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A b s t r a c t .  In the context of the object-oriented data model, a compile- 
time approach is given that provides for a significant reduction of the 
amount of run-time transaction overhead due to integrity constraint 
checking. The higher-order logic Isabelle theorem prover is used to auto- 
matically prove which constraints might, or might not be violated by a 
given transaction in a manner analogous to the one used by Sheard and 
Stemple (1989) for the relational data model. A prototype transaction 
verification tool has been implemented, which automates the semantic 
mappings and generates proof goals for Isabelle. Test results are discussed 
to illustrate the effectiveness of our approach. 
Keywords:  object-oriented databases, transaction semantics, transac- 
tion verification 

1 I n t r o d u c t i o n  

Static integrity constraints are essential in mission-critical application domains, 
where one wants to offer integrity preserving update operations to clients. One 
way to enforce database integrity is by testing at run-time those constraints that  
are possibly violated by a transaction before allowing the transaction to commit. 
Various techniques, surveyed in [1], have been proposed to optimize such a test 
for a limited class of simple constraints, such as key and referential integrity. But 
commiting complex transactions on large amounts of data  becomes increasingly 
difficult if the constraint language is extended to include full first-order logic 
formula with bounded quantifications over arbi trary collection types. 

A second approach towards integrity maintenance aims at a compile-time 
reduction of the amount  of run-time transaction overhead due to integrity con- 
straint checking. This approach was first introduced by Sheard & Stemple ([2]) 
for the relational data  model. It uses a theorem prover to verify that  a transac- 
tion will never raise an integrity conflict, provided that  the database was in a 
consistent state before the transaction was executed. Transactions are complex 
updates involving multiple relations, whereas the constraint language includes 
quantifications and aggregate constructs. These are related to expressions in 
higher-order logic for automatic proof assistance. 

Another related compile-time approach is proposed in [3,4]. It exploits several 
techniques of abstract interpretation for the task of compile-time transaction ver- 
ification in an 0 2  database system extended with a notion of declarative integrity 
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constraints. Their analysis starts with a simple compilation technique. It identi- 
fies those constraints that  will certainly not be affected by a transaction because 
different attributes or even different class extents are accessed. For instance, a 
transaction that  only changes the age of a person can never violate a constraint 
that  does not access this field. Recently, in [5], this approach was augmented 
with a second, more powerful analysis. For each combination of transaction and 
constraint that  could not be proved safe in the first step, it applies Dijkstra's 
concept of predicate trans/ormer. This yields a simple first-order logic formula 
which is automatically verified by a theorem prover. A major difference between 
this approach and the one presented in [2] is that  the latter fully exploits the 
(denotational) semantics of a database specification, whereas the former only 
takes some global abstract properties of the semantics into account. 

The above compile-time strategies supplement the existing run-time tech- 
niques: they can filter out the set of relevant constraint checks, thus allowing 
the run-time optimizer to focus on a restricted set of constraint predicates that  
could not be proved safe at compile-time. 

Our work extends the work of [2]. Rather than a relational model, it uses a 
powerful specification and verification environment for object-oriented databases 
with transactions and integrity constraints. The specification framework uses 
TM [6,7], a typed formal specification language based on the well-known ideas 
of Cardelli [8], extended with logic formalism and sets [9]. The declarative flavour 
of this language permits compile-time transaction verification using a theorem 
prover, while retaining ODMG compliancy [10]. 

The verification framework uses higher-order logic. Specifications in TM are 
automatically mapped to expressions in higher-order logic (HOL), such that  the 
consistency requirements can be given as input to the higher-order logic Isabelle 
theorem prover [11] for automatic proof assistance. 

The rest of this paper is organized as follows. Section 2 introduces the TM 
data  model and gives an example of a job agency service. This example was also 
studied by [2]. In Section 3, the Isabelle theorem prover is introduced, along with 
a motivation for why the HOL theory is used. We then proceed with a sketch of 
how TM database schemas are represented in HOL. Section 5, discusses trans- 
action verification using the Isabelle theorem prover and shows how standard 
Isabelle tactics can be used to implement a transaction verifier in HOL. In Sec- 
tion 6, we then compare our work to several related compile-time approaches. 
We finish by stating our conclusions and give directions for future work. 

2 D a t a b a s e  D e f i n i t i o n  i n  T M  

This section introduces the TM data model, using the job agency service example 
[2], which is re-engineered to the object-oriented data  model. Objects in the 
database include people who apply for, and are placed with certain jobs. A job 
can be shared by multiple employees. Skills are required to execute jobs, and 
people should have abilities that  satisfy these requirements. TM extends the 
ODMG interface definitions with formal specifications of methods, transactions 
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and integrity constraints. The non-procedural declarative characteristic of these 
additional features enable compile-time verification by a theorem prover. 

interface  Skill 
( extent SKILL) 
{ 

at tr ibute  String description; 
}; 

interface  Job 
( extent JOB) 
{ 

at t r ibute  String description; 
a t t r ibute  Set<Skill> req_skills; 
a t t r ibute Boolean placed; 

}; 

interface  Person 
( extent PERS 

key ssn) 
{ 

at tr ibute  String ssn; 
a t t r ibute  Int age; 
at t r ibute Set<Job> applications; 
a t t r ibute  Set<Struct(job:Job,sahInt)> placements; 
a t t r ibute  Set<Skill> abilities; 
Person allocate(in Job j, in Int salary) = 

self except (placements = placements + set struct(job :j ,  sal : salary),  
applications ---- applications -- set j) 

}; 

2.1 M e t h o d s  

Methods are specified using OQL, augmented with an additional except-construct 
that enables modification of an object (a mutable and shared value) or record (a 
non-mutable and non-shared value). The a l l o c a t e  method in the Person inter- 
face allocates a job to a person. It does so by "moving" the job argument from 
the a p p l i c a t i o n s  set to the placements set, where it is paired with a salary 
value. The method returns the modified Person-object (self). 

2.2 T r a n s a c t i o n s  

Transactions in our framework are specified using a high-level declarative update 
language. An update-construct provides for the declarative update of arbitrary 
collections of objects. It takes a sequence of OQL query blocks and commits 
to the database all (possibly) modified and newly created mutable objects as 
indicated by these blocks. Below, the reader finds several examples of complex 
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t ransac t ions  using this construct .  Actually, these are the  same - -  bu t  reegineered 
- -  ones tha t  also appear  in the Sheard & Stemple paper.  

The  following t ransac t ion  subscribes a new person to the job agency service. 
The  t ransac t ion  takes as input  parameters  a pe r son - s sn  and an initial set of  
skills; the a p p l i c a t i o n s  and the p l a c e m e n t s - a t t r i b u t e s  are initialized wi th  the  
empty  set value. 

T r a n s a c t i o n  Subscribe (in S t r ing  pssn, i n  S e t  < Skill > pskiUs) 
P r e c o n d i t i o n s  

forallp inPERS : p • ssn ~ pssn 

Begin 
update Person(ssn:pssn, applications : setO,placements :set(), 

abilities : pskills) 
End;  

Observe tha t  it is necessary to add the precondit ion,  for otherwise the  key- 
const ra int  might  be violated. Our t ransac t ion  verification sys tem would ac tua l ly  
repor t  a potent ia l  conflict on this constraint ,  if the condi t ion was omit ted .  

T r a n s a c t i o n  Hire(in String assn, in Job j ,  in In t  salary) 
P r e c o n d i t i o n s  

e x i s t s p i n P E R S  : p • ssn : assn 
B e g i n  

u p d a t e  (j e x c e p t  (placed = t rue) ,  select  p • allocate(j, salary) 
f r o m  PERS p 
w h e r e p ,  ssn = assn) 

End;  

The  Hire t ransac t ion  places an applicant  on a par t icular  job: observe t h a t  
two query blocks are supplied to the upda te  construct .  The  first block sets 
the p l a c e d  field of the job object  to true, while the second block applies the  
a l l o c a t e  me thod  to the Person-object  t h a t  matches  the  s s n  supplied as an in- 
put  pa ramete r  to the t ransact ion.  There  is no ordering imposed on the execut ion 
of  these blocks and parallelisation is allowed provided tha t  there are no conflicts 
of mult iple incompat ible  parallel upda tes  applied to the  same object .  

Finally, the Fire t ransac t ion  removes a job from the p l a c e m e n t s - a t t r i b u t e .  
I t  also sets the  p laced- f ie ld  in the Job-objec t  to fa l se  if there is no o ther  person  
placed in t ha t  same job: 

T r a n s a c t i o n  Fire (in String assn, in Job j)  
P r e c o n d i t i o n s  

e x i s t s p i n P E R S  : p .  s s n  : assn 
B e g i n  

u p d a t e  (j  e x c e p t  (placed = e x i s t s  z i n  PERS : e x i s t s  y i n  z • p l a c e m e n t s  : 
y • job = j a n d z  • ssn ~ assn), 

s e l e c t  p e x c e p t  ( p l a c e m e n t s  = s e l e c t  x f r o m p  • p l a c e m e n t s  z 
w h e r e  z -  job ~ j )  

f r o m  PERS p 
w h e r e  p • ssn : assn) 

End;  
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2.3 I n t e g r i t y  C o n s t r a i n t s  

T M  extends the ODMG data  model with integrity constraints, which can be 
a rb i t ra ry  well-typed boolean-valued OQL expressions, ranging over the extents 
of the database.  This generalizes the notion of key constraints in the O D M G  da ta  
model, which in fact are simple first-order formulae on a single class extent. 
Although the Object  Database  Management  Group has the provision to also 
include a more general notion of integrity constraints in a future language release 
[10], constraint  specification remains limited at present. The use of OQL as 
a constraint  definition language is fairly straightforward, as il lustrated by the 
examples below. In addition to the key constraint that  was already par t  of the 
schema definition, we add the following constraints to our job agency service 
specification; these constraints will be the subject of t ransact ion verification in 
Section 5 

Example 1. All persons applying for a job should have the required skills to execute 
those jobs: 

C1 : forall  x inPERS : f o r a l l j  in  x • app l ica t ions  : j • r eq_sk i l l s  _< x • a b i l i t i e s  

Example ~. The placed-field in the Job-class is a redundant field. 

C2 : forall  x in JOB : x • placed : exis ts  y in PERS : 
e x i s t s  z in  y.  placements : z • job = x 

Example 3. A person can never simultanously apply for and be placed in one and the 
same job: 

C3 : forall  x in PERS : forall y in x • placements : n o t  (y • job in x • a p p l i c a t i o n s )  

Example 5. All persons in the database are younger than 65: 

6'4 : f o r a l l  ~ in  PERS : x • age  < 65 

3 Introduct ion  to I sabe l l e /HOL 

I sabe l le /HOL is a general-purpose higher-order logic~based theorem proof  sys- 
tem. Using the system's  built-in deductive system, mechanical reasoning is sup- 
por ted for the most  commonly used da ta  types in programming languages, such 
as booleans, integers, characters,  strings, tuples, lists and sets. Isabelle provides 
an OQL-like functional language interface, supporting complex values nested 
up to arb i t ra ry  depth. From a database perspective, the I sabe l le /HOL speci- 
fication language relates to the NF2 da ta  model, extended in the sense tha t  
a t t r ibutes  may  be arbi t rary  collections and tuples, ra ther  than  relations. This 
makes the HOL-language particularly suitable for representing object-oriented 
database  schemas. 



401 

Isabelle specifications are called theories. A theory consists of a collection 
of axioms and definitions. Our system generates an Isabelle theory file from a 
TM database specification. The definitions of this newly added theory being the 
definitions of methods, transactions, and constraints. Properties can be asserted 
and proved about these definitions by calling tactics, which are implementations 
of individual proof steps. The Isabelle/HOL package provides powerful tactics 
that can automate seemingly highly complex proofs. Predefined automatic tac- 
tics are available for simplification - -  term-rewriting with an arbitrary set of 
(conditional) term-rewriting lemmas is supported - -  and a natural deduction 
solver. The Simplifier performs term-rewriting with an arbitrary set of theorems 
of the form 

H ~ LHS = RHS 

Such rules read in the obvious straightforward manner: a term unifying with the 
expression on the left-hand side of the equation (LHS) is rewritten to the term 
that appears on the right-hand side (RHS) provided that the hypothesis (H) 
holds. The default Isabelle/HOL simplifier already installs a large collection of 
standard reduction rules for HOL, but new rules can be easily added to customize 
the Simplifier to a particular domain. 

The Natural Deduction Solver uses a set of introduction and elimination prop- 
erties for higher-order logic to automate natural deduction inferences. The tool 
implements a depth-first search strategy. It systematically breaks up the goals 
that are left after simplification in a number of smaller sub-goals. Variables, in- 
troduced by the use of quantifiers, can be automatically instantiated, allowing 
backtracking between different alternative unifiers. Before each inference step, 
the solver will call the Simplifier to allow further syntactic reductions to take 
place. Usually, this amounts to a highly complex proof structure and even seem- 
ingly simple proofs may take hundreds (but small, easy to automate) steps. It 
is not necessary, however, to understand the full details of the algorithms that 
are used, and the interested reader is further referred to [11]. 

In Section 5 we discuss how these tools can be used for the task of verifying 
transaction safety. First we do the representation of OO database schema's in 
HOL and show how (parts of) the example specification are translated. For 
the target language, a simply typed lambda calculus is used with OQL, rather 
than specific Isabelle syntax style, to slightly simplify the presentation. Thus we 
abstract from certain pecularities of the Isabelle/HOL system. For instance, the 
Isabelle system uses non-labeled tuples instead of labeled records, but a standard 
encoding can be used where (1) the order in which the labels occur is fixed and 
(2) projections are replaced by the typical operations f s t  and snd. 

4 M a p p i n g  O O  L a n g u a g e  F e a t u r e s  t o  I s a b e l l e / H O L  

We first define a structural mapping of the class structures of the ODMG data 
model to HOL records as a means of implementing these structures. An addi- 
tional id-field of type integer is used to represent an object's identity. At the 
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same time, class references in compound object types are replaced by pointer 
(oid) references in the form of integer-values, instead of copies of the objects 
themselves. The database itself is also represented as a record structure, called 
object store (OS) ,  which holds entries for each extent of the database. The as- 
sociated object store of our example specification becomes a record structure: 

O S  : s t r u c t ( S K I L L  : S e t  < s t r u c t (  i d :  I n t ,  d e s c r i p t i o n  : S t r i n g )  > 
JOB : S e t  < s t r u c t (  i d  : I n t ,  d e s c r i p t i o n  : S t r i n g ,  

r e q _ s k i l l s  : S e t  < I n t  > ,  
placed : B o o l e a n )  >, 

PERS : S e t  < s t r u c t (  i d  : I n t ,  s s n  : S t r i n g ~  age  : I n t ,  
a p p l i c a t i o n s  : S e t  < I n t  > ,  
p lacements  : S e t  < s t r u c t ( j o b  : In t ,  s a l  : I n t )  > 
a b i l i t i e s  : S e t  < I n t  > )  > ,  

Integrity constraints are represented as functions of type OS -+ Bool in the 
HOL framework. By the introduction of object identifiers, however, we have 
created some form of indirection which slightly complicates such a translation. 
For instance, a constraint expression of the form 

A os  : O S  • f o r a l l  x i n  os • PERS : 
f o r a l l j  i n  x. appl icat ions : j • req_sk i l l s  < z • a b i l i t i e s  

can no longer be maintained in a context where the variable j is an object 
reference of type I n t .  To select the r e q _ s k i l l s - a t t r i b u t e  o f j  we now first need to 
query the Job-extent. This form of indirection is provided for in the translation; 
i.e., functions like 

get_Job - )~ os : OS  . o : In t  • e l m t ( s e l e c t  x 
f r o m  os .  J0B x 
w h e r e  x • id  : o) 

will be automatically inserted at appropriate places. Note that  the above function 
is generated for each class C. The function takes an object reference o and 
retrieves the corresponding full object representation from the associated class 
extent.  

Example  5. The following Isabelle/HOL function representation is generated for the 
constraint C1 

CI ~ A os  : O S  • f o r a l l  x i n  os  • PERS : f o r a l l j  i n  z • a p p l i c a t i o n s  : 
(get_Job os j )  " req_skills _< z • abilities 

Aside from the user-defined explicit constraints, the schema also has a num- 
ber of implici t  constraints. Implicit schema constraints include constraints for  

referential integrity and object identity. These will be automatically generated 
during the translation to HOL. 



403 

E x a m p l e  6. The id-field acts as a key to the PERS-extent .  

C5 = A os : O S  • fo ra l l  x in os • PERS : 
fo ra l l  y in PERS : x • id  ---- y • id  i m p l i e s  x = y 

E x a m p l e  7. The oid's in the a p p l i c a t i o n s - f i e l d  refer to items in the JOB:table .  

C6 :-- A os : OS • forall x in os • PERS : forall y in x - applications : 

: e x l s t s z l n o s .  JOB : y - ~ z - i d  

T h e  seman t i c s  of  t r an sac t i ons  is funct ional :  t r a n s a c t i o n s  a re  f o r m a l l y  rep-  
r e sen ted  as  func t ions  of  t y p e  O S  -+ h - ~  " '"  -~  tk --~ O S  in t he  I sabe l l e  
f r amework ,  where  t he  t ypes  t l - - - t k  represen t  t he  t y p e s  of  o p t i o n a l  i n p u t  pa -  
r ame te r s .  A t  the  s eman t i ca l  level, the  u p d a t e  p r i m i t i v e  cons t ruc t s  a new o b j e c t  
s to re  value,  where  al l  poss ib ly  modi f ied  ob j ec t  r e p r e se n t a t i ons  r e su l t ing  f rom t h e  
func t iona l  eva lua t ion  of the  O Q L  sub-express ions  are  un ioned  wi th  the  u n m o d -  
ified ob jec t s  for each extension.  The  col lect ion of ob j ec t s  t h a t  are  no t  mod i f i ed  
is eas i ly  o b t a i n e d  by inspec t ing  the  id- f ie ld .  F u r t h e r m o r e ,  m e t h o d  cal ls  a re  re- 
p laced  by  s u b s t i t u t i n g  the  T M - O Q L  express ions  def ining the i r  func t iona l i ty .  At  
present ,  our  p r o t o t y p e  does not  suppo r t  recurs ive  m e t h o d  calls.  

E x a m p l e  8. The following Isabelle representation function is generated for the Hire 

transaction: 

Hire -- A os : O S  • A assn : S t r i n g  • )~j : I n t  • A salary : I n t e  
s t ruct(SKILL : os . SKILL, 

JOB: { ( g e t _ J o b  os j )  e x c e p t  (p laced  = t r u e ) }  + s e l ec t  x 
f r o m  os • J0B x 
where Z" id ~ {j} 

PERS : ( s e l e c t  p e x c e p t  (placements  = p • p l a c e m e n t s +  
s e t ( s t r u c t ( j o b  : j ,  s a l :  sa lary) ) ,  

applications = applications -- set j) 

from os • PERS p 

w h e r e p  • ssn = assn) + (se lec t  p 
f r o m  os • PERS p 
w h e r e p  . ssn # assn) 

The  above  func t ion  genera tes  modi f i ca t ions  to  the  JOB as well as the  PERS- 
ex ten t ,  while  the  SKILL-extent  is not  modif ied.  Note  t h a t  the  j o b - o b j e c t  j is 
e x p a n d e d  to  a l low the  p l a c e d  field to  be  changed.  T h e  express ion  on the  left-  
h a n d  side of  the  union  ( + )  denotes  the  col lec t ion  of  modi f i ed  ob jec t s ,  whi le  t h e  
co l lec t ion  of  ob j ec t s  t h a t  a re  not  u p d a t e d  a p p e a r s  on t h e  r i g h t - h a n d  side.  T h e  
p r e c o n d i t i o n  of t he  t r a n s a c t i o n  is s to red  in a s e p e r a t e  def in i t ion  a n d  can  b e  
t r e a t e d  as an  o r d i n a r y  cons t ra in t .  

E x a m p l e  9. The pre-condition of the Hire - t ransac t ion  is represented as a function: 

Pre_Hi re  ~ A os : OS  • A assn : S t r i n g  • Aj  : I n t  • A salary : I n t e  
ex i s t sp inPERS : p • ssn ---- assn 
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5 Automatic Transaction Verification in Isabelle/HOL 

Once the schema has been translated to Isabelle, its automatic proof tactics as 
mentioned in Section 3 can be used to statically identify the integrity constraints 
tha t  axe possibly violated by a transaction and the ones that  are not. Transaction 
verification starts by asserting as a proof goal the fact that  a constraint will never 
be violated by the execution of a transaction. Given an Isabelle transaction rep- 
resentation function T, an associated pre-condition representation Pre_T, and 
a constraint representation function C, the following goal needs to be verified: 

C (os) A (Pre_T o s p l . . .  Pk) =~ C (T  o s p l "  .p~) 

for arbi t rary object store os and input parameters Pl • "" Pk. With slight syntactic 
m o d i f i c a t i o n s -  into ASCII - -  theorems of the above form can be given as input 
and mechanically verified by the Isabelle theorem prover. In our analysis, we use 
both  the Simplifier and the Natural  Deduction Solver - -  the basic tools (tactics) 
for automatic proof in Isabelle, as introduced in Section 3. 

The rest of this section discusses in some more detail how these tools can be 
used for the task of compile-time transaction verification. In the next paragraph, 
we demonstrate how the term-rewriting tool applies to implement a simple, fairly 
rough analysis, analogous to the path analysis presented in [3-5]. The harder 
cases are then further processed by the natural  deduction solver for a more 
detailed analysis, which is the subject of Section 5.2. 

5.1 A S i m p l e  Ana ly s i s  u s ing  t h e  S impl i f i e r  

When starting an automatic proof, Isabelte first tries to simplify the initial proof 
goal as much as possible. This is done by term-rewriting with the Simplifier tool. 
The  default Isabelle/HOL Simplifier, however, is not directly suitable to enable 
verification of a robust class of transactions over arbi t rary database schemas, 
thus requiring some extensions. Extensions to the Simplifier will be made by 
adding some new rewrite-rules, such that  at least the trivial cases - -  of a trans- 
action and constraint operating on different parts of the database - -  can be 
identified. The following example illustrates how the Isabelle Simplifier can be 
used for verifying transaction safety, and which extensions have been made. 
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---- fo ra l l  x in  (2) 
s truct(SKILL : os • SKILL, 

JOB : { ( g e t _ J o b  o s j )  e x c e p t  (p laced  = t r u e ) }  + se l ec t  x 
f r o m  os  • JOB z 
w h e r e , ,  i d  ¢ {j} 

PEaS : ( se lec tp  e x c e p t  (placements  = p • p l a c e m e n t s +  
s e t ( s t r u c t ( j o b  : j ,  s a l :  s a l a r y ) ) ,  

a p p l i c a t i o n s  = a p p l i c a t i o n s  -- se t  j)  
f r o m  o s .  PERS p 
w h e r e p  • ssn = a s s n )  + se l ec t  p 

f r o m  os • PERS p 
wherep - ssn ~ a s s n  

) • PERS : x • age _ 65 

= fo ra l l  x in  ( ( se lec t  p e x c e p t  (placements  = p .  p l a c e m e n t s +  (3) 
s e t ( s t r u c t ( j o b  : j ,  s a l  : s a l a r y ) ) ,  

applications ---- applications -- set j) 

from os • PERS p 

wherep • ssn -- assn) + select p 

from os • PERS p 

w h e r e p  • s s n  ~ a s s n )  : :r • age < 65 

---- (forall x in (select p except (placements = p - placements+ (4) 

s e t ( s t r u c t ( j o b  : j ,  s a l  : s a l a r y ) ) ,  

applications ---- applications -- set j) 

from os • PERS p 

w h e r e p . s s n =  a s s n )  : x . a g e  _~ 65)  a n d  

( fora l l  x in  ( se lec t  p 
f r o m  os • PERS p 

w h e r e p . s s n : / :  a s s n )  : x . a g e  _~ 65) 

: ( f o r a l l p i n o s .  PERS: (p .  ssn : assn) i m p l i e s  (5) 
p except (placements : p • placements+ 

s e t ( s t r u c t ( j o b  : j ,  s a l :  s a l a r y ) ) ,  

a p p l i c a t i o n s  = p • a p p l i c a t i o n s  -- se t  j )  • age ~ 65) a n d  
( f o r a l l p i n o s .  PERS (p .  ssn ¢ a s s n ) i m p l i e s  (p • age < 65) 

---- ( fora l l  p in  o s .  PERS (p .  ssn ---- a s s n )  i m p l i e s  (p .  age ~ 65) a n d  
( f o r a l l p  in  os • PERS (p .  ssn ~ a s s n )  i m p l i e s  (p .  age < 65) 

(6) 

T h e  above  example  t races  the  s y s t e m a t i c  r educ t ion  of the  consequent  of  
t he  goal  t h a t  is gene ra t ed  for ver i fying t h a t  the  H i r e - t r a n s a c t i o n  preserves  in- 
t e g r i t y  of  cons t r a in t  C4. The  p roof  s t a r t s  by s u b s t i t u t i n g  the  t r a n s a c t i o n  in t he  
cons t r a in t  p r ed i ca t e  (1) and  unfolding the  d a t a b a s e  specific def in i t ions  of  t he  
t r a n s a c t i o n  and  cons t r a in t  (2). In general ,  th is  resul ts  in a h igh ly  c omple x  p r o o f  
t e rm.  For tuna te ly ,  as a l r e ady  sugges ted  by  [2], m a n y  of the  c omple x  t e r m s  can  
be  eas i ly  r educed  using s t a n d a r d  2 r educ t ion  rules for t he  t u p l e  da t a type"  

2 In Isabel le /HOL syntax these rules are actually encoded at a much lower level. As was 
already mentioned in Section 3, Isabelle uses non-labeled tuples instead of labeled 
records, and the reductions are realized by using s tandard rules involving the typical  
operations f s t  and snd. 
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[REC1] s t r u c t ( a l  : e l , . . - ,  an : en )  • ai  = ei 

[REC2] i e n ~ e e x c e p t ( a l  : e l , . . . ,  an : e n ) "  ai = ei 

[REC3] i • n ~ e e x c e p t ( a l  : e l , - " ,  an : e ~ ) .  ai = e .  ai 

The above rules allow the Simplifier to identify those cases of a transaction 
and constraint operating on different class extents such that  integrity is trivially 
preserved. For instance, application of the first rule [REC1] to (2), discards the 
update  operation on the Job-extent. Note that  such an update is 'irrelevant' in 
the presence of the current constraint predicate, since the constraint only takes 
the Person-extent into account. At this point, simplification with the default 
Simplifier stops : none of the standard rewrite-rules matches with the remaining 
proof term (3) and additional knowledge about the general structure of the proof 
goals tha t  are generated is needed, to proceed with simplification. 

By studying the cases where the Simplifier got stuck during a transaction 
safety proof, several recurring patterns could be identified. For instance, in Sec- 
tion 4, we defined the contents of the extent of a class after an update operation 
occurs as the union (+) of the set of objects that  got changed and the set of 
objects tha t  did not change. Combining this with the assumption tha t  many 
constraint predicates quantify over class extents, we will be frequently left with 
terms that  match with one of the following rules 

[UN_ALL] ( f o r a l l x i n ( A + B )  : ¢ ( x ) ) =  ( f o r a l l x i n A  : ¢ ( x ) ) a n d  
(foral l  :c i n B  : ¢(x))  

[UN_EX] (ex is t s  x in (A + B) : ¢ ( x ) ) =  ( e x i s t s x i n A  : ¢ ( x ) ) o r  
( e x i s t s x i n S  : ¢(x)) 

The above rules will split universal and existential quantifications so that  is 
discriminated between the 'modified' and the 'unmodified' case. For instance, 
the first rule [UN_ALL] matches with term (3) of the example proof, and the 
Simplifier splits the quantification resulting in (4). Note that  the proposition on 
the left-hand side of the conjunction quantifies over the collection of modified 
objects, while the quantification over the collection of objects tha t  is not modified 
is on the right-hand side. 

At this point, the general structure of the goal gradually seems to disappear. 
Transactions and constraints can be expressed in many ways, and general pat- 
terns can hardly be identified. Transaction definitions, however, frequently use 
a select-from-where clause, making it useful to add the following reduction rules 

[DIS1] forall  y in ( se l ec t  e (z) 
f rom x in A 
wherep(x))  : ¢(y) = forall x in A : p ( z )  implies¢(e(x)) 

[DIS2] exists y in (select e (x) 
f rom x in A 
w h e r e p ( x ) )  : ¢(y) = e x i s t s x i n A  : p ( z ) a n d ¢ ( e ( x ) )  

The above rules will distribute functional replacements over quantifier bod- 
ies. This enables the Simplifier to also identify combinations of transactions and 
constraints where - -  although the same class extents are involved - -  integrity is 
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trivially preserved because different attributes of the objects are accessed. For 
instance, application of the first rule [DIS1] to (4), will distribute the functional 
replacement over the quantifier body, thus resulting in (5). Now, simplification 
can proceed using standard reduction rules. Using [REC3], the Simplifier de- 
stroys the remaining record-update operation, and we are left with a formula 
that closely matches the original assumption (6). The remaining term will be 
solved since the Simplifier automatically asserts the original assumption 

forall x in o s  • PERS : x • age _ 65 

as an additional rewrite rule while simplifying the consequent. D 

5.2 A Deta i led  Analysis  using the  ND-Solver  

Unfortunately, not all goals are as easily solved as the one that is discussed in 
the previous example. Often, when a transaction and constraint operate on the 
same parts of the database, it becomes difficult to completely solve the goal by 
simplification. There are many possibilities of how the final proof term may look 
like and there hardly seems to be a general pattern that would allow further 
simplification. For instance, the H i r e  transaction updates the app l i ca t i ons -  
field from the PERS-table, which is exactly the same field that is also accessed by 
the integrity constraint oc3 .  In this case, simplification alone cannot prove the 
entire goal and the following goal is left after simplification: 

( f o r a l l  x i n  PERS : 

f o r a l l  y i n  x - a p p l i c a t i o n s  : g e t _ J o b ( o s  y)  . r e q _ s k i l l s  < x • a b i l i t i e s )  

( f o r a l l  x i nPEI~S  : f o r a l l  y i n  x • a p p l i c a t i o n s  --  s e t ( j )  : 

g e t _ J o b ( o s  y) • req_skills _~ X.  abilities) (7)  

Do we need to derive another rewrite-lemma that will allow further simpli- 
fication of this term? In the approach taken by Sheard & Stemple [2], further 
simplification would be employed by adding the following rule 

(forallzlnA : ¢ (x) )~  ( f o r a l l x i n ( A - B ) :  ¢(x)) 

to their knowledge base. Indeed, by adding the above rule to the Isabelle Sim- 
plifier we could also solve the remaining proof goal. However, many of such rules 
can be added and one may doubt whether they would apply more frequently in 
other proofs. This is one of the shortcommings of their approach as mentioned 
in [2] 

Fortunately, Isabelle largely eliminates the need for adding an extensive 
amount of knowledge to the Simplifier. The simplifications discussed in the previ- 
ous section are usually sufficient to already yield a proof goal that can be further 
processed by the Natural Deduction Solver, which only employs standard lem- 
mas by means of introduction and elimination properties for HOL. In the case of 
formula (7), Isabelle will invoke the introduction and elimination properties of 
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universal quantification and set-membership, eventually proving the validity of 
(7). By interleaving the slightly customized Isabelle Simplifier with the Natural 
Deduction Solver, a powerful transaction verifier is provided for: most of the 
examples can be solved in just a few seconds time. 

~ - - - * ~  l i~li~ll i~li~li , ,~at~'alldl 
  lOliiHi imL 'JlZ]HEIEmmmB 
m  mwwm, w,,,.mmlm 
m ¢,,.,i~m,~a[,,~Jnnlom, m ,~I]Ii]B]Ii]glHK~II[R~JN[R~]IIF!I~ 

Table  1. Proof Timings for the Job Specification (in seconds) 

Table 5.2 shows the proof-times for our example specification. All timings are 
obtained running IsabeUe on an ordinary SPARC-5 workstation with 80MB of 
internal memory. Horizontally alligned are the constraints, while the transactions 
are vertically alligned. Including the implicit schema constraints for referential 
integrity and object identity a total of 11 constraints is listed. This generates a 
total of 33 proof goals, one for each combination of transaction and constraint. 
These are put in a ML-text file and on loading the specification, the file will be 
automatically processed by the Isabelle theorem prover. Only one of the goals 
(for C2 and Fire) could not be solved automatically; constraint C2 should be 
tested at run-time after the F/re-transaction commits. 

6 Comparison with  Related Work 

Our work follows the line of research set out by Sheard & Stemple ([2]). In this 
approach, the Boyer-Moore theorem prover is used to implement a compile-time 
mechanism to verify constraint invariance with respect to update operations on 
a relational database. The initial database specifications are given in a language 
called ADABTPL, which are then mapped to the Boyer-Moore theorem prover 
for automatic proof assistance. To that end, the Boyer-Moore theorem prover 
is enriched with higher-order functions, and a basic theory about tuples, finite 
sets and natural numbers is defined, in which databases can be represented. 
The actual transaction safety verifier component is implemented using a term- 
rewriting system. The term-rewriter uses a large knowledge base, which stores 
general knowledge about the transaction and constraint language. This includes 
basic theorems, such as a rule asserting the commutativity of the set-union op- 
eration. Much of the power of the Sheard & Stemple system derives from adding 
more problem-specific rules (so-called meta-lemmas) which enable the simplifi- 
cation of terms that frequently appear during transaction safety analysis. Our 
approach using Isabelle/HOL differs in that it uses the object-oriented rather 
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than the relational framework. Also, we employ a novel more general verifica- 
tion strategy that  uses natural deduction in addition to term-rewriting. This has 
the benefit of offering a more general proof strategy for transaction verification. 
Initially, we tried to follow the approach of [2], but  we soon ended up adding 
many new non-standard rewrite-rules to the Simplifier. Often, it was doubtful if 
they were relevant in the context of other database specifications; the knowledge 
base approach of Sheard & Stemple [2] tends to tune the transaction verifier to 
specific example databases, rather than offering a verifier which is more broadly 
applicable. 

In [12] another related approach is described, as employed in the DAIDA- 
project, which also allows for proof assistance in demonstrating constraint in- 
variance with respect to operations on a database. The main topic of [12] did 
not concern constraint invariance, but incremental refinement of initial database 
specifications to actual database programs; the work on proof asssitance for con- 
straint invariance is more or less a spinn-off of the actual topic of the DAIDA- 
project. The initial database specification is given in a language called TDL, and 
the TDL specification is then mapped to Abrial's language of Abstract  Machines. 
By employing the B-tool, interactive proof assistance is offered for checking con- 
straint invariance. The most notable difference with our approach employing Is- 
abel le/HOL is that  our system offers automatic, rather than an interactive, proof 
assistance. Another difference is that  T M / O D M G  employs an object-oriented 
style and is purely functional, whereas TDL has less object-oriented features 
and uses an explicit pre-/post-conditional style based on predicates and sets. 

The later work of [3-5] follows a different approach. It exploits several tech- 
niques related to abstract interpretation for the task of compile-time transaction 
verification in an 02  database system. Their analysis starts with a simple com- 
pilation technique to identify those combinations of transaction and constraint 
that  are certainly not in conflict because the transaction and constraint access 
different attributes or class extents. The same analysis is actually implemented 
in our system using term-rewriting with the Isabelle Simplifier tool. For those 
combinations of transaction and constraint that  could not be proved safe in the 
first step, Benzaken et al use a second more detailed analysis. This analysis takes 
some details of the semantics into account. It can, for instance, prove that  dele- 
tion of an object from a set does not affect a constraint that  universally quantifies 
over it. It is not clear, however, what the exact limitations are of taking only 
small portions of the semantics of the application into account. In principle, the 
line of research set out by Sheard & Stemple [2] (and our extension of it) offers 
more potential: since the full semantics of the application is taken into account, 
we should eventually increase the amount of proofs that  can be performed. Fur- 
thermore, we use a functional rather than an imperative programming language 
for transaction specification. It is well-known that  functional languages offer a 
relatively clean logical structure which is more suitable for verification; in im- 
perative languages the simple structure is destroyed by constructions such as 
assignment and aliasing. 
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7 C o n c l u s i o n s  & F u t u r e  W o r k  

In this paper, we have outlined a framework for compile-time verification of 
transaction safety in an object-oriented database. It is a first attempt at gener- 
alizing the ideas of Sheard & Stemple as presented in [2] to the object-oriented 
data model, using modern theorem proving technology. The higher-order logic Is- 
abelle theorem prover is used to automatically verify which constraints might, or 
might not be violated by a given transaction. An improved verification strategy 
is presented, that involves natural deduction in addition to term-rewriting. This 
eliminates the need for extensive customized proof strategies, and our system 
largely builds on general purpose proof algorithms supplied by the Isabelle/HOL 
package. 

Tests have been done using a prototype system for a realistically large ex- 
ample specification, which we believe is representative of many real-world OO 
database applications. The example includes several complex transactions and 
constraints which are potentially in conflict because the same extensions, or often 
even the same attributes, are accessed. For instance, the constraint C2 mentions 
the placed-field from the JOB-table, and the placements-field from the PERS- 
table. Although the same fields are updated by the Hire transaction, the system 
proves that there is actually no conflict. Such a proof can only be done using 
a sophisticated semantic analysis. Typically, these are the harder cases where 
our approach should offer more potential than an analysis based on an abstract 
interpretation as outlined in [3-5] which only takes some very global properties 
of the semantics into account. 

In this paper we have highlighted some of the difficulties found in the mapping 
of an object-oriented database schema to HOL, but many issues remain open 
and full ODMG is not yet supported by our first prototype. For instance, our 
system does not yet support the concept of relationships, nor do we fully support 
the important notions of polymorphic sets and late-binding. Embedding of these 
language features - whose semantics is known to be difficult [13-15] - -  in the 
HOL framework remains a future challenge, but is a topic of ongoing research. At 
present we are experimenting using disjoint sum-types to represent polymorphic 
sets in the HOL-setting. Obviously, this will further complicate the proofs as 
additional case-splits are needed. 

On the other hand, it seems that there are some ways that reasoning about 
the OO case is easier than for the relational case. The relational data model does 
not provide support of nested-sets and other complex (nested) data structures as 
already available in HOL. As a consequence, when mapping a relational database 
language to HOL, we do not fully benefit from the power of the HOL language 
and rather inefficient input is generated for the theorem prover. 

An interesting feature of our system is that it is more broadly applicable 
than transaction verification; since it largely builds on standard Isabelle proof 
algorithms, the system should be fairly easily customized to different domains. 
Preliminary test results using the bank-account example of [16,17] have shown 
that the same proof algorithms are applicable to several forms of transaction 
commutativity analysis as well. 
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A topic that was not discussed in this paper is the generation of feedback 
to database designers. At present, the system only reports a 'yes', could prove, 
or 'no', could not prove, but eventually we would like to support some more 
advanced modes of feedback to database designers. For instance, designers would 
typically like to know why a proof actually failed or how a transaction might 
be corrected such that integrity will be preserved. An overview of the different 
modes of feedback can be found in [18] and we plan to study the implementation 
of a similar feedback component for our system. 
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