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H uman–computer interaction (HCI) is a cornerstone for the success of technical innovation in the logistics and supply chain sector. As a
major part of social sustainability, this interaction is changing as artificial intelligence applications (Internet of Things, autonomous trans-

port, Physical Internet) are implemented, leading to larger machine autonomy, and hence the transition from a primary executive to a supervi-
sory role of human operators. A fundamental question concerns the level of control transferred to machines, such as autonomous vehicles and
automatic materials handling devices. Problems include a lack of human trust toward automatic decision making or an inclination to override
the system in case automated decisions are misperceived. This paper outlines a theoretical framework, describing different levels of acceptance
and trust as a key HCI element of technology innovation, and points to the possible danger of an artificial divide at both the individual and firm
level. Based upon the findings of four benchmark cases, a classification of the roles of human employees in adopting innovations is developed.
Measures at operational, tactical, and strategic level are discussed to improve HCI, more in particular the capacity of individuals and firms to
apply state-of-the-art techniques and to prevent an artificial divide, thereby increasing social sustainability.

Keywords: artificial intelligence; social sustainability; logistics performance; human-computer interaction

INTRODUCTION

Logistics and supply chain management are subject to rapid
changes as a result of technological, social, and market evolutions
within the global economy, see, for example, Bloemhof et al.
(2015), Hilger et al. (2016), Sternberg and Norrman (2017), Ber-
tazzi and Mogre (2018), or Fors et al. (2015). In response to
increasing customer demands (cost effectiveness, sustainability,
speed, tailored problem solutions), automation in production and
distribution has migrated from the execution of programmed tasks
to a level, in which software agents and robots act (partly) autono-
mously using artificial intelligence (AI)-based algorithms (Gun-
sekaran and Ngai 2014; Lee et al. 2014; LeCun et al. 2015; Torabi
et al. 2015; Kong et al. 2016; Castillo et al. 2017). A key question
that comes along with these developments concerns the future
form and performance of human-computer interaction (HCI). In
the past, working areas of robots and humans in production and
transportation were largely separated and in case of cooperation,
for example, in truck driving or CNC manufacturing, the roles
were clear: Human workers performed control and decision tasks,
machines and robots executed the mechanical tasks of production
and transportation. That situation however is changing as automa-
tion enters a new stage of AI applications (Wong et al. 2012; Musa
et al. 2014; Zhang et al. 2014; Knoll et al. 2016; Li et al. 2017;
Deng 2018). Robots, machines, and devices such as containers or
transportation equipment will be able to take informed and
advanced decisions without manual intervention, while the human
workforce takes a supervisory control and oversight role

(Castelfranchi and Falcone 2000; Cantor 2016; Crainic and Mon-
treuil 2016; Phan et al. 2017; Zhong et al. 2017). Consequently,
the qualification requirements for humans will migrate toward
cooperation with artificial intelligence applications within a
“know-when”-domain: Humans have to recognize and decide, for
example, when to override and stop automated applications in case
of potential danger or unforeseen changing conditions (Fischhoff
et al. 1978; Kim et al. 2011; Gurkaynak et al. 2016).

This development and the upcoming challenges embedded
therein are relevant for a large number of employees. For exam-
ple, in Germany, more than 2.9 million people are working in
the logistics sector, of which 868,000 in the land transport sector.
Although, for instance, automated truck driving technology is
available and the number of tests is rapidly increasing, human
drivers will still be needed for a long time. The further develop-
ment of HCI performance in the light of upcoming AI applica-
tions is a highly relevant topic (Koo et al. 2015; Weyer et al.
2015). How logistics in particular will be influenced by AI appli-
cations and HCI—considering aging and demographic challenges
in the transportation and logistics labor market—remains an
intriguing question (Nuzzolo and Comi 2014; Hasanefendic et al.
2015; K€onigs and Gijselaers 2015).

Connecting these developments to sustainability and in particu-
lar to the triple bottom line approach (Schneider 2015; Brockhaus
et al. 2016), it is clear that social, environmental, and economic
sustainability are all affected by developments regarding AI appli-
cations in transportation and logistics. (1) So far, the social dimen-
sion has been largely neglected in research and practice as outlined
already by Seuring et al. (2008, p. 1545). Further contributions
include Ramos et al. (2014), Mani et al. (2016), and Sudarto et al.
(2017). Work conditions, security, and safety connected with AI
applications qualify as social dimension questions that require ade-
quate training (Missimer et al. 2017a,b; Sodhi 2015). (2) The eco-
logical dimension of sustainability is addressed as many AI
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applications include optimization procedures that have the poten-
tial to reduce required resources significantly (Sudarto et al. 2017).
Whether this will be achieved indeed critically depends of the per-
formance of HCI within AI applications in transportation and
logistics. (3) Finally, most AI applications represent serious invest-
ments and therefore are also expected to yield a corresponding
return on investment. This clearly affects the economic dimension
of sustainability, not only in terms of profit and ROI but also in
terms of long-term competitiveness of businesses (Hazen and Byrd
2012). And even legislative aspects may change severely: For
example, European driving hour restrictions may change in case
unmanned trucks are entering the roads, but the responsibility and
accountability of human controllers for traffic safety and security
are becoming a subject of intense debate. Therefore, again HCI
performance will strongly influence the economic position and sus-
tainability through AI applications. In summary, HCI performance
will have a major impact on the overall sustainability performance
of transportation and logistics, embedded in all three dimensions
of people, planet, and profit. Or, expressed differently: Measures
that enhance overall HCI performance within AI applications are a
key factor in improving the sustainability position in all three
dimensions throughout supply chains.

The research question of this paper therefore can be formulated
as follows: How can social sustainability be expected to develop
and be managed in the light of increasing automation and artificial
intelligence applications in logistics with new challenges for HCI.
This question becomes prominent given the rapid advance of Inter-
net of Things technology (i.e., the autonomous decision making
and actions of interacting devices) of which autonomous vehicles
and intelligent material handling devices in transportation or ware-
housing are notable early examples. The contribution of this paper
is threefold: (1) providing a literature overview and state-of-the-art
description regarding the specific development of automation and
artificial intelligence applications in business logistics, (2) outlin-
ing the potential risk to social sustainability of an artificial divide
among employees and firms, and (3) providing benchmarking
examples and management concept elements to mitigate this possi-
ble risk of social sustainability in logistics.

The paper is structured as follows. We start with an extensive
literature review that posits recent and state-of-the-art trends in
transport automation, especially in the road sector, and describe
an overarching vision known as the Physical Internet (PI). As
these concepts call for new roles of human employees, we
develop a specific theoretical framework addressing develop-
ments in human–computer interaction in logistics and the risk of
an artificial divide among workers as well as corporations. We
furthermore provide four benchmarking cases to underline the
viability of this problem and suggest ingredients of a managerial
approach to mitigate this risk as a central pathway for social sus-
tainability in logistics. Finally, we present conclusions and an
outlook on future research questions.

LITERATURE REVIEW

Transport automation

Transport automation is a major technological development,
which addresses all transport modes but also activities that link

these modes, such as warehousing and transhipment operations.
Examples are visible throughout the logistic world: from highly
automated container terminals to driverless car and truck experi-
ments, automated guided vehicles in production and automated
storage and retrieval systems in warehousing, shuttle trains and
ships and the development of unmanned cargo aircraft (including
drones). Typically, these developments are driven by the need to
increase speed and reduce operational costs but also by argu-
ments related to environmental sustainability and social accept-
ability (e.g., unmanned night transport, cf. Bals and Tate 2018).
In Table 1, these developments are detailed for external
transportation.

Specifically, road transportation by truck is an important and
insightful example: In business practice, truck driving does
encompass a significant part of all logistics-related professions.
In the United States, for example, there are more than 3 million
truck drivers and within the European Union, this number
reaches 3.5 million people. At the same time, aging becomes
manifest also in this sector: 26.5% of all truck drivers in Ger-
many, for example, is older than 55 years and therefore
expected to retire in the next decade. Logistics companies take
various measures to mitigate these aging effects through, for
example, smart route planning and optimization (Verma and
Verter 2010; Dondo and Cerd�a 2015; Phan and Kim 2015; Gin-
gerich et al. 2016) and automation, but also by offering incen-
tives to existing and new, young truck driver personnel.
Another motivation to introduce AI applications is safety: not
only the safety of other road users, but also working conditions
of drivers themselves (Khorashadi et al. 2005; Pattinson and
Thompson 2014; Chen et al. 2015a, 2015b; Pahukula et al.
2015; Bedinger et al. 2016). The potential of support by AI
applications in road transport is huge, with distance control and
warning systems as obvious examples. Assisted and automated
driving for cars and trucks is on the threshold of general appli-
cation, due to the rapid increase in sensor technology in vehi-
cles (infrared, radar, laser, lidar, visual cameras, etc.)
(Bertoncello and Wee 2015). In addition, former independent
systems are increasingly connected and able to cooperate in
order to perform self-sufficiency in driving. For example, the
cruise control system, initially meant to maintain a constant pre-
set speed of trucks and cars, is currently coupled with further
intelligent applications, for instance, GPS navigation and the
automated gearbox, allowing vehicles to deploy dynamic cruise
control. This does encompass three sublevel steps within the
technology development, already implemented for trucks (cars
following slightly behind, Bernhart et al. 2014): In the first gen-
eration of cruise control applications, the system steadily main-
tained a constant, predefined speed level. This was only
steering the diesel input and propulsion system of the truck or
car. Subsequently, the system was able to follow a preceding
vehicle on a preset distance, therefore already combining the
management of gas and brake in the vehicle. This is commer-
cially applied in road transportation in modern-day platooning
systems, where “virtual road trains” are formed by trucks fol-
lowing each other automatically at short distance. The next gen-
eration of cruise control systems is able to anticipate the route
characteristics by GPS positioning in combination with map
material. This allows the system, for instance, to decelerate
before downhill passages or to accelerate and downshift before
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uphill road segments. This combines basic driver functions (gas
pedal, brake, gear) with GPS and navigation systems to achieve
optimal motor management. The driver is only steering and
supervising the system in total.

This is a small but significant development on the road toward
automated vehicle and truck driving (Jamson et al. 2013; Hengs-
tler et al. 2016). Ultimately, this will lead to automated road
transportation with the existing truck driver having at best a

Table 1: Status review transport automation

Road Rail Air Water

Status description Platooning
Adaptive cruise control
Autonomous trucking

Automation
Connectivity
New rail infrastructure

Drone/UCA technology
Zeppelin

Remote control technology
Focus short-sea shipping/
costal lines

Specific focus Efficiency
Sustainability
Drivers tasks/work

Intermodal transport
and cooperation

Small package transportation
Remote area access

Cost efficiency
Safety
HR/work situation

Examples

Table 2: Automated driving levels

Source: SAE International 2017, Standard J3016.
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supervisory role. Note that, following legal regulations, a human
will be on board at least in public traffic systems in the foresee-
able future, but no longer employed for their “know-how” but
rather their “know-why.” The competence to actively gear and
steer a truck will be implemented by a technology application—
while the driver is supposed to understand the know-why of all
systems and especially when to overrule the automated system
(therefore also: “know-when”). To that end, the human has to
understand largely the functions and applications as well as the
capabilities and restrictions of automated systems—in the future,
truck drivers will more resemble software experts (Warnquist
2016). This vision of the role of automation or even fully auton-
omous equipment has been detailed for cargo trucks (Tylor
2016), being the sector most heavily confronted with the conse-
quences of aging, but it is easily extended to other logistics sec-
tors (warehousing, port terminals, unmanned train shuttles), some
of which already being well on their way toward full autonomy.
It is important to describe autonomous driving as a continuum of
different levels of autonomy and not a dichotomous question, as
exemplified by the six levels of automated driving defined by the
Society of Automotive Engineers (SAE International 2017) and
outlined in Table 2.

In the next section, we complement this discussion with an
overarching vision of a comprehensively automated supply chain,
known as the Physical Internet.

The physical internet vision

The Physical Internet (PI) was initially defined by Montreuil
(2011) as a visionary logistics system in which modular pack-
ages are automatically routed from source to destination through
a network of hubs and spokes, see Ballot et al. (2014) for a more
elaborate treatment. This long-term vision for efficient and sus-
tainable logistics can only be successfully implemented if the
HCI aspects discussed in this paper with the provided theoretical
framework are carefully addressed by individuals and firms alike.
(Phan et al. 2017) Basic PI elements of such a system are par-
cels, pallets, containers, and “swap bodies,” all equipped with
intelligence that allow them to connect with handling and trans-
port devices on route toward their destination. Carriers of these
types of loading units do optimize between various alternative
routes in their networks, for example, by bypassing hubs, either

in advance through offering more time definite services or in real
time during the actual transport. A full-blown PI may be built
upon all these elements with the holistic integration of existing
elements and concepts as the main challenge, see Figure 1.

The PI should not be confused with the Internet of Things
(IoT); the latter refers to the possibility of communicating
devices, often followed by local actions initiated by software
agents or even fully autonomously (see examples in the previ-
ous section). Internet of Things technology may be an impor-
tant building block of the PI, for example, in determining
alternative routes in case of congestion on the preferred route,
or in signaling a potential quality loss in case of delays (e.g.,
in food and flower transport). The PI however is a full-fledged
alternative to a classical, manually operated logistics network,
with important consequences for all stakeholders involved but
primarily transport companies and logistics service providers. It
is perceived as a radical attempt to overcome the drawbacks of
the classical decentralized market economy mechanisms that
prevent holistic optimization as many providers of transport and
logistics services are “locked-in” in their current ways of work-
ing and acting.

The PI is best viewed as an autonomous system, similar to the
digital Internet, governed by protocols and traffic control sys-
tems, to which access is given by 4PL service providers that are
capable to combine and synchronize freight flows, supported by
a superb ICT and physical infrastructure. High levels of transport
automation are an important condition in realizing such a PI
vision. However, different from the digital Internet, the level of
human interaction will remain significant as in the end we are
dealing with physical transport of physical objects. There is no
doubt that major hurdles have to be overcome, including the
design of a multifaceted decision support system for the PI, with
automated execution via intelligent agents wherever possible. But
once sufficient scale is reached, the combination of standardized
packages, automated transport and transshipment, and automated
(re)routing offers an alternative that will be very hard to beat in
terms of cost and speed, similar to the undeniable success of cur-
rent container transport. The most radical change will be in the
role of the many still existing transport companies, which either
need to transfer to a 4PL service provider with initiating and
supervisory skills or leave the business entirely. However, the
current highly fragmented and scattered way of working is no

Figure 1: The physical internet vision (Montreuil 2012, p. 22).
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longer sustainable, neither in an economic nor in an ecological
and social way. At the same time, high-level supervisory and
correcting mechanisms should be in place, for example, to over-
come incidental infrastructural problems, to provide safe path-
ways for vulnerable freight, or to take counteracting measures in
case of illegal intrusion.

Autonomous systems such as the PI are enabled by the latest
technology developments in sensor applications as well as ma-
chine learning, which in combination allow machine systems to
accomplish complex tasks as, for example, autonomous driving.
Such applications are determined to be “weak AI” applications
(Russell and Norvig 2010; Tsuji and Aburatani 2015; Hengstler
et al. 2016) as they are restricted to and focused on specific
applications—in contrast to “strong AI” which would be able to
solve a multitude and increasing range of tasks like humans do,
then becoming “super-human.” Machine learning is a cornerstone
of AI applications as this concept allows a program to learn
itself, leaving the former restrictions of coded actions behind,
whereas formerly every machine action had to be programmed in
one way or another, software and machines or robots are now
able to learn from humans. For example, the robotics innovative
corporations Boston Dynamics (www.bostondynamics.com) in
the United States and Magazino in Germany (www.magazino.eu)
have presented machines that are able to independently fulfill
order picking tasks in intralogistics—and learn from humans
regarding specific movements and hall layouts. In the Magazino
case, this represents not only individual but also swarm intelli-
gence learning as robots communicate among each other and
each training effort is instantly shared with all machines within a
group. For transportation and logistics, there are already a large
number of theoretical concepts and applications, for example, in
the fields of traffic flow prediction and management (Julio et al.
2015; Omrani 2015), transportation (Wojtusiak et al. 2012;
Mrowczynska et al. 2017), production logistics (Schuhmacher
and Hummel 2016; Wang and Tang 2017) or security and safety
(Marucci-Wellman et al. 2017). In order to understand these
changes better, an overarching vision of a theoretical framework
is discussed in the following section.

THEORY FRAMEWORK DEVELOPMENT

Human–machine cooperation in logistics

Human interaction with artificial intelligence applications and
automation (Lee et al. 2014; Bendoly 2016) can be characterized
by three hurdles or areas of resistance, outlined below in Sec-
tions (1) to (3). Once an area is overcome, usually acceptance
settles in (Rousseau et al. 1998; Mart�ınez-Torres et al. 2015), see
Figure 2.

The three depicted hurdles (“increased resistance areas” or
“waves”) are connected to three AI functional areas and repre-
sent an increasing, but temporary, level of resistance throughout
this development in line with an increasing level of personal
intrusion (x-axis).

1. AI competence: Automation and AI applications are acquiring
competences in specific fields, from playing chess to forecast-
ing market demand. As separate competences, these are new
for humans to get accustomed to but comparatively less
frightening, and therefore, the resistance level toward them is
relatively low. For logistics, this may include, for example,
the automated gearbox in truck driving, automated routing
and navigation systems as well as automated intralogistics
applications in, for example, order retrieval and warehouse
transportation systems. These systems have in common that
usually any final decision, for example, regarding the trav-
elled street, in reality is still taken by humans—and in many
cases, AI suggestions from navigation systems are not imple-
mented, an obvious sign of resistance (or of real or presumed
“better knowledge”).

2. AI decisions: Here, AI applications suggest and implement
single decisions, which usually rises greater anxiety and
resistance levels with humans. This happens, for example, in
cruise control applications in cars and trucks—where we dis-
tinguish three different phases: maintaining constant speed,
maintaining constant distance to front vehicle, and finally
variation of speed according to anticipated terrain features.
In such cases, the automated device is taking a single or a
sequence of decisions within a limited area of action (e.g.,
vehicle speed, vehicle gear). Such innovations already took
place in the past, for example, in car and truck motor man-
agement (increasingly automated) or in the leisure area, for
example, smartphone and social media applications. In these
cases, humans are accepting automated applications without
any security or fraud mistrust, at least not on a day-to-day
basis (while trust may diminish incident-based, e.g., as a
result of data fraud scandals or leaks). Understandably, this
type of AI application is rising higher levels of rejection
among humans, and therefore also requires a longer period
of adaptation before, again, acceptance can settle in, see, for
instance, Weyer et al. (2015).

3. AI autonomy: Finally, AI applications are taking a multitude
of differentiated decisions, leading to autonomous behavior,
for instance, when actively steering cars and trucks for longer
periods and in interaction with other road users. In these
cases, humans usually adopt a passive control role (supervi-
sion; Rauffet et al. 2015). These applications are at the

Acceptance Resistance (AR) 

Level of Personal Intrusion (PI)

Accepting AI 
Competence

Accepting AI 
Decisions

Accepting AI 
Autonomy

AI Competences
AI Decisions

AI Autonomy
AI Trust

Figure 2: Human acceptance model for artificial intelligence
applications (Klumpp 2017a).
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doorstep of industrial and real-world application, in produc-
tion (autonomously moving robots with human interaction),
traffic (autonomous cars and trucks) as well as health care
(surgery as well as care robotics).

These levels or hurdles can be seen throughout a sequential
level of personal intrusion (x-axis), arriving at a completely
new situation after the three hurdle areas: the situation of trust
with respect to an AI application, where humans are inclined
to actively and trustfully cooperate with automated applications
(Lahno 2001). This is closely related to the famous “Turing
test”: According to this concept, a human spectator is required
to decide which part of an ongoing discussion between two
parties (e.g., chatting via SMS or E-Mail) is performed by an
artificial entity (computer) and which part is conducted by the
human—if the spectator is not able to discern the right
answer, e.g., accounting both parties for being humans, the
artificial entity involved is said to have passed the test and
possess artificial intelligence (Turing et al. 1952). This can be
transferred to HCI when the human operator is not able to
discern of the collaboration partner is human or artificial. The
stage of AI trust is a special form of passing the Turing test
as it is assumed that the human being in question may only
be able to develop trust toward an AI application if a percep-
tive evaluation will judge the application to be, behave and
communicate like a human being. This is in no way a sort of
“blind trust,” but actually the typical human fully aware of the
realities in the world. This is a crucial and business-relevant
form of trust between human beings and AI applications in
logistics for a successful partnership. And this is also enlarg-
ing the predominant view of “technology acceptance” in the
past (Venkatesh and Davis 2000; Nikou and Economides
2017), where generalized and also application-specific trust and
acknowledgment of human workers and customers were tested
and analyzed. Once we have reached this third level, the
implementation of autonomous driving or autonomous materi-
als handling in intralogistics in a safe and secure manner is
built on full trust in AI applications in logistics.

Artificial divide

Next, we discuss the concept of a potential “artificial divide” and
the possibility of feasible mitigation measures for individuals
and corporations in logistics. This exceeds the question of steps
and hurdles regarding human trust toward HCI from Figure 2 in
the above section and connects this to the topic of positive con-
ditions and requirements for automation and AI application in
logistics on the individual worker and firm level (see Fig-
ure 3).The concept of an artificial divide with respect to human–
machine cooperation in logistics refers to the difference between
human workers that, depending on their acceptance and coopera-
tion requirements, are or are not able to cooperate successfully
with artificial intelligence applications in logistics. The same
may hold for corporations as a whole. Therefore, the below
described artificial “double divide” among persons and corpora-
tions with respect to their ability to cooperate with AI applica-
tions in logistics points to a serious risk that needs
to be addressed in future logistics processes developments (see
Figure 3):

Figure 3 actually describes conditions (i.e., personal or corpo-
rate situations) that may prevent or help to overcome the hurdles
described in Figure 2 on the way to fully adopting AI solutions.
For human workers, we distinguish between persons able to
cooperate with AI applications, reaching a high-performance
level, and persons that are not able to do so. For this definition,
the outlined three levels of acceptance of AI competences, deci-
sions, and autonomy may be used—but other measurement and
definition schemes are also possible. The persons not able to
cooperate with AI applications satisfactorily may therefore ham-
per the overall performance of the logistics processes within a
company or supply chain. A truck driver, for example, may too
often override the autonomous navigation, steering, and control
system of a self-driving truck. This may lead to an increased
number of travelled kilometers and a higher consumed fuel level
and travel time for this specific truck—leaving the company or
the supply chain in question with a long-term distinctive disad-
vantage compared to others. However, this incompetence to

Persons well able to coope-
rate safely and innova�vely
with ar�ficial intelligence
applica�ons in logis�cs

Persons NOT able to coope-
rate safely and innova�vely
with ar�ficial intelligence
applica�ons in logis�cs

Corpora�ons well able to
implement and use ar�ficial
intelligence applica�ons in 
logis�cs

o „Winning teams“ o „Perishing individuals“

Corpora�ons NOT able to
implement and use ar�ficial
intelligence applica�ons in 
logis�cs

o „Lost talent“ o „Losing teams“

Divide 1 (Persons)

Di
vi

de
2 

(C
or

po
ra

�o
ns

)

Figure 3: Artificial divide (Klumpp 2017b).
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cooperate may also happen vice-versa: A truck driver option for
no interruption of autonomous systems at all (therefore executing
“automatic driving control”) may also hurt the transport process
as well as the involved company. When never interrupting the
automated cruise control systems in an autonomous truck, acci-
dents may happen (since risk and safety conditions were insuffi-
ciently included) or nonoptimal routes are taken (e.g., when not
applying human knowledge about street conditions in winter,
making certain routes inaccessible for particular trucks).

A similar distinction may be applied to corporations. Some
logistics corporations are well able to implement AI application
systems and profit from them. But others—due to various rea-
sons such as neglect, lack of knowledge, low motivation, or even
low investment capacity—may be in a position to deny or not
fully apply AI applications in logistics. For example, if a com-
pany does not implement modern adaptive cruise control systems
for the trucks used (which may also hold for rail, ship, and plane
applications where possible, e.g., with drones), it may find itself
at severe time and cost disadvantages (more diesel consumption)
compared to competing corporations and supply chains. How-
ever, the same may happen with “overspending”: Some corpora-
tions may spend a lot of money on AI applications, without
paying sufficient attention to the human workforce that should be
capable to handle these systems. In such overinvestment cases,
mainly depreciation costs are incurred without obtaining cost
reductions (or, even better, earnings increases) on the day-to-day
business processes. This may put such corporations or supply
chains at an economic disadvantage compared to competitors.

Based upon this definition of an “artificial double divide” in
the future of logistics processes, four specific groups of persons
or teams (understood as corporations or even complete supply
chains) in logistics are distinguished (see Figure 3):

(a) In a “winning team” configuration, individuals and corpora-
tions able to cooperate with and to use AI applications in
logistics are successfully combined. This combination will
bring about the best possible effects and benefits of AI appli-
cation in the specific logistics processes in practice.

(b) In the opposite case of “losing teams,” individuals and cor-
porations not able to cooperate with AI applications in logis-
tics are working together. This may result in cases where a
lot of potential is lost and the average process costs are sig-
nificantly higher compared to competing teams (corporations
or complete supply chains). In such cases, AI applications
are installed but not used at all (corporate misjudgment or
failing investment capacity) or continuously overridden by
human operators, possibly because workers are not properly
prepared and trained to work with the systems.

(c) Interestingly, there are also mixed combinations, for exam-
ple, when persons very well able to cooperate with AI appli-
cations in logistics are working within corporations that are
not (no investment, hesitation to invest, or even the over-
spending case). This can be termed “lost talent” as the per-
sons encountered are well trained and motivated—but not
efficiently used by their teams, leading to a loss of talent
regarding logistics and management (cost) improvement.

(d) The fourth case comprises corporations very well able to use
AI applications—and persons unable to do so within these

teams. These people will be perishing one way or another,
for example, by not participating fully in the corporate strat-
egy with respect to such system implementations, by being
forced to train and retrain until adaptation may set in or even
by losing their employment. In such cases, it is generally
irrelevant if this happens due to a lack of motivation (resis-
tance as discussed above) or a lack of intellectual and even
emotional capabilities. HR management in logistics has the
responsibility to prevent such situations by early information,
training, and adaptation (job change) management.

BENCHMARKING CASES

Method outline

Four cases are outlined and applied to the research question of
this paper in order to shed light on the problem of how to cope
with automation, digitalization, and human–computer interaction
as the core social sustainability issue in the future of logistics
operations. As Table 3 and the subsequent method descriptions
outline, two secondary cases from public sources are combined
with two primary analysis cases from new research in the field.
At the same time, physical cases regarding transportation, materi-
als handling, and robotics are combined with more managerial
cases addressing decision making.

1. A secondary analysis describes the increasing use of cobots
(cooperative robots) in a logistics and production context.
Data are derived from the Internet describing current trends
and application areas of these new generations of robots
designed to work in tandem with human coworkers.

2. A further secondary analysis outlines the experiences and
insights from the area of centaur chess, where chess tourna-
ments are played by integrated human–computer teams
against other centaur teams. Descriptions and experiences are
based on Internet information and can be transferred to deci-
sion making in logistics management, for example, by
human–computer teams in transportation routing and schedul-
ing (Nagaraja and McElroy 2018).

3. Within the second largest food retailer in Germany, an expert
workshop with 10 employees from different disciplines
including logistics, work science, materials handling, and
computer science was conducted during a full day in Cologne
on November 30, 2017. The overarching topic of this expert

Table 3: Benchmarking cases overview

Transportation
and robotics Decision making

Secondary
analysis

(1) Cobots in production
and logistics

(2) Centaur chess in
human–computer
teams

Primary
empirical
analysis

(3) Food distribution
and picking case

(4) Logistics
management cases
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session was the implementation of digitalization in logistics
processes and how to prepare employees for such develop-
ments by, for example, training, adaptation of technical solu-
tions, or new process designs. The experts reported several
implementation projects with specific problems, failures, and
lessons learned, for example, in order picking or in transporta-
tion from warehouses to supermarkets (Fazili et al. 2017).
The company representatives acknowledged the complexity of
the topic and demanded more research as well as company
experience, in particular in interdisciplinary teams as usually
digital projects are implemented by computer experts, often
without prior user feedback or process analysis from logistics
experts. During the workshop, cases were reported in which
digitalization steps had to be called back due to resistance of
both blue-collar and white-collar workers in warehousing,
order picking, and transportation.

4. Within November and December 2017, semistructured inter-
views were conducted with 12 logistics management experts
from a master class cohort in Leverkusen, Germany (master
program in logistics management as part-time study program
for executives). Expert backgrounds ranged from small and
medium-sized logistics service providers to large industrial
firms. Further characteristics entail an age band of 22–35, a
gender distribution of 6 female and 6 male experts as well as
a qualification of academic education and work experience
(all experts possessed a BA degree and had a business prac-
tice experience ranging from 1 to 11 years). All interviews
were recorded and transcribed. The overarching topic was the
digital transformation in logistics and how employees and
managers cope with this development (De Santis et al. 2018).

Findings

From the four outlined cases, the following findings are derived
that regard this paper’s core research question on social sustain-
ability in logistics in the light of automation and artificial intelli-
gence applications:

1. Cobots are a “second wave” of robots, dedicated to teamwork
with human employees as “collaborative robots.” As such,
they are demanding human coworkers to work more closely
and in direct and everyday physical interaction with them.
Security as well as ergonomic considerations are therefore in
the center of cobot development. Reported problems include
resistance based on data security as well as long-term medical
reservations, for example, fear to lose one’s physical strength
due to the use of cobots (DGUV 2018).

2. In centaur chess, it is observed that usually winning teams in
tournaments are not necessarily consisting of the “best” soft-
ware or the “brightest” human minds but of well-functioning
teams of quite normal people and average software applica-
tions. The specific USP and winning proposition of these
teams are their ability to derive best chess moves from a
rational–creative interaction of computer and human capabili-
ties. This can be seen as a benchmark for AI applications in
logistics and the related HCI.

3. The employees of the large food retailer reported major prob-
lems in integrating personnel in new digitalized logistics and
transportation solutions. An example concerned a new

transport management software solution, which had to be
withdrawn from the operational processes again, as employees
rejected to use it. It was observed that technical hindrances
and technical competence gaps were responsible for these
problems, but also a sincere resistance based on motivational,
data security, or philosophical reasons on equal footing.

4. Among the interviewed experts, in general, enthusiasm and
motivation for digitalization and AI applications in logistics
were very high, especially among younger respondents. Moti-
vational problems were reported in individual cases, for exam-
ple, based on data protection and transparency or privacy
issues with big data and AI applications. In smaller firms, digi-
tal processes and AI applications were reported to be less used,
or to lower degrees, in comparison with larger firms. In addi-
tion, supervisor support was mentioned as one of the central
factors in acceptance and performance of new digital and AI
solutions in supply, production, and transportation processes.

All insights from the four presented benchmarking case studies
can be represented in a possible structural approach for employ-
ees in logistics regarding the social risk of an artificial divide. As
outlined in Figure 4, personnel may be divided by their specific
motivation (x-axis) and competence (y-axis) toward computer
and AI applications.

The four identified personnel groups can be described as fol-
lows: “Centaur Champions” are employees with high competence
levels regarding computers and HCI as well as high motivation
levels regarding digitalization and innovation in logistics. These
persons are usually the first users of new technologies and like
to innovate, even to convince others of advantages for new appli-
cations.

“Application Enthusiasts” do not possess extensive technical
knowledge but like to use new gadgets and technologies in order
to help them in their work routines. This group of employees is
important for application development and testing as they repre-
sent possibly the largest “silent majority” of end users in the
final processes.

“Tech Sceptics” are typically providing high competence
levels regarding computer and AI technologies and HCI but also
entail an informed resistance toward AI usage, for example, due

Low motivation or aversion
towards AI applications

High motivation towards
AI applications

High technical
competence

Low technical
competence

„Artificial Divide
Risk Group“

„Application
Enthusiasts“

„Tech         
Sceptics“

„Centaur
Champions“

Figure 4: Employee groups regarding artificial divide.
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to data protection fears and general techno-scepticism. Such peo-
ple have to be addressed in AI application implementation in
order to lower the resistance as they usually have strong argu-
ments on their side and are technically able to circumvent appli-
cation enforcement.

The “Artificial Divide Risk Group” does feature low compe-
tence as well as motivation levels regarding computer and AI
applications. Therefore, this group deserves the highest attention
levels in any mitigation concept in order to foster social sustain-
ability in logistics. Not uncommon, older age people might dom-
inate this group.

These categories can be used to tailor the implementa-
tion of management elements in order to mitigate the asso-
ciated risks of possible artificial divide developments for
social sustainability in logistics as outlined in the follow-
ing section.

SOCIAL SUSTAINABILITY AND IMPLICATIONS FOR
LOGISTICS

In order to help analyze and mitigate the possible risk of an arti-
ficial divide, especially the corporate perspective is discussed in
detail below.

• Analysis of AI implementation should predominantly include
the feature of possibilities of artificial divide elements, such as
rejection by individual employees and employee groups, quali-
fication and training gaps with individuals and groups as well
as historical experiences (failure of automation, rejection by
employees).

• A second stream of analysis should be directed to the manage-
ment and decision level within the corporation. For example,
by using questionnaires and interviews, it should be clarified
what attitude, experience, and development potential are pre-
sent within the managerial workforce.

• Successful prevention of an artificial divide on the corporate
level will then be possible if taking the analysis results into
account and addressing them properly. This includes training
and enhanced experience (life visit of other companies and
systems) measures for workers and management; as outlined
by Mart�ınez-Torres et al. (2015), personal experience plays
a major role in the question of acceptance and trust toward
AI applications and technological systems. This can be con-
nected to the use of serious gaming applications as a train-
ing tool, or even the use of flight simulators. In addition, a
pilot implementation at a limited scale to gain experience is
an option. Further, it might help to develop several alterna-
tives and purposefully include the eventual users (workforce)
in the final selection of one of these alternatives. All these
measures are meant to enforce employee involvement at an
early stage, which is crucial for acceptance.

• Further preparation and prevention measures may include the
notion of a supervisory board and empowerment of employees
(workers and managers). It is important to prevent individuals
addressed to feel stripped of their professional powers and
oversight. AI applications themselves as well as their provi-
ders are advised to cooperate with human partners on an equal

level, to allow for oversight and corrections from humans as
well as learning in both directions.

Corporations facing AI applications introductions may also
benefit from communicating the vision of a mutual acknowledge-
ment and learning environment. Humans should be trained and
prepared to learn from the AI component while also claiming the
oversight and control role for themselves. AI applications on the
other hand should also be prepared and able to learn from
humans (machine learning) and to express vividly their respect
and acknowledgment toward the human partners. Adverse effects
like AI applications learning the wrong and misdirected things
from users have to be recognized and redirected.

These measures may help corporations to avoid the possible
results of an artificial divide in the form of lower performance
and higher cost levels for logistics and supply chain processes.
This may lead to a special form of social sustainability helping
also the economic performance, competitiveness, and sustainabil-
ity of the company involved.

Combining the application of artificial intelligence (AI) and
automation (LeCun et al. 2015; Schmidhuber 2015) with the
reported characteristics of human motivational structures, impli-
cations may be discussed, for instance, in the case of truck
drivers. The required productive human-artificial cooperation—
facing demographic change—may be facilitated if AI applica-
tions learn to appreciate and praise human co-workers in any
form for their input and cooperation. The conjecture is that a
navigation system thanking the human driver for neglecting
directions due to superior knowledge is desirable as this allows
the system to improve suggestions and motivates the driver to
still value automated directions in the future. This is enabled also
by the fact that AI systems increasingly will be able to recognize
human emotions via their voices and steer their reactions and
answers accordingly as, for example, Harimi et al. (2015) or
Abbasimehr and Tarokh (2015) report. This situation is exempli-
fied with truck drivers but by no means limited to this group of
logistics employees. Instead, all sorts of blue and white-collar
workers in logistics, transportation and supply chain management
will have to cope with the implications of AI applications within
core processes.

Finally, we complement the discussion of a potential artificial
divide with further implications for logistics processes and opera-
tions, considering the following items on an operational trans-
port level:

1. Personal attention and competences of truck drivers will shift
almost entirely from operational questions (steering, speed,
gear, and route) toward supervision and also security and
planning processes. This allows additional activities to be exe-
cuted during driving and may even compete with office
administration jobs. As a result, automated driving may sig-
nificantly reduce the number of office clerks’ jobs in logistics
and forwarding companies, and to a lesser extent also drivers’
jobs themselves.

2. Drivers’ acceptance of such automated systems will therefore
play an important role in the competition of road transporta-
tion companies from several perspectives. First, allowing the
AI application to execute a job may be more efficient and
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cost saving than when the human driver operates on its own
(saving fuel, reducing travelled distance, and reducing truck
wear). Second, as drivers may execute other company tasks
and processes instead of driving while travelling, this may
save costs at other places (e.g., administrative personnel).
Third, driving personnel may also be more effective and effi-
cient due to a motivation boost within an AI application sce-
nario (being more the “tech guy” instead of the “working
grunt guy”—perhaps even more applicable to female work-
ers). This may also dramatically change the reflected perspec-
tive in the study results that drivers usually judge themselves
as being at the “low end” of the working hierarchy in trans-
portation and logistics; however, the demands in terms of an
increase in competence and thinking levels are severe.

3. A third interesting research question concerns the introduction
of new human-artificial cooperation systems in logistics (“rev-
olution or evolution”). It can be expected that similar to the
road vehicle fleet facing a multitude of propulsion systems
ahead (diesel and CNG/LNG, hybrid, hydrogen, electric), the
complexity of different systems in logistics operations existing
in parallel may increase significantly. This will be a major
challenge for strategic management of logistics operations,
ensuring effective and efficient operations with a mixed land-
scape of more and less advanced AI application designs
within road transportation. Besides the investment and mainte-
nance question, this again is quite a change for driver motiva-
tion and training (McDonald et al. 2015), also closely related
to overall supply chain resilience and risk strategies (Manuj
and Sahin 2011).

Furthermore, on an elaborate managerial tactical level, also
the use of automated systems in truck driving and especially tour
planning can possibly be used to mitigate the other adverse
effects for driver motivation: the question of work planning and
scheduling, for example, for work breaks as well as holiday
times and daily work extensions. By implementing advanced AI
planning systems based on, for example, real-time traffic infor-
mation, the day-to-day realization of necessary breaks and also
manageable daily workloads for drivers can be achieved. This
might also improve the overall security situation as outlined in
the beginning—reducing the number of roadside deaths through
truck accidents should be an important objective also for busi-
ness improvements in logistics. Besides the work and social situ-
ation of drivers themselves, this could be a major contribution of
logistics companies to corporate social responsibility for econo-
mies and societies in the future.

Finally, on a strategic management level, it has to be stressed
that the process of AI application and increasing importance of
human–machine cooperation is progressing in all logistics, pro-
duction, and management areas. Therefore, also the potential
danger of an artificial divide is at stake in all these areas, start-
ing from the early experiences regarding MRP implementations
in production—where planning decisions were often overridden
by interventions of operators to account for changing circum-
stances, thereby ruining data integrity and in the end losing any
trust in the system (the well-known spiral turning down).
Strategic and management level decisions in logistics may also
endanger executive tasks and positions in the financial sector

and other service industries, which rely heavily on a large num-
ber of decisions. Such decisions may at least partly be auto-
mated in the future and an increased human–machine
cooperation is required for a lower number of human workers
and managers—stifling the potential danger of an artificial
divide. This implies that individuals have to prepare (mainly
through awareness and training), and the same holds for corpo-
rations, maybe harder to implement but also beginning with
awareness at the management level.

CONCLUSIONS

In this paper, we (1) have presented a literature overview and state-
of-the-art description regarding the specific development of
automation and artificial intelligence applications in business logis-
tics, (2) have outlined the potential risk to social sustainability of
an artificial divide among both employees and firms, and (3) have
provided benchmarking examples and management ingredients to
mitigate this possible risk of social sustainability in logistics.

With rising automation levels in logistics, the problem of an
artificial divide may represent a serious risk, and measures to
close a possible business strategy gap are required: It is very
important for logistics research institutes and logistics corpora-
tions to invest in further research and to test resources in the
field of human–machine cooperation on their performance for
logistics processes. The rise and success of the PI as a vision
and symbol for fully automated transportation and supply chain
systems may not be realized without sufficient attention for the
human interaction factor. At least, the timeline and economic
success of AI implementations in logistics will be severely dis-
torted if such aspects are to be neglected. Therefore, attention
has to be paid to real-life testing of AI applications in production
and logistics (autonomous trucks etc.) with human workers—ob-
viously before any long-term implementation on a larger scale.
In addition, the explained stage of AI trust in human-artificial
cooperation has to be further investigated as it is a crucial ele-
ment in successful future logistics systems.

In outlining analytical approaches as well as trends in logistics
employee motivation as major factors in enhancing the resilience
and sustainability of global, national and local logistics systems,
this paper addresses three major issues:

• Logistics employees—with the outlined example of truck
drivers—are facing severe and adverse work conditions. Still, dri-
vers will always be on the lookout for apprehension and accep-
tance by work as well as traffic partners (customers, managers, car
drivers etc.), besides commonplace motivational factors such as
wages and working times. This can be termed a “social interaction
trait” of human motivation within the road transportation segment.

• The question of apprehension and appraisal can interestingly be
connected to the oncoming field of artificial intelligence applica-
tions in road transportation. As, for example, automated driving
will be a major challenge for corporations as well as human dri-
vers in future road transportation, such changes may endanger all
logistics and supply chain processes with a possible artificial
divide in the successful cooperation of human employees with AI
applications. Human motivation and behavior can be categorized
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in at least four development and acceptance areas as outlined in
this paper. This crucially influences the performance of human–
machine cooperation at the workplace as was outlined for the
example of automated truck driving, leading to adaptation as well
as to persisting rejection patterns depending on the area of AI
application. This again connects to recent developments in AI
itself, allowing the AI application to actively recognize trust by
the human cooperation partner and react to that analysis (Abbasi-
mehr and Tarokh 2015).

• Furthermore, also with respect to the identified major motiva-
tion factors regarding work scheduling and working time
(long-term/advance information, dynamic change), AI applica-
tions may bring some positive change about: Real-time
advanced tour scheduling and planning systems will increas-
ingly be able to (a) adapt to personal preferences, traffic situa-
tions as well as corporate objectives of time and cost
optimization; (b) implement personal rest breaks and human
daily workloads which will improve employee health and
motivation; (c) therefore also advance the overall safety in
road transportation, supporting an important CSR contribution
of logistics. This, together with the feasibility to avoid an arti-
ficial divide, may enable the logistics industry to foster social
sustainability in many dimensions.

In summary, the future competitiveness and logistics perfor-
mance will significantly depend on the described factors regard-
ing human work motivation as well as human–machine
cooperation and acceptance. The challenge to overcome a poten-
tial artificial divide in the human workforce as well as among
different companies is imminent and important. Therefore, a high
level of interest—both in research and business practice—is
required for this field, including interdisciplinary approaches
from several science and application disciplines like human
resource management, technology, and computer sciences as well
as management science.
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