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Man/machine interface based on the discharge 
timings of spinal motor neurons after targeted 
muscle reinnervation
Dario Farina1,​2*, Ivan Vujaklija1,​2, Massimo Sartori2​†, Tamás Kapelner2​†, Francesco Negro2,​3,  
Ning Jiang4, Konstantin Bergmeister5,​6, Arash Andalib7, Jose Principe7 and Oskar C. Aszmann5,​6

The intuitive control of upper-limb prostheses requires a man/machine interface that directly exploits biological signals. Here, 
we define and experimentally test an offline man/machine interface that takes advantage of the discharge timings of spinal 
motor neurons. The motor-neuron behaviour is identified by deconvolution of the electrical activity of muscles reinnervated by 
nerves of a missing limb in patients with amputation at the shoulder or humeral level. We mapped the series of motor-neuron dis-
charges into control commands across multiple degrees of freedom via the offline application of direct proportional control, pat-
tern recognition and musculoskeletal modelling. A series of experiments performed on six patients reveal that the man/machine 
interface has superior offline performance compared with conventional direct electromyographic control applied after targeted 
muscle innervation. The combination of surgical procedures, decoding and mapping into effective commands constitutes an 
interface with the output layers of the spinal cord circuitry that allows for the intuitive control of multiple degrees of freedom.

Natural and intuitive control of upper-limb prostheses requires 
the establishment of a man/machine interface that explores the 
perception–action cycle directly based on biological signals1–3. 

These signals are processed to extract information about the user’s 
intent and are translated into commands for the prosthesis. The neu-
romuscular system can be interfaced at various levels to extract neu-
ral signals that code the intended movement, for example, via brain, 
nerve or muscle recordings4–9. Although direct brain signal decoding 
provides the neural information associated with movement inten-
tion and control10–12, peripheral approaches (nerves or muscles) are 
so far the only clinically viable solutions for re-establishing upper-
limb function in amputees4,13. In these patients, the availability of 
nerve and muscle structures above the amputation allows access to 
neural information at the output of the spinal cord circuitries.

Muscle interfacing is generally possible only when relevant 
remnant muscle tissue is available following the amputation. The 
higher the amputation level, the greater the need for control sig-
nals, with fewer muscles available to interface for intuitive control. 
Nonetheless, muscles can be denervated and reinnervated by nerves 
that used to carry the neural code to the missing limb14. This proce-
dure is known as targeted muscle reinnervation (TMR)2,15,16 and it 
constituted a breakthrough in prosthetics17. In TMR, muscles serve 
as biological amplifiers of nerve activity because of the association 
between the action potentials discharged by the efferent nerve fibres 
(axons of motor neurons) and the action potentials of the inner-
vated muscle fibres. Each nerve action potential is transduced into 
a compound muscle fibre action potential that carries the same  
neural information, coded by its timing of occurrence.

TMR and electromyographic (EMG) recordings from reinner-
vated muscles determine a man/machine interface that, in principle, 

allows the indirect detection (from muscle signals) of the ensemble 
efferent activity of any nerve once it is directed to an accessible tar-
get muscle. However, the classic use of TMR and EMG for man/
machine interfacing does not aim at decoding the underlying neu-
ral information (timings of occurrence of action potentials) sent to 
muscles by motor neurons. Rather, this interface uses the EMG as 
an interferent signal (coloured noise) from which few global fea-
tures are extracted18, for example, amplitude or spectral moments, 
for either direct control or for identifying sets of predefined move-
ments19. This global approach is common to previous TMR inves-
tigations, even when more advanced (multi-channel) EMG systems 
have been employed19. This procedure limits the decoding quality 
of the neural interface because the global EMG is a spatiotempo-
ral summation of action potentials that creates correlations among 
multiple channels and therefore determines an ill-posed inverse 
problem for decoding20. Similarly, control methods based on more 
selective intramuscular EMG recordings have been so far based on 
global EMG analysis without decoding the contributions of individ-
ual motor neurons21,22 or on a very small number of decoded motor 
neurons (for example, two experimentally decoded motor neurons 
from intramuscular EMG signals23). Decoupling the neural infor-
mation contained in the EMG signals, which exactly correspond to 
the timings of discharge of the efferent nerve fibres, from the shapes 
of the muscle fibre action potentials would determine a direct  
interface with the spinal motor neurons.

Here, we describe a neural interface that, following TMR24,25, 
extracts the sources of neural information—the discharge timings 
of motor neurons—through EMG deconvolution. The decoded 
neural information is then mapped into effective commands for 
intuitive prosthetic control. The effectiveness of the decoded neural 
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information for potential prosthesis control is demonstrated offline 
by associating the activity of motor neurons innervating the missing 
limb of amputees with the kinematics of intended motor tasks. We 
experimentally validate this association for multiple degrees of free-
dom in six patients following TMR. Therefore, here we present and 
substantiate the concept of a man/machine interface that extracts 
neural information sent from the output spinal cord circuitries by a 
combination of surgical procedures, advanced neural decoding and 
mapping into multiple degrees of freedom.

Results
The approach is based on recording multi-channel (>​50 chan-
nels) EMG signals from reinnervation sites following TMR. The 
EMG signals are decoded using a blind source separation method 
that separates the timings of activation of each motor unit from 
the waveforms representing the muscle fibre action potentials. 
The decoding thus provides multiple series of discharge tim-
ings of motor neurons reinnervating the target muscles. The dis-
charge timings are projected into degrees of freedom by various 
mapping methods. Figure  1 schematically presents the process-
ing steps common to all of the analyses performed. Three main 
experimental tests were conducted on TMR patients (Table 1) to 
present and validate the decoding and mapping approach. The aim 
of each experiment was to highlight different characteristics of the 
proposed approach. Experiment 1 presents the classification of the 
motor-neuron activity into discrete classes. Experiment 2 shows 
proportional control based on motor-neuron discharges. Finally, 
experiment 3 presents simultaneous and proportional mapping 
over multiple degrees of freedom.

Experiment 1 (classification). This experiment was performed 
on patients T1, T2 and T3 (Table 1) and was designed to compare 

the use of motor-neuron discharge timings with respect to classic  
global EMG features for the classification of intended tasks into 
a predefined set of classes (motor tasks). For this purpose, the 
EMG signals recorded from the reinnervation sites (six reinner-
vation sites for patient T1, four for T2 and five for T3; Table  1) 
were decomposed (decoded) into the contributions of individual 
motor units, separating the discharges of the innervating motor 
neurons from the waveforms of the muscle fibre action potentials. 
The discharge timings were then pooled to obtain series of ensem-
ble discharge timings for the muscle regions where the record-
ing EMG electrode grids were located (the area covered by each 
recording EMG grid was divided into four muscle regions). These 
series of ensemble discharges represented the neural drive sent to 
the corresponding muscle regions and were used as features for 
offline classification into 9, 7 and 11 classes (movements) for the  
three patients investigated.

The average number of motor units identified by decomposition 
of the multi-channel EMG signals in each reinnervation site dur-
ing the executed tasks was 23.1 ±​ 11.2 (mean ±​ s.d., average over the 
three patients and all reinnervation sites and tasks).

There were no significant differences in the number of decoded 
motor units or in the accuracy of decoding between reinnerva-
tion sites, an observation that was valid for all experiments and all 
patients. This result is in agreement with several previous studies on 
EMG decoding in able-bodied individuals across a variety of mus-
cles and contraction types26. The use of motor-neuron discharge 
timings for motion classification provided an almost perfect clas-
sification accuracy of >​97% as an average over the three patients 
(Fig. 2). In the current experimental conditions, this performance 
was superior to both the use of the EMG root mean square (r.m.s.) 
(average accuracy of 71% across all patients) and the use of r.m.s. 
together with time domain features (average accuracy of 85%). 

TMR

Mapping

Wrist flexion Wrist extension

Decoding of the neural driveNeural drive
to the muscles

Prosthetic
control

Figure 1 | Interfacing spinal motor neurons in humans. Nerves are surgically redirected to innervate accessory muscles used as biological amplifiers of 
nerve activity by TMR. The discharge timings of the innervating motor neurons are decoded by deconvolution of the surface electromyographic signals. 
The series of discharge timings are then mapped into degrees of freedom. The mapping is obtained by different approaches, demonstrated in this study 
with three experiments. The interfacing provides access to the output from the spinal cord, as schematically represented by the colours of the series of 
discharges. Different colours used for the spike trains identify specific electrode grids from where the spikes were extracted (for example, spike trains in 
green were extracted from the upper grid mounted on the patient). The discharge patterns shown here are extracted from data acquired from patient T1; 
these discharge timings are represented with the sole purpose of describing the general concept proposed in this work.
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The difference was particularly evident for patient T3, who could 
execute the greatest number of tasks (11 classes) and for whom 
the classification accuracy was only ~70% when using the classic 
EMG features and >​95% when using the decoded motor-neuron 
discharge timings (Fig. 2). Figure 2 presents the confusion matrices 
for the classification.

Figure 3 highlights one of the reasons for the effective discrimi-
nation of motor tasks based on motor-neuron discharge timings 
with respect to global EMG features. The action potentials of three 
motor units are representatively shown as detected over the sur-
face of the pectoralis muscle in subject T1 during hand closing and 
wrist supination. The spatial mapping of the global EMG ampli-
tude and the action potentials of the motor units are presented. 
The global EMG amplitudes, which are shown as an amplitude map 
(Fig. 3a), are similar for the two tasks, and are therefore difficult to 
discriminate using this feature. The spatial distribution of ampli-
tude is indeed localized in the same area, represented by the upper 
left corner of the spatial amplitude maps in Fig. 3a. Therefore, the 
two tasks are executed by a neural drive reaching similar regions 
of the reinnervated muscles. A direct control of these two tasks 
in a physiological way (that is, with natural muscle contractions  
corresponding to the two tasks) would not be possible because of 
this overlap. Classification of these two classes with global EMG 
features is, however, possible to some extent since classification 
uses features that may differ between the two tasks. Nonetheless, 
the similarity of the two EMG amplitude maps and the variability 
in execution over multiple trials reduces the classification perfor-
mance when using global features. The spatiotemporal structure of 
the active motor units during the tasks is conversely very different 
and can be used for more robust discrimination.

This experiment showed that the extraction of the timings of 
discharge of motor neurons may be beneficial for discriminat-
ing tasks of the missing limb with respect to global EMG feature 
classification. In the proposed approach, contrary to the global  
EMG that represents an average activity over the skin surface, each 
motor neuron may provide discriminating information from its 
series of discharges as well as from the location of the innervated 
muscle fibres.

Experiment 2 (direct control). This experiment (patients T4, T5 
and T6) was designed to test the use of motor-neuron discharge 
timings for proportional control. This has implications in methods 
for direct control following TMR. The tests were done on a single 
degree of freedom which was mapped proportionally from global 
EMG amplitude and from motor-neuron discharge timings during 
slow-varying force contractions, in the full range of muscle activa-
tion. In this experiment, the average number of motor units iden-
tified by decomposition of the multi-channel EMG signals at the 
observed reinnervation site across all three patients was 11.8 ±​ 3.8. 
Figure 4 presents an example of slow linear increase and decrease in 
intensity of activation by patient T4. Decomposition of the generated 
signals qualitatively revealed the two physiological mechanisms for 
increasing the level of activation: recruitment of additional motor 
neurons and modulation of the discharge frequency of the active 
motor neurons (Fig. 4c). It was also evident that the information in 
the population activity of motor neurons was highly correlated to 
the intensity of muscle activity and this was repeatable over different 
trials of the same task (Fig. 4e).

The representative results shown in Fig.  4 were confirmed in 
the three tested patients. Figure 5 shows representative estimates of 
contraction intensity for one patient as well as the individual results 
for each patient. The motor-neuron discharge timings have been 
pooled to obtain the ensemble of discharge timings of all motor neu-
rons, as an estimate of the neural drive. This estimate was compared 
with the global EMG amplitude. The estimates using motor-neuron 
discharge timings outperformed those obtained with surface EMG 
for a large range of processing intervals and for all patients (Fig. 5).

This experiment showed that it is possible to extract direct pro-
portional commands from motor-neuron discharge timings and 
these commands are more accurate than those obtained with classic 
EMG amplitude.

Experiment 3 (control of multiple degrees of freedom). Finally, 
a direct mapping between decoded motor-neuron discharge 
rates and kinematics was performed in experiment 3, for patient 
T6 only. The mapping into mechanical function was performed  
with two methods, either signal- or model-based. The signal-based  

Table 1 |  Characteristics of the patients investigated.

Patient T1 T2 T3 T4 T5 T6

Age 25 32 40 31 17 51

Sex M M M M M M

Amputation Glenohumeral right Glenohumeral left Glenohumeral left Transhumeral left Transhumeral left Transhumeral left

Time since amputation 3 years, 2 months 3 years, 2 months >​5 years 2 years, 3 months >​5 years >​10 years

Time since TMR surgery 10 months 9 months 1 year, 5 months 9 months 4 years, 2 months 4 years, 4 months

Nerve in pectoralis major 
clavicular head

Musculo-cutaneous Ulnaris Musculo-cutaneous – – –

Nerve in pectoralis major 
sternocostal part

Medianus Medianus Medianus – – –

Nerve in pectoralis major 
abdominal part

Medianus - Medianus – – –

Nerve in pectoralis minor Ulnaris Medianus Ulnaris – – –

Nerve in latissimus dorsi Radialis Radialis Radialis – – –

Nerve in infraspinatus Radialis – – – – –

Nerve in biceps brachii 
caput longum

– – – Medianus Medianus Medianus

Nerve in biceps brachii 
caput breve

– – – Ulnaris Ulnaris Ulnaris

Nerve in caput laterale 
tricipitis

– – – Radialis Radialis Radialis
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The second mapping approach in this experiment was  
based on biomechanical modelling. Neural data-driven musculo
skeletal modelling was used to demonstrate the possibility of 
reconstructing the neuro-mechanical function of the patient’s phan-
tom limb. This approach enabled translating motor-neuron dis-
charge timings, decoded from reinnervated residual muscles, into  
the forces simultaneously produced by 12 musculo-tendon units 
acting on a mechanical model of the amputee’s missing limb 
(Fig. 7). The forces of the muscle-tendon units were concurrently 
projected to three degrees of freedom of the missing limb (elbow 
flexion/extension, forearm pronation/supination, wrist flexion/
extension). The similarity between joint moments in the intact  
(as reference) and missing limb was quantified using both R2 and the 
root mean squared difference (r.m.s.d.). Figure 7 shows a represen-
tative example, which involved elbow flexion/extension (R2 =​ 0.82, 
r.m.s.d. =​ 0.91 Nm), forearm rotation (R2 =​ 0.77, r.m.s.d. =​ 0.04 Nm), 
and wrist flexion/extension (R2 =​ 0.60, r.m.s.d. =​ 0.02 Nm), simul-
taneously. When decoding mechanical function for two degrees of 
freedom simultaneously—involving wrist rotation and flexion/exten-
sion—the performance coresponded to R2 =​ 0.72, r.m.s.d. =​ 0.04 Nm 
and R2 =​ 0.73, r.m.s.d. =​ 0.05 Nm, respectively. When only a single 
degree of freedom was estimated (elbow flexion/extension), the per-
formance corresponded to R2 =​ 0.79, r.m.s.d. =​ 1.24 Nm.

These results illustrate the possibility, in principle, of estimating 
the biomechanics of a missing limb by decoding the neural drive to 
the muscle units and therefore the ultimate neural code represent-
ing the motor tasks. With this approach, predicted limb biomechan-
ics can be translated into mechatronic functions of external devices 
that can be as complex as an intact biological limb.

approach applied a dimensionality reduction to the motor-neuron 
discharge timing series without requiring kinematic labelling. The 
model-based approach projected the series of discharge timings 
into degrees of freedom by a forward biomechanical estimation  
of joint moments.

The signal-based approach was applied to 244 unsorted 
extended sources (over all reinnervation sites) during a recording 
of 30 s. The sources were extended by the EMG decomposition 
approach (see Methods) and all extensions were maintained for 
this estimation approach, contrary to all other methods presented, 
for which the extended sources were not used. The extensions of 
the sources represent redundant information, but redundancy 
is exploited to define appropriate subspace projections with 
this approach. Due to the inclusion of extended sources for this 
approach, the number of sources used (244) was greater than for 
all other methods.

Figure  6 shows the analysis made on three trials of the same 
composite movement with three concurrently active degrees of 
freedom. The third trial was used for test purposes, after calibration 
in the first two trials. The estimate on the train and test trials in this 
representative example corresponded to an average R2 in the estima-
tion of kinematics of 0.87 and 0.73, respectively. It has to be noted 
that it is impossible to guarantee that the mirror movements were 
identical for the two sides and therefore the obtained R2 is an under-
estimate of the actual performance. The performance obtained with 
three concurrently active degrees of freedom was similar to those 
obtained for two active degrees of freedom (with an average R2 of 
0.65 and 0.72, respectively) and for one degree of freedom (0.81 and 
0.76). Figure 6 shows the quality of the matching.
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Figure 2 | Confusion matrices for the classification of motions of patients T1, T2 and T3 when using features extracted from global EMG analysis  
(r.m.s. and r.m.s. with time domain) and when using the neural information as motor-neuron discharge timings. The classified tasks are: elbow 
extension/flexion (EE/EF), hand close/open (HC/HO), wrist extension/flexion (WE/WF), wrist pronation/supination (WP/WS), thumb abduction/
adduction (TAb/TAd), thumb extension/flexion (TE/TF), and no movement (NoM). The colour scale represents the accuracy (%) in discrimination 
between pairs of classes in the confusion matrices.
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Discussion
We have presented a new neural interface based on the decoding 
of the discharge timings of spinal motor neurons that provides the 
neural drive to muscles of missing limbs in amputees, to generate 
intuitive commands for potential prosthesis control. The interface 
is realized by the combination of TMR, which connects the axons of 
the target motor neurons to available muscle fibres, and the decou-
pling, by deconvolution, of the electrical activity of the muscle fibres 
innervated by each axon from multi-channel EMG recordings.  
We have shown that this interface enables the generation of mean-
ingful and accurate control signals for potential prosthetic control, 
both in the context of pattern recognition with a large number of 
classes and within the paradigm of simultaneous and proportional 
control of multiple degrees of freedom.

The proposed interface allowed the detection of a large num-
ber of motor neurons (on average >​10) for each reinnervation 
site. The series of discharges of these motor neurons could be  

accurately identified, so that the neural information sent from the 
pools of motor neurons previously innervating the missing muscles 
in the patients could be assessed. At a theoretical level, the decoded 
motor-neuron behaviour from EMG recordings may be considered 
a new EMG feature for use in myocontrol; however, we consider it 
as conceptually different from any previous attempt for myocon-
trol. The main breakthrough is the change of analysis scale from 
macroscopic (EMG) to microscopic (timing of motor-neuron dis-
charges). Because the EMG is a signal generated by the spatiotem-
poral convolution of thousands of motor-neuron discharges, any set 
of mathematically derived EMG features will reflect the temporal 
and spatial resolution of the EMG as a random process. In contrast, 
motor-neuron discharge timings have a precise physiological mean-
ing and represent the way in which movement is naturally coded 
at the spinal level. It is the same set of features that direct intrafas-
cicular nerve interfacing attempts to extract5. Therefore, our results 
are on par with the identification of discharges directly from axonal 
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Figure 3 | Single-channel electromyographic (EMG) recordings obtained from subject T1 during hand close and wrist supination of the phantom limb. 
a–d, EMG recordings during hand close task. e–h, EMG recordings during wrist supination task. a,e, The colour-map images represent the EMG r.m.s. 
values for all electrodes of the matrix used for recording. b,f, The EMG was decomposed into individual motor units. For clarity, only three representative 
motor units per task are presented with their multi-channel action potentials. The locations of the channels in the motor unit action potentials are coded 
with four colours; they represent an arbitrary partitioning applied to the grid to assign motor units to different regions of the reinnervated muscles. Each 
motor unit was assigned one of the four regions, according to the location of the peak value of the action potential waveforms. c,g, The discharge timings 
of the motor units were pooled into ensemble discharge timings. These ensemble motor-neuron discharges represent the neural drives reaching the 
four muscle regions. d,h, Single-channel EMG signals synchronized with the discharge timings of motor neurons. In this example, the task ‘hand close’ 
is performed with motor units assigned to the green and red portions of the grid, therefore the pooled discharge patterns are shown in green and red, 
respectively. Conversely, the ‘wrist supination’ task is performed with motor units all detected in the red portion of the grid. The colour maps for surface 
EMG amplitude are relatively similar between the two tasks, whereas the motor unit activity is different and represented by neural drives reaching different 
regions of the reinnervated muscles. These representative data explain the reason for the superior classification performance obtained when using motor-
neuron discharge timings with respect to global EMG features. In all cases, poor discrimination by surface EMG was due to similar EMG amplitude spatial 
distribution between two or more classes, whereas the motor-neuron pooled discharge timings differed between classes, as in the example reported here.
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interfacing with implanted intrafascicular electrodes. Nonetheless, 
with respect to implanted nerve recodings, the proposed system 
identifies a greater number of motor neurons and extracts the com-
plete series of discharges of these motor neurons (see for compari-
son, ref. 27 where the error rate is approximately 30% with at most  
5 or 6 decoded efferent fibres from nerve interfacing). In this view, 
the proposed approach constitutes the ultimate exploitation of TMR 
as a means for neural interfacing using muscles as biological ampli-
fiers. The results presented show that direct access to the neural 

code sent by peripheral nerves to muscles is possible and practical 
following TMR. Moreover, this study also shows that motor-neuron 
spike trains can be effectively used as a relevant source of infor-
mation for synthesizing complex prosthetic commands. In com-
parison, direct neural recordings have been usually applied to map 
commands using global features of the interference nerve signals 
without spike sorting (for example, ref. 28).

The accuracy of the proposed interface has been proven with 
various control approaches and experimental designs on patients 
with amputations at different levels. First, we applied methods for 
signal classification, which are dominant in the scientific literature 
on myocontrol29, to the decoded series of discharge timings. The 
classification results indicated an almost perfect discrimination 
(on average >​97%) of up to 11 classes. The results obtained from 
global EMG analysis in this study are partly in agreement with those 
reported in previous studies (for example, refs 15,19,30). However, 
given the relatively small number of available TMR patients in the 
current and previous studies and differences in the experimental 
and analysis conditions, comparisons between studies are difficult. 
For example, using classic EMG features, a classification accuracy 
of 98% and 93% was previously reported for two patients and eight 
classes30, which is a similar result as obtained in the present study for 
patients T1 and T2 for 7 and 9 classes, respectively. In our experi-
ment, however, the performance with classic EMG features degraded 
for patient T3 when classifying 11 classes and was lower than that 
previously reported in four patients for 16 classes19. However, three 
of the four patients in this previous study were transhumeral ampu-
tees with physiological innervation of the lateral heads of biceps and 
triceps and the window duration used for the analysis (256 ms) was 
longer than in our study (100 ms). In the experimental conditions 
of our study and with the choices we have made for the process-
ing parameters, the proposed approach based on decoding motor 
neurons led to greater accuracy than the classic pattern recognition 
approach. Given the relatively small number of patients in this and 
previous studies, however, this result cannot be generalized.

Furthermore, we tested the possibility for the patients to pro-
portionally control one degree of freedom through decoded motor- 
neuron activity (direct control). The decoded neural information 
allowed a finer separation of intensity levels than surface EMG ampli-
tude. Surface EMG has indeed an associated estimation variance that 
is limited by the bandwidth of the signal31, while the extracted neu-
ral information can in principle exactly predict force, because force 
is generated as a direct linear transformation of the decoded neural 
activity32. Accordingly, the variability in force control shown in Fig. 5 
was lower when using the motor-neuron discharge timings than 
with EMG amplitude in almost all conditions and patients tested. 
These results indicate the possibility of superior precision in propor-
tional control using the discharge patterns of motor neurons with 
respect to EMG amplitude.

The final experiment was related to the simultaneous and pro-
portional control of multiple degrees of freedom, shown for two 
approaches. The signal-based approach identifies the control sig-
nals without labelling of the kinematics during training, whereas the 
model-based approach is based on training and relies on the sub-
ject’s anatomy. Both methods provided an estimate of the mechanics 
of multiple degrees of freedom. The TMR procedure allows the full 
reconstruction of the neural signals sent to the muscles of the missing 
limb, despite the absence of these muscles, so that the biomechanics of 
the missing limb can be estimated, in principle, accurately. This exper-
iment was performed on only one of the patients, due to limited avail-
ability of the other patients. However, the patient who participated 
in this test did not show EMG signals of better quality than the other 
patients and, importantly, the decomposition was of the same quality 
in this and other patients. Moreover, the patients who participated in 
the second experiment, including the one who took part in the third 
experiment, had very similar performance in their motor neuron  
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Figure 4 | Motor-neuron behaviour during linearly increasing and 
decreasing intensity of activation in patient T4. a, Normalized amplitude 
maps of the interference EMG activity during a contraction of increasing 
and decreasing force (linear); red colours correspond to high values and 
blue colours to low values. b, The cue that was given to the patient as 
visual feedback to modulate the intensity of the contraction is shown as a 
black line. The surface EMG amplitude is shown as a red line. c, Discharge 
timings of motor neurons decoded through EMG decomposition (each 
motor neuron is represented by a different colour). Inset shows the 
zoomed-in discharges of individual motor neurons. d, Smoothed discharge 
rates of individual colour-coded motor neurons with respect to the cue. e, 
Instantaneous discharge rate estimated over intervals of 200 ms computed 
from the ensemble of motor-neuron discharges for three repetitions of the 
same task (red circles, blue squares and yellow triangles each represent  
a different repetition), showing the association between the instantaneous 
rate of motor neurons and intensity of activity. The behaviour of motor 
neurons during the ramp contractions in this representative example  
fully reflects the general observation on all patients tested and all trials. 
This is evident from the results on each patient shown in Fig. 5.
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proportional control (Fig. 5). Therefore, the patient selected for the 
third experiment on simultaneous and proportional control was 
similar to the others for the type and quality of neural information 

extracted and for the control he could achieve using this neural infor-
mation in a previous experiment. There is no reason to believe that 
the results of the third experiment are specific to the patient selected.
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Figure 5 | Estimates of muscle activation from EMG amplitude and motor neuron discharges. a, Force estimates for patient T4, based on the envelope of 
the EMG signals (blue) and motor-neuron discharge timings (red) with respect to the cue (black). b, Force estimates for patient T4 with post-processing 
based on averaging over three consecutive past intervals. Zoomed-in insets in a and b highlight superior estimates of muscle activation when using motor-
neuron discharges with respect to EMG amplitude. c, Standard deviation of estimation (colour coded for each of the three patients T4–T6) after linear 
detrending when varying the duration of the processing interval. d, Standard deviation of estimation when applying the post-processing to force estimates.
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The superior performance of the use of motor-neuron discharge 
timings with respect to global EMG in some of the conditions ana-
lysed has several biophysical reasons. The global EMG features 
vary with changes in the waveforms of muscle fibre action poten-
tials. This factor of variability is removed by separating the neural 
information from the muscle fibre action potentials. Moreover, 
the decoding method does not use clustering based on the shape 
of the action potentials but rather identifies the discharge timings 
by sparseness constraints (see Methods). Therefore, changes in the 
action potential shapes do not influence the decomposition. The 
separation of action potentials from the neural drive also eliminates 
the effect of EMG amplitude cancellation31, which poses an intrin-
sic limit to the accuracy of EMG amplitude estimates. This partly 
explains, for example, the observations of the second experiment. 
In the specific clinical case of TMR patients, there are additional 
reasons for the effectiveness of the proposed approach with respect 
to global EMG analysis. The discharge patterns of reinnervated 
motor units are probably easier to discriminate than for physiologi-
cal innervation due to a reduced complexity of the interference sig-
nal. Moreover, the reinnervation causes a loss of the natural relation 
between muscle unit size and recruitment order so that the ampli-
tude of the EMG signal is probably a poorer indicator of muscle 
activation in these patients than in physiological conditions, as sug-
gested in ref. 23. Finally, the territories of the muscle units of differ-
ent motor-neuron pools tends to overlap during the reinnervation 
process and their activities are therefore difficult to differentiate 
from the global EMG analysis.

The proposed interface can presumably be applied to any nerve 
that can be redirected to accessory muscles. Even in the absence of 

target muscle tissue, this may be obtained either with transplants of 
small muscle portions33 or, in the future, by growing muscle tissue 
around the terminal portion of the nerve34. Therefore, the proposed 
system should be seen as a general neural interface that accurately 
decodes the efferent activity of nerves without inserting electrodes 
into nerves. Moreover, although the current system was tested with 
non-invasive EMG recordings, the same concepts and algorithms 
can be directly translated to implanted multi-site muscle electrodes, 
such as the intramuscular arrays we have recently proposed35 or 
multi-channel extensions of epimysial devices already tested in 
patients36. These muscle implants could be surgically realized at the 
same time as the TMR procedure.

Although obtained under several experimental conditions and 
on patients with different characteristics, the presented results 
are currently limited to an offline analysis. The training and use  
of the proposed interface needs to be performed online and  
should explore the perception–action cycle of the user in a 
closed-loop scenario to fine tune motor control to achieve the 
desired movements. Although these future steps are needed for 
a full appreciation of the potential of the approach, the current 
work provides proof of the feasibility of decoding motor-neuron 
behaviour in amputees and of using motor-neuron behaviour for  
man/machine interfacing.

The online implementation of the proposed concepts for the 
control of prostheses in daily-life activities requires the solution of 
practical challenges. The first of these challenges is the requirement 
for an online EMG deconvolution that is computationally com-
plex. Nonetheless, this operation is now feasible due to the speed of  
current microprocessors37. The performance with the online user’s 
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control may differ from the offline results38. However, because 
motor neurons acting on a degree of freedom receive predominantly  
common input39, the identification of different sets of motor neu-
rons in different sessions would not influence the mapping and 
control. Despite these promising features, the performance of the 
system over different conditions without re-training during online 
use has not been tested and constitutes a challenge for the clini-
cal translation. Moreover, the clinical efficacy of any of the control 
schemes proposed will depend on the design of the mechatronics of 
a given prosthetic limb. The current study focuses on an extensive 
offline experimental validation on patients that provides a proof-of-
concept for an innovation in myocontrol whose clinical translation 
needs further efforts.

In conclusion, we have proven the possibility of decoding the 
behaviour of virtually all the pools of motor neurons that physi-
ologically innervated the muscles responsible for the movement of 
a missing limb and that are reinnervated to other muscle tissues by 
TMR. This decoding was demonstrated in six patients with different 
amputation levels and TMR procedures, and was shown to provide 
information that can be used for intuitive and effective commands 
over multiple degrees of freedom. The approach is the ultimate 
exploitation of the TMR concept that allows spinal interfacing 
using muscles as natural amplifiers of nerve activity. A full clinical  
translation of this new concept requires online implementation of 
the proposed algorithms and testing the long-term adaptation with 
the user in the loop.

Methods
Patients. Measurements were performed on six TMR patients whose 
characteristics relevant for this study are reported in Table 1. The patients were 
referred to O.C.A. for prosthetic fitting and underwent TMR surgery. The 
characteristics of the patients reported in Table 1 refer to the time when each 
patient was included in the experimental measurements. The TMR procedures  
for all patients were performed at the Medical University of Vienna, Austria.  
In patients T1, T2 and T3, all major nerves of the brachial plexus were redirected 
into muscles of the chest region (Table 1). Patients T4, T5 and T6 were 
transhumeral amputees for whom the TMR procedure resulted in the medianus, 
ulnaris and radialis nerves being reinnervated into the brachialis, caput breve 
bicipitis and caput laterale tricipitis muscles, respectively.

The experimental protocols as well as the informed consent forms for the 
experiments were approved by the ethics committee ‘Ethikkommission der 
Medizinischen Universität Wien’ (approval numbers 1279/2014, for patients  
T1–T3, and 1234/2015, for patients T4–T6).

Experimental set-up. Three experiments were performed with the aim of  
showing different control strategies for active prostheses; all were based on 
the decoded activity of the motor neurons reinnervating muscles above the 
amputation. The patient selection for each experiment was not randomized since 
the measurements were performed over the course of two years and designed 
with the purpose of presenting progressively more advanced features of the 
proposed interface. The six patients participated in the different experiments 
depending on their availability at the time when the methods applied in the three 
experiments were developed. Therefore, the experimental work represents a case 
series of several experimental sessions on a total of six patients with the purpose 
of presenting the concept of spinal interfacing via TMR and motor-neuron activity 
decoding. Figure 1 shows the general concept underlying the methods applied in 
all experiments. Grids of 64 electrodes for surface EMG recordings were located 
over each reinnervation point. The multi-channel EMG signals were processed  
to extract the series of discharges of the innervating motor neurons24,40.  
The identified spike trains were then used to define control commands.  
The mapping between neural information and motion of degrees of freedom  
varied in the three experiments, as described in the following, with the aim of 
showing different control solutions.

EMG recording and processing. In all of the experiments, surface EMG signals 
were recorded with high-density and flexible electrode grids. The placement of the 
grids differed across individuals and corresponded to the locations of reinnervation 
following surgery. The EMG electrode grids incorporate copper tracks on a kapton 
support and each grid comprises 64 sensors (8 ×​ 8 electrodes, 1 mm diameter; 
Spes Medica) with an inter-electrode distance of 10 mm in both directions. The 
grids were applied on the skin surface by a 1-mm-thick double adhesive foam with 
holes corresponding to the electrode locations. The skin–electrode contact was 
facilitated by the use of conductive paste. The multi-channel signals were amplified 
by a multi-channel amplifier (EMGUSB2, OTBioelettronica; cutoff frequencies 

3–900 Hz), sampled at 2,048 Hz and A/D converted with 12-bit precision. Although 
a surface recording system was chosen for this study, the same processing methods 
and experimental tests can be also applied with implanted muscle electrodes40.  
The only fundamental characteristics of the EMG recording for the proposed 
approach is the availability of several (>​30) channels per reinnervated site, as it  
can be achieved with invasive technology by, for example, our recently developed 
thin-film electrodes35.

The EMG signals were decomposed by a blind source separation algorithm40. 
The decomposition provided the discharges of activation of the innervating motor 
neurons. The decomposition algorithm is described in detail in ref. 40, but we also 
provide a brief description of its basic working principles here.

Multi-channel EMG signals are observations that contain the convolutive 
mixtures of motor-neuron spike trains. For each observation (EMG channel), 
unknown finite impulse response filters (motor unit action potentials) act on the 
sources (series of motor-neuron discharge timings). This convolutive mixture of 
sources can be converted into a linear instantaneous mixture by extending the 
sources to include the n original sources as well as their delayed versions, with 
delays from 1 to the filter length L (ref. 40). The m original observations (EMG 
channels) are also extended, by a factor R, to maintain a greater number of 
observations than sources.

For each time sample (k), indicating the original sources, observations and 
noise, respectively, with =s(k) =​ [s1(k),s2(k) ,…​, sn(k)]T, =x(k) =​ [x1(k), x2(k), …​, xm(k)]T  
and =n(k) =​(n1(k), n2(k), …​, nn(k))T, where T is the transpose operator, the extended 
model is as follows:

∼∼ ∼�= + = …= = =x k H s k n k k D( ) [ ( ) ( )] 0, , (1)R

with the extended sources, observations and noise as ∼=s (k) =​ [∼s1(k), ∼s2(k) ,…​, ∼sn (k)]T, 
∼
=x (k) =​ [∼x1(k), x͠2(k), …​, �xm(k)]T and ∼=n(k) =​[∼n1(k), n͠2(k), …​, n͠n(k)]T respectively, with:
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where Dr is the duration of the recordings and hij the action potential of the jth 
motor unit recorded at the channel i. The noise in model (1) represents electronic 
noise as well as the activity of motor units represented at the skin surface by low-
energy action potentials that are not separated.

The linear instantaneous model of equation (1) is inverted to recover  
the matrix of the extended sources. In this study, the inversion is performed  
by spatial whitening followed by the fixed point optimization procedure with  
a cost function that maximizes the sparseness of the estimated sources40,41.  
The method extracts sources (series of motor-neuron discharge timings)  
associated with individual motor neurons, as proven by the unique representation 
of the associated multi-channel surface action potentials42. The estimated sources 
are trains of delta functions centred at the instant of motor-neuron activation, 
with an amplitude that may vary due to the estimation process. To extract the 
discharge timings information only, a local peak detector was applied to the 
estimated sources, by comparing each candidate peak with surrounding peaks 
and considering a refractory period of 10 ms. It is relevant to note that the 
decomposition method extracts the original sources as well as their delayed 
replicas, as defined by the extended source model of equation (3). For all analyses 
performed in this study, the delayed replicas were excluded and only the estimated 
original sources were further processed for the mapping procedures. The only 
exception is the signal-based mapping for simultaneous and proportional control 
of multiple degrees of freedom based on principal component analysis (PCA) 
(experiment 3), for which we used the full extended estimated sources (as in 
equation (3)) as input. For this reason, the number of time series of discharge 
timings used as input with that approach is much greater than for the others  
(L times greater).
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the neural drive into multiple degrees of freedom activated concurrently during 
natural movements. For this purpose, motion capture data and EMG signals were 
recorded concurrently. Upper-limb kinematics were recorded (256 Hz sampling 
frequency) using a seven-camera system (Qualisys) and a set of 18 retro-reflective 
markers placed on the patient’s intact left upper extremity, residual right upper 
extremity, trunk and pelvis. High-density EMG was recorded using electrode 
grids located in correspondence of the residual upper arm frontal, lateral and 
dorsal compartments to cover the targeted reinnervations. Data were recorded 
during 1 static anatomical pose and 13 dynamic trials involving mirrored bilateral 
motions that simultaneously articulated elbow flexion, forearm pronation and 
wrist flexion, both in the intact and missing limb. These three degrees of freedom 
were chosen because in transhumeral amputees the precise proportional and 
simultaneous control over elbow and wrist is the biggest challenge in prosthetic 
fitting. Precise proportional and simultaneous control over these three degrees of 
freedom allows natural object reaching for transhumeral amputees, which is not 
possible with current systems. The hand opening–closing task was not included 
in this experiment since this can be achieved without simultaneous control, by 
a hybrid scheme7, whereas the focus of this experiment was on concurrent and 
proportional activation of degrees of freedom. The estimate of the kinematics from 
neural information was performed with both a signal-based and a model-based 
estimation approach.

Signal-based estimation. An approach for extracting control signals using 
unsupervised subspace mapping was developed, which receives as input the full 
extended sources (equation (3)) and transforms them in direct control signals.  
The central idea of the method is to preserve the metric of the high-dimensional 
space where the multidimensional time series of motor-neuron discharges exists 
and to project the data to a subspace of dimension specified by the degrees of 
freedom of the prosthetic hand. The simplest of the metric projections uses the 
Mahalanobis distance36, which is defined by the covariance of discharge time 
series. PCA was used to explore the spatiotemporal correlation between the time 
series in high-dimensional space and to project the data to an orthogonal lower 
dimensional space. Let Xn×D, be the input data matrix representing the n discharge 
time series over D channels. Then PCA performs a singular value decomposition 
(SVD) of X =​ UΣVT, where U and V are n ×​ n and D ×​ D unitary matrices, 
respectively, and Σ is a n ×​ D rectangular diagonal matrix with diagonal values σi 
known as the singular values of X. The columns of V are the eigenvectors of the 
covariance matrix and they serve as the principal directions or axes of the PCA 
sub-space. The principal components UΣ are projections of X on sub-space axes. 
PCA achieves a projection that maps most of the relevant information (variance) 
to a d-dimensional manifold, where d(d ≪​ D) is any subspace. It can be shown 
that this mapping is formed by the first d eigenvectors, that is, columns of V, 
noted as Vd. In our case, d is specified by the number of degrees of freedom to be 
controlled and the goal is to associate each principal component with a degree of 
freedom. Therefore, the problem reduces to appropriately assigning the outputs of 
the PCA projected data to the corresponding degree of freedom. However, the two 
orthogonal coordinate systems (that of PCA and that of the degrees of freedom) 
of the same dimension are not necessarily the same because the PCA eigenvectors 
are solely defined by the data, hence an orthogonal rotation Rd×d is needed to align 
the principal directions with the external basis of degrees of freedom. Moreover, 
the external basis coordinates are the canonical sparse basis of Rn (each component 
only moves one degree of freedom of the prosthesis), while the PCA eigenvectors 
are not sparse and are ordered by projected variance. Therefore, we sought to find 
the rotation matrix in the principal component subspace that is the most sparsified 
to mimic the canonical basis of Rn. Here, we applied the VARIMAX orthogonal 
rotation37,38 RVARIMAX:
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where Σ= −× × × nL V / ( 1 )n d n d d d  are referred to as the loadings37. Once the PCA 
and VARIMAX rotation are obtained in a training set (without any kinematic 
labelling), the control of the prosthesis test is achieved by inputting the motor-
neuron discharge time series in real time to the PCA subspace and VARIMAX 
projections, which can be combined to decrease the computational complexity.

Model-based estimation. The open-source software OpenSim44 was used to scale 
a generic upper extremity model of the musculoskeletal geometry45 to match the 
patient’s anthropometry. The musculoskeletal geometry model had seven upper 
extremity degrees of freedom and incorporated a total of 14 muscle–tendon units, 
spanning the shoulder, elbow, wrist and hand joints (Fig. 7). During the scaling 
process, virtual markers were placed on the generic musculoskeletal geometry 
model based on the position of the experimental markers from the static pose.  
The model anthropomorphic properties as well as the muscle–tendon unit 
insertion, origin and their bone wrapping points were linearly scaled on the 
basis of the relative distances between experimental and corresponding virtual 
markers44. Inverse kinematics was solved for three-dimensional joint angles that 
minimized the least-squared error between experimental and virtual marker 
locations during dynamic trials46. The generated kinematics were then used to 

Applying the above decomposition procedure, Fig. 1 shows an example of 
sets of discharge times of populations of motor neurons during tasks of wrist 
flexion and extension by a patient following TMR. These discharge timings are not 
abstract mathematical features, as in classic myocontrol, but instead correspond to 
the natural neural code sent from the spinal cord to the muscles.

After EMG decomposition, the neural drive to muscles was estimated  
by pooling the discharge timings of groups of identified motor neurons39,43.  
The selection of these groups depended on the analysis and is detailed for each 
experiment in the following. For each group of motor neurons, the corresponding 
neural drive was the ensemble of discharge timings of the motor neurons.  
The signal of delta functions cantered at each discharge of activation of each 
motor neuron in a defined group of neurons represents all timings of discharge 
of the motor neurons in the group. It is simply obtained by summing the 
series of discharge timings of the motor neurons in the group and corresponds 
physiologically to the neural drive sent to the reinnervated muscles by the defined 
motor-neuron group. The estimated neural drives to the reinnervated muscles 
were then used to map control signals into multiple degrees of freedom in the three 
experiments. The common procedures used in all experiments for EMG processing 
to extract the neural activation signals are schematically shown in Fig. 1.

Experiment 1 (classification). Patients T1–T3 (Table 1) participated in experiment 1.  
The patients were asked to attempt the following tasks of their missing limb: 
hand opening, hand closing, wrist extension, wrist flexion, thumb adduction, 
thumb abduction, pronation, supination, elbow extension and elbow flexion.  
Due to different reinnervation profiles and levels of training, not all subjects 
were able to perform all these tasks. The order of the attempts was randomized. 
For patient T1 each attempt lasted 10 s, for patients T2 and T3 the trials lasted 
5 s, with 5 s of rest between trials. Patients T1 and T2 performed each trial 
twice, while patient T3 repeated each trial three times. These differences in 
experimental choices for the different patients were due to the conditions and 
capabilities of the patients.

The neural drives to muscle regions were estimated, as described above, by 
pooling the discharge timings of groups of motor neurons. The groups were 
defined based on the location of the muscle units in the areas covered by the 
recording electrode grids. Each grid was divided into four regions and each motor 
neuron was associated with the muscle unit in the region of the grid where the 
corresponding motor unit action potential had the greatest amplitude. In this way, 
we defined the neural drives to reinnervated muscle sites by partitioning each 
grid into four parts and associating them with the ensembles of discharges of the 
innervating motor neurons.

Classification into the discrete classes was performed using a support vector 
machine classifier with linear kernel, with fivefold cross-validation. The input to 
the classifier was the number of discharges in each 100 ms interval for each muscle 
region, with a 10 ms overlap between consecutive intervals. For comparison with 
surface EMG classification, the EMG r.m.s. of all channels as well as the time 
domain features were computed in the same intervals used for spike classification 
and classified with the same classifier. For global EMG features, the feature space 
was reduced in dimensionality using PCA, retaining 95% of the signal power.

Experiment 2 (direct control). The aim of experiment 2 was to establish if it 
was possible to extract a proportional command from motor unit discharges 
(direct control). The experiment was performed on patients T4, T5 and T6, who 
were all transhumeral amputees (Table 1). The patients were seated comfortably 
facing a computer screen. One surface EMG electrode grid was mounted over 
the reinnervated short head of the biceps. Initially, all participants were asked 
to perform a maximal voluntary contraction by attempting a hand-open gesture 
of their missing limb. The maximum EMG envelope during this task was 
taken as reference for providing feedback in percent of the maximum intensity. 
Each subject was then prompted to increase and decrease the intensity of 
muscle activity from the relaxed state to the maximal intensity, over 20 s. This 
contraction duration determined a slow-varying force contraction. This choice 
was made to assess accurate control, which requires slow variations, and in the 
full activation range of the muscle, to prove that the analysis methods proposed 
are not influenced by the strength of activation. The contractions performed 
by the patients represent accurate force control, as it can be seen in fine object 
manipulation. Conversely, experiment 3 focused on faster contractions, typical of 
reaching tasks.

The intensity of muscle activation was estimated using the EMG envelope,  
as a classic reference approach, and the neural drive, as direct neural information. 
These approaches were compared varying the processing interval from 50 to 
500 ms, with an interval overlap of 50%. Moreover, a post processing was applied 
by averaging over three consecutive past intervals. For each condition, the standard 
deviation of the intensity estimate, after linear detrending, was computed to 
determine the accuracy in the control.

Experiment 3 (control of multiple degrees of freedom). Among the tested 
patients, patient T6 (Table 1) volunteered for a further experimental session 
that involved attempted mirror movements of the missing and the contralateral 
arm with the purpose of testing the ability of the proposed approach to map 
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obtain dynamically consistent joint moments via residual reduction  
analysis; that is, joint moments reconstructing experimental joint angles  
when driving forward dynamic arm simulations47. We refer to these as 
‘experimental joint moments’.

The estimates of joint moments were based on neural data-driven 
musculoskeletal modelling. The motor-neuron discharges were converted into 
continuous neural activations using a twitch model based on a time-history 
dependent recursive filter and a nonlinear transfer function48. Experimental 
joint angles were used as input to a multidimensional cubic B-splines set that 
synthesized the OpenSim subject-specific geometry of muscle–tendon units and 
computed their resulting length and moment arms49,50. Neural activations and 
muscle–tendon unit length were used to control a Hill-type muscle model and 
estimate instantaneous length, contraction velocity and force in the muscle fibres, 
and strain and force in the series-elastic tendon within each muscle–tendon unit49. 
The computed forces were projected onto all upper extremity degrees of freedom 
simultaneously via the moment arms.

The neural-driven model was calibrated to map neural activations to individual 
muscle–tendon units. After the calibration, the model was used to convert neural 
inputs into the resulting joint moments produced in the missing limb elbow, 
forearm and wrist.

Code availability. The codes used for the results presented in this study are 
available from the corresponding author on reasonable request.

Data availability. The authors declare that all data supporting the findings of this 
study are available within the paper.
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