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Abstract
Hyperspectral imaging is a promising

technique for resection margin assess-

ment during cancer surgery. Thereby,

only a specific amount of the tissue

below the resection surface, the clini-

cally defined margin width, should be

assessed. Since the imaging depth of

hyperspectral imaging varies with

wavelength and tissue composition, this

can have consequences for the clinical

use of hyperspectral imaging as margin

assessment technique. In this study, a

method was developed that allows for hyperspectral analysis of resection margins

in breast cancer. This method uses the spectral slope of the diffuse reflectance spec-

trum at wavelength regions where the imaging depth in tumor and healthy tissue is

equal. Thereby, tumor can be discriminated from healthy breast tissue while imag-

ing up to a similar depth as the required tumor-free margin width of 2 mm. Apply-

ing this method to hyperspectral images acquired during surgery would allow for

robust margin assessment of resected specimens. In this paper, we focused on

breast cancer, but the same approach can be applied to develop a method for other

types of cancer.
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1 | INTRODUCTION

Surgery is usually the preferred treatment for patients with
cancer. Thereby, surgeons aim to remove the tumor with a
surrounding margin of normal tissue, while sparing as much

healthy tissue as possible. However, since tumor tissue is
difficult to distinguish by eye, complete tumor removal
remains challenging [1–3]. Completeness of tumor removal
is determined by a pathologist, who examines the re-
section margin under a microscope. For cancer surgery in
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which large specimens are excised, histopathologic evalua-
tion of the whole margin is too time-consuming to be per-
formed during surgery and typically requires several days. If
a tumor-positive margin is found, often additional treatment
like a second surgical procedure or radiation therapy is
needed.

Hyperspectral imaging is a non-invasive and rapid tech-
nique for the examination of the resection margins during sur-
gery. As the entire surface of a resected specimen can be
imaged fast and hyperspectral diffuse reflectance measure-
ments can be analyzed directly, tumor-positive margins can
be found during the initial surgery in order to excise
remaining tumor tissue in the patient immediately [4]. Previ-
ous research showed promising results in detecting tumor tis-
sue in resected specimens with hyperspectral imaging [5–9].
Importantly, for hyperspectral imaging as margin assessment
technique, the imaging depth should be taken into account.
Ideally, the imaging depth should equal the required tumor-
free margin width to remove the whole tumor while sparing
as much healthy tissue as possible. The tumor-free margin
width is in the order of millimeters and depends on the type
of cancer and the guidelines of a country [1–3, 8].

With hyperspectral imaging, each pixel in the image con-
tains an entire spectrum over a broad wavelength range. As
the optical penetration depth varies with tissue composition
and wavelength, different wavelengths sample different tissue
volumes with hyperspectral imaging [4, 10, 11]. Therefore, a
tumor that is located a few millimeters underneath the re-
section surface might be detected by wavelengths that have a
larger penetration depth and be missed by wavelengths with
superficial penetration depth. When hyperspectral data analy-
sis is performed on the entire spectrum, these differences in
sampling volume are not taken into account. Therefore, in
previous research, the optical parameters of skin were
obtained by applying a two-layered model on separate wave-
length ranges in the hyperspectral data where the penetration
depth was assumed more or less uniform [12].

In this study, we developed a method that allows for
hyperspectral margin assessment, with an imaging depth
similar to the required tumor-free margin width. We
focussed on breast cancer, but the same approach can be
applied to other types of cancer as well. For breast cancer,
the American guideline requires a tumor-free margin width
up to 2 mm [3]. Therefore, hyperspectral imaging should be
able to assess tissue up to a depth of 2 mm below the re-
section surface. To develop this method, we first identified
wavelength regions at which the penetration depth of pho-
tons does not depend on whether the tissue is healthy or
malignant. Previous research showed that the amount of
water and fat is one of the main optical differences between
tumor and healthy breast tissue [13–20]. Therefore, we
focused on the near-infrared wavelength range, where

water and fat are the main absorbers. Second, we used dif-
fusion theory to estimate the theoretical optical penetration
depth at these wavelengths. We compared this penetration
depth to the imaging depth of our setup, which we deter-
mined experimentally using a tissue-mimicking phantom.
Third, we estimated the penetration depth in human breast
tissue and developed a method using the selected wave-
length regions to discriminate between healthy and tumor
tissue. Finally, we applied this method to ex vivo breast
samples and show that it can discriminate between healthy
and tumor tissue.

2 | MATERIALS AND METHODS

2.1 | Hyperspectral imaging setup

Hyperspectral images were acquired with two pushbroom
hyperspectral imaging systems (LabScanner Setup 40 × 20,
Specim, Spectral Imaging Ltd., Finland) that operate in the
visual (VIS) and near-infrared (NIR) wavelength range and
were controlled by LUMO software (v2016-427, Specim,
Spectral Imaging Ltd., Finland). Figure 1 shows the hyper-
spectral imaging setup. Images acquired with the VIS camera
(PFD-CL-65-V10E, CMOS sensor with 1312 × 384 pixels)
and the NIR camera (VLNIR CL-350-N17E, InGaAs sensor
with 320 × 256 pixels) have a spatial resolution of respec-
tively 0.16 and 0.5 mm/pixel. The material under investigation
was placed on a translation stage, illuminated by three halogen
light sources (2900 K), and scanned line-by-line by moving
the translation stage. The scanning speed for both cameras was
adjusted to match the cameras spatial resolution of the imaged
line. After excluding the noisy edges of the wavelength range
of both cameras, a spectrum between 450 and 1646 was
obtained (VIS camera: 450-950 nm, 318 wavelength bands,
3 nm (FWHM) nominal spectral resolution; NIR camera:
953-1646 nm, 210 wavelength bands, 5 nm (FWHM) nominal
spectral resolution). The two cameras had different lenses
(VIS: OLE 18.5 mm, NIR: OLES15, Specim, Spectral Imag-
ing Ltd., Finland) optimized for the wavelength range of each
camera. Both spectral and spatial aberrations are sub-pixel.

Raw hyperspectral data obtained on tissue was normal-
ized to a diffuse reflectance percentage relative to Spectralon
(SRT-99-100, Lapsphere, Inc., Northern Sutton, New Hamp-
shire). Prior to this preprocessing step, we corrected for the
slight non-linearity of the InGaAs sensor. A detailed descrip-
tion of this preprocessing was described previously [7].

2.2 | Theoretical penetration depth in breast
tissue

To allow for hyperspectral analysis of breast tissue at
predefined imaging depths, suitable wavelength regions
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should be selected that meet the following requirements:
First, the penetration depth at these wavelengths should not
depend on whether tumor or healthy tissue is imaged. Sec-
ond, the penetration depth should be clinically relevant for
margin assessment, with 2 mm for breast-conserving
surgery.

2.2.1 | Equal penetration depth in healthy and
tumor breast tissue: isosbestic points

Based on previous research, one of the main differences in
optical properties between tumor and healthy breast tissue is
the higher water and lower fat content in tumors compared
to healthy tissue [13–20]. Therefore, we focused on the NIR
wavelength range, where water and fat are the main
absorbers of light.

The optical penetration depth varies with tissue composi-
tion and wavelength and is depended on the absorption and
scattering of light in tissue. In the NIR, the reduced

scattering is dominated by Mie scattering. Since this type of
scattering gradually decreases with wavelength, it is, in com-
parison to the absorption, not strongly wavelength depen-
dent. Therefore, the optical penetration depth in the NIR will
mainly vary due to differences in absorption. By selecting
wavelength regions at which the absorption of light in tumor
and healthy tissue is similar, the penetration depth in both
tissue types will be the same. In the NIR, these regions are
at the isosbestic points of the absorption spectra of water and
fat (Figure 2A) [21]. Due to the equal absorption of water
and fat, the reflectance at these points will likely be the same
for healthy and malignant tissue. However, at these wave-
lengths, the slope of the absorption spectrum is strongly
related to the amount of water and fat in the tissue
(Figure 2B). This indicates that it could be possible to obtain
information on the composition of the tissue by using the
slope of the diffuse reflectance spectra around the isosbestic
points. The next step is to investigate the penetration depth
at the isosbestic points to see which wavelengths are

FIGURE 2 (A) The extinction coefficient of water and fat, the main chromophores in the NIR wavelength range. The arrows indicate the
isobestic points of the absorption spectra of water and fat: 910, 931, 1197, 1222, 1699 and 1735 nm. (B) The slope of the absorption spectrum for
different amounts of water and fat, at the isosbestic point 1197 nm

FIGURE 1 (A) Schematic view of the hyperspectral imaging setup. The material under investigation was placed upon a translation stage and
illuminated by three halogen light sources under an angle of 45�. By imaging line-by-line, a 3D hypercube (B) was created. All pixels in this
hypercube contain multiple 2D images at different wavelengths. By combining both hyperspectral cameras, a diffuse reflectance spectrum between
450 and 1646 nm was obtained
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clinically relevant for margin assessment during breast-
conserving surgery.

2.2.2 | Theoretical penetration depth:
Diffusion theory

To estimate the optical penetration depth of light, we used
diffusion theory, which gives an approximation of the light
propagation in highly scattering media [22]. The penetration
depth (deff) is defined as the depth where the light fluence
rate drops to 1/e of its initial value at the surface, and is
given by [23]:

deff =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3μa μa + μ0s
� �q ð1Þ

where μ0s and μa respectively represent the reduced scattering
and absorption coefficient. The diffuse reflectance (Rd) can
also be derived from diffusion theory [24]:

Rd =
α0

1+ 2k 1−α0ð Þ+ 1+ 2k
3

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1−α0ð Þp ð2Þ

where α0 = μ0s
μ0s + μa

and k= 1+ rd
1−rd

. rd is the internal reflection

coefficient for diffuse light and depends on the refractive
index of the sample, which was calculated as
nsample = nwater + 0.14 � [fat] [25, 26]. Where [fat] represents
the fat concentration in the tissue. It can be shown that the
derivative of Rd over the wavelength is:

dRd

dλ
=
dα0

dλ
� c ð3Þ

with c=
1+2k+ 1+ 2k

3ð Þ ffiffiffiffiffiffiffiffiffiffiffiffi
3 1−α0ð Þ

p
+ 1:5+ kð Þα0ffiffiffiffiffiffiffiffiffiffi

3 1−α0ð Þ
p

1+ 2k 1−α0ð Þ+ 1+ 2k
3ð Þ ffiffiffiffiffiffiffiffiffiffiffiffi

3 1−α0ð Þ
p� �2 , and da0

dλ =
μa

dμ0s
dλ −μ0s

dμa
dλ

μ0s + μað Þ2 . At

the isosbestic points, the constant c is independent of the
optical tissue properties and will not influence dRd

dλ . In addi-

tion, μ0s � μa in tissue, and dμa
dλ

�� ��≥ dμ0s
dλ

��� ��� in the NIR wavelength

range. Therefore, dRd
dλ will be mainly shaped by the slope of

the absorption spectrum and thus likely change between
healthy and tumorous tissue.

We estimated the optical penetration depth and diffuse
reflectance in breast tissue using known optical properties of
breast tissue [13–20]. Since water and fat are the main
absorbers of light in the NIR region, equations for the
absorption coefficient and the reduced scattering were
approximated by:

μa λð Þ= εwater λð Þ � water½ �+ εfat λð Þ � fat½ � ð4Þ

μ0s λð Þ= μ0s,800
λ

800 nm

� �−b

ð5Þ

In which [water] and [fat] represent the water and fat con-
centration in the tissue, and εwater and εfat their extinction
spectra. The reduced scattering is given by the factor μ0s,800,
which is the reduced scattering at 800 nm, and the scatter
power, b. With known optical properties of breast tissue, the
optical penetration depth at the isosbestic points can be esti-
mated using Equation (1).

2.3 | Penetration depth vs imaging depth:
Theory vs experiment

The penetration depth is a theoretical concept that can pro-
vide an estimate of the actual imaging depth specific to our
hyperspectral setup. In this study, the imaging depth is
defined as the depth required to reduce the relative reflec-
tance by a factor of 1/e2. The relative reflectance is the mea-
sured reflectance divided by the maximum reflectance that
could have been measured using an infinitely thick sample.
Instead of 1/e1, which is the fluence rate at the optical pene-
tration depth, 1/e2 was chosen so that the imaging depth will
be similar to the penetration depth: the fluence rate of light
reduces exponentially with depth, and the light travels twice
the distance with the imaging depth as with the penetration
depth. With the imaging depth, diffusely reflected light was
measured that penetrated the tissue and was subsequently
scattered back, whereas the penetration depth describes a
drop in light fluence in the tissue.

To compare the theoretical penetration depth with the
actual imaging depth of our hyperspectral imaging setup, we
measured a tissue mimicking phantom, with known optical
properties. The phantom consists of a black container that
contained eight black rods with various heights (Figure 3).
The rods were made of polyoxymethylene material that
highly absorbs light over the whole wavelength range. The
container was filled with a fat emulsion up to the height of
the highest rod so that the remaining rods were covered with
an emulsion layer ranging from 1 to 10 mm. The emulsion
consisted of a mixture of 1 part Intralipid 20% (Fresenius,
Kabi, Germany) and 19 parts deionized water. The optical
properties of this emulsion were described by Aernouts et al
and, with μ0s = 3.8− 8.5 cm−1 between 900 and 1600 nm,
comparable to the optical scattering properties of breast tis-
sue [26].

The container was imaged with the hyperspectral imag-
ing setups. To evaluate the imaging depth, nine regions of
interest (ROI) were selected: eight ROIs at the position of
the eight rods and one ROI in the middle of the container
where the layer of fat emulsion is 30 mm and assumed
effectively infinite. Second, the relative diffuse
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reflectance (Rrel) was calculated for the ROIs at the rods.
This is the diffuse reflectance, relative to the diffuse
reflectance measured at the infinite fat emulsion layer. By
plotting this Rrel against the layer thickness (d) above each
rod, we expect an exponential curve similar to the expo-
nential curve describing the decrease of diffuse light in
highly scattering tissue with depth [22]. This curve can be
described by:

Rrel λ,dð Þ=1− f 1e
− f 2d ð6Þ

where f1 and f2 are the variables that are fitted to the data
using the nonlinear least-squares solver in Matlab 2018a
(The Math Works Inc., Natick, Massachusetts, USA). As
mentioned before, we defined the imaging depth as the depth
at which Rrel equals 1-1/e

2.

2.4 | Classification method: Spectral slope
method

In Section 2.2.1, we hypothesized that the slope of the
reflectance spectrum around the isosbestic point could be

used to discriminate between healthy and tumor tissue.
Therefore, we calculated the first order derivative, the spec-
tral slope, from the diffuse reflectance spectra obtained on
breast specimens, at each isosbestic point using the follow-
ing equation:

dRd λ0ð Þ
dλ

=
Rd λ+Δλð Þ−Rd λ−Δλð Þ

2 �Δλ ð7Þ

Where dRd λ0ð Þ
dλ is the spectral slope at the isosbestic point (λ0),

Rd the diffuse reflectance and λ the wavelength band in mil-
limeter. The spectral slope was calculated by choosing two
wavelengths, each at a distance Δλ from the isosbestic
point.

The optimal distance, Δλ, for the spectral slope
method should meet two requirements. First, this distance
should be as small as possible to prevent large penetra-
tion depth variations within the wavelength range with
tissue composition. Second, Δλ should be large enough to
use the spectral slope to predict the amount of fat in the
tissue, that is, obtain detectable differences between
tumor and healthy tissue. The relation between the spec-
tral slope and the amount of fat was expected to be linear
and therefore analyzed using the Pearson correlation
coefficient (PCC). An absolute PCC of 1 indicates a per-
fect linear correlation, whereas a PCC of 0 indicates no
correlation. The minimum Δλ that has to be used for the
spectral slope depends on the signal-to-noise ratio (SNR)
of the hyperspectral camera since a smaller Δλ is more
likely to generate a nosier slope. Therefore, white noise
was added to the estimated reflectance spectra up to a
maximum that corresponded to an SNR of 50, which was
the minimum SNR of the cameras at the isosbestic points.
We selected the optimal Δλ based on two requirements.
First, the variation in penetration depth should not exceed
20% of the penetration depth at the isosbestic point. Sec-
ond, for all different amounts of added noise, the PCC
should be highest.

2.5 | Applying classification method to breast
specimens

To evaluate whether the spectral slope at the isosbestic
points can differentiate between healthy and tumor tissue,
the method was applied to ex vivo breast samples. This
study was approved by the Institutional Review Board of the
Netherlands Cancer Institute/Antoni van Leeuwenhoek.
According to Dutch law (WMO), no written informed con-
sent from patients was required. Fresh surgical specimens
were obtained from female patients undergoing primary
breast surgery at the Antoni van Leeuwenhoek hospital.
Immediately after resection, the breast specimen was

FIGURE 3 (A) Schematic view of the phantom. In the
container, 8 rods with different heights are placed on a plate of
polymethylene. Subsequently, the container is filled with a fat
emulsion up to the height of the highest rod (rod 1), so that the
remaining rods were covered with a fat emulsion layer ranging from
1 to 10 mm (B). “inf” indicates the region of interest of the infinite
fat emulsion layer
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brought to the pathology department. There the specimen
was inked and subsequently sliced in 2 to 6 mm thick tissue
slices, according to standard histopathologic procedure. One
tissue slice was placed in a macrocassette on top of black
rubber and used for the optical measurements. The black
rubber highly absorbs light from 400 to 1700 nm and pre-
vents that any other underlying structure under the tissue is
measured. The optical measurements were performed within
10 minutes after collection of the tissue at the pathology
department.

After a few days, the tissue slices were processed in
H&E stained sections according to standard protocol. These
sections were registered to the hyperspectral images using a
white light image that was taken simultaneously to the
hyperspectral image and a non-rigid registration algorithm.
This process is described in our earlier publication [7]. After
registering the annotated H&E section to the hyperspectral
image, the whole hyperspectral image was annotated with
tissue types being invasive carcinoma (IC), adipose tissue
and connective tissue. To exclude potential histopathology
registration errors, only areas 1 mm away from a tissue class
border were selected for the evaluation of the spectral slope
method.

From 19 patients, one slice per patient was measured with
a mean slice thickness of 3.7 mm (range 2.5-5.5 mm).

Table 1 shows the characteristics of the patients, the tissue
slices and the tumor. The age of these patients was 61
± 11 years (mean ± SD), and their ACR score, which reflects
the breast density and ranges from 1 (low breast density) to
4 (high breast density), was 2.68 ± 0.74 (mean ± SD). The
type and grade of IC varied between the 19 patients:
4, 12 and 1 patient contained invasive ductal carcinoma (IDC)
grade I, grade II and grade III respectively. The other two
patients contained invasive lobular carcinoma grade II and III.
Difference between the spectral slope in tumor and healthy
tissue were evaluated for each patient individually using a
non-parametric Kruskal-Wallis test [27], and over all patients
using a two-level hierarchical model with the repeated mea-
surements per patient in level one, and the tissue type in level
two. P values <.05 were considered statistically significant.

3 | RESULTS AND DISCUSSION

3.1 | Results

3.1.1 | Theoretical penetration depth in breast
tissue

Figure 4 shows the diffuse reflectance and optical penetra-
tion depth in human breast tissue for different optical

TABLE 1 Characteristics of patients,
slices and tumor

Patient #

Patient characteristics

Slice thickness (mm)

Tumor characteristics

Age ACR score Type Grade

1 57 1 3 IDC 3

2 77 2 4.5 ILC 3

3 74 2 3 IDC 2

4 54 3 5.5 ILC 2

5 49 3 3.5 IDC 2

6 73 4 2.5 IDC 1

7 51 4 3 IDC 2

8 57 2 2.5 IDC 1

9 77 3 3 IDC 1

10 63 2 4.5 IDC 2

11 68 3 4.5 IDC 2

12 48 2 4 IDC 2

13 58 3 4 IDC 1

14 67 2 2.5 IDC 2

15 53 3 2.5 IDC 2

16 73 3 4 IDC 2

17 57 3 4.5 IDC 2

18 51 3 5 IDC 2

19 43 3 5 IDC 2

Abbreviations: IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma.
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properties, as estimated using Equation (2). The green
arrows indicate the isosbestic points of the water and fat
extinction coefficients at which the optical penetration depth
does not depend upon the tissue properties. The optical pen-
etration depth around these points differs: for example,
around 930 and 1200 nm, the light penetrates the breast tis-
sue up to approximately 6.5 and 2 mm, respectively,
whereas above 1700 nm imaging is more superficial. Given
the preferred tumor-free margin width of 2 mm, the iso-
sbestic points around 1200 nm are clinically most relevant
for resection margin assessment during breast-conserving
surgery [3].

3.1.2 | Penetration depth vs imaging depth:
Theory vs experiment

Figure 5 shows the comparison between the estimated pene-
tration depth and the experimentally obtained imaging depth
of our hyperspectral system. Figure 5B,C show the hyper-
spectral images of the tissue-mimicking phantom for two of
the four isosbestic points within the wavelength range of our
cameras. More of the deeper situated rods were visible in the
image at 931 nm, which indicates that the imaging depth in
the fat emulsion is higher at 931 nm than at 1197 nm.
Figure 5D shows the spectra of an infinite fat emulsion layer
as measured with the hyperspectral camera (black dotted
line) and estimated with diffusion theory (red dotted line).
The spectra were comparable, with only a small difference
(less than 2.5%) between the estimated and measured spectra
above 1150 nm.

In addition, Figure 5D shows the averaged diffuse reflec-
tance spectra measured at the ROI of each rod. For shorter
wavelengths, the imaging depth was larger (Figure 5E).
Therefore, larger layer thicknesses were required for the dif-
fuse reflectance to be identical to the measured infinite layer.
Table 2 shows the penetration depth and the imaging depth
at the isosbestic points. In general, the measured imaging
depth was lower than the estimated penetration depth,

especially at 910 and 931 nm. The theoretical penetration
depth around 1200 nm in the phantom was slightly lower
than the theoretical penetration depth in breast tissue: at
1197 nm 1.91 mm vs 2.01 ± 0.22 mm and at 1222 nm
2.00 mm vs 2.14 ± 0.26 mm. Therefore, we expect the
imaging depth of our hyperspectral setup in breast tissue to
be slightly higher than the imaging depth in the fat emulsion
as well.

3.1.3 | Classification method: Spectral slope
method

Around 1200 nm, two isosbestic points are located: 1197
and 1222 nm. We optimized the distance Δλ around these
two points to minimize differences in penetration depth for
different water/fat concentrations, while allowing for good
differentiation between tumor and healthy tissue. Based on
this analysis, 1197 nm allowed for the best tissue discrimina-
tion with minimal penetration depth variations. As shown in
Figure 6, the optimal distance Δλ around this isosbestic
point was 10 nm.

Figure 7 shows the spectral slope around 1197 nm, calcu-
lated with the optimal Δλ, for different fat concentrations.
With this spectral slope, the fat percentage in the tissue can
be estimated. The variations in the boxplots are induced by
variations in the reduced scattering we used and increase
with the fat percentage. In breast tissue, the reduced scatter-
ing is unknown and varies from patient to patient. Therefore,
the accuracy of the estimated fat percentage will be lower
when the actual fat percentage in the tissue is higher.

3.1.4 | Applying classification method to
breast specimens

The spectral slope method was applied to ex vivo breast
samples to evaluate whether healthy and tumor tissue
could be distinguished. Figure 8 shows the average dif-
fuse reflectance spectra per tissue type. In comparison

FIGURE 4 The diffuse reflectance (A) and penetration depth (B) for three fat-water concentrations and a reduced scattering that varied due to
differences in the factor μ0s, 800 (5-10mm−1) and the scatter power (0.5-1.25). The shaded areas around the graphs depict the SD due to variation in

reduced scattering. The green arrows indicate wavelength regions at which the penetration depth of the photons did not depend upon the tissue
properties, that is, the isosbestic points of the water and fat absorption coefficients
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with the estimated diffuse reflectance (gray values), the
measured diffuse reflectance was in the same range at the
isosbestic points around 1200 nm, but much lower around
930 nm. This deviation was caused by the thickness of
the tissue slices with respect to the optical penetration
depth in tissue (Figure 4). Since light around 930 nm has
a penetration depth of approximately 6.5 mm, it pene-
trates through tissue with a thickness of 5.5 mm. There-
fore, it was partly absorbed by the rubber underneath the

tissue, and less light was diffusely reflected and collected
by the camera. Figure 8B,C show that the thicker a slice,
the more the measured reflectance resembled the esti-
mated reflectance.

Figure 9 shows a boxplot of the spectral slope at
1197 nm per tissue type for each patient sample. The median
spectral slope of IC was significantly different from adipose
tissue (P < .0001) in all patients and significantly different
from connective tissue (P < .0001) in 11 of the 13 patients.

FIGURE 5 The schematic view
(A) and the hyperspectral (HS) image
of the tissue mimicking phantom at
two of the four isosbestic points
(B and C) within the wavelength range
of our cameras. The colored circles in
the rods (A) represent the ROIs of each
rod. The shown spectra (D, colormap:
parula) are the averaged diffuse
reflectance spectra at these ROIs. The
layer thicknesses of the fat emulsion
above the rods varies. In addition, the
measured and estimated spectra of an
infinite fat emulsion layer are shown.
By plotting the relative diffuse
reflectance at the ROIs against the
layer thickness of the fat emulsion (E),
the imaging depth of light can be
calculated at the isosbestic points
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The linear correlation between the ACR score of the patient
and the spectral slope at 1197 was calculated with the Pear-
son Correlation Coefficient en was for IC, adipose tissue and
connective tissue respectively −0.26, −0.07 and −0.53.
Therefore, in patients with a higher ACR score, the spectral
slope around 1197 nm was higher in IC and connective tis-
sue, and therefore the fat percentage was lower. Over all
patients, statistical analysis revealed that the spectral slope
of IC was significantly different from both connective tissue
(P = .043) and adipose tissue (P < .001). Since the spectral
slope of IC was on average higher than the spectral slope of
both adipose (by 1.257) and connective tissue (by 0.122), IC
contained on average less fat than the two healthy tissue
types.

3.2 | Discussion

In this study, we developed a method that allows for hyper-
spectral analysis of resection margins in breast cancer, while

imaging up to a depth similar to the required tumor-free mar-
gin width of 2 mm. We used diffusion theory to estimate the
optical penetration depth and compare this with experimen-
tally obtained data. Since the penetration depth cannot be
measured directly from reflectance measurements, we mea-
sured the imaging depth specific to our setup and defined
this imaging depth to be similar to the penetration depth.
However, the measured imaging depth was lower than the
estimated penetration depth, especially at wavelengths with
higher penetration depths (Table 2 and Figure 5). This was
related to our measurement setup, where the imaged scene
was illuminated under an angle of 45�, to reduce the amount
of specular reflection in the measurements. Previous
research showed that the illumination of a medium at an
oblique angle shifts the center of the diffuse reflectance
away from the incident point [28, 29]. Thereby, the imaging
depth can decrease with the angle of illumination incidence.
Equation (2), however, purely describes the penetration of
collimated light through an optically homogeneous medium
without taking into account any properties of the measure-
ment setup. As a result, the imaging depth can be much
lower than the penetration depth, especially for wavelengths
with higher penetration depths, such as 910 and 931 nm.
Diffusion theory can thus provide an estimate of the imaging
depth, but if a more precise estimate is needed for a specific
measurement setup, measuring the imaging depth with a
phantom is useful.

In addition, we verified with the phantom that estimating
the diffuse reflectance with diffusion theory was representa-
tive for the diffuse reflectance measured with the hyper-
spectral camera. Despite small differences above 1150 nm
(Figure 5D), which were resolved when adapting the
assumed scattering properties, the spectra were comparable
[26]. Adaptations to these scattering properties were minimal
(10%) and most likely needed to compensate for the layering
of Intralipid, as described by Bodenschatz et al, and its

TABLE 2 Estimated theoretical penetration depth using diffusion
theory and measured imaging depth of our hyperspectral imaging setup
in the fat emulsion

Isosbestic
points (nm)

Theoretical
penetration depth
according to diffusion
theory (mm)a

Measured imaging
depth of our
hyperspectral setup
(mm, mean ± SD)b

910 7.38 4.49 ± 0.14

931 5.56 3.92 ± 0.15

1197 1.91 1.71 ± 0.02

1222 2.00 1.79 ± 0.03

1699 0.79 Not available

1735 0.73 Not available

aThe depth required to reduce the fluence rate by a factor of 1/e1.
bThe depth required to reduce the relative reflectance by a factor of 1/e2.

FIGURE 6 Selection of the optimal Δλ around the isosbestic point 1197 nm. (A) illustrates the increase in penetration depth variations with an
increase in Δλ. The red dots represent the outliers in the boxplots. The penetration depth in this figure was estimated using 11 different water/fat

concentrations, from 0% fat and 100% water to 100% fat and 0% water, and a reduced scattering of 7:5 λ
800 nm

� �−0:875. The same optical properties

were used in (B), which shows which Δλ allows for the best tissue discrimination, that is, how well the spectral slope can be used to predict the
amount of fat in the tissue. The spectral slope is expected to be linear related to the amount of fat in the tissue and analyzed using the absolute
Pearson correlation coefficient (PCC). The arrow points at the |PCC| corresponding to the selected optimal Δλ of 10 nm
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potentially induced error for surface sensitive tech-
niques [30].

With diffusion theory, we also estimated the optical pene-
tration depth in human breast tissue. For clinical measure-
ments, well-substantiated information on this depth is
important. First, for tissue discrimination with hyperspectral
imaging, it is important to take into account the influence
of the thickness of tissue slices on the measured reflec-
tance. As visualized in both the phantom (Figure 5D) and
the breast tissue slices (Figure 8), when light penetrates
through a medium that is thinner than the optical penetra-
tion depth, spectra will be altered by the material

underneath the medium. As a result, for data analysis, the
slice thickness might influence the classification result.
Second, for hyperspectral imaging in the clinical setting,
knowledge on the assessed margin width is important. For
resection margin assessment, the American clinical guide-
line requires a tumor-free resection surface for IC and a
tumor-free margin width of 2 mm for its (potential) precur-
sor ductal carcinoma in situ (DCIS) [3]. Therefore, hyper-
spectral margin assessment should only assess tissue up to
2 mm underneath the resection surface. With our cameras,
the minimum optical penetration depth at the isosbestic
points was approximately 2 mm. For hyperspectral imaging
in the clinical setting, this is sufficient for DCIS, but deeper
than necessary for IC. Based on diffusion theory, higher
wavelength regions, for example around 1715 nm, might
provide a solution for more superficial imaging. However,
since our current hyperspectral camera was limited to
1646 nm, we were not able to include this region in our
analysis.

The results of the spectral slope method to differentiate
healthy and tumor tissue in ex vivo breast tissue slices are
promising. Even though we observed an inter-patient vari-
ability related to the patients' breast density, as has been
reported by other research as well [14, 31], the spectral slope
at 1197 of IC was significantly different from healthy tissue
in 11 of the 13 patients. In addition, over all patients, the
spectral slope in tumor was significantly different from
healthy tissue. For this, only two wavelengths, instead of the
whole spectrum, were required. This offers great potential
for improvement of the current imaging setup: currently,
hyperspectral data is captured by moving the imaged scene,

FIGURE 8 (A) Average
measured diffuse reflectance spectra of
invasive carcinoma (IC), connective
and adipose tissue. The estimated
diffuse reflectance spectra (gray values)
correspond to the spectra shown in
Figure 4. The difference between the
measured and estimated reflectance is
the result of the thickness of the tissue
slices with respect to the penetration
depth. (B and C) show the influence of
the thickness of the tissue slices in both
adipose tissue and IC

FIGURE 7 Influence of the scattering on the spectral slope
method. The spectral slope around the isosbestic points is calculated for
different water/fat concentration using the optimal Δλ. Variations in the
boxplots are related to different scattering properties, which varied due
to differences in the factor μ0s, 800 (5-10mm−1) and the scatter power

(0.5-1.25)
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which makes the system impractical for in vivo imaging. By
reducing the number of spectral bands, a stationary multi-
spectral imaging system can be developed that will be less
expensive, image faster and might be more practical in vivo.
To make a more solid statement on the performance of the
spectral slope method for intra-operative resection margin
assessment, that is, validate if the spectral slope method
allows for tumor detection up to the required tumor-free
margin width, we will perform a clinical study in the future
that measures and analyzes the resection margin of lumpec-
tomy specimens using this technique.

In this paper, we focused on breast cancer, but the same
approach can be used to develop a resection margin assess-
ment method for other types of cancer. Based on the tissue
properties and required tumor-free margin width, the same
strategy can be used to identify optimal wavelengths that
can be used to discriminate healthy from tumor tissue.

4 | CONCLUSION

Hyperspectral imaging is a promising technique for intra-
operative margin assessment during cancer surgery. In this
study, we developed a method, based on the spectral slope,
that allows for hyperspectral analysis of resection margins in
breast cancer. While imaging up to a depth similar to the
required tumor-free margin width of 2 mm, this method can
discriminate between healthy and tumor tissue. In this paper,
we focused on breast cancer, but the same approach can be
applied to develop a method for other types of cancer.
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