A comparative evaluation of three volume rendering libraries for the visualization of
sheared thermal convection

Jean M. Favre®*, Alexander Blass®

“Swiss National Supercomputing Center (CSCS), Via Trevano 131, CH-6900 Lugano, Switzerland
b Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics, J. M. Burgers Center for Fluid Dynamics and MESA+ Research Institute, Department
of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract

019

AN Oceans play a big role in the nature of our planet, about 70% of our earth is covered by water [1]]. Strong currents are transporting
O) warm water around the world making life possible, and allowing us to harvest its power producing energy. Yet, oceans also carry
a much more deadly side. Floods and tsunamis can easily annihilate whole cities and destroy life in seconds. The earth’s climate
system is also very much linked to the currents in the ocean due to its large coverage of the earth’s surface, thus, gaining scientific
(O Iinsights into the mechanisms and effects through simulations is of high importance. Deep ocean currents can be simulated by means
O\l of wall-bounded turbulent flow simulations. To support these very large scale numerical simulations and enable the scientists to
interpret their output, we deploy an interactive visualization framework to study sheared thermal convection. The visualizations
E'are based on volume rendering of the temperature field. To address the needs of supercomputer users with different hardware
O _and software resources, we evaluate different volume rendering implementations supported in the ParaView [2] environment: two
I GPU-based solutions with Kitware’s native volume mapper or NVIDIA’s IndeX library, and a CPU-only Intel OSPRay-based
implementation.

omp

Keywords:
Q Scientific Visualization, High Performance Computing, Navier-Stokes Solver, Direct Numerical Simulation, Computational Fluid
() Dynamics

scales in ocean dynamics and stated that deep convection can
be related to mixing layers everywhere in the ocean. Since
there are many complex three-dimensional events happening in
large-scale fluid bodies such as oceans, it is vital to visualize
the three-dimensional and temporal features of such flow simu-
lations.

We study these large-scale bodies of fluids which are sheared
by winds or currents and influenced by temperature differences
in the flow. A fundamental setup of this natural mechanism is
sheared thermal convection (Fig. [I). Many processes in nature
are based on heat and momentum transfer and therefore inter-
action between buoyancy [7, [8] and shear [9] [T0]. Rayleigh-
Bénard convection, the flow in a box heated from below and
Figure 1: Snapshot of the three-dimensional temperature field of sheared ther- cooled from above is a paradigmatic system for thermal con-
mal convection at Ra = 4.6 x 10° and Re,, = 6000 [3]. vection. We present the use of three different rendering libraries
available in ParaView [2] to build a time-dependent volume ren-
dering of thermal convection. The deployment and evaluation
of the hardware and software requirements of these libraries
was motivated by a showcase submission at the 2018 Inter-

Thermohaline ocean circulation [4] is vital for the heat bud- national Conference for High Performance Computing, Net-
get of our earth. Manabe and Stouffer [3] observed that it can ~ working, Storage and Analysis. In the accompanying video
contribute to a heat increase of up to ~ 10°C on the yearly [11]] we are able to display the previously two-dimensionally
averaged mean surface temperatures in the North Atlantic re- presented flow structures in a three-dimensional motion. The
gion. Marshall and Schott [6] investigated a vast variety of ~ reader is led through a presentation of one specific flow case
with sheared thermal convection and can experience the dy-
namics of the thermal structures while being informed about

1908.09662v1 [physic

arXiv

1. Introduction

*jfavre@cscs.ch

Preprint submitted to Parallel Computing August 27, 2019

different flow parameters.

2. Numerical simulations of sheared thermal convection

The direct numerical simulations (DNS) were performed
with the second-order finite-difference code AFiD [12], in which
the three-dimensional non-dimensional Navier-Stokes equations
with the Boussinesq approximation are solved on a staggered
grid.

We use u = u(x,t) as the velocity vector with streamwise,
spanwise and wallnormal components. 6 is the non-dimensional
temperature ranging from 0 < # < 1. The simulations are per-
formed in a computational box with periodic boundary condi-
tions in streamwise and spanwise directions and confined by a
heated plate below and a cooled plate on top. The shearing of
the flow is implemented by a Couette flow setting where both
top and bottom plates of the flow are moved in opposite direc-
tions with the speed u,, keeping the average bulk velocity at
zero and therefore minimizing dissipation errors. The domain
size is (LyX Ly X L;) = (9rhx4mwhxh) using a grid of (n,xn,Xn;)
= (6912 x 3456 x 384) which is homogeneously distributed in
the streamwise and spanwise directions and clustered towards
the walls.

The open source finite-difference Navier-Stokes solver AFiD
[12] was written in Fortran 90 to study large-scale wall bounded
turbulent flow simulations. In collaboration with NVIDIA, USA,
the code was ported in its newest version to a GPU setting using
an MPI and CUDA Fortran hybrid implementation optimized to
run and solve large flow fields [[13]].

We used data from Blass et al. [3] for our evaluation of vol-
ume rendering implementations, where a parameter study over
different input parameters was conducted to study their influ-
ence on the flow field. Control parameters were the temperature
difference between the top and bottom plates as the strength of
the thermal forcing, non-dimensionalized as the Rayleigh num-
ber Ra, and the wall velocity as the strength of the shear forcing,
non-dimensionalized as the wall shear Reynolds number Re,,.

In Fig. 2] we present snapshots of temperature fields at mid
height in different flow regimes. It can be observed that the
flow passes from a thermally dominated regime with large ther-
mal convection rolls driving the flow (Fig. [2h) into a regime
where the mechanical forcing is dominant. Here, large-scale
meandering structures can be observed which are driven by the
shearing of the top and bottom plates (Fig. [2d). To undergo a
transition between the regimes, the flow has to pass through an
intermediate stage, in which the thermal plumes get stretched
into large streaks (Fig. 2b). If the shearing is further increased,
these streaks become unstable and start meandering in the final
flow state (Fig. [Zc,d).

The reason for this streaky flow behavior is the addition
of a third dimension to originally quasi-two-dimensional flow
structures in pure thermal convection. Such thermal convec-
tion rolls are driven solely by the thermal difference between
the plates. Once the wall shearing is added, the flow starts to
strongly move in streamwise direction, which causes the devel-
opment of streaks.

e

s (b) R Py w12
. X
'M"’f L 2 S P L,

P T RSP

P,

() T8 (d) T
225 "

L N 72,
< NS 2 N

NN e T
ke - PR N

Figure 2: Zoomed snapshots of temperature fields of a sheared and thermally
forced flow transitioning through all flow regimes for Ra = 2.2 x 10° and (a)
Re,, = 0, (b) Re,, = 2000, (c) Re,, = 3000, (d) Re,, = 6000, ranging from 6,,;,
(blue) to G4y (red).

In turbulent flows it is very important to research how cer-
tain characteristic parameters are influenced by the flow. In
thermal convection, the heat transfer, non-dimensionally de-
fined through the Nusselt number Nu is a good indicator if
changing flow structures have a supporting effect or may dis-
rupt a previously transport-favorable flow situation.

While two-dimensional visualizations are very helpful in
understanding the behavior of the large-scale structures, they
don’t show the complete scientific picture. They give a good
indication of the flow behavior, but to understand thermal tur-
bulence, it is vital to see the whole flow field and the dynamic
interaction of turbulent structures with each other. The oppor-
tunity to observe the flow evolving and transitioning through
different regimes is a great chance to not only statically observe
different flow states at fixed locations in space, but to also ac-
tually follow the flow on its path to develop thermal plumes,
streaks and meandering structures.

It has been previously shown in thermal convection that the
large thermal plumes can be traced until very close to the heated
and cooled plates [[14]. So it is very important to also observe
the emergence of structures close to the boundary layer. In the
shear dominated regime, which we visualize in the accompany-
ing video [11], we can observe extremely large-scale structures
which are caused by a combination of thermal and shear forc-
ing. The detailed visualizations we presented allow us to not
only follow the large-scale structures, but also the interaction
of small-scale structures much closer to the plates (Fig. [3).

3. Volume rendering libraries and setup

We use ParaView v5.6.0, a world-class, open source, multi-
platform data analysis and visualization application installed
on Piz Daint. Piz Daint, a hybrid Cray XC40/XC50 system,

Figure 3: Zoom of an snapshot of the temperature field (top) and the vorticity
structures (bottom) at Ra = 2.2 x 10° and Re,, = 6000.

is the flagship supercomputer of the Swiss National HPC ser-
vice. We have deployed and tested several solutions within
ParaView where parallelism is expressed at different degrees:
data-parallel visualization pipelines with GPU-based renderings
or multi-threaded parallelism for CPU-based renderings.

The computational domain used for our simulations is made
of 6912 x 3456 x 384 grid points. The temperature scalar field
stored as float32 takes 36 GB of memory, an overwhelming
size to handle on a normal desktop. Using different parallel
programming paradigms has enabled us to provide an engag-
ing environment to promote interactive tuning of visualization
options and high productivity for movie generation.

Visualization of three-dimensional scalar fields is a very
mature field. Many techniques are available to make some sense
of the three-dimensional nature of the data, and its variations
throughout the volume. Surface-based renderings with isosur-
face thresholds or slicing planes have a great appeal in that they
are easy to use, and provide unambiguous representations based
on clearly defined numerical values. Volume renderings, early
applied to medical applications, are also a great fit for scalar vi-
sualizations, especially in the realm of time-dependent outputs.
They are, however, much more difficult to use. Volume render-
ing is based on the principle of converting a 3D scalar field onto
an RGB (color) volume and an Opacity volume. Transfer func-
tions, often defined in an ad-hoc manner, convert scalar values
to colors, and classify the data into regions of different opaci-
ties. A volume can then appear as clouds with varying density
and color. Their interpretation remains subjective to the user’s
taste and practice. We refer readers to other sources [13] to dive
more deeply into the principles of Volume Rendering.

Volume Rendering can be implemented in different man-

ners. ParaView was chosen because it offers a testbed for sev-
eral state of the art implementations which can be selected based
on rendering parameters and available hardware.

The largest partition of the Piz Daint supercomputer has
nodes equipped with one Intel Xeon E5-2690 (12 cores, 64
GB RAM) and one NVIDIA Tesla P100 GPU (16 GB RAM,
OpenGL driver 396.44). Thus our priority is to evaluate the
GPU-based implementations. ParaView’s default installation
enables also a software ray caster for rendering volumes but we
have found its performance far below the other options. The
lack of advanced parameter settings in the Graphical User In-
terface (GUI) of ParaView also led us to abandon its evalua-
tion. We tested ParaView’s native GPU ray casting implemen-
tation against IndeX an NVIDIA library, as well as OSPRay, a
software-based library developed by Intel. Doing so, provides
a valid option to users of supercomputers not equipped with
GPUs. Our performance evaluation is based on ParaView’s
benchmarking Python source codeﬂ

We have in all cases ignored disk-based I/O costs. There
is often quite a bit of variability when running on a large dis-
tributed file system shared by hundreds of users. Our motiva-
tions are rendering-centered, and two-fold: evaluate the mem-
ory cost and resources (CPU, GPU) required to get a first image
on the screen, and see if color/opacity transfer function editing,
as well as other image tuning, can be done interactively, using
any of the three methods proposed. In the evaluation of per-
formance costs, ParaView’s benchmark code enables fully au-
tomated testing with a careful management of double buffering,
turning off all rendering optimizations designed to accelerate
interactive viewing, and forcing full-feature rendering before
saving images to disk.

In the two GPU-based methods evaluated, we use an EGL-
based rendering layer [16] to overcome the need to have a server-
side X-Windows server running on the compute node. This
enables headless, offscreen rendering with GPU acceleration.
We note, however, that although the GPUs provide phenomenal
rendering power, they are limited by the available memory (16
GB on our NVIDIA’s Pascal GPUs). For the full size of our
simulations outputs, we are actually forced to use data-parallel
pipelines on multiple nodes to use the aggregate memory of the
different GPUs.

Our third option, uses Intel OSPRay and CPU rendering.
HPC compute nodes usually have more memory than their GPU
counterparts. We use Piz Daint’s high memory nodes with 128
GB of RAM, where our grid of over 9 billion voxels can be fit
easily on a single node.

3.1. ParaView’s GPU ray casting

When GPU hardware is present, ParaView’s most efficient
mapper is a volume mapper that performs ray casting on the
GPU using vertex and fragment programs [I7]]. The core ray-
tracing algorithms are coded in GLSL and require a graphics
driver supporting at least OpenGL version 3.2 [18]. The data
is stored into a vtkVolumeTexture which manages the OpenGL

I'source code found in ./Wrapping/Python/paraview/benchmark/

Figure 4:
ParaView’s OpenGL GPU RayCastMapper (left), and with NVIDIA IndeX
(right).

Comparison between volume renderings of temperature with

volume texture, its type and internal format. Although this class
supports streaming data into separate blocks to make it fit the
GPU memory, we have not used this option which imposes
a performance trade-off, artificially going over the fixed GPU
memory limit. Block streaming, sometimes called data brick-
ing, may also suffer from artifacts at the block boundaries where
gradient computations are done to support shading. ParaView’s
OpenGL VolumeRayCastMapper binds the 32-bit float scalar
field array to a three-dimensional texture image with a call to
glTexImage3D(). An explicit texture object is created, transfer-
ring data from host memory to GPU memory. The maximum
achievable performance will be proportional to the total amount
of GPU memory, and to the transfer bandwidth over our high
speed PCle3 serial bus connecting the host to the GPU device.

3.2. NVIDIA IndeX

NVIDIA IndeX [19] is a three-dimensional visualization
SDK developed to enable volume rendering of massive data
sets. NVIDIA has worked in tandem with Kitware to bring an
implementation of IndeX to ParaView, and we have enjoyed
the benefits of a close partnership between the Swiss National
Supercomputing Center (CSCS) and NVIDIA, to be able to use
IndeX in a multi-GPU setting. We use the ParaView plugin v2.2
with the core library NVIDIA IndeX 2.0.1. The NVIDIA In-
deX Accelerated Compute (XAC) interface integrates the core
surface and volume sampling programs written in CUDA [20].
For this case, we have used the generic programs provided by
IndeX, without custom programming. In Fig. 4] we show side-
by-side renderings done with the two GPU-based libraries, to
demonstrate that they produce equivalent images. The ParaView
Graphical User Interface ensures that both implementations use

identical color and opacity transfer functions and sampling rates.

ParaView’s GPU Ray Casting image (left) is used as reference.
Differences of illumination are barely noticeable to the human
eye.

3.3. Intel OSPRay

OSPRay [21] is a ray tracing framework for CPU-based ren-
dering. It supports advanced shading effects, large models and
non-polygonal primitives. OSPRay can distribute “bricks” of
data as well as “tiles” of the framebuffer, although in our case,

we use brick subdivisions only. The Texas Advanced Comput-
ing Center has developed a ParaView plugin that enables us to
test the possibility of using a ray-tracing based rendering engine
for volumetric rendering. This is the best solution for clusters
where no GPU hardware is available.

OSPRay can use its own internal Message Passing Inter-
face (MPI) layer to replicate data across MPI processes and
composite the image. This would result in linear performance
scaling and supports secondary rays used in ParaView’s path-
tracer mode, but would be prohibitive in terms of communica-
tion costs. In this study, we rely on a different parallel com-
puting paradigm. The emphasis is no more on data parallelism,
but rather on multi-threaded execution. A complete software-
only ParaView installation was deployed with an LLVM-based
OpenGL Mesa layer. We used Mesa v17.2.8, compiled with
LLVM v5.0.0, and the OSPRay v1.7.2 library to provide a very
efficient multi-threaded execution path taking advantage of Piz
Daint’s second partition of compute nodes. These nodes are
built with two Intel Broadwell CPUs (2x18 cores and 64/128
GB RAM). Our cluster management and job scheduling system
SLURM provides the specific scheduling options “~-cpus-per-
task=72 ——-ntasks-per-core=2" to effectively take full advantage
of the multi-threading exposed by the LLVM and OSPRay li-
braries.

3.4. Parallel image compositing

ParaView’s default mode of parallel computing is to use
data-parallel distribution, whereby sub-pieces of a data grid are
processed through identical visualization pipelines. To combine
the individual framebuffers of each computing nodes, ParaView
uses Sandia National Laboratory’s IceT [22]] compositing li-
brary. We use it in its default mode of operation doing sort-
last compositing for desktop image delivery. We note here that
NVIDIA’s IndeX uses a proprietary compositing library, so for
the IndeX tests only, we disable ParaView’s default image com-
positor.

4. Volume rendering of the thermal convection

Figure 5: Example of a color and opacity transfer functions to highlight hot
and cold plumes.

In visualizing the temperature field, we seek to highlight
the turbulence which is best shown by clearly differentiating

Figure 6: Volume rendering with shading based on gradient estimation (left),
and with OSPRay-enabled shadows (right).

between cold and hot regions to see how they interact with each
other, as seen in Fig. EI Our movie animation shows an initial
phase where region of blue tint is superposed on top of the hot-
ter region. Plumes emerging from the bottom and mixing into
the cold regions highlight this phenomenon.

4.1. Visual effects

When presented with multiple visualizations including dif-
ferent illumination and shading, we preferred the renderings
which emphasize the amorphous nature of the field data. As can
be seen in Fig. [6] shading based on gradient estimation offers
little improvement because our data does not have strong gradi-
ents, and the use of shadows which at first might seem more ap-
pealing, produces images with a strong surface-like look, which
we discarded upon further analysis.

4.2. GPU-based rendering on a single node

Volumetric rendering of high resolution grids has a non-
significant cost which we briefly document here. Creating the
first frame after data has been read in memory, i.e., the startup
cost has a great impact in having users adopt a particular im-
plementation. In a post-hoc visualization, data would be read
from disk; in an in-sifu scenario, data might have to be con-
verted to VTK data structures. Thus, we measure performance
after the time ParaView has collected all the data and created
a bounding-box representation. This startup cost for the first
image is also of paramount importance in a movie-making sce-
nario, where data are read from disk, a single image is com-
puted, and the whole visualization pipeline and hardware re-
sources are flushed to visualize the next timestep.

Unlike ParaView’s native GPU ray caster implementation
which does not enable block streaming, the NVIDIA IndeX li-
brary processes data by chunks. However, it does so by bringing
volume sub-extents incrementally into the GPU memory. Early
volume chunks are rendered properly as long as the GPU mem-
ory is not exhausted. When memory runs out, late chunks actu-
ally corrupt the final image. Our attempts to render a 4 billion
voxels dataset on a single node did not succeed with NVIDIA
IndeX. We observe failures to allocate 64° voxel cubes and the
final images are corrupted.

We summarize in Table [] the time from when volumetric
rendering options are enabled, triggering the building of inter-
nal structures until the first frame appears. In order to measure

the memory cost of all three libraries under evaluation on a sin-
gle node, we restricted our test sample to a quarter-size domain
of the original grid, i.e., 2.28G voxels (1730 x 3456 x 384), to
fit the available GPU RAM. The GPU memory usageﬂ settles at
9.1 GB for ParaView native raycaster, and 12.3 GB for NVIDIA
IndeX.

Table 1: Initialization and memory costs for a quarter-size domain on one
node.
Rendering library Startup ParaView task
OSPRay 1.34 s 18.4 GB
ParaView GPU Mapper 6.17 s 272 GB
NVIDIA IndeX 11.84 s 39.2 GB

We note both a much higher memory consumption on the
application side of ParaView and on the GPU memory side for
the NVIDIA IndeX implementation. The high initial setup cost
incurred by the NVIDIA IndeX library is due to higher volume
transfer between CPU and GPU, a cost that increases further
when in parallel, as the current implementation of IndeX trig-
gers re-execution of the data I/O due to larger than usual ghost
layer requirements. Work is in progressﬂ to minimize this im-
pact in a future version of the plugin.

4.3. CPU-based rendering on a single node

If memory costs are substantial, more nodes, and/or more
GPUs will be required, increasing the run-time cost of the vi-
sualization. Our data domain is quite large, and we are not
able to load a half-size domain on a single GPU node. Indeed,
both the 64 GB RAM on the node and the 16 GB RAM on
the GPU are hard limitations. The OSPRay-based CPU ren-
dering is one way to alleviate this problem. We can load the
full size domain on a single node of the multi-core partition
of Piz Daint with dual-Xeon chips and 128 GB of RAM. We
measured again the startup cost for the first image at full HD
resolution (1920x1080 pixels), using 72 execution threads and
found them to increase linearly with grid dimensions. We tested
the quarter-size, half-size and the full domain and report the de-
livery of the first image in 1.07, 1.50, and 2.33 s, respectively.
The associated cost in RAM is also linear, at 18.4 GB, 36.5 GB
and 73 GB, respectively. Of great interest is OSPRay’s manage-
ment of memory. OSPRay volumes can be stored in two differ-
ent manners. The first variant named shared structured volume
matches ParaView’s data layout. Version 5.6 of ParaView is the
first version where this zero-copy access pattern is used and it
provides both a faster startup time and a much lower memory
footprint, as compared to previous work. Indeed, we reported
earlier on the use of OSPRay’s alternate implementation called
block bricked volume whereby data locality in memory is in-
creased by arranging voxel data in smaller chunks. This came
however at a higher cost, doubling the memory footprint on the

CPU [23].

2GPU memory usage is measured with the nvidia-smi diagnostic tool
3personal communication with NVIDIA Dev. team

After the first frame has been built, our experience is that
smooth interaction is possible with all three libraries tested. In
fact, ParaView supports acceleration shortcuts for lower preci-
sion renderings during interactive navigation, enabling a com-
fortable user experience for mouse-driven interaction, with lit-
tle degradation of quality. Color and opacity transfer functions
editing is also interactive and very intuitive.

Movie quality renderings on the other hand are done with
all level-of-details optimizations turned off and we tested the
rendering speed of that particular mode in a batch production
test. We created an OSPRay-based benchmark test to mimic
a navigation fly-through in a full resolution domain, starting
from an overall view of the full grid, zooming in, rotating the
view-point, and finally zooming in to immerse the viewer in
the volume. Our initial view-point has some regions of screen-
space empty, where rendering costs at each pixel are negligi-
ble. We then move quickly into the scene such that the view-
port is completely covered by active pixels, that is, all pixel
rays hit the volume. We rendered our benchmark test at three
different pixel resolution, WXGA (1280x800 pixels), Full HD
(1920x1080 pixels) and 4K Ultra HD (3840x2160 pixels), to
evaluate the impact of pixel resolution on rendering costs. We
also evaluated the use of hyper-threading to further boost per-
formance. Table [2] summarizes our average rendering time per
frame for 300 frames of navigation.

Table 2: Average rendering for the full size domain at different pixel resolution

Pixel Resolution vs. # of threads 36 threads 72 threads
WXGA (1280x800 pixels) 2.85s 1.69 s
FHD(1920x1080 pixels) 3.37s 1.90 s
4K UHD (3840x2160 pixels) 4.81s 2.73 s

Our compute nodes are featuring two sockets with eighteen
cores each. We note the clear benefit of using hyper-threading
to spawn up to seventy-two threads for an increased through-
put. We also note that increasing frame buffer resolution to very
large sizes is not a showstopper.

4.4. Rendering the full domain in parallel

In a post-processing scenario, we have seen that the two
GPU-based rendering solutions are limited by the available GPU
memory, since our 9-billion voxels data set will not fit on a
single GPU. Likewise, in an in-situ scenario, the visualization
would most likely use a parallel set of nodes. Loading our full-
size data, we rounded up our evaluation of all three rendering
options, by measuring the initial cost for the first image (after
all I/O has been done), and also the average rendering time in
a scripted animation loop. Fig.[/|summarizes our results, with
the dataset distributed among 4, 8 and 12 compute nodes.

As expected, startup times decrease almost linearly with
the number of compute nodes. For the GPU-based methods,
less data is transferred from CPU memory to GPU memory.
Our animation benchmark loads a single timestep of data, thus,
once the data has migrated to the GPU, there is hardly any CPU
to GPU communication apart from a single frame buffer im-
age. For the CPU-based implementation, the build-up of the

25 T T T T T
M First image startup time

IndeX

<
=
A
=
-
4

20| [Average rendering time -
7 -2
22
g 15 <% -
n = Z
Zz 5 8%
Q £ Z =
[ORSS
2 10 z
=

4 8 12
Number of compute nodes

Figure 7: Overview of initial cost and average rendering time per frame.

ray-tracing acceleration structures takes just over one second
so there is less difference across the few tests executed. We
see rendering times reduced somewhat linearly since there is
less workload. In a movie production setting where all timestep
outputs are read once, rendered once and then discarded, the
startup cost of any rendering library needs to be weighted against
the I/O costs. Although our data I/O statistics show quite a bit
of variation because of the high load of our multi user system
with over 5000 compute nodes, our simulation data are read, in
average, in about 32 s (resp. 25, and 16 s) on 4 nodes (resp. 8
and 12 nodes). We see that the initialization of the rendering
sub-system has a greater impact than expected, and that in an
in-situ scenario, it would be the singlemost important barrier
to performance. The initialization of the NVIDIA IndeX is the
most significant bottleneck. Discussions with NVIDIA are on-
going and our hope is that this will be improved in future ver-
sions of the SDK since the library is still in early development.
We comment here that the parallel execution of the OSPRay-
based volume rendering was made possible by using yet another
ParaView mode, letting the OSPRay library take full control of
the overall scene and parallel frame compositing. Finally, we
highlight the fact that the OSPRay average rendering times per
frame in our animation are all under one second, while it takes
a minimum of 8 compute nodes using the NVIDIA IndeX so-
lution. This level of interactivity can be satisfactory during the
prototyping phase of a visualization.

5. Summary and conclusion

We have discussed three implementations of volume ren-
dering for a thermal convection simulation output of substantial
size. Our time-dependent output is stored as a float32 array of
36GB per timestep. This is a non-trivial size for the most com-
mon GPUs. This leaves the scientist with two options: 1) use
a data-parallel visualization application with GPU-assisted ren-
dering, or 2) use a CPU-only visualization environment which
can fit on compute nodes where large memory banks are usu-
ally found. Our choice was to deploy a single application, the
open-source ParaView, due to its support for different parallel
execution paradigms, and for its ability to work with different

off-screen and on-screen rendering backends. Having a single
application, driven by fully automatized python scripts and a
benchmarking suite of tools available in ParaView itself, en-
abled us to confront all possible implementations with reduced
variability.

We tested two GPU-based rendering options. We first used
ParaView’s native volume rendering which has proved to of-
fer the best compromise between startup time, and interactive
performance; We also tested an alternative solution based on a
new library in development by NVIDIA. In our current setup,
the IndeX library offers superior interactive rendering, however
at non-negligible initialization costs.

We evaluated an implementation of volume rendering pro-
vided by the Intel OSPRay library, a software-based framework
which can take remarkable advantage of a multi-threaded exe-
cution layer. This also fits well on a subset of our available hard-
ware, a dual-Xeon based compute node without GPU. Our ex-
periences are of interest for several computer platforms around
the world where graphics hardware is not available.

Our emphasis on creating the scientific visualization shown
in the accompanying video [L1] was two-fold. First, having
an interactive environment enabling us to prototype the visu-
alization with large scale data. The editing of color and opac-
ity transfer functions is the most demanding step in deriving
the proper visualization, and we were able to provide an in-
teractive setup using either GPU-, or CPU-based volume ren-
dering. Dealing with long time-dependent simulation outputs
was the second requirement, and the path to achieve high pro-
ductivity was to use parallel and scalable I/O routines. We
used VTK’s native XML partitioned file format convention for
cartesian image data. This was pivotal for a quick turn-around
time. The OSPRay-based implementation had the best perfor-
mance in both initialization and average rendering time, but suf-
fered from some parallel image compositing artifacts at inter-
process boundaries. Given the very high spatial resolution of
our grid, these artifacts are only visible at extreme zooming in
the vicinity of ghost-cells between MPI-distributed data. To
conclude and ensure the best visual quality, the compromise for
movie production was to use small subsets of GPU nodes with
ParaView’s native volume renderer.

The volume rendering benchmarking platform deployed to
analyze our large grid simulations provides a unique chance to
observe sheared thermal convection in a very simple system
with far reaching consequences. Furthermore, the visualiza-
tions allow us to have a very good first insight into the inter-
play between thermal convection and flow shearing by different
kinds of wind and flow currents. We are now able to better un-
derstand the emergence and behavior of flow structures trans-
porting heat through the system and affecting the flow dynam-
ics.

Acknowledgments

Alexander Blass was financially supported by the Dutch Or-
ganization for Scientific Research (NWO-I) and conducted his
simulations at the Swiss National Supercomputing Center, un-
der compute allocations s713, s802, and s874. We acknowl-

edge the support from the Dutch national e-infrastructure of

SURFsara, a subsidiary of the SURF cooperation, and the Pri-

ority Programme SPP 1881 Turbulent Superstructures of the

Deutsche Forschungsgemeinschaft. We thank the ParaView de-

velopment team at Kitware, USA, for fruitful discussions and

motivational material. Dave DeMarle has been particularly help-
ful in discussion related to the OSPRay plugin. Mahendra Roopa
at NVIDIA has also been extremely receptive to our feedback

and instrumental in helping us get the best of the IndeX library

in a multi-GPU setting. We are grateful to the reviewers of our

manuscript who provided critical reading and motivated clarifi-

cations we have added. We also would like to thank Paul Melis

from SURFsara for valuable input to our video [11]].

References

[1] Intergovernmental Panel on Climate Change, Ocean systems, in: Climate
Change 2014 Impacts, Adaptation and Vulnerability: Part A: Global and
Sectoral Aspects: Working Group II Contribution to the IPCC Fifth As-
sessment Report, Chapter 12, 2014, pp. 411-484.

[2] J. Ahrens, B. Geveci, C. Law, ParaView: An End-User Tool for Large
Data Visualization, Butterworth-Heinemann, 2005.

[3] A. Blass, X. Zhu, R. Verzicco, D. Lohse, R. J. A. M. Stevens, Flow or-
ganization and heat transfer in turbulent wall sheared thermal convection,
Preprint arXiv:1904.11400 (2019).

[4] S. Rahmstorf, The thermohaline ocean circulation: A system with dan-
gerous thresholds?, Climatic Change 46 (2000) 247-256.

[5] S. Manabe, R. J. Stouffer, Two stable equilibria of a coupled ocean-
atmosphere model, J. Climate 1 (1988) 841-866.

[6] J. Marshall, F. Schott, Open-ocean convection: Observations, theory, and
models, Rev. Geophys. 37 (1) (1999) 1-64.

[7]1 G. Ahlers, S. Grossmann, D. Lohse, Heat transfer and large scale dynam-
ics in turbulent Rayleigh-Bénard convection, Rev. Mod. Phys. 81 (2009)
503.

[8] D.Lohse, K.-Q. Xia, Small-scale properties of turbulent Rayleigh-Bénard
convection, Annu. Rev. Fluid Mech. 42 (2010) 335-364.

[9] A.J. Smits, B. J. McKeon, 1. Marusic, High-Reynolds number wall tur-
bulence, Ann. Rev. Fluid Mech. 43 (2011) 353-375.

[10] D. Barkley, L. S. Tuckerman, Mean flow of turbulent-laminar patterns in
plane Couette flow, J. Fluid Mech. 576 (2007) 109-137.

[11] J. M. Favre, A. Blass, Volume renderings of sheared thermal convection
[video file] (2018).

URL https://youtu.be/yEj8303hVv4

[12] E. P. van der Poel, R. Ostilla-Monico, J. Donners, R. Verzicco, A pen-
cil distributed finite difference code for strongly turbulent wall-bounded
flows, Computers & Fluids 116 (2015) 10-16.

[13] X. Zhu, E. Phillips, V. S. Arza, J. Donners, G. Ruetsch, J. Romero,
R. Ostilla-M6nico, Y. Yang, D. Lohse, R. Verzicco, M. Fatica, R. J. A. M.
Stevens, AFiD-GPU: a versatile Navier-Stokes solver for wall-bounded
turbulent flows on GPU clusters, Comput. Phys. Commun. 229 (2018)
199-210.

[14] R.J. A. M. Stevens, A. Blass, X. Zhu, R. Verzicco, D. Lohse, Turbulent
thermal superstructures in Rayleigh-Bénard convection, Phys. Rev. Fluids
3(2018) 041501(R).

[15] W. Schroeder and K. Martin and B. Lorensen, The Visualization Toolkit,
Kitware, 2006, pp. 213-244.

[16] Egl eye: Opengl visualization without an x server, http://tinyurl.
com/ybmnzdtv,

[17] Volume rendering improvements in vtk, https://blog.kitware.com/
volume-rendering-improvements-in-vtk,

[18] Shaders in vtk, https://www.vtk.org/Wiki/Shaders_In_VTK.

[19] Nvidia index, https://developer.nvidia.com/index!

[20] R. Haas, P. Mosta, M. Roopa, A. Kuhn, M. Nienhaus, Programmable in-
teractive visualization of a core-collapse supernova simulation, in: Con-
ference on High Performance Computing Networking, Storage and Anal-
ysis, SC 2018, Dallas, TX, USA, 2018.

[21] Ospray: a ray tracing based rendering engine for high-fidelity visualiza-
tion, http://www.ospray.org/index.html|

https://youtu.be/yEj83O3hVv4
https://youtu.be/yEj83O3hVv4
https://youtu.be/yEj83O3hVv4
http://tinyurl.com/ybmnzdtv
http://tinyurl.com/ybmnzdtv
https://blog.kitware.com/volume-rendering-improvements-in-vtk
https://blog.kitware.com/volume-rendering-improvements-in-vtk
https://www.vtk.org/Wiki/Shaders_In_VTK
https://developer.nvidia.com/index
http://www.ospray.org/index.html

[22] K. Moreland, W. Kendall, T. Peterka, J. Huang, An image compositing
solution at scale, in: Conference on High Performance Computing Net-
working, Storage and Analysis, SC 2011, Seattle, WA, USA, 2011, pp.
25:1-25:10.

[23] J. M. Favre, A. Blass, Volume renderings of sheared thermal convection,
in: Conference on High Performance Computing Networking, Storage
and Analysis, SC 2018, Dallas, TX, USA, 2018.

	1 Introduction
	2 Numerical simulations of sheared thermal convection
	3 Volume rendering libraries and setup
	3.1 ParaView's GPU ray casting
	3.2 NVIDIA IndeX
	3.3 Intel OSPRay
	3.4 Parallel image compositing

	4 Volume rendering of the thermal convection
	4.1 Visual effects
	4.2 GPU-based rendering on a single node
	4.3 CPU-based rendering on a single node
	4.4 Rendering the full domain in parallel

	5 Summary and conclusion

