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ABSTRACT:

In this paper we explore semantic segmentation of man-made scenes using fully connected conditional random field (CRF). Images
of man-made scenes display strong contextual dependencies in the spatial structures. Fully connected CRFs can model long-range
connections within the image of man-made scenes and make use of contextual information of scene structures. The pairwise edge
potentials of fully connected CRF models are defined by a linear combination of Gaussian kernels. Using filter-based mean field
algorithm, the inference is very efficient. Our experimental results demonstrate that fully connected CRF performs better than previous
state-of-the-art approaches on both eTRIMS dataset and LabelMeFacade dataset.

1. INTRODUCTION

Semantic segmentation of man-made scenes is one of the funda-
mental problems in photogrammetry and computer vision. Man-
made scenes, e.g. street scene, as shown in Figure 1, may be
the most familiar scenes in our life. Applications of man-made
scene interpretation include 3D city modeling, vision-based out-
door navigation, intelligent parking etc. Man-made scenes ex-
hibit strong contextual and structural information in the form of
spatial interactions among components, which may include build-
ings, cars, doors, pavements, roads, windows or vegetation. The
eTRIMS (Korč and Förstner, 2009) and LabelMeFacade (Fröhlich
et al., 2010, Brust et al., 2015) image databases are two popular
dataset for man-made scene semantic segmentation, which have
irregular facades and do not follow strong architectural princi-
ples. In this paper, we will explore semantic segmentation of this
kind of man-made scenes using fully connected Conditional ran-
dom fields (CRFs).

Conditional random field (CRF) (Lafferty et al., 2001, Shotton et
al., 2006) is a popular method for modeling the spatial structure
of images in semantic segmentation problem. The key idea of the
semantic segmentation is to combine the low-level pixel object
classifiers information and spatial contextual information within
a CRF model, then running a maximum a posteriori (MAP) or
maximum posterior marginal (MPM) inference method to obtain
the segmentation results. However, low-connected standard (e.g.
4-connected or 8-connected) CRF works on a local level and can-
not model the long range dependencies of the images, so the ob-
ject boundaries of these results are excessive smoothing.

CRFs with higher-order potentials, i.e. Pn Potts model (Kohli et
al., 2009), and hierarchical CRF (Ladicky et al., 2009, Yang and
Förstner, 2011) have been proposed to improve semantic segmen-
tation accuracy by enforcing label consistency in image segments
(or superpixels). Both Pn Potts model and hierarchical CRF
are based on unsupervised image segmentation, which is used to
compute the segments or superpixels, e.g. normalized cuts (Shi
and Malik, 2000), mean shift (Comaniciu and Meer, 2002) and
SLIC (Achanta et al., 2012). However, accurate unsupervised im-
age segmentation is still an unsolvable problem. Segment-based
∗Corresponding author

Figure 1. Example images of eTRIMS dataset (1st row), the cor-
responding semantic segmentation results using fully-connected
CRF (2nd row), and ground truth labeling (3rd row). The last row
is the legend.

Pn Potts model and hierarchical CRF model are limited by the
accuracy of these unsupervised image segmentation. Mistakes in
the initial unsupervised image segmentation cannot be recovered
in the inference step, if regions cross multiple object classes.

Recently, the fully connected CRF (Krähenbühl and Koltun, 2011)
gains popularity in the semantic segmentation problems. Fully
connected CRF establishes pairwise potentials on all pairs of pix-
els in the image and has the ability to model long-range connec-
tions and capture fine edge details within the image. In contrast
with local-range CRFs (Rother et al., 2004, Shotton et al., 2006),
which are solved by an expensive discrete optimization problem
(Kappes et al., 2015), mean field approximation inference for
the fully-connected CRF is much more efficient (Krähenbühl and
Koltun, 2011). In this paper, we propose to use fully connected
CRF to model semantic segmentation of man-made scene prob-
lem and demonstrate it leads to state-of-the-art results.

The whole pipeline of our system consists of two parts, as shown
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Figure 2. The pipeline of our method: first, we train Textonboost as the unary classifiers for each pixel; second, we run mean-field
inference of fully connected CRF to get maximum posterior marginal results.

in Figure 2: first, we train the textonboost (Shotton et al., 2006) as
the unary classifier for each pixel; second, we run mean-field in-
ference (Krähenbühl and Koltun, 2011) for fully connected CRF
to obtain maximum posterior marginal (MPM) results. Surpris-
ingly, we find that the experimental results based fully connected
CRF are better or more efficient than all previous approaches
which are based on low connected CRFs on eTRIMS dataset
(Korč and Förstner, 2009) and LabelMeFacade dataset (Fröhlich
et al., 2010).

The following sections are organized as follows. The related
works are discussed in Section 2 In Section 3 the method for the
segmentation problem is described. In Section 4 experimental
results are presented. Finally, this work is concluded and future
work is discussed in Section 5

2. RELATED WORK

Man-made scene semantic segmentation approaches can be gen-
erally classified into two categories. One class methods are based
on multi-class classifiers, e.g. randomized decision forest and
boosting, for pixel or superpxiels, then use Conditional random
fields or unsupervised segmentation methods to refine the clas-
sification results. this class method often is called as bottom-
up method, such as (Yang and Förstner, 2011, Martinovic et al.,
2012, Jampani et al., 2015).

Frohlich et al. (Fröhlich et al., 2010) presented a man-made scene
image labeling method, which is using a random decision forest
classifier and local features. Their method use an unsupervised
segmentation, e.g. mean shift, to refine the classification results.
In (Yang et al., 2010, Yang and Förstner, 2011), a hierarchical
CRF model is proposed to solve man-made scene images seman-
tic segmentation problem. In this hierarchical CRF model, multi-
scale mean shift algorithm (Comaniciu and Meer, 2002) is used
to segment the images into multi-scale superpixels. Unary poten-
tials are the probability results of a randomized decision forest
classifier, and then the spatial and hierarchical structures of the
superpixels are connected as pairwise potentials. However, the
superpixel-based hierarchical CRF model is limited by the accu-
racy of unsupervised image segmentation. Mistakes in the initial
unsupervised segmentation cannot be recovered in the inference
step, if superpixels cross multiple object classes.

Martinovic et al. (Martinovic et al., 2012) present a three-layered
approach for semantic segmentation of building facades and man-
made scenes. In the first layer, they train a recursive neural net-
work (Socher et al., 2011) to get label probabilities of superpix-
els, which are got by oversegmenting the input image using mean
shift algorithm (Comaniciu and Meer, 2002), as the unary poten-
tials. In the second layer, using a grid CRF model to merge ini-
tial labeling and specialized object detectors (Dollár et al., 2009).

In the third layer, weak architectural principles are used as a
post-processing step. However, the accuracy of the three-layered
method is also restricted by the precision of unsupervised image
segmentation, similar as (Yang and Förstner, 2011). The sys-
tem of (Jampani et al., 2015) uses a sequence of boosted decision
trees, which are stacked using Auto-context features (Tu and Bai,
2010) and trained using the stacked generalization. They con-
struct a CRF which is a pairwise 8-connected Potts model and
unary classifiers are obtained directly from image, detection, and
auto-context features. Their inference method is alpha expansion
(Boykov et al., 2001), which costs about 24 seconds for an image
on average. In contrast, the filter-based mean field approxima-
tion inference of fully-connected CRF only costs about 1 second
per image of eTRIMS dataset. Therefore, fully connected CRF is
much more efficient.

Another class of facade labeling method is shape grammar (Teboul
et al., 2011, Martinovic and Gool, 2013), which is called as top-
down approach, The shape grammar methods represent the facede
using a parse tree and compute a grammar by a set of production
rules. However these methods are not pixelwise labeling and not
suitable for irregular man-made scene images, such The eTRIMS
(Korč and Förstner, 2009) and LabelMeFacade (Fröhlich et al.,
2010, Brust et al., 2015) datasets. Recently, convolutional patch
network, which is one type of convolutional neural networks, is
presented by (Brust et al., 2015). Since both the eTRIMS (Korč
and Förstner, 2009) and LabelMeFacade (Fröhlich et al., 2010,
Brust et al., 2015) image databases are relative small, this limit
the classification and labeling ability of the convolutional patch
networks.

3. METHOD

Conditional random field (CRF) (Lafferty et al., 2001) is a popu-
lar method for modeling the spatial structure of images in seman-
tic segmentation problem. CRF model can combine the low-level
pixel object classifiers information and spatial contextual infor-
mation. Fully connected CRF (Krähenbühl and Koltun, 2011)
establishes pairwise potentials on all pairs of pixels in the image
and has the ability to model long-range connections, as shown in
Figure 3, and capture fine edge details within the image. Each
pairwise term of fully connected CRF is defined as a linear com-
bination of Gaussian kernels. In contrast with local-range CRFs
(Rother et al., 2004, Shotton et al., 2006), which are solved by an
expensive discrete optimization problem (Kappes et al., 2015),
mean field approximation inference for the fully-connected CRF
is much more efficient (Krähenbühl and Koltun, 2011). The whole
pipeline of our system consists of two parts, as shown in Fig-
ure 2: first, we train the textonboost (Shotton et al., 2006) as
the unary classifier for each pixel independently; second, we run
filter-based mean-field approximation inference (Krähenbühl and
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Koltun, 2011) for fully connected CRF to obtain maximum pos-
terior marginal (MPM) results.

3.1 Fully Connected CRF

We define a random field X over a set of variables {X1, ..., XN}
which is conditioned on pixels {I1, ..., IN} of a man-made scene
image I. Each random variable Xj takes a label value from the
label sets L = {l1, ..., lL}, i.e. Xj is the label of pixel Ij . The
conditional random field is defined as a Gibbs distribution

P (X = x|I) = 1

Z(I)
exp(−E(x|I)) (1)

where E(x) is the corresponding energy of the labeling x ∈ LN
conditioned on I. Z(I) is the partition function. For convenience,
we drop the conditioning on I in the notation. In the fully con-
nected pairwise CRF model, the corresponding energy function
is given by

E(x) =
∑
i

φi(xi) +
∑

i<j∈N

φij(xi, xj) (2)

where the unary potential φi(xi) is the cost computed for pixel
i taking the label xi by a classifier given image features, and
the pairwise energy potential φij(xi, xj) encourage coherence
in pixels xi and xj when they have similar features, such as, the
RGB values and positions.

3.2 Unary Potentials

The image features used in our paper include 17-dimensional fil-
ter bank responses (Shotton et al., 2006), RGB color, Histogram
of Oriented Gradient(HOG) (Dalal and Triggs, 2005), SIFT (Lowe,
2004) and pixel location information. Given these image features,
we compute the unary potential φi(xi) for each pixel i by a multi-
class classifier that produces a probability distribution over the
labeling xi independently. The form of unary potential φi(xi) is
the negative log likelihood, i.e. corresponding probability distri-
bution of the labeling assigned to pixel i.

φi(xi) = − logP (xi|I) (3)

The unary potentials incorporate shape, texture, location, and
color descriptors, which are derived from TextonBoost (Shotton
et al., 2006, Ladicky et al., 2009). We use the extended Tex-
tonBoost framework, which boosts classifiers defined on above
mentioned features together. The implementation used here is the
Automatic Labelling Environment (ALE) (Ladicky et al., 2009).
The result of unary classifiers is usually noisy, as shown in the
middle image of Figure 2.

3.3 Pairwise Potentials

The pairwise potentials in fully connected CRF model have the
form

φij(xi, xj) = µ(xi, xj)

K∑
m=1

w(m)k(m)(fi, fj) (4)

where k(m) is a Gaussian kernel, w(m) is weight of the kernel,
µ is label compatibility function, and fi, fj are feature vectors
for pixel i and j, which are color values and pixel positions as
(Krähenbühl and Koltun, 2011).

In this paper, we use Potts model, µ(xi, xj) = δ(xi 6= xj). For
man-made scene semantic segmentation we use contrast-sensitive

two-kernel potentials,

k(1)(fi, fj) = w(1) exp(−|pi − pj |
2

2θ2γ
),

k(2)(fi, fj) = w(2) exp(−|pi − pj |
2

2θ2α
− |Ii − Ij |

2

2θ2β
).

(5)

where Ii and Ij are the color vectors and pi and pj are positions.
The first part k(1)(fi, fj) is the smoothness kernel which help to
remove small isolated regions, and the second part k(2)(fi, fj) is
the appearance kernel which encourages nearby pixels to have the
same labels when they have similar color.

3.4 Inference

Following (Krähenbühl and Koltun, 2011), we use a mean field
method for approximate Maximum Posterior Marginal (MPM)
inference. The mean field approximation computes an alterna-
tive distribution Q(X) over the random variables X, instead of
computing the posterior distribution P (X) directly. Distribu-
tions Q(X) is a product of independent marginals, i.e. Q(X) =∏
iQi(Xi). The mean field approximation minimizes the KL-

divergence D(Q||P ) between distribution Q and the exact dis-
tribution P . The mean field inference performs the following
message passing iterative update until convergence:

Qi(xi = l) =
1

Zi
exp{−φu(xi)

−
∑
l′∈L

∑
j 6=i

Qj(xj = l′)φij(xi, xj)}

=
1

Zi
exp{−φu(xi)

−
∑
l′∈L

K∑
m=1

µ(l, l′)w(m)
∑
j 6=i

k(m)(fi, fj)Qj(l
′)}

(6)

where Zi is the marginal partition function of pixel i used to
normalize the marginal. Updating the message passing iteration
in sequence across pixels, KL-divergence will be convergence
(Koller and Friedman, 2009). Directly computing this message
passing iterative is intractable, because for each pixel, evaluating
the sum of all of other pixels is required. This is the computa-
tional bottleneck of the message passing iterative. To make this
update tractable and efficient, a high dimensional Gaussian filter
can be used (Adams et al., 2010, Krähenbühl and Koltun, 2011).
The transformation is:∑

j 6=i

k(m)(fi, fj)Qj(l) =
∑
j

k(m)(fi, fj)Qj(l)−Qj(l)

= [Gm ⊗Q(l)](fi)−Qj(l)
(7)

whereGm is the corresponding Gaussian kernel of k(m) and⊗ is
the convolution filtering. Using the permutohedral lattice (Adams
et al., 2010), which is a highly efficient convolution data struc-
ture, the approximate message passing can be updated in time
O(Nd) (Krähenbühl and Koltun, 2011). Of cause, other filtering
methods also can be used for the approximate message passing,
e.g. domain transform filtering (Gastal and Oliveira, 2011, Vi-
neet et al., 2014). The first smoothness kernel is a Gaussian blur.
And the second appearance kernel actually is the joint or cross
bilateral filtering (Tomasi and Manduchi, 1998, Petschnigg et al.,
2004, Eisemann and Durand, 2004), in which Q(l) is the input
image and I is the reference (or guidance) image. After running
the update step in a fixed number, in this paper we update 10 times
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Figure 3. Fully connected CRF establishes pairwise potentials on all pairs of pixels in the image and has the ability to model long-range
connections. From left to right: four-connected CRF, eight-connected CRF and fully-connected CRF.

iteration, then we get the MPM result from the final iteration,

xi ∈ argmax
l
Qi(xi = l). (8)

3.5 Learning

For training unary potentials, we set the parameters of the low-
level feature descriptors, such as, HOG, Texton and SIFT, us-
ing the setting of Automatic Labelling Environment (ALE). For
the parameters of the CRFs, we use 5 folders cross-validation to
learning the weights of the unary responses and Gaussian kernels.

4. EXPERIMENTS

We evaluate the fully-connected CRFs on all two irregular man-
made scene images benchmark datasets: eTRIMS dataset (Korč
and Förstner, 2009) and LabelMeFacade dataset (Fröhlich et al.,
2010). For eTRIMS dataset, we perform a 5-fold cross-validation
as in (Yang and Förstner, 2011) mentioned by dividing 40 images
into a training set and 20 images into a test set randomly. For
LabelMeFacade dataset, we use the pre-separated training and
testing as the same as (Fröhlich et al., 2010, Brust et al., 2015)
mentioned. We compare our results with against (Jampani et al.,
2015) and (Brust et al., 2015).

4.1 Datasets

eTRIMS dataset (Korč and Förstner, 2009) includes 60 man-
made scene images, which are labeled with 8 classes: building,
car, door, pavement, road, sky, vegetation and window. And each
image have an accurate pixel-wise annotation. For evaluation, we
perform a 5-fold cross-validation as in (Yang and Förstner, 2011)
by dividing 40 images into a training set and 20 images into a test
set randomly. Then we run the experiment five times, and report
the average accuracy.

LabelMeFacade Dataset is presented by (Fröhlich et al., 2010),
which are also labeled with 8 classes: building, car, door, pave-
ment, road, sky, vegetation and window. The images of LabelMe-
Facade dataset are taken from LabelMe dataset (Russell et al.,
2008). There are 945 images in the dataset, which are split as
two sets, 100 images for training set and 845 images testing set.
Similar with eTRIMS dataset, facades in LabelMeFacade dataset
are highly irregular.

4.2 Results

We compare our approach with the state-of-the-art man-made
scene image segmentation method on eTRIMS dataset and La-
belMeFacade dataset, i.e. facade segmentation using Auto-Context
(Jampani et al., 2015) and Convolutional Patch Networks (Brust
et al., 2015). We choose the average, overall and intersection

over union (IoU) score as the evaluation measures. Overall is the
pixel-wise labeling accuracy, which is computed over the whole
image pixels for all classes. Average is the pixel-wise labeling
accuracy computed for all classes and the averaged over these
classes. IoU is defined as TP/(TP+FP+FN). TP represents
the true positive, FP means false positive and FN indicates the
false negative.

We show the quantitative experimental results of eTRIMS dataset
in Table 1. Our method outperforms the previous state-of-the-art
approaches (Jampani et al., 2015) on eTRIMS dataset. We get the
Average accuracy 0.8185 and IoU accuracy 0.6481. Our Average
and IoU are highest, and we get five classes out of eight higher
than the Auto-Context method (Jampani et al., 2015), which is
the benchmark on the eTRIMS dataset before. Note that the
Auto-Context method (Jampani et al., 2015) uses detection as
pre-processing step. We do not using any detection information,
and our approach is very efficient, which only need about one
second in the inference step. Figure 4 shows some qualitative
segmentation results of our method. Fully connected CRF ob-
tains more accurate and detailed results than Textonboost and the
low connected CRF. Our results demonstrate that dense pixel-
level connectivity leads to significantly more accurate pixel-level
classification performance (see window/vegetation class labeling
results in most images).

We show the quantitative experimental results of LabelMeFacade
dataset in Table 2. Our method outperforms the previous state-of-
the-art approaches (Jampani et al., 2015) and (Brust et al., 2015)
on LabelMeFacade dataset. Since (Brust et al., 2015) only pro-
vide Average and Overall result, we just compare (Brust et al.,
2015) with these two measures. In contrast with (Jampani et al.,
2015), they regard the ’various’ as a class, we do not consider
’various’ as a class. So LabelMeFacade dataset have eight classes
as eTRIMS dataset. We get the Overall accuracy 0.7927 and IoU
accuracy 0.4848. Our Average and IoU are highest, and we get
five classes out of eight higher than the Convolutional Patch Net-
works method (Brust et al., 2015), which is the current bench-
mark on the eTRIMS dataset. Figure 5 shows some qualitative
segmentation results of our method. Our method obtains more
accurate and detailed results than the low connected CRF. Since
building facades in LabelMeFacade dataset are highly irregular,
there are sometimes wrongly labeled classes, e.g. parts of win-
dows are labeled as building in some example images.

5. CONCLUSIONS

In this paper, we explored man-made scene semantic segmenta-
tion using fully connected CRF model, which is very efficient
and only need about one second in the inference step. This sim-
ple method outperforms the previous state-of-the-art approaches
on eTRIMS dataset and LabelMeFacade dataset, which obtains
more accurate and detailed results. Inspired by the recent huge
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Class Textonboost CRF AC (Jampani et al., 2015) Ours

Building 0.7438 0.8038 0.925 0.8414
Car 0.8158 0.8588 0.766 0.8706

Door 0.7740 0.8024 0.653 0.7980
Pavement 0.5902 0.6222 0.488 0.6046

Road 0.8002 0.8136 0.821 0.8116
Sky 0.9716 0.9842 0.989 0.9932

Vegetation 0.8970 0.9022 0.929 0.9174
Window 0.7766 0.7594 0.682 0.7110
Average 0.7962 0.8183 0.7814 0.8185
Overall 0.8012 0.8331 0.8729 0.8472

IoU 0.5944 0.6352 0.6354 0.6481

Table 1. The quantitative results on the eTRIMS dataset. Textonboost is trained using Automatic Labelling Environment. The CRF is
a 4-connected CRF. AC is the Auto-context method. Our method is the fully connected CRF.

Class Textonboost CRF AC (Jampani et al., 2015) CPN (Brust et al., 2015)
CPNw (Brust
et al., 2015) Ours

Average 0.6139 0.6095 0.4904 0.4777 0.5898 0.5953
Overall 0.7547 0.7740 0.7523 0.7433 0.6341 0.7927

IoU 0.4685 0.4807 0.3957 - - 0.4848

Table 2. The quantitative results on the LabelMeFacade dataset. Textonboost is trained using Automatic Labelling Environment. The
CRF is a 4-connected CRF. AC is the Auto-context method. CPN is the Convolutional Patch Networks method. CPNw is the wighting
version of Convolutional Patch Networks method. Our method is the fully connected CRF.

success of CNNs in computer vision and machine learning, e.g.
image classification task (Krizhevsky et al., 2012) and semantic
segmentation task (Long et al., 2015), we plan to explore this
direction in our future research.
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Figure 4. The qualitative results of the eTRIMS dataset. First column are examples of the testing images and 2nd-column are the cor-
responding ground truth. (3rd-column to 5th-column) man-made scene semantic segmentation results using the Textonboost classifier,
the CRF model and the fully connected CRF model, respectively. The last row is the legend. The fully connected CRF model obtains
more accurate and detailed results than the low connected CRF.
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Figure 5. The qualitative results of the LabelMeFacade dataset. First column are examples of the testing images and 2nd-column are
the corresponding ground truth. (3rd-column to 5th-column) man-made scene semantic segmentation results using the Textonboost
classifier, the CRF model and the fully connected CRF model, respectively. The last row is the legend. The fully connected CRF model
obtains more accurate and detailed results than the low connected CRF.
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