, Diggle,
and Rowlinson
(1996)

X

Chainey, Thompson,
and Uhlig (2008)

X

Fotheringham and
Wong (1991)

X

Lentz, Blackburn, and
Curtis (2011)

X X X

Amrhein (1993) X X
Amrhein and Reynolds
(1996)

X X

Amrhein and Reynolds
(1997)

X

Rushton and Lolonis
(1996)

X

Rushton (1998) X
NDVI is a slight mystery. It seems that NDVI was introduced by Rouse
et al. (1974a) 1974Rouse et al. (1974b). However, its use since then
has grown significantly. For example, 1196 journal articles in
ScienceDirect in 2016 alone relate to the use of the NDVI. The Advanced
Very High Resolution Radiometer (AVHRR) is the longest running series
of NDVI products for regional and global scale vegetation studies.
AVHRR is carried on board the National Oceanic and Atmospheric Ad-
ministration (NOAA) polar-orbiting weather satellites. Its daily repeat
cycle produces 1 km resolution images that have led to the generation
of an archive of NDVI-based images of the world's land surface dating
from 1982. These data have been used to portray seasonal and annual
changes in vegetation (Guyot, 1990; Jensen and Cowen, 1999; Los,
1998). The last generation of high spatial resolution platforms including
WorldView, IKONOS, GeoEye as well as airborne images all provide de-
tailed information appropriate for microscale studies such as forestry
and urban landscapes (Blaes et al., 2016; Dragozi et al., 2016; Singh et
al., 2012). In addition, some satellites such asWorldView-2 andWorld-
View-3 have multispectral sensors which are more sensitive to the NIR
and Red bands. These two satellites have two Red bands (red and red-
edge) and two NIR bands (NIR1 and NIR2). These developments have
progressed the studies on vegetation canopies and vegetation indices
including NDVI (Karlson et al., 2016; Muller and van Niekerk, 2016;
Nouri et al., 2014; Nouri et al., 2016a; Pu and Cheng, 2015).

The modifiable areal unit problem (MAUP) is a fundamental chal-
lenge associated with the representation and analysis of spatial data
object
c
is)

OSU (object
specific
upscaling)

COSP (change of
support problem)

Geocoded
data

LISA (local indicators
of spatial association)

X X

X

X

X

X

X
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(Openshaw, 1984). MAUP refers to the fact that the observed aggregat-
ed values will vary according to how the area boundaries are drawn.
MAUP comprises both scale and aggregation effects. The scale effect re-
lates to the size of the areal units that are used and the aggregation ef-
fect relates to the exact way in which they are assembled at a given
scale. Changes in either can bring about changes in the apparent geo-
graphical distribution of the variable in question. MAUP can present
particular difficulties in the field of landscape ecology because of its in-
fluence on many landscape indices (Jelinski and Wu, 1996; Li and Wu,
2004).

Consideration has been given to the role of zones and the effect of
aggregation in these kinds of analysis. There is extensive work in this
area in the MAUP literature (Pawitan and Steel, 2009). However, very
few studies have compared the effects of MAUP in spatial studies of
urban vegetation. Davis (2012) summarised several prominent studies
of MAUP in a table (Table 1). Most studies mainly emphasized either
the scale problem (Ratcliffe and McCullagh, 1999; Shriner et al., 2006)
or the zoning effect (Bhati, 2005; Hipp, 2007; MacEachren, 1982). For
instance, Dark and Bram (2007) focused on the effect of the scale prob-
lem in physical geography. Mu andWang (2008) investigated different
approaches of the diminishing scale effect. In contrast, Hipp (2007)
comprehensively discussed common problems associated with
neighbourhood and aggregated information fromvarious zonal settings.
There are few studies which have considered both the scale and aggre-
gation effects of MAUP. Different approaches result in different out-
comes. Jelinski and Wu (1996) examined the impact of MAUP on
NDVI. In particular, they investigated the impact of two aggregation ap-
proaches at different scales “with an equal number of pixels per zone”.
The same approach was reproduced by Dark and Bram (2007) who
claimed that “from a hierarchical point of view, the MAUP is not really
a problem”.

Mathematically we can generate NDVI in multiple ways. Both ap-
proaches that are argued here are supported in the literature for the
Fig. 1. Five land cover types in Veale Gardens: trees, shrubs
pixel-based approach (Gamon et al., 1995; Lunetta et al., 2006) and
for the object-based approach (Mutanga et al., 2012; Pu and Landry,
2012).

The scope of our analysis is narrower than these broader questions
of landscape ecology because it focuses on the characterization of
urban parkland vegetation.We use high and very high spatial resolution
imagery to ensure that we have pure pixels of trees, shrubs and turf
grasses.
2. Previous studies using NDVI in the Adelaide Parklands

Vegetation indices, and particularly NDVI, have proved useful for
predicting thewater demand of both agricultural crops and urban land-
scape vegetation. The relationship between NDVI derived from high
spatial resolution WorldView imagery and evapotranspiration from
urban vegetation has previously been investigated in Veale Gardens,
which is one of 29 parks that comprise the Adelaide Parklands, Australia
(Nouri et al., 2014). Using 64 possible band combinations of World-
View-2, the bands of Red (band 5) and NIR1 (band 7) were selected as
the most reliable bands to calculate NDVI in Veale Gardens. The area
was hand digitized to characterize five landscape covers, namely trees,
shrubs, turf grasses, impervious pavements and water bodies (Fig. 1).
In winter the NDVI values for trees, shrubs and turf grasses are high
and similar to one another. Previous studies in Veale Gardens (Nouri
et al., 2014; Nouri et al., 2016a) indicated a verdant winter in Adelaide
due to its Mediterranean climate with mild winters and dry and hot
summers. Rainfall arrives mainly in winter. In summer all these vegeta-
tion types exhibit significantly lower NDVI values with grasses showing
the largest decrease. The irrigation regimes required to maintain these
three vegetation types are different. Having separate NDVI characteriza-
tions for these three types of vegetation is therefore useful for park
managers for establishing optimal irrigation schedules.
, turf grasses, impervious pavements and water bodies.



Fig. 2.WorldView-3 image of the Adelaide Parklands.
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3. Methods

Here the following question is explored: Is NDVI in Veale Gardens
scale-invariant between the 1.24 m pixel size of WorldView-3 imagery
and the 0.1 m resolution of digital aerial photography? A WorldView-3
image (March 21, 2015) with 0.31 m panchromatic resolution and
1.24 m multispectral resolution (Fig. 2) and an aerial image (January
2005) with 0.1 m resolution (Fig. 3) were used. The ground truth for
image classification was derived from a landscape cover map that was
digitized using a WorldView-2 image by categorizing the landscape
into the five categories of trees, shrubs, turf grasses, water bodies and
pavements (Fig. 1). Band 5 (Red) and band 7 (NIR1) of the World-
View-3 image and the Red and NIR bands of the aerial image were
used to calculate NDVI. The NDVI was calculated for three vegetation
types, namely trees, shrubs and turf grasses using the two aforemen-
tioned approaches.

Aerial images were collected with 15 cm horizontal accuracy for the
City of Adelaide by AEROmetrex (http://aerometrex.com.au/). These
were collected as a three band image: NIR, Red and Green. The data
were acquired in late summer when there is the largest difference in ir-
rigated and non-irrigated grasses. However, our study area is irrigated
all year round.

Since therewas no comparison between satellite images of a specific
location at different times/dates in this research, the atmospheric cor-
rection was not applied. In a previous study in Veale Gardens (Nouri
et al., 2014), atmospheric correction was applied due to differences in
Fig. 3. Aerial image of the
sun positions for the time of day and day of the year, changes in solar el-
evation angle from summer to winter and terrain effects thatmay cause
differential solar illumination.

This enabled us to assess whether or not the MAUP has a significant
impact on NDVI calculations for pure pixels of urban vegetation: 1)
pixel-based NDVI; and 2) object-based NDVI for the three vegetation
categories of trees, shrubs and turf grasses. The first method, pixel-
based NDVI, uses pixel values of the Red band and the NIR1 band for
each pixel and then calculates an NDVI value for each pixel by replacing
the Red and NIR1 values of each pixel in the NDVI equation, as
NDVIWV3 = (NIR1 − Red)/(NIR1 + Red).

The second method, object-based NDVI, first calculates the mean
Red andmeanNIR across the region of interest (e.g. trees) and then cal-
culates an NDVI by using the mean values of Red and NIR1.

We explored the nature and magnitude of these differences in an-
other experimental site captured from a 30 m resolution Landsat
image in the Colorado River Delta (CRD) inMexico (Nouri et al., 2016b).

For the CRD in Mexico, we used the Sample tool in ArcGIS v10.3 and
a point file corresponding to 64 cells (30 m) to extract values from the
red and near-infrared bands of a single Landsat 8 scene (overpass
date: 22 April 2013). The sampling location was chosen based on cells
that exhibited a relatively wide range of values (Fig. 4).

4. Results

Applying these two methods to a patch of trees demonstrates the
difference between the pixel-based and the object-based approaches
(Fig. 5). This is a specific examination of the effects of the MAUP on
pure pixels of urban vegetation. We extracted values of the Red and
NIR1 bands for a patch of trees from the WorldView-3 image. Tables
in the first row of Fig. 5 show these values and the average of the Red
band (113, left table) andNIR band (624, right table) in this region of in-
terest. Using the average values of the left and right tables resulted in
0.693 as the object-based mean value of NDVI. The table in the second
row shows NDVI values for each pixel and then averages all the pixel
NDVIs resulting in the pixel-based NDVI value of 0.698.

We applied this approach for three regions of interest that contained
different types of vegetation, namely trees, shrubs and turf grasses.
Table 2 shows the resulting pixel-based and object-based NDVI values
for each vegetation category.

We repeated these steps using an aerial image of the Adelaide Park-
lands by extracting values of the Red and NIR bands for the same three
vegetation types. Table 3 shows the pixel-based and object-based NDVI
values for each vegetation category.

Fig. 6 is a specific examination of the effects of the MAUP on total of
64 pixels of an experimental site in the Colorado River Delta. We ex-
tracted values of the Red and NIR bands from the Landsat image. The
Adelaide Parklands.

http://aerometrex.com.au


Fig. 4. Experimental site at the Colorado River Delta.

Fig. 5. NDVI calculations using pixel-based and object-based methods.
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first table in Fig. 6 shows these values and the average of the NIR band
(0.291400). The second table in Fig. 6 shows the NIR band values of
64 pixels and the average Red value (0.162075) in this region of interest.
The third table in Fig. 6 shows the NDVI values for each pixel and then
averages all the pixel NDVIs resulting in the pixel-based NDVI value.

The differences between the pixel-based and the object-based ap-
proaches in the Colorado River Delta were reported in Table 4. We ex-
tracted values of the Red and NIR bands for 64 pixels from the Landsat
image. Using the average Red value of 0.162075 for 64 pixels and the av-
erage NIR value of 0.29140007 for 64 pixels resulted in an average NDVI
of 0.285186 as the object-based mean value of NDVI. The third table in
Fig. 6 shows an average NDVI value of 0.289836 which results from cal-
culating NDVI for each pixel and then averaging all the pixel NDVIs.
Table 2
Pixel-based and object-based NDVI values for trees, shrubs and turf grasses from aWorld-
View-3 image.

WorldView-3 image Trees Shrubs Turf

Pixel-based NDVI 0.72764 0.71760 0.71934
Object-based NDVI 0.72665 0.71659 0.71994



Table 3
Pixel-based and object-based NDVI values for trees, shrubs and turf grasses from an aerial
image.

Aerial image Trees Shrubs Turf

Pixel-based NDVI 0.46937 0.21857 0.17571
Object-based NDVI 0.46275 0.21882 0.17556

Table 4
Pixel-based and object-based NDVI values for the Colorado River
Delta from a Landsat image.

Landsat image Mixed pixels

Object-based NDVI 0.285186
Pixel-based NDVI 0.289836
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By comparing Tables 2, 3 and 4we note that there is not a significant
difference in NDVI values between the object-based and pixel-based
NDVIs. Since we used two different satellite platforms (Landsat &
WorldView-3) and digital aerial photography, there are many potential
reasons for these small differences including the sensors (bandwidth of
detectors, etc.) and the season of acquisition (phenology and sensor-
sun-object angles). The point of this study is to demonstrate scale in-
variance within an observation system and not between observation
systems. Our study shows that there is no significant difference in
NDVI values resulting from twomethods of NDVI calculation for the Ad-
elaide Parklands, Australia. This finding is supported by an analysis of
our second experimental site in the Colorado River Delta, USA. Hall et
al. (1992) suggested that NDVI is scale-invariant, which supports our
findings here.
Fig. 6. NDVI calculations using pixel-based and obje
5. Discussion and conclusions

NDVI is ubiquitous as an index of vegetation. Healthy vegetation is
gainingmore attention because of its value in providing ecosystem ser-
vices. However, monitoring and assessment of these types of vegetation
requires appropriate spatial resolution imagery. It is likely that future
mapping and monitoring of vegetation will take place via ‘big data’
image processing systems. These systems may use pixel- or object-
based algorithms to assess vegetation health, evapotranspiration, and
other ecosystem functions. It is useful to know that both pixel-based in-
dices of NDVI andobject-based indices of NDVIwill produce very similar
values for pure pixels observed in urban vegetation. However, this does
not allow for scaling from a fine resolution image to a coarse resolution
image. This study was also conducted using a particular sun angle for
ct-based methods in the Colorado River Delta.
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each image. Further studies may demonstrate that NDVI is scale invari-
ant with varying sun angle for pure pixels but this is an avenue for fu-
ture research. In addition, other studies have demonstrated that NDVI
is not scale invariant for mixed pixels (Jiang et al., 2006).

We have applied two methods of estimating NDVI indices for urban
vegetation (trees, shrubs and turf grasses) at a very high spatial resolu-
tion using two different sensors and two different dates. For a given sen-
sor the only variation we see in this study is at the third decimal place
which is typically not even reported in the literature. The NDVI values
for these categories are not the same between sensors for two major
reasons: 1) Phenological changes due to seasonal effects, and 2) sensor
design such as bandwidthmean and range, sensor angle, sun angle, and
repeat coverage timing.

When a category of vegetation consists of multiple pixels, the calcu-
lation of a ‘mean’ can be a mean of NDVI values for each pixel (pixel-
based), or a mean of the Red values and a mean of the NIR values for
all the pixels in which the mean NDVI is the ratio of these (object-
based). NDVI can suffer from the intractable problems that are associat-
ed with MAUP. However, we have demonstrated that pure vegetation
pixels in an urban environment are not significantly impacted by
MAUP. Consequently, it is reasonable to use either approach (object-
based or pixel-based) to calculate the NDVI of pure pixels of vegetation
provided there is a consistency of sensors and adequate spatial resolu-
tion. Measures of this nature can be used to assess the ecosystem func-
tioning of green infrastructure with an eye towards optimizing the
ecosystem services they provide.

Acknowledgment

Weare grateful to staff at SAWater, particularly toMr. Greg Ingleton.
We thank Prof. Edward Glenn at theUniversity of Arizona for comments
that greatly improved this manuscript. Also, we are grateful for the re-
view of this manuscript by Dr. Wim Van Leeuwen of the U.S. Geological
Survey. Any use of trade, product, or firm names is for descriptive pur-
poses only and does not imply endorsement by the U.S. Government.

References

Amrhein, C.G., 1993. Searching for the Elusive Aggregation Effect: Evidence From Statisti-
cal Simulations. Environ. Plan. A. 27, 105–119.

Amrhein, C.G., Reynolds, H., 1996. Using Spatial Statistics to Assess Aggregation Effects.
J. Geogr. Syst. 2, 83–101.

Amrhein, C.G., Reynolds, H., 1997. Using the Getis Statistic to Assess Aggregation Effects in
Metropolitan Toronto Census Data. Can. Geogr. 31 (2), 137–149.

Bhati, A.S., 2005. Robust spatial analysis of rare crimes: an information-theoretic ap-
proach. Sociol. Methodol. 35, 227–289.

Blaes, X., Chomé, G., Lambert, M.-J., Traoré, P., Schut, A., Defourny, P., 2016. Quantifying
fertilizer application response variability with VHR satellite NDVI time series in a
rainfed smallholder cropping system of Mali. Remote Sens. 8, 531.

Chainey, S., Thompson, L., Uhlig, S., 2008. The Utility of Hotspot Mapping for Predicting
Spatial Patterns of Crime. Secur. J. 21, 4–28.

Dark, S.J., Bram, D., 2007. The modifiable areal unit problem (MAUP) in physical geogra-
phy. Prog. Phys. Geogr. 31, 471–479.

Davis, M.W., 2012. The Modifiable Areal Unit Problem (Maup) Via Cluster Analysis Meth-
odologies: A Look at Scale, Zoning, and Instances of Foreclosure in Los Angeles Coun-
ty. Geographic Information Science & Technology. University of Southern California.

Dragozi, E., Gitas, I., Bajocco, S., Stavrakoudis, D., 2016. Exploring the relationship between
burn severity field data and very high resolution GeoEye images: the case of the 2011
Evros Wildfire in Greece. Remote Sens. 8, 566.

Dutta, D., Kundu, A., Patel, N.R., Saha, S.K., Siddiqui, A.R., 2015. Assessment of agricultural
drought in Rajasthan (India) using remote sensing derived vegetation condition
index (VCI) and standardized precipitation index (SPI). The Egyptian Journal of Re-
mote Sensing and Space Science 18, 53–63.

Fensholt, R., Proud, S.R., 2012. Evaluation of earth observation based global long term veg-
etation trends — comparing GIMMS and MODIS global NDVI time series. Remote
Sens. Environ. 119, 131–147.

Fotheringham, A.S., Wong, D.W.S., 1991. The Modifiable Areal Unit Problem in Multivar-
iate Statistical Analysis. Environ. Plan. A. 23, 1025–1044.

Gamon, J.A., Field, C.B., Goulden, M.L., Griffin, K.L., Hartley, A.E., Joel, G., et al., 1995. Rela-
tionships between NDVI, canopy structure, and photosynthesis in three Californian
vegetation types. Ecol. Appl. 5, 28–41.

Gatrell, A.C., Bailey, T.C., Diggle, P.J., Rowlingson, B.S., 1996. Spatial Point Pattern Analysis
and its Application in Geographic Epidemiology. Trans. Inst. Br. Geogr. New Series, 21
(1), 256–274.
Glenn, E., Huete, A., Nagler, P., Nelson, S., 2008. Relationship between remotely-
sensed vegetation indices, canopy attributes and plant physiological processes:
what vegetation indices can and cannot tell us about the landscape. Sensors 8,
2136–2160.

Glenn, E., Nagler, P., Huete, A., 2010. Vegetation indexmethods for estimating evapotrans-
piration by remote sensing. Surv. Geophys. 31, 531–555.

Gotway, C.A., Young, L.J., 2002. Combining incompatible Spatial Data. J. Am. Stat. Assoc. 97
(458), 632–648.

Guyot, G., 1990. Optical Properties of Vegetation Canopies _ Applications of Remote Sens-
ing in Agriculture. (London Butterworth).

Hall, F.G., Huemmrich, K.F., Goetz, S.J., Sellers, P.J., Nickeson, J.E., 1992. Satellite remote
sensing of surface energy balance: success, failures, and unresolved issues in FIFE.
J. Geophys. Res. D17, 19061–19089.

Hayward, P., Parent, J., 2009. Modeling the Influence of theModifiable Areal Unit Problem
(MAUP) on Poverty in Pennsylvania. Pa. Geogr. 47 (1), 120–135.

Hay, G.J., Marceau, D.J., Dube, P., Bouchard, A., 2001. A Multiscale Framework for
Landscape Analysis: Object-Specific Analysis and Upscaling. Landsc. Ecol. 16,
471–490.

Hipp, J.R., 2007. Block, tract, and levels of aggregation: neighborhood structure and crime
and disorder as a case in point. Am. Sociol. Rev. 72, 659–680.

Jelinski, D., Wu, J., 1996. Themodifiable areal unit problem and implications for landscape
ecology. Landsc. Ecol. 11, 129–140.

Jensen, J.R., Cowen, D.C., 1999. Remote sensing of urban/suburban infrastructure and
socio-economic attributes. Photogramm. Eng. Remote Sens. 65, 611–622.

Jiang, Z., Huete, A.R., Chen, J., Chen, Y., Li, J., Yan, G., et al., 2006. Analysis of NDVI and
scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. En-
viron. 101, 366–378.

Jordan, C.F., 1969. Derivation of leaf area index from quality of light on the forest floor.
Ecology 50, 663–666.

Karlson, M., Ostwald, M., Reese, H., Bazié, H.R., Tankoano, B., 2016. Assessing the potential
of multi-seasonal WorldView-2 imagery for mapping West African agroforestry tree
species. Int. J. Appl. Earth Obs. Geoinf. 50, 80–88.

Lanorte, A., Lasaponara, R., Lovallo, M., Telesca, L., 2014. Fisher–Shannon information
plane analysis of SPOT/VEGETATION normalized difference vegetation index (NDVI)
time series to characterize vegetation recovery after fire disturbance. Int. J. Appl.
Earth Obs. Geoinf. 26, 441–446.

Leon, J.R.R., van Leeuwen,W.J.D., Casady, G.M., 2012. UsingMODIS-NDVI for themodeling
of post-wildfire vegetation response as a function of environmental conditions and
pre-fire restoration treatments. Remote Sens. 4, 598–621.

Li, H., Wu, J., 2004. Use and misuse of landscape indices. Landsc. Ecol. 19, 389–399.
Lentz, J.A., Blackburn, J.K., Curtis, A.J., 2011. Evaluating Patterns of a White-Band Disease

(WBD) Outbreak in Acropora palmate Using Spatial Analysis: A Comparison of Tran-
sect and Colony Clustering. PloS ONE 6 (7), 1–10.

Los, S., 1998. Estimation of the ratio of sensor degradation between NOAA AVHRR chan-
nels 1 and 2 from monthly NDVI composites. IEEE Trans. Geosci. Remote Sens. 30,
206–213.

Lunetta, R.S., Knight, J.F., Ediriwickrema, J., Lyon, J.G., Worthy, L.D., 2006. Land-cover
change detection using multi-temporal MODIS NDVI data. Remote Sens. Environ.
105, 142–154.

MacEachren, A.M., 1982. Choropleth map accuracy: characteristics of the data. Technical
Papers of ACSM, Denver March 14-20.

Mu, L., Wang, F., 2008. A scale-space clustering method: mitigating the effect of scale in
the analysis of zone-based data. Ann. Assoc. Am. Geogr. 98, 85–101.

Muller, S.J., van Niekerk, A., 2016. Identification of WorldView-2 spectral and spatial fac-
tors in detecting salt accumulation in cultivated fields. Geoderma 273, 1–11.

Mulmi, P., Block, S.A., Shively, G.E., Masters, W.A., 2016. Climatic conditions and child
height: sex-specific vulnerability and the protective effects of sanitation and food
markets in Nepal. Econ. Hum. Biol. 23, 63–75.

Mutanga, O., Adam, E., Cho, M.A., 2012. High density biomass estimation for wetland veg-
etation using WorldView-2 imagery and random forest regression algorithm. Int.
J. Appl. Earth Obs. Geoinf. 18, 399–406.

Nakaya, T., 2000. An Information Statistical Approach to the Modifiable Areal Unit Prob-
lem in Incidence Rate Maps. Environ. Plan. 32, 91–109.

Nouri, H., Anderson, S., Sutton, P., Nagler, P., Jarchow, C.J., Beecham, S., et al., 2016b. NDVI,
Scale Invariance and theModifiable Areal Unit Problem: An Assessment of Vegetation
in Two Arid Land Regions EcoSummit 2016. Ecological Sustainability: Engineering
Change, Le Corum, Montpellier, France.

Nouri, H., Beecham, S., Anderson, S., Nagler, P., 2014. High spatial resolutionWorldView-2
imagery for mapping NDVI and its relationship to temporal urban landscape evapo-
transpiration factors. Remote Sens. 6, 580.

Nouri, H., Glenn, E., Beecham, S., Chavoshi Boroujeni, S., Sutton, P., Alaghmand, S., et al.,
2016a. Comparing three approaches of evapotranspiration estimation in mixed
urban vegetation: field-based, remote sensing-based and observational-based
methods. Remote Sens. 8, 492.

Openshaw, S., 1984. The Modifiable Areal Unit Problem Norwich, England.
Pawitan, G., Steel, D.G., 2009. Exploring the MAUP From a Spatial Perspective. In: Uo,

Wollongong (Ed.), Center for Statistical and Survey Methodology, pp. 1–28 Working
Paper. 20.

Pu, R., Cheng, J., 2015. Mapping forest leaf area index using reflectance and textural infor-
mation derived from WorldView-2 imagery in a mixed natural forest area in Florida,
US. Int. J. Appl. Earth Obs. Geoinf. 42, 11–23.

Pu, R., Landry, S., 2012. A comparative analysis of high spatial resolution IKONOS and
WorldView-2 imagery for mapping urban tree species. Remote Sens. Environ. 124,
516–533.

Ratcliffe, H.J., McCullagh, J.M., 1999. Hotbeds of crime and the search for spatial accuracy.
J. Geogr. Syst. 1, 385–398.

http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9000
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9000
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9005
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9005
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9010
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9010
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0005
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0005
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0010
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0010
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0010
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9015
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9015
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0015
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0015
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0020
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0020
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0020
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0025
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0025
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0025
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0030
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0030
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0030
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0030
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0035
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0035
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0035
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9020
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9020
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0040
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0040
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0040
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9025
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9025
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9025
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0045
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0045
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0045
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0045
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0050
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0050
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9030
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9030
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0055
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0055
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0060
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0060
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0060
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9035
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9035
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9040
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9040
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9040
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0065
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0065
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0070
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0070
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0075
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0075
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0080
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0080
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0080
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0085
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0085
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0090
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0090
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0090
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0095
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0095
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0095
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0095
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0100
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0100
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0100
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0105
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9045
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9045
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9045
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0110
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0110
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0110
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0115
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0115
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0115
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0120
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0120
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0125
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0125
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0130
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0130
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0135
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0135
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0135
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0140
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0140
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0140
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9050
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9050
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0145
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0145
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0145
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0145
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0150
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0150
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0150
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0155
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0155
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0155
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0160
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0165
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0165
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0165
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0170
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0170
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0170
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0175
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0175
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0175
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0180
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0180


18 H. Nouri et al. / Science of the Total Environment 584–585 (2017) 11–18
Rushton, G., 1998. Improving the geographic basis of health surveillance using GIS. In GIS
and Health. Taylor and Francis, London, pp. 63–79.

Rushton, G., Lolonis, P., 1996. Exploratory Spatial Analysis of Birth Defect Rates in an
Urban Population. Stat. Med. 7, 717–726.

Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., Harlan, J.C., 1974a. In: NASA/GSFC (Ed.),
Monitoring the vernal advancements and retrogradation of natural vegetation-final
report. Greenbelt, MD, USA, pp. 1–137.

Rouse, J.W., Haas, R.H., Shell, J.A., Deering, D.W., 1974b. Monitoring vegetation systems in
the Great Plains with ERTS-1. Third Earth Resources Technology Satellite-1 Sympo-
sium. 1. NASA Scientific and Technical Information Office, Washington, D.C.,
pp. 309–317.

Shriner, S.A., Wilson, K.R., Flather, C.H., 2006. Reserve networks based on richness
hotspots and representation vary with scale. Ecol. Appl. 16, 1660–1673.

Singh, D., Maurya, R., Shukla, A.S., Sharma, M.K., Gupta, P.R., 2012. Building Extraction
From Very High Resolution Multispectral Images Using NDVI Based Segmentation
and Morphological Operators. IEEE SCES, Banaras Hindu University, India.
Tagashira, N., Okabe, A., 2002. The Modifiable Areal Unit Problem in a Regression Model
Whose Independent Variable Is a Distance from a Predetermined Point. Geogr.
Anal. 34 (1), 1–20.

Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring veg-
etation. Remote Sens. Environ. 8, 127–150.

Vina, A., Gitelson, A.A., Nguy-Robertson, A.L., Peng, Y., 2011. Comparison of different veg-
etation indices for the remote assessment of green leaf area index of crops. Remote
Sens. Environ. 115, 3468–3478.

Wang, X., Wang, Q., Yang, S., Zheng, D., Wu, C., Mannaerts, C.M., 2011. Evaluating nitrogen
removal by vegetation uptake using satellite image time series in riparian catch-
ments. Sci. Total Environ. 409, 2567–2576.

http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9060
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9060
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9055
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9055
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0185
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0185
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0185
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0190
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0190
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0190
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0190
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0195
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0195
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0200
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0200
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0200
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9065
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9065
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf9065
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0205
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0205
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0210
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0210
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0210
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0215
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0215
http://refhub.elsevier.com/S0048-9697(17)30140-7/rf0215

	NDVI, scale invariance and the modifiable areal unit problem: An assessment of vegetation in the Adelaide Parklands
	1. Introduction
	2. Previous studies using NDVI in the Adelaide Parklands
	3. Methods
	4. Results
	5. Discussion and conclusions
	Acknowledgment
	References


