
A u t o m a t i c Verif ication of Transact ions on an
Objec t -Or iented Database*

David Spelt 1, Herman Balsters 2

University of Twente, Enschede, The Netherlands

A b s t r a c t . In the context of the object-oriented data model, a compile-
time approach is given that provides for a significant reduction of the
amount of run-time transaction overhead due to integrity constraint
checking. The higher-order logic Isabelle theorem prover is used to auto-
matically prove which constraints might, or might not be violated by a
given transaction in a manner analogous to the one used by Sheard and
Stemple (1989) for the relational data model. A prototype transaction
verification tool has been implemented, which automates the semantic
mappings and generates proof goals for Isabelle. Test results are discussed
to illustrate the effectiveness of our approach.
Keywords: object-oriented databases, transaction semantics, transac-
tion verification

1 I n t r o d u c t i o n

Static integrity constraints are essential in mission-critical application domains,
where one wants to offer integrity preserving update operations to clients. One
way to enforce database integrity is by testing at run-time those constraints that
are possibly violated by a transaction before allowing the transaction to commit.
Various techniques, surveyed in [1], have been proposed to optimize such a test
for a limited class of simple constraints, such as key and referential integrity. But
commiting complex transactions on large amounts of data becomes increasingly
difficult if the constraint language is extended to include full first-order logic
formula with bounded quantifications over arbi trary collection types.

A second approach towards integrity maintenance aims at a compile-time
reduction of the amount of run-time transaction overhead due to integrity con-
straint checking. This approach was first introduced by Sheard & Stemple ([2])
for the relational data model. It uses a theorem prover to verify that a transac-
tion will never raise an integrity conflict, provided that the database was in a
consistent state before the transaction was executed. Transactions are complex
updates involving multiple relations, whereas the constraint language includes
quantifications and aggregate constructs. These are related to expressions in
higher-order logic for automatic proof assistance.

Another related compile-time approach is proposed in [3,4]. It exploits several
techniques of abstract interpretation for the task of compile-time transaction ver-
ification in an 0 2 database system extended with a notion of declarative integrity

Our e-mail addresses are: [spel t ,ba ls ters] @cs.utwente. nl

397

constraints. Their analysis starts with a simple compilation technique. It identi-
fies those constraints that will certainly not be affected by a transaction because
different attributes or even different class extents are accessed. For instance, a
transaction that only changes the age of a person can never violate a constraint
that does not access this field. Recently, in [5], this approach was augmented
with a second, more powerful analysis. For each combination of transaction and
constraint that could not be proved safe in the first step, it applies Dijkstra's
concept of predicate trans/ormer. This yields a simple first-order logic formula
which is automatically verified by a theorem prover. A major difference between
this approach and the one presented in [2] is that the latter fully exploits the
(denotational) semantics of a database specification, whereas the former only
takes some global abstract properties of the semantics into account.

The above compile-time strategies supplement the existing run-time tech-
niques: they can filter out the set of relevant constraint checks, thus allowing
the run-time optimizer to focus on a restricted set of constraint predicates that
could not be proved safe at compile-time.

Our work extends the work of [2]. Rather than a relational model, it uses a
powerful specification and verification environment for object-oriented databases
with transactions and integrity constraints. The specification framework uses
TM [6,7], a typed formal specification language based on the well-known ideas
of Cardelli [8], extended with logic formalism and sets [9]. The declarative flavour
of this language permits compile-time transaction verification using a theorem
prover, while retaining ODMG compliancy [10].

The verification framework uses higher-order logic. Specifications in TM are
automatically mapped to expressions in higher-order logic (HOL), such that the
consistency requirements can be given as input to the higher-order logic Isabelle
theorem prover [11] for automatic proof assistance.

The rest of this paper is organized as follows. Section 2 introduces the TM
data model and gives an example of a job agency service. This example was also
studied by [2]. In Section 3, the Isabelle theorem prover is introduced, along with
a motivation for why the HOL theory is used. We then proceed with a sketch of
how TM database schemas are represented in HOL. Section 5, discusses trans-
action verification using the Isabelle theorem prover and shows how standard
Isabelle tactics can be used to implement a transaction verifier in HOL. In Sec-
tion 6, we then compare our work to several related compile-time approaches.
We finish by stating our conclusions and give directions for future work.

2 D a t a b a s e D e f i n i t i o n i n T M

This section introduces the TM data model, using the job agency service example
[2], which is re-engineered to the object-oriented data model. Objects in the
database include people who apply for, and are placed with certain jobs. A job
can be shared by multiple employees. Skills are required to execute jobs, and
people should have abilities that satisfy these requirements. TM extends the
ODMG interface definitions with formal specifications of methods, transactions

398

and integrity constraints. The non-procedural declarative characteristic of these
additional features enable compile-time verification by a theorem prover.

interface Skill
(extent SKILL)
{

at tr ibute String description;
};

interface Job
(extent JOB)
{

at t r ibute String description;
a t t r ibute Set<Skill> req_skills;
a t t r ibute Boolean placed;

};

interface Person
(extent PERS

key ssn)
{

at tr ibute String ssn;
a t t r ibute Int age;
at t r ibute Set<Job> applications;
a t t r ibute Set<Struct(job:Job,sahInt)> placements;
a t t r ibute Set<Skill> abilities;
Person allocate(in Job j, in Int salary) =

self except (placements = placements + set struct(job :j , sal : salary),
applications ---- applications -- set j)

};

2.1 M e t h o d s

Methods are specified using OQL, augmented with an additional except-construct
that enables modification of an object (a mutable and shared value) or record (a
non-mutable and non-shared value). The a l l o c a t e method in the Person inter-
face allocates a job to a person. It does so by "moving" the job argument from
the a p p l i c a t i o n s set to the placements set, where it is paired with a salary
value. The method returns the modified Person-object (self).

2.2 T r a n s a c t i o n s

Transactions in our framework are specified using a high-level declarative update
language. An update-construct provides for the declarative update of arbitrary
collections of objects. It takes a sequence of OQL query blocks and commits
to the database all (possibly) modified and newly created mutable objects as
indicated by these blocks. Below, the reader finds several examples of complex

399

t ransac t ions using this construct . Actually, these are the same - - bu t reegineered
- - ones tha t also appear in the Sheard & Stemple paper.

The following t ransac t ion subscribes a new person to the job agency service.
The t ransac t ion takes as input parameters a pe r son - s sn and an initial set of
skills; the a p p l i c a t i o n s and the p l a c e m e n t s - a t t r i b u t e s are initialized wi th the
empty set value.

T r a n s a c t i o n Subscribe (in S t r ing pssn, i n S e t < Skill > pskiUs)
P r e c o n d i t i o n s

forallp inPERS : p • ssn ~ pssn

Begin
update Person(ssn:pssn, applications : setO,placements :set(),

abilities : pskills)
End;

Observe tha t it is necessary to add the precondit ion, for otherwise the key-
const ra int might be violated. Our t ransac t ion verification sys tem would ac tua l ly
repor t a potent ia l conflict on this constraint , if the condi t ion was omit ted .

T r a n s a c t i o n Hire(in String assn, in Job j , in In t salary)
P r e c o n d i t i o n s

e x i s t s p i n P E R S : p • ssn : assn
B e g i n

u p d a t e (j e x c e p t (placed = t rue) , select p • allocate(j, salary)
f r o m PERS p
w h e r e p , ssn = assn)

End;

The Hire t ransac t ion places an applicant on a par t icular job: observe t h a t
two query blocks are supplied to the upda te construct . The first block sets
the p l a c e d field of the job object to true, while the second block applies the
a l l o c a t e me thod to the Person-object t h a t matches the s s n supplied as an in-
put pa ramete r to the t ransact ion. There is no ordering imposed on the execut ion
of these blocks and parallelisation is allowed provided tha t there are no conflicts
of mult iple incompat ible parallel upda tes applied to the same object .

Finally, the Fire t ransac t ion removes a job from the p l a c e m e n t s - a t t r i b u t e .
I t also sets the p laced- f ie ld in the Job-objec t to fa l se if there is no o ther person
placed in t ha t same job:

T r a n s a c t i o n Fire (in String assn, in Job j)
P r e c o n d i t i o n s

e x i s t s p i n P E R S : p . s s n : assn
B e g i n

u p d a t e (j e x c e p t (placed = e x i s t s z i n PERS : e x i s t s y i n z • p l a c e m e n t s :
y • job = j a n d z • ssn ~ assn),

s e l e c t p e x c e p t (p l a c e m e n t s = s e l e c t x f r o m p • p l a c e m e n t s z
w h e r e z - job ~ j)

f r o m PERS p
w h e r e p • ssn : assn)

End;

400

2.3 I n t e g r i t y C o n s t r a i n t s

T M extends the ODMG data model with integrity constraints, which can be
a rb i t ra ry well-typed boolean-valued OQL expressions, ranging over the extents
of the database. This generalizes the notion of key constraints in the O D M G da ta
model, which in fact are simple first-order formulae on a single class extent.
Although the Object Database Management Group has the provision to also
include a more general notion of integrity constraints in a future language release
[10], constraint specification remains limited at present. The use of OQL as
a constraint definition language is fairly straightforward, as il lustrated by the
examples below. In addition to the key constraint that was already par t of the
schema definition, we add the following constraints to our job agency service
specification; these constraints will be the subject of t ransact ion verification in
Section 5

Example 1. All persons applying for a job should have the required skills to execute
those jobs:

C1 : forall x inPERS : f o r a l l j in x • app l ica t ions : j • r eq_sk i l l s _< x • a b i l i t i e s

Example ~. The placed-field in the Job-class is a redundant field.

C2 : forall x in JOB : x • placed : exis ts y in PERS :
e x i s t s z in y. placements : z • job = x

Example 3. A person can never simultanously apply for and be placed in one and the
same job:

C3 : forall x in PERS : forall y in x • placements : n o t (y • job in x • a p p l i c a t i o n s)

Example 5. All persons in the database are younger than 65:

6'4 : f o r a l l ~ in PERS : x • age < 65

3 Introduct ion to I sabe l l e /HOL

I sabe l le /HOL is a general-purpose higher-order logic~based theorem proof sys-
tem. Using the system's built-in deductive system, mechanical reasoning is sup-
por ted for the most commonly used da ta types in programming languages, such
as booleans, integers, characters, strings, tuples, lists and sets. Isabelle provides
an OQL-like functional language interface, supporting complex values nested
up to arb i t ra ry depth. From a database perspective, the I sabe l le /HOL speci-
fication language relates to the NF2 da ta model, extended in the sense tha t
a t t r ibutes may be arbi t rary collections and tuples, ra ther than relations. This
makes the HOL-language particularly suitable for representing object-oriented
database schemas.

401

Isabelle specifications are called theories. A theory consists of a collection
of axioms and definitions. Our system generates an Isabelle theory file from a
TM database specification. The definitions of this newly added theory being the
definitions of methods, transactions, and constraints. Properties can be asserted
and proved about these definitions by calling tactics, which are implementations
of individual proof steps. The Isabelle/HOL package provides powerful tactics
that can automate seemingly highly complex proofs. Predefined automatic tac-
tics are available for simplification - - term-rewriting with an arbitrary set of
(conditional) term-rewriting lemmas is supported - - and a natural deduction
solver. The Simplifier performs term-rewriting with an arbitrary set of theorems
of the form

H ~ LHS = RHS

Such rules read in the obvious straightforward manner: a term unifying with the
expression on the left-hand side of the equation (LHS) is rewritten to the term
that appears on the right-hand side (RHS) provided that the hypothesis (H)
holds. The default Isabelle/HOL simplifier already installs a large collection of
standard reduction rules for HOL, but new rules can be easily added to customize
the Simplifier to a particular domain.

The Natural Deduction Solver uses a set of introduction and elimination prop-
erties for higher-order logic to automate natural deduction inferences. The tool
implements a depth-first search strategy. It systematically breaks up the goals
that are left after simplification in a number of smaller sub-goals. Variables, in-
troduced by the use of quantifiers, can be automatically instantiated, allowing
backtracking between different alternative unifiers. Before each inference step,
the solver will call the Simplifier to allow further syntactic reductions to take
place. Usually, this amounts to a highly complex proof structure and even seem-
ingly simple proofs may take hundreds (but small, easy to automate) steps. It
is not necessary, however, to understand the full details of the algorithms that
are used, and the interested reader is further referred to [11].

In Section 5 we discuss how these tools can be used for the task of verifying
transaction safety. First we do the representation of OO database schema's in
HOL and show how (parts of) the example specification are translated. For
the target language, a simply typed lambda calculus is used with OQL, rather
than specific Isabelle syntax style, to slightly simplify the presentation. Thus we
abstract from certain pecularities of the Isabelle/HOL system. For instance, the
Isabelle system uses non-labeled tuples instead of labeled records, but a standard
encoding can be used where (1) the order in which the labels occur is fixed and
(2) projections are replaced by the typical operations f s t and snd.

4 M a p p i n g O O L a n g u a g e F e a t u r e s t o I s a b e l l e / H O L

We first define a structural mapping of the class structures of the ODMG data
model to HOL records as a means of implementing these structures. An addi-
tional id-field of type integer is used to represent an object's identity. At the

402

same time, class references in compound object types are replaced by pointer
(oid) references in the form of integer-values, instead of copies of the objects
themselves. The database itself is also represented as a record structure, called
object store (OS) , which holds entries for each extent of the database. The as-
sociated object store of our example specification becomes a record structure:

O S : s t r u c t (S K I L L : S e t < s t r u c t (i d : I n t , d e s c r i p t i o n : S t r i n g) >
JOB : S e t < s t r u c t (i d : I n t , d e s c r i p t i o n : S t r i n g ,

r e q _ s k i l l s : S e t < I n t > ,
placed : B o o l e a n) >,

PERS : S e t < s t r u c t (i d : I n t , s s n : S t r i n g ~ age : I n t ,
a p p l i c a t i o n s : S e t < I n t > ,
p lacements : S e t < s t r u c t (j o b : In t , s a l : I n t) >
a b i l i t i e s : S e t < I n t >) > ,

Integrity constraints are represented as functions of type OS -+ Bool in the
HOL framework. By the introduction of object identifiers, however, we have
created some form of indirection which slightly complicates such a translation.
For instance, a constraint expression of the form

A os : O S • f o r a l l x i n os • PERS :
f o r a l l j i n x. appl icat ions : j • req_sk i l l s < z • a b i l i t i e s

can no longer be maintained in a context where the variable j is an object
reference of type I n t . To select the r e q _ s k i l l s - a t t r i b u t e o f j we now first need to
query the Job-extent. This form of indirection is provided for in the translation;
i.e., functions like

get_Job -)~ os : OS . o : In t • e l m t (s e l e c t x
f r o m os . J0B x
w h e r e x • id : o)

will be automatically inserted at appropriate places. Note that the above function
is generated for each class C. The function takes an object reference o and
retrieves the corresponding full object representation from the associated class
extent.

Example 5. The following Isabelle/HOL function representation is generated for the
constraint C1

CI ~ A os : O S • f o r a l l x i n os • PERS : f o r a l l j i n z • a p p l i c a t i o n s :
(get_Job os j) " req_skills _< z • abilities

Aside from the user-defined explicit constraints, the schema also has a num-
ber of implici t constraints. Implicit schema constraints include constraints for

referential integrity and object identity. These will be automatically generated
during the translation to HOL.

403

E x a m p l e 6. The id-field acts as a key to the PERS-extent .

C5 = A os : O S • fo ra l l x in os • PERS :
fo ra l l y in PERS : x • id ---- y • id i m p l i e s x = y

E x a m p l e 7. The oid's in the a p p l i c a t i o n s - f i e l d refer to items in the JOB:table .

C6 :-- A os : OS • forall x in os • PERS : forall y in x - applications :

: e x l s t s z l n o s . JOB : y - ~ z - i d

T h e seman t i c s of t r an sac t i ons is funct ional : t r a n s a c t i o n s a re f o r m a l l y rep-
r e sen ted as func t ions of t y p e O S -+ h - ~ " '" -~ tk --~ O S in t he I sabe l l e
f r amework , where t he t ypes t l - - - t k represen t t he t y p e s of o p t i o n a l i n p u t pa -
r ame te r s . A t the s eman t i ca l level, the u p d a t e p r i m i t i v e cons t ruc t s a new o b j e c t
s to re value, where al l poss ib ly modi f ied ob j ec t r e p r e se n t a t i ons r e su l t ing f rom t h e
func t iona l eva lua t ion of the O Q L sub-express ions are un ioned wi th the u n m o d -
ified ob jec t s for each extension. The col lect ion of ob j ec t s t h a t are no t mod i f i ed
is eas i ly o b t a i n e d by inspec t ing the id- f ie ld . F u r t h e r m o r e , m e t h o d cal ls a re re-
p laced by s u b s t i t u t i n g the T M - O Q L express ions def ining the i r func t iona l i ty . At
present , our p r o t o t y p e does not suppo r t recurs ive m e t h o d calls.

E x a m p l e 8. The following Isabelle representation function is generated for the Hire

transaction:

Hire -- A os : O S • A assn : S t r i n g •)~j : I n t • A salary : I n t e
s t ruct(SKILL : os . SKILL,

JOB: { (g e t _ J o b os j) e x c e p t (p laced = t r u e) } + s e l ec t x
f r o m os • J0B x
where Z" id ~ {j}

PERS : (s e l e c t p e x c e p t (placements = p • p l a c e m e n t s +
s e t (s t r u c t (j o b : j , s a l : sa lary)) ,

applications = applications -- set j)

from os • PERS p

w h e r e p • ssn = assn) + (se lec t p
f r o m os • PERS p
w h e r e p . ssn # assn)

The above func t ion genera tes modi f i ca t ions to the JOB as well as the PERS-
ex ten t , while the SKILL-extent is not modif ied. Note t h a t the j o b - o b j e c t j is
e x p a n d e d to a l low the p l a c e d field to be changed. T h e express ion on the left-
h a n d side of the union (+) denotes the col lec t ion of modi f i ed ob jec t s , whi le t h e
co l lec t ion of ob j ec t s t h a t a re not u p d a t e d a p p e a r s on t h e r i g h t - h a n d side. T h e
p r e c o n d i t i o n of t he t r a n s a c t i o n is s to red in a s e p e r a t e def in i t ion a n d can b e
t r e a t e d as an o r d i n a r y cons t ra in t .

E x a m p l e 9. The pre-condition of the Hire - t ransac t ion is represented as a function:

Pre_Hi re ~ A os : OS • A assn : S t r i n g • Aj : I n t • A salary : I n t e
ex i s t sp inPERS : p • ssn ---- assn

404

5 Automatic Transaction Verification in Isabelle/HOL

Once the schema has been translated to Isabelle, its automatic proof tactics as
mentioned in Section 3 can be used to statically identify the integrity constraints
tha t axe possibly violated by a transaction and the ones that are not. Transaction
verification starts by asserting as a proof goal the fact that a constraint will never
be violated by the execution of a transaction. Given an Isabelle transaction rep-
resentation function T, an associated pre-condition representation Pre_T, and
a constraint representation function C, the following goal needs to be verified:

C (os) A (Pre_T o s p l . . . Pk) =~ C (T o s p l " .p~)

for arbi t rary object store os and input parameters Pl • "" Pk. With slight syntactic
m o d i f i c a t i o n s - into ASCII - - theorems of the above form can be given as input
and mechanically verified by the Isabelle theorem prover. In our analysis, we use
both the Simplifier and the Natural Deduction Solver - - the basic tools (tactics)
for automatic proof in Isabelle, as introduced in Section 3.

The rest of this section discusses in some more detail how these tools can be
used for the task of compile-time transaction verification. In the next paragraph,
we demonstrate how the term-rewriting tool applies to implement a simple, fairly
rough analysis, analogous to the path analysis presented in [3-5]. The harder
cases are then further processed by the natural deduction solver for a more
detailed analysis, which is the subject of Section 5.2.

5.1 A S i m p l e Ana ly s i s u s ing t h e S impl i f i e r

When starting an automatic proof, Isabelte first tries to simplify the initial proof
goal as much as possible. This is done by term-rewriting with the Simplifier tool.
The default Isabelle/HOL Simplifier, however, is not directly suitable to enable
verification of a robust class of transactions over arbi t rary database schemas,
thus requiring some extensions. Extensions to the Simplifier will be made by
adding some new rewrite-rules, such that at least the trivial cases - - of a trans-
action and constraint operating on different parts of the database - - can be
identified. The following example illustrates how the Isabelle Simplifier can be
used for verifying transaction safety, and which extensions have been made.

405

---- fo ra l l x in (2)
s truct(SKILL : os • SKILL,

JOB : { (g e t _ J o b o s j) e x c e p t (p laced = t r u e) } + se l ec t x
f r o m os • JOB z
w h e r e , , i d ¢ {j}

PEaS : (se lec tp e x c e p t (placements = p • p l a c e m e n t s +
s e t (s t r u c t (j o b : j , s a l : s a l a r y)) ,

a p p l i c a t i o n s = a p p l i c a t i o n s -- se t j)
f r o m o s . PERS p
w h e r e p • ssn = a s s n) + se l ec t p

f r o m os • PERS p
wherep - ssn ~ a s s n

) • PERS : x • age _ 65

= fo ra l l x in ((se lec t p e x c e p t (placements = p . p l a c e m e n t s + (3)
s e t (s t r u c t (j o b : j , s a l : s a l a r y)) ,

applications ---- applications -- set j)

from os • PERS p

wherep • ssn -- assn) + select p

from os • PERS p

w h e r e p • s s n ~ a s s n) : :r • age < 65

---- (forall x in (select p except (placements = p - placements+ (4)

s e t (s t r u c t (j o b : j , s a l : s a l a r y)) ,

applications ---- applications -- set j)

from os • PERS p

w h e r e p . s s n = a s s n) : x . a g e _~ 65) a n d

(fora l l x in (se lec t p
f r o m os • PERS p

w h e r e p . s s n : / : a s s n) : x . a g e _~ 65)

: (f o r a l l p i n o s . PERS: (p . ssn : assn) i m p l i e s (5)
p except (placements : p • placements+

s e t (s t r u c t (j o b : j , s a l : s a l a r y)) ,

a p p l i c a t i o n s = p • a p p l i c a t i o n s -- se t j) • age ~ 65) a n d
(f o r a l l p i n o s . PERS (p . ssn ¢ a s s n) i m p l i e s (p • age < 65)

---- (fora l l p in o s . PERS (p . ssn ---- a s s n) i m p l i e s (p . age ~ 65) a n d
(f o r a l l p in os • PERS (p . ssn ~ a s s n) i m p l i e s (p . age < 65)

(6)

T h e above example t races the s y s t e m a t i c r educ t ion of the consequent of
t he goal t h a t is gene ra t ed for ver i fying t h a t the H i r e - t r a n s a c t i o n preserves in-
t e g r i t y of cons t r a in t C4. The p roof s t a r t s by s u b s t i t u t i n g the t r a n s a c t i o n in t he
cons t r a in t p r ed i ca t e (1) and unfolding the d a t a b a s e specific def in i t ions of t he
t r a n s a c t i o n and cons t r a in t (2). In general , th is resul ts in a h igh ly c omple x p r o o f
t e rm. For tuna te ly , as a l r e ady sugges ted by [2], m a n y of the c omple x t e r m s can
be eas i ly r educed using s t a n d a r d 2 r educ t ion rules for t he t u p l e da t a type"

2 In Isabel le /HOL syntax these rules are actually encoded at a much lower level. As was
already mentioned in Section 3, Isabelle uses non-labeled tuples instead of labeled
records, and the reductions are realized by using s tandard rules involving the typical
operations f s t and snd.

406

[REC1] s t r u c t (a l : e l , . . - , an : en) • ai = ei

[REC2] i e n ~ e e x c e p t (a l : e l , . . . , an : e n) " ai = ei

[REC3] i • n ~ e e x c e p t (a l : e l , - " , an : e ~) . ai = e . ai

The above rules allow the Simplifier to identify those cases of a transaction
and constraint operating on different class extents such that integrity is trivially
preserved. For instance, application of the first rule [REC1] to (2), discards the
update operation on the Job-extent. Note that such an update is 'irrelevant' in
the presence of the current constraint predicate, since the constraint only takes
the Person-extent into account. At this point, simplification with the default
Simplifier stops : none of the standard rewrite-rules matches with the remaining
proof term (3) and additional knowledge about the general structure of the proof
goals tha t are generated is needed, to proceed with simplification.

By studying the cases where the Simplifier got stuck during a transaction
safety proof, several recurring patterns could be identified. For instance, in Sec-
tion 4, we defined the contents of the extent of a class after an update operation
occurs as the union (+) of the set of objects that got changed and the set of
objects tha t did not change. Combining this with the assumption tha t many
constraint predicates quantify over class extents, we will be frequently left with
terms that match with one of the following rules

[UN_ALL] (f o r a l l x i n (A + B) : ¢ (x)) = (f o r a l l x i n A : ¢ (x)) a n d
(foral l :c i n B : ¢(x))

[UN_EX] (ex is t s x in (A + B) : ¢ (x)) = (e x i s t s x i n A : ¢ (x)) o r
(e x i s t s x i n S : ¢(x))

The above rules will split universal and existential quantifications so that is
discriminated between the 'modified' and the 'unmodified' case. For instance,
the first rule [UN_ALL] matches with term (3) of the example proof, and the
Simplifier splits the quantification resulting in (4). Note that the proposition on
the left-hand side of the conjunction quantifies over the collection of modified
objects, while the quantification over the collection of objects tha t is not modified
is on the right-hand side.

At this point, the general structure of the goal gradually seems to disappear.
Transactions and constraints can be expressed in many ways, and general pat-
terns can hardly be identified. Transaction definitions, however, frequently use
a select-from-where clause, making it useful to add the following reduction rules

[DIS1] forall y in (se l ec t e (z)
f rom x in A
wherep(x)) : ¢(y) = forall x in A : p (z) implies¢(e(x))

[DIS2] exists y in (select e (x)
f rom x in A
w h e r e p (x)) : ¢(y) = e x i s t s x i n A : p (z) a n d ¢ (e (x))

The above rules will distribute functional replacements over quantifier bod-
ies. This enables the Simplifier to also identify combinations of transactions and
constraints where - - although the same class extents are involved - - integrity is

407

trivially preserved because different attributes of the objects are accessed. For
instance, application of the first rule [DIS1] to (4), will distribute the functional
replacement over the quantifier body, thus resulting in (5). Now, simplification
can proceed using standard reduction rules. Using [REC3], the Simplifier de-
stroys the remaining record-update operation, and we are left with a formula
that closely matches the original assumption (6). The remaining term will be
solved since the Simplifier automatically asserts the original assumption

forall x in o s • PERS : x • age _ 65

as an additional rewrite rule while simplifying the consequent. D

5.2 A Deta i led Analysis using the ND-Solver

Unfortunately, not all goals are as easily solved as the one that is discussed in
the previous example. Often, when a transaction and constraint operate on the
same parts of the database, it becomes difficult to completely solve the goal by
simplification. There are many possibilities of how the final proof term may look
like and there hardly seems to be a general pattern that would allow further
simplification. For instance, the H i r e transaction updates the app l i ca t i ons -
field from the PERS-table, which is exactly the same field that is also accessed by
the integrity constraint oc3 . In this case, simplification alone cannot prove the
entire goal and the following goal is left after simplification:

(f o r a l l x i n PERS :

f o r a l l y i n x - a p p l i c a t i o n s : g e t _ J o b (o s y) . r e q _ s k i l l s < x • a b i l i t i e s)

(f o r a l l x i nPEI~S : f o r a l l y i n x • a p p l i c a t i o n s -- s e t (j) :

g e t _ J o b (o s y) • req_skills _~ X. abilities) (7)

Do we need to derive another rewrite-lemma that will allow further simpli-
fication of this term? In the approach taken by Sheard & Stemple [2], further
simplification would be employed by adding the following rule

(forallzlnA : ¢ (x))~ (f o r a l l x i n (A - B) : ¢(x))

to their knowledge base. Indeed, by adding the above rule to the Isabelle Sim-
plifier we could also solve the remaining proof goal. However, many of such rules
can be added and one may doubt whether they would apply more frequently in
other proofs. This is one of the shortcommings of their approach as mentioned
in [2]

Fortunately, Isabelle largely eliminates the need for adding an extensive
amount of knowledge to the Simplifier. The simplifications discussed in the previ-
ous section are usually sufficient to already yield a proof goal that can be further
processed by the Natural Deduction Solver, which only employs standard lem-
mas by means of introduction and elimination properties for HOL. In the case of
formula (7), Isabelle will invoke the introduction and elimination properties of

408

universal quantification and set-membership, eventually proving the validity of
(7). By interleaving the slightly customized Isabelle Simplifier with the Natural
Deduction Solver, a powerful transaction verifier is provided for: most of the
examples can be solved in just a few seconds time.

~ - - - * ~ l i~li~ll i~li~li , ,~at~'alldl
 lOliiHi imL 'JlZ]HEIEmmmB
m mwwm, w,,,.mmlm
m ¢,,.,i~m,~a[,,~Jnnlom, m ,~I]Ii]B]Ii]glHK~II[R~JN[R~]IIF!I~

Table 1. Proof Timings for the Job Specification (in seconds)

Table 5.2 shows the proof-times for our example specification. All timings are
obtained running IsabeUe on an ordinary SPARC-5 workstation with 80MB of
internal memory. Horizontally alligned are the constraints, while the transactions
are vertically alligned. Including the implicit schema constraints for referential
integrity and object identity a total of 11 constraints is listed. This generates a
total of 33 proof goals, one for each combination of transaction and constraint.
These are put in a ML-text file and on loading the specification, the file will be
automatically processed by the Isabelle theorem prover. Only one of the goals
(for C2 and Fire) could not be solved automatically; constraint C2 should be
tested at run-time after the F/re-transaction commits.

6 Comparison with Related Work

Our work follows the line of research set out by Sheard & Stemple ([2]). In this
approach, the Boyer-Moore theorem prover is used to implement a compile-time
mechanism to verify constraint invariance with respect to update operations on
a relational database. The initial database specifications are given in a language
called ADABTPL, which are then mapped to the Boyer-Moore theorem prover
for automatic proof assistance. To that end, the Boyer-Moore theorem prover
is enriched with higher-order functions, and a basic theory about tuples, finite
sets and natural numbers is defined, in which databases can be represented.
The actual transaction safety verifier component is implemented using a term-
rewriting system. The term-rewriter uses a large knowledge base, which stores
general knowledge about the transaction and constraint language. This includes
basic theorems, such as a rule asserting the commutativity of the set-union op-
eration. Much of the power of the Sheard & Stemple system derives from adding
more problem-specific rules (so-called meta-lemmas) which enable the simplifi-
cation of terms that frequently appear during transaction safety analysis. Our
approach using Isabelle/HOL differs in that it uses the object-oriented rather

409

than the relational framework. Also, we employ a novel more general verifica-
tion strategy that uses natural deduction in addition to term-rewriting. This has
the benefit of offering a more general proof strategy for transaction verification.
Initially, we tried to follow the approach of [2], but we soon ended up adding
many new non-standard rewrite-rules to the Simplifier. Often, it was doubtful if
they were relevant in the context of other database specifications; the knowledge
base approach of Sheard & Stemple [2] tends to tune the transaction verifier to
specific example databases, rather than offering a verifier which is more broadly
applicable.

In [12] another related approach is described, as employed in the DAIDA-
project, which also allows for proof assistance in demonstrating constraint in-
variance with respect to operations on a database. The main topic of [12] did
not concern constraint invariance, but incremental refinement of initial database
specifications to actual database programs; the work on proof asssitance for con-
straint invariance is more or less a spinn-off of the actual topic of the DAIDA-
project. The initial database specification is given in a language called TDL, and
the TDL specification is then mapped to Abrial's language of Abstract Machines.
By employing the B-tool, interactive proof assistance is offered for checking con-
straint invariance. The most notable difference with our approach employing Is-
abel le/HOL is that our system offers automatic, rather than an interactive, proof
assistance. Another difference is that T M / O D M G employs an object-oriented
style and is purely functional, whereas TDL has less object-oriented features
and uses an explicit pre-/post-conditional style based on predicates and sets.

The later work of [3-5] follows a different approach. It exploits several tech-
niques related to abstract interpretation for the task of compile-time transaction
verification in an 02 database system. Their analysis starts with a simple com-
pilation technique to identify those combinations of transaction and constraint
that are certainly not in conflict because the transaction and constraint access
different attributes or class extents. The same analysis is actually implemented
in our system using term-rewriting with the Isabelle Simplifier tool. For those
combinations of transaction and constraint that could not be proved safe in the
first step, Benzaken et al use a second more detailed analysis. This analysis takes
some details of the semantics into account. It can, for instance, prove that dele-
tion of an object from a set does not affect a constraint that universally quantifies
over it. It is not clear, however, what the exact limitations are of taking only
small portions of the semantics of the application into account. In principle, the
line of research set out by Sheard & Stemple [2] (and our extension of it) offers
more potential: since the full semantics of the application is taken into account,
we should eventually increase the amount of proofs that can be performed. Fur-
thermore, we use a functional rather than an imperative programming language
for transaction specification. It is well-known that functional languages offer a
relatively clean logical structure which is more suitable for verification; in im-
perative languages the simple structure is destroyed by constructions such as
assignment and aliasing.

410

7 C o n c l u s i o n s & F u t u r e W o r k

In this paper, we have outlined a framework for compile-time verification of
transaction safety in an object-oriented database. It is a first attempt at gener-
alizing the ideas of Sheard & Stemple as presented in [2] to the object-oriented
data model, using modern theorem proving technology. The higher-order logic Is-
abelle theorem prover is used to automatically verify which constraints might, or
might not be violated by a given transaction. An improved verification strategy
is presented, that involves natural deduction in addition to term-rewriting. This
eliminates the need for extensive customized proof strategies, and our system
largely builds on general purpose proof algorithms supplied by the Isabelle/HOL
package.

Tests have been done using a prototype system for a realistically large ex-
ample specification, which we believe is representative of many real-world OO
database applications. The example includes several complex transactions and
constraints which are potentially in conflict because the same extensions, or often
even the same attributes, are accessed. For instance, the constraint C2 mentions
the placed-field from the JOB-table, and the placements-field from the PERS-
table. Although the same fields are updated by the Hire transaction, the system
proves that there is actually no conflict. Such a proof can only be done using
a sophisticated semantic analysis. Typically, these are the harder cases where
our approach should offer more potential than an analysis based on an abstract
interpretation as outlined in [3-5] which only takes some very global properties
of the semantics into account.

In this paper we have highlighted some of the difficulties found in the mapping
of an object-oriented database schema to HOL, but many issues remain open
and full ODMG is not yet supported by our first prototype. For instance, our
system does not yet support the concept of relationships, nor do we fully support
the important notions of polymorphic sets and late-binding. Embedding of these
language features - whose semantics is known to be difficult [13-15] - - in the
HOL framework remains a future challenge, but is a topic of ongoing research. At
present we are experimenting using disjoint sum-types to represent polymorphic
sets in the HOL-setting. Obviously, this will further complicate the proofs as
additional case-splits are needed.

On the other hand, it seems that there are some ways that reasoning about
the OO case is easier than for the relational case. The relational data model does
not provide support of nested-sets and other complex (nested) data structures as
already available in HOL. As a consequence, when mapping a relational database
language to HOL, we do not fully benefit from the power of the HOL language
and rather inefficient input is generated for the theorem prover.

An interesting feature of our system is that it is more broadly applicable
than transaction verification; since it largely builds on standard Isabelle proof
algorithms, the system should be fairly easily customized to different domains.
Preliminary test results using the bank-account example of [16,17] have shown
that the same proof algorithms are applicable to several forms of transaction
commutativity analysis as well.

411

A topic that was not discussed in this paper is the generation of feedback
to database designers. At present, the system only reports a 'yes', could prove,
or 'no', could not prove, but eventually we would like to support some more
advanced modes of feedback to database designers. For instance, designers would
typically like to know why a proof actually failed or how a transaction might
be corrected such that integrity will be preserved. An overview of the different
modes of feedback can be found in [18] and we plan to study the implementation
of a similar feedback component for our system.

R e f e r e n c e s

[1] Piero Fraternali & Stefano Paraboschi, "A Review of Repairing Techniques
for Integrity Maintenance," in Proceedings First International Workshop on
Rules in Database Systems, Edinburgh, Scotland, 30 August-1 September,
1993, Norman W. Paton & M. Howard Williams, eds., Springer-Verlag, New
York-Heidelberg-Berlin, 1994, 333-346.

[2] Tim Sheard & David Stemple, "Automatic verification of database transac-
tion safety," ACM Trans. Database Syst. 14 (Sept., 1989), 322-368.

[3] Veronique Benzaken & Doucet, "Themis: a database programming language
with integrity constraints," in Database programming languages (DBPL-4):
Proceedings of the 4th International Workshop on Database Programming
Languages, Object Models and languages, Springer-Verlag, 1994, 243-262.

[4] Veronique Benzaken & Doucet, "Themis: a Database Programming Language
Handling Integrity Constraints," VLDB Journal 4 (1995).

[5] Veronique Benzaken & Xavier Schaefer, "Ensuring efficiently the integrity of
a persistent object store via abstract interpretation," in Proceedings of the
7th InternationaI Workshop on Persistent Object Systems, Morgan Kauf-
mann, May, 1996.

[6] H. Balsters, R. A. de By & R. Zicari, "Typed sets as a basis for object-oriented
database schemas," in ECOOP 1993 Kaiserslautern, 1993.

[7] Ren@ Bal, Herman Balsters, Rolf A. de By, Alexander Bosschaart, Jan Flok-
stra, Maurice van Keulen, Jacek Skowronek & Bart Termorshuizen, "The
TM Manual; version 2.0, revision e," Universiteit Twente, Technical report
IMPRESS / UT-TECH-T79-001-R2, Enschede, The Netherlands, June 1995.

[8] Luca Cardelli, "A semantics of multiple inheritance," Inf. and Comput. 76
(1988), 138-164.

[9] Herman Balsters & Chris C. de Vreeze, "A semantics of object-oriented
sets," in The Third International Workshop on Database Programming Lan-
guages: Bulk Types & Persistent Data (DBPL-3), Aug. 27-30, 1991, Naf-
plion, Greece, Paris Kanellakis & Joachim W. Schmidt, eds., Morgan Kauf-
mann Publishers, San Mateo, CA, 1991, 201-217.

[10] R.G.G. Cattell, The Object Database Standard: ODMG-93, Morgan Kauf-
mann Publishers, San Mateo, CA, 1994.

412

111] Lawrence C. Paulson, IsabeIIe: A Generic Theorem Prover, Lecture Notes in
Computer Science #828, Springer-Verlag, Berlin, 1994.

[12] Alexander Borgida, John Mylopoulos & Joachim W. Schmidt, Database Pro.
gramming by Formal R.eflnement of Conceptual Designs, IEEE Data Engi-
neering, Sept., 1989.

[13] Luea CardeUi, "Amber," Combinators and Punctional Programming, New
York-Heidelberg-Berlin (1986).

[14] G. Castagna, "Object-Oriented Programming: A Unified Foundation," Progress
in Theoretical Computer Sc/ence (1996,).

[15] Peter Buneman & Atsushi Ohori, "A Type System that Reconciles Classes
and Extents," in The Third Internationa] Workshop on Database Program-
ming Languages: Bulk Types & Persistent Data (DBPL-3), Aug. 27-30, 1991,
IVafplion, Greece, Paris Kanellakis & Joachim W. Schmidt, eds., Morgan
Kauflnann Publishers, San Marco, CA, 1991, 191-202.

[16] Man Hon Wong & Divyal~nt Agrawal, "Context-specific synchronization for
atomic data types in object-oriented databases," TCS (1995).

[17] William E. Weihl, "The hnpact of Recovery on Concurrency Control," Jour-
nal of Computer and System Sciences (1993).

[18] David Stemple, Subhasish Mazumdar & Tim Sheard, "On the modes and
meaning of feedback to tr~msaction designers," in Proceedings of ACM-SIGMOD
1987 International Conference on Management of Data, San Francisco, CA,
May 27-29, 1987, Umeshwar Dayal & Irv Traiger, eds., ACM Press, New
York, NY, 1987, 374-386, (also appeared as ACM SIGMOD Record 16, 3,
Dec., 1987).

