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Abstract

Bubbles are known to hinder electrochemical processes in water-splitting electrodes. In this study, we present
a novel method to promote gas evolution away from the electrode surface. We consider a ring microelectrode
encircling a hydrophobic microcavity from which a succession of bubbles grows. The ring microelectrode,
tested under alkaline water electrolysis conditions, does not suffer from bubble coverage. Consequently, the
chronopotentiometric fluctuations of the cell are weaker than those associated with conventional microelectrodes.
Herein, we provide fundamental understanding of the mass transfer processes governing the transient behaviour
of the cell potential. With the help of numerical transport models, we demonstrate that bubbles forming at
the cavity reduce the concentration overpotential by lowering the surrounding concentration of dissolved gas,
but may also aggravate the ohmic overpotential by blocking ion-conduction pathways. The theoretical and
experimental insight gained have relevant implications in the design of efficient gas-evolving electrodes.

Introduction

The uncontrolled formation of bubbles on catalyst surfaces can take a remarkable toll on the efficiency of many
gas-evolving electrochemical systems [1] among which photoelectrochemical cells stand out in significance [2].
These surface bubbles not only reduce the electrochemically active contact area between the electrode and the
reacting liquid, but also block ion-conduction pathways, thereby increasing the ohmic drop across the electrolyte
in the cell [3]. In some cases, bubble formation can even cause direct catalyst degradation [4].

Despite the extensive research done on electrolytic bubbles, the bubble problem is far from being solved
[4, 5]. One approach is to micropattern the electrode with hydrophobic sites to promote bubble growth at desired
locations [6]. The effectiveness of microcavities etched on silicon substrates, first employed as a means to control
multibubble surface cavitation [7], has been recently tested under electrolysis conditions [8]. A second approach
is the implementation of superwetting electrodes [1] in order to minimise the fraction of bubble coverage.

In contrast, here we choose to mitigate the effect of bubble formation in water-splitting electrodes by
promoting the nucleation of bubbles away from the electrode surface. This was achieved by means of a ring
microelectrode encircling a superhydrophobic microcavity etched on a hydrophilic silicon substrate. During
electrolysis, a sequence of bubbles forms on the cavity and not elsewhere, precisely because the energy landscape
for nucleation is most favourable there. The electrode surface therefore remains unspoiled. These bubbles play
a crucial role in the electrolysis process by actively lowering the concentration of dissolved gas around them as
they grow. The likeliness of another bubble nucleating on the ring electrode is thereby substantially diminished.
In this work we will provide insights into the relationship between the response of the electrochemical cell to the
various mass transfer processes surrounding the ring–cavity configuration under constant-current electrolysis.

The main advantage of such a configuration is that the ring electrode does not suffer from any ohmic
penalties associated with bubble coverage [9], nor from the large fluctuations in the surface overpotential that
usually coexist with them. For instance, bubbles detaching from microelectrodes have been reported to induce
prominent positive current peaks under potentiostatic conditions [10, 11], or negative peaks in the overpotential
under galvanostatic conditions [12]. In these cases, much of the cyclic variation of the surface overpotential
is by virtue of the high bubble coverage fraction, or rather by the reduction and subsequent liberation of a
substantial portion of the electrode active area as a bubble grows and detaches.
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Experimental

Ring microelectrode microfabrication

The electrode consists of a thin platinum ring (inner radius ri = 400 µm, outer radius re = 410 µm, surface area
A = 0.0254 mm2) encircling a hydrophobic cavity or pit (radius rp = 15 µm) etched on a flat and hydrophilic
10×10 mm2 SiO2 substrate. A lead connects the ring to an insulated electrical contact pad (2×2 mm2) located
in a corner of the substrate surface. Details of its microfabrication can be found in appendix A.

Alkaline electrolysis cell

The substrate was placed at the bottom of an alkaline water electrolysis cell, sketched in Figure 1. The cell
is enclosed by an open 20 × 60 × 20 mm3 glass container. The ring electrode acts as the hydrogen-evolving
cathode; a platinum wire embodies the oxygen-evolving anode. The anode has a large surface area (∼8 mm2),
specifically over 300 times greater than that of the ring cathode. Both electrodes are connected through a
Keithley 2410 power source, and kept at a distance ∼1 cm apart. At the beginning of each experiment, 15 mL
of fresh electrolyte was poured into the cell, resulting in a ∼12.5 mm layer of electrolyte above the substrate.
The electrolyte was prepared by dissolving 0.01 M NaHCO3 in Milli-Q purified water.

Sodium bicarbonate completely dissociates into sodium (Na+) and bicarbonate (HCO3
– ) ions, which con-

stitute the vast majority of the supporting ions. The electrolyte is slightly basic in nature, with a measured pH
7.4, due to the equilibrium between OH– , HCO3

– and CO3
2– ions in solution. The equilibrium reactions are

detailed in the Supporting Information.
In each of the three experiments reported in this paper, the cell was operated at a constant current, namely,

at I = 5, 10 or 20 µA. The corresponding current densities at the ring electrode are 19.6, 39.3 and 78.6 mA/cm2

respectively. All three current densities were found to be sufficiently low as to prevent bubbles from nucleating
on the surface of both the ring cathode and the anode. However, these current densities did allow for a single
bubble from spontaneously growing from the hydrophobic pit a few seconds after the start of electrolysis, as
evidenced in Figure 2. This is a clear indication that the surrounding electrolyte is henceforth sufficiently
saturated with dissolved hydrogen as to sustain bubble growth. Eventually, the bubble detaches once it reaches
the critical size at which the buoyancy force exceeds the maximal interfacial tension force that the triple contact
line at the rim of the pit is able to provide [13]. Shortly afterwards, a new bubble nucleates and the process
repeats itself over again. The cell voltage and the growth of first three bubbles of the succession were recorded
simultaneously. These are shown in Figure 3.

The evolution of H2 gas abides by the reversible half reaction occurring at the cathode of the alkaline
electrolysis cell [14, 15, 16],

H2O + 2 e− 
 2 OH− + H2 (1)

The hydroxyl ion, OH– , is thus produced and consumed at the cathode and anode respectively (cf. Figure 1),
at equal rates. In choosing galvanostatic electrolysis, the production rate of H2 gas remains constant in time.
In the absence of convection, but in the presence of an electric field, the current flowing through a cathode of
surface area A is related to the surface concentration and gradient of the (produced) species according to

I/A

njF
= Jj = −Dj

A

∫
Σ

(
∂cj
∂x

+
zjF

RT
cj
∂φ

∂x

)
dσ, j = H2, OH− (2)

where Jj denotes the average molar flux of species j, F = 96485 C/mol is Faraday’s constant and nH2 = 2,
nOH− = 1 are stoichiometric constants. The second equality constitutes the Nernst–Planck flux equation [17],
where cj is the concentration, Σ describes the cathode surface, x is the coordinate pointing normally outwards
from Σ, and dσ is an infinitesimal area element. The electric potential is denoted by φ and zj is the charge of the
species: zH2 = 0, zOH− = −1; R = 8.314 Jmol−1K−1 is the gas constant and T the absolute temperature. The
transport of uncharged species (zj = 0) such as H2 is strictly driven by diffusion: the migration flux component
is identically zero. For the case of OH– , Equation (2) is only applicable for large current densities at which the
large local overconcentration of OH– overwhelms the buffer capacity of the surrounding electrolyte. Otherwise,
most of the excess OH– immediately recombines into HCO3

– and CO3
2– ions to satisfy chemical equilibria

(see Supporting Information).

Results and discussion

Bubble growth dynamics

We begin with a treatment of the efficiency of gas evolution [18] and the bubble growth dynamics observed in
our experiments (see Figure 3). The number of moles of H2 gas, Nd, in a spherical bubble at its detachment
radius ad can be computed from the ideal gas law,

4

3
πa3dp = NdRT (3)

where p ' 1 bar is the bubble pressure and T = 293 K. In truth, the assumption that there are no other gases
present in the bubble is violated especially in the case of the first bubble since the electrolyte is equilibrated
with air. The presence of dissolved air explains why the first hydrogen bubble nucleates and grows just a few
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seconds after the start of electrolysis [8]. After this start-up effect, the mean efficiency of bubble evolution can
be computed as the amount of H2 in the bubble at the time of detachment divided by the total amount of gas
evolved during the bubble lifetime td:

η =
Nd

AJH2td
=

4π

3

a3dp

RT

nH2F

Itd
. (4)

For a typical bubble, ad ∼ 0.5 mm, td ∼ 1000–3000 s. We then obtain, for the experimental current densities,
η ≈ 30 %, which implies that roughly 30 % of the evolved hydrogen eventually ends up in the bubble, while the
rest is being continuously absorbed by the bulk fluid. The bubble hence mainly grows by diffusion, absorbing
gas from the bulk. The efficiency of our configuration is still not close to the 100 % efficiency that is practically
observed in conventional microelectrodes upon which (single) bubbles form [12, 11]. Nonetheless, it stands an
order of magnitude higher than in the case of a single bubble nucleating on a flat planar electrode much larger
than the bubble itself [19].

We can go further and compare the bubble growth dynamics with the Epstein–Plesset theory [20]. For slow
growth dynamics, the bubble radius of the nth bubble in the succession can be assumed to grow in time as
[21, 8]

an(t) ≈
√

2ΛζnDH2tn, (5)

from which one may estimate the effective H2 gas supersaturation of the bulk surrounding the nth bubble in
the succession, that is,

ζn = Cn/kH2p− 1. (6)

Here, Cn(t) represents the effective far-field concentration of dissolved H2 gas surrounding the bubble, kH2

denotes Henry’s coefficient of H2 in water, Λ = kH2RT = 0.0188 is the Ostwald coefficient and tn is the
time elapsed since nucleation. The theoretical fits of (5) to the experimental bubble growth rates yields a
characteristic supersaturation value of ζ ∼ 0.44 (first bubble) and 0.54 (third bubble) for 19.6 mA/cm2. For
39.3 and 78.6 mA/cm2, we obtain ζ ∼ 0.62–0.71 and 1.77–1.89, respectively. The higher growth rates of the
subsequent bubbles in the succession is a clear indicator that the bulk hydrogen concentration near the ring
electrode is indeed increasing in time.

Cell potential

Figure 3 reveals a transient ‘diffusion-like’ behaviour of the cell voltage. Remarkably, a steady-state value
is never reached during the long time scale of our experiment. The cell voltage is clearly influenced by the
presence of bubbles, not only by bubble growth, as one may infer by the periodic relaxation of the potential in
the timescale of the bubbles’ lifetime, but also by bubble detachment, which is clearly synchronous with sudden
drops in the voltage.

In order to address these matters further, we must first acknowledge the different contributions to the cell
potential [14]:

E(t) = EΩ(t) + Ea(t)− Ec(t). (7)

The anode and cathode potential are denoted by Ea and Ec respectively; EΩ(t) refers to the ohmic overpotential.
The dependency of the electrode potential on the current density, surface concentrations and reaction rates can
be modelled by the most general form of the Butler–Volmer equation [17]. The electrode kinetic properties of
our electrodes remain unknown, and it is not the purpose of this paper to determine them. Nonetheless, it
stands to reason that the influence of bubble growth or detachment on the cell potential can be made manifest
through the concentration overpotential, only.

Therefore, as a first approximation, we can assume that at a given current density the reaction overpotential
of the ring cathode remains fairly constant. The concentration overpotential, however, can be assumed to behave
semi-quantitatively in the same way to the Nernst (equilibrium) potential [16],

Ec(t) = E0 +
RT

2F
ln

(
(CH2O)2

(COH−(t))2 CH2(t)

)
, (8)

where Cj denotes the concentration of species j at the cathode surface and E0 is the (unknown) standard
potential of our cathode. It is worth pointing out that platinum electrodes driving water electrolysis in acidic
conditions have extremely fast reaction kinetics and the Butler–Volmer equation in fact reduces to the Nernst
equation. In alkaline media, however, reaction kinetics are several orders of magnitude slower [22], and the
reaction overpotentials are non-negligible. In any case, (8) conveys the important fact that an increase in the
surface concentrations of H2 or OH– renders an increase of the cell voltage E. The concentration of water in
the electrolyte is naturally so high that it can be assumed constant and uniform, CH2O ' 55.5 M.

The Nernst potential at the anode is given by a similar equation. We may however neglect the concentration
overpotential on the anode potential caused by the unsteady surface concentrations of O2 and OH– . This is
justified by noting that changes in the surface concentration of the reacting species are proportional to the
current density of the electrode (see Equation 12). In our case, I/A is a factor of 300 smaller at the anode.

By predicting then the evolution of CH2(t) and any changes in the ionic concentration distribution, it is pos-
sible to estimate, semi-quantitatively, the corresponding variation in the concentration and ohmic overpotential
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in time. The evolution of the concentration cj of each (ionic) species is governed by the advection–diffusion–
migration equation, commonly referred to as the Nernst–Planck equation,

∂cj
∂t

= Dj∇2cj +∇ ·
(
DjzjF

RT
cj∇φ

)
−U · ∇cj + Sj , (9)

along with the electroneutrality condition,
∑
j zjcj = 0 [23]. The velocity field, if any flow is present, is denoted

by U . Any equilibrium reactions between the different ions are taken into account through the source term Sj
(see Supporting Information).

We advance that the transient behaviour of the potential observed in Figure 3 can be explained by three
main factors. The first is the concentration overpotential on the cathode, as a consequence of the diffusion-
driven evolution of surface concentration of H2 and, to a lesser extent, OH– . The concentration overpotential
is mitigated by the presence of the bubbles growing on the cavity which essentially act as a sink of hydrogen
gas. The second factor is the migration-driven transport of the supporting ions from the anode to the cathode
across the bulk of the electrolyte, consequently increasing the ohmic overpotential over time. Last but not
least is the advection induced by a detaching bubble [24]. Its repercussion is twofold: it not only disrupts the
high-concentration H2 diffusion layer at the electrode, but also alleviates the high ionic concentration layer that
inevitably surrounds the electrode. These arguments are developed and justified next.

The concentration overpotential in the presence of bubbles

We commence estimating the relaxation time for the concentrations of H2 on the ring electrode surface to reach
the steady value in the hypothetical absence of bubbles. The transport equation (9) for j = H2 simplifies to
the diffusion equation

∂cH2

∂t
= DH2∇

2cH2 , (10)

for which DH2 ∼ 5.0× 10−9 m2/s [25]. We can immediately resort to the analytical solution of Equation (10)
concerning an equivalent hemispherical electrode of area A = 2πr2e in a semi-infinite medium. The electrode is
producing H2 at a constant flux I/AnH2F and the initial bulk concentration is C∗H2

. It can be shown, by the
method of Laplace transforms, that the surface concentration CH2 evolves in time as

CH2(t)− C∗H2

CssH2
− C∗H2

= 1− exp

(
DH2t

r2e

)
erfc

(√
DH2t

re

)
(11)

where CssH2
is the steady-state surface concentration. Equation (11) is plotted in Figure 4 and compared with

the surface concentrations expected for a thin ring (ri/re = 0.976) and a disk (ri/re = 0) electrode. These were
computed numerically using the open-source partial differential equation solver FreeFem++ [26]. Recall that
re refers to the outer radius of the ring or disk.

From Figure 4 we estimate that the dimensionless relaxation time of the surface concentration is DH2t/r
2
e ∼

50. One would then expect the concentration profile and concentration overpotential to reach the steady state
in about t ∼ 30 minutes in the absence of bubbles. Our experiments in Figure 3 show otherwise: the overall
cell potential and bubble growth rates enduringly increase during a much greater time scale. This suggests that
the bubbles impede the surface concentration from attaining a steady-state value so quickly.

The prompt increase of the cell voltage observed immediately after the start of electrolysis (cf. Figure 3)
can be mainly attributed to the concentration overpotential. This is justified by the very rapid initial diffusion-
driven increase of CH2 as seen in Figure 4. Soon after, however, a bubble nucleates and grows at the centre of
the ring. The bubble essentially acts as a sink of H2 gas which has a depressing effect on CH2 and hence on the
concentration overpotential. Indeed, in this configuration where the bubble does not mask the electrode, the
bubble can only be beneficial for the potential and the efficiency of the system as it passively removes H2 from
the vicinity of electrode surface. This is precisely the ‘enhancement effect’ referred to by other authors [27, 10].

The enhancement effect is perhaps even better conveyed by Figure 5 which compares the H2 concentration
field in the vicinity of the ring electrode in the absence and in the presence of a bubble close to detaching. The
bubble was treated as a stationary boundary under the pseudosteady-state approximation [27]. This is justified
as long as the bubble lifetime td notably exceeds the relaxation time by diffusion of the concentration field
around a bubble, τa = a2d/DH2 . In our case, we find that td/τa > 10. The (axisymmetric) diffusion equation
10 could then be readily solved in FreeFem++, on a 50re square domain, subject to a constant flux condition
at the electrode surface, and imposing a constant saturation concentration of kH2p = 0.77 mM at the bubble
surface (see Supporting Information for details).

The simulation snapshots are taken at a dimensionless time DH2t/r
2
e = 100, i.e., approximately one hour in

dimensional time, which is roughly the lifetime of our bubbles at the lowest current density. This implies that
the concentration field in the absence of the bubble (figure 5a) is essentially the steady-state solution.

Figure 5(b) highlights the enormous influence that the bubble has on the concentration field. Strikingly, the
bubble lowers the electrode surface concentration to almost half of the bubble-free steady-state value. In fact,
the steady-state surface concentration of an electrode in a semi-infinite medium initially at C∗H2

is given by the
analytical expression

I/A

nH2F
= β

DH2

re
(CssH2

− C∗H2
) , (12)

where the geometric factor β accounts for the electrode geometry. For a hemispheric electrode, β = 1 [17], a
circular disk electrode has β = 4/π [28], whereas our ring electrode of thickness ri/re = 0.976 has β ' 18.3
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(see appendix B). In the hypothetical absence of bubbles, Equation (12) with C∗H2
= 0 yields CssH2

≈ 4.6,
9.2 and 18.3 mM for I/A = 19.7, 39.3 and 78.6 mA/cm2 respectively. These concentrations correspond to
steady-state supersaturations of ζ = CssH2

/kH2p − 1 ∼ 5, 11, and 23. Notice that even when halving these
values (to account for the presence of bubbles), the electrode surface supersaturations remain much larger than
the effective supersaturations surrounding the first bubbles in the succession (approximately 0.5, 0.7 and 1.8
respectively) previously calculated (cf. subsection “Bubble growth dynamics”).

The origin of this mismatch lies in that the highest concentrations and concentration gradients are contained
within a small diffusion boundary layer surrounding the ring electrode. Figure 5(b) reveals that this diffusion
layer is quite small in comparison to the bubble size at detachment. The size of the diffusion layer thickness
is often characterized by the Nernst diffusion layer thickness δ [29, 17, 24]. We find that the Nernst diffusion
thickness, which adopts the formal definition of δ/re = β ∼ 0.05 in compliance with (12), indeed represents a
realistic length scale of the diffusion layer observed in our thin-ring configuration.

We finally turn our attention to the sudden drops in the cell voltage caused by bubble detachment, or rather
by the forced convection that is generated during the departure process. As discussed in the introduction, the
reduction in the surface overpotential is less prominent than in the conventional case of a bubble departing from
a microelectrode [12, 11], owing to the fact that the ring electrode is never in direct contact with the bubble.

Even without considering entrainment in the bubble wake, whose velocities at a fixed height near the
electrode were incidentally measured to decay exponentially over a couple of seconds (data not shown), we
expect the H2 diffusion layer to be completely disrupted by the detaching bubble. The volume occupied by the
detaching bubble must be refilled with the adjacent electrolyte, including the electrolyte in the diffusion layer
around the electrode due to its immediate proximity. We find justification in the fact that the volume of the
half-torus (with tube radius δ) comprising the Nernst diffusion layer surrounding the electrode is very small
compared to the bubble volume at detachment:

VN
Vd
∼ π2reδ

2

4πa3d/3
=

3π

4β2

r2e
a3
∼ 2× 10−3. (13)

Ohmic overpotential

It is expected that detachment-driven convection additionally disrupts the diffusion layer of high ionic concen-
tration that surrounds the cathode, thereby reducing the ohmic overpotential, EΩ in Equation (7). This claim
is evidenced in Figure 6, which compares the steady-state concentration field of cations, or equivalently anions,
in the presence and absence of a bubble. The concentration field is obtained from a simple numerical model.
The bubble is treated as a stationary boundary as before, but now the medium is confined to a closed cylindrical
domain that resembles our experimental configuration. In particular, the interelectrode distance, the volume
of solution, and electrode sizes are equivalent to those of our set-up. The equilibrium concentrations of Na+

and HCO3
– ions are assumed to always remain much greater than those of OH– , CO3

2– and H+. Upon the
approximation that the solution has a perfect buffer capacity, it can be shown (see Supporting Information)
that the steady-state Nernst–Planck equation (9) simplifies to

∇2c± = 0 (14)

where c± ' cNa+ ' cHCO3
− is the total cationic or anionic concentration. Equation (14) is solved numerically

assuming uniform ionic fluxes at the electrodes (cf. Supporting Information). The aforementioned assumption
of perfect buffer capacity is expected to hold everywhere except in the very small diffusion layer closest to the
ring cathode surface where the local concentrations of OH– and CO3

2– are highest, even possibly exceeding
the concentration of HCO3

– for the larger current densities. This is corroborated by Figure 6, where it is
seen that most of the interelectrode concentration difference takes place within this small region. In fact,
the dimensionless difference of ∆c̃ ≈ 0.07 obtained for our geometry translates to a fractional concentration
difference of order unity since, for our experimental current densities,

∆C∗±
C∗±

=
(I/A)re∆c̃±

2FD−C∗±
∼ 1. (15)

We have set C∗± = 0.01 M as the initial bulk concentration of cations/anions in the solution, whereas D−
represents the effective diffusion coefficient that determines the ionic boundary layer thickness at the electrodes
(D− ' DHCO3

− under the assumption of perfect buffer). A fractional concentration change of order unity
suggests that the local OH– overconcentration near the cathode is likely too large for the buffer capacity of the
solution (cf. Supporting Information). In such a case, the validity of perfect buffer assumption of the model is
therefore somewhat limited. Nonetheless, this highlights the importance of C∗± being sufficiently in excess to
ensure weak ionic gradients and a high buffer capacity throughout the whole solution.

Comparing Figures 6(b) and 6(c) one finds that the ionic concentration difference between the cathode ring
and anode wire is mildly aggravated when the bubble is present. The bubble seems to block ion-conduction
pathways; the high ionic concentration region near the ring visibly increases as a result. Bubble departure
will therefore weaken the concentration difference between the cathode and anode, and hence the ohmic drop
across the solution. The latter can be readily estimated by solving the steady-state electric potential in the
same domain, under the same aforementioned assumptions. It then follows that ∇ · (c±∇φ) = 0, from which
φ can be computed given that c± is already known. As before, we make the approximation of uniform current
density across the electrodes’ surface, as opposed to constant potential.
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The steady-state potential difference ∆φ/RT can only depend on the geometry of the cell and, very impor-
tantly, on the level of electrolyte concentration [30]:

Γ =
FD−C

∗
±

(I/A)L
, (16)

where L defines a characteristic length, e.g. the interelectrode distance. We find that ∆φ/RT depends inversely
on Γ : a higher value of Γ means that the bulk concentration of supporting ions is more in excess relative to
the current density employed. Consequently, both the obstruction effect on the overpotential and the ohmic
overpotential itself decrease. Note that Γ scales precisely as the inverse of the fractional concentration change
defined in (15), a quantity which ideally must be kept small to ensure EΩ remains small. A value of Γ = 0.002
was used to model our experiments; Figure 7 represents the steady-state electric potential field obtained by
numerically solving the steady-state Nernst–Planck equation (9) as explained in the Supplementary Information.
At this low value of Γ , the obstruction due to the mere presence of the bubble can have a remarkable impact
on the ohmic overpotential. Indeed, the bubble behaves as an electrical shield, causing the ohmic potential to
increase by roughly 20 %. Moreover, taking ∆φ̃ ∼ 25, we expect the magnitude of the ohmic overpotential in
our experiments to be of order EΩ ∼ F∆φ̃/RT ∼ 0.6 V. Doubling the value of Γ = 0.002, we obtain a reduction
of 75 % in the potential difference. This hints that the concentration of supporting electrolyte used in all three
experiments (0.01 M) falls short from the optimal level of excess.

Finally, we determine whether the transient nature of the measured cell voltage can be attributed to the
unsteadiness in the ohmic potential. In other words, we seek the characteristic time scale required for the
potential and ionic concentrations to reach the steady state. Initially, the supporting ions are homogeneously
distributed in the solution, compliant with diffusive equilibrium. During electrolysis, however, the diffusion of
supporting ions becomes a reactive transport mechanism that opposes their migration due to the presence of the
electric field. The steady-state concentration and potential fields are precisely attained once the concentration
gradients are large enough for the diffusion fluxes to match and oppose the migratory fluxes of all ionic species
everywhere in the solution. In short, migration is the driving transport mechanism of the supporting ions
during electrolysis. Therefore, one should only consider the unsteady and migration terms in the Nernst–Plank
equation (9) when seeking the ionic relaxation time. These two terms scale as

∂c±
∂t
∼ ∆C∗±

τM
, ∇ ·

(
D±z±F

RT
c±∇φ

)
∼ D±|z±|F

RT
C∗±

EΩ
L2

. (17a, b)

The characteristic length of the concentration and potential gradients can be taken as L ∼ 1 cm, namely, the
distance between the electrodes, whereas ∆C∗± represents the characteristic concentration change that takes
place over the migration time scale τM . An order of magnitude balance between the unsteady and migration
terms yields

τM ∼
(
∆C∗±
C∗±

)(
RT/F

|z±|EΩ

)(
L2

D±

)
. (18)

The fractional concentration difference is expectedly of order unity (cf. Equation 15). The diffusivity of HCO3
–

is quite similar to that of Na+ (D± ∼ 1.2 × 10−9 m2/s); this allows τM to be estimated through independent
consideration of one supporting ion or the other. Setting EΩ ∼ 0.1 V to 1 V, we obtain τM of order 103

or 104 seconds at most. This time scale is well below the diffusive time scale L2/D± ∼ 105 s, but it is still
comparable, if not larger, than the time scale of our experiments. We therefore conclude that the continuous
rise of the cell voltage in time should be rightfully attributed, in part, to the migration-driven increase of the
ohmic overpotential in time.

It is worth mentioning that the electric double layer, and all effects associated with it, have been excluded
throughout this paper. This was deemed reasonable on the basis that the ionic adsorption by the electrode
surface has little impact on the macroscopic distribution of the ionic species several Debye screening lengths
away from the electrode. In addition, the formation of the double layer is simply too fast. Such time can be
quantified by first computing the capacitance of the double layer, Cd = ε/λd ∼ 10 µF/cm2, where ε = 710
pF/m is the permitivity of water and λd = 3 nm is the double layer thickness. The latter is equal to one Debye
screening length [31],

λd =
εRT

F 2
∑
j C
∗
j z

2
j

. (19)

Taking Rcell = E/I ∼ 400 kΩ as the cell resistance, the cell relaxation time associated with the charging of the
double electric layer is τd = ACdRcell ∼ 2 ms [32]. The charging time is thus too short, by all accounts, to have
any credible contribution to the transient nature of the cell potential over several thousand seconds. Moreover,
we find that the capacitive charging current, estimated as Id = ACddE/dt [33], is of the order of nanoamperes
at best. It therefore constitutes a negligible portion of the measured current.

Conclusions

A novel method to promote gas evolution away from the electrode surface has been tested under alkaline water
electrolysis. It consists in a ring microelectrode encircling a hydrophobic microcavity. The ring microelectrode
does not suffer from bubble coverage, owing to the fact that bubbles preferably form on the cavity instead.
Consequently, the chronopotentiometric fluctuations of the electrolysis cell have been observed to be much
weaker than those associated with conventional microelectrodes.
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It has been shown that the bubbles on the cavity exert a salubrious influence on the cell potential difference
by reducing the concentration overpotential of the microelectrode during the diffusive growth and detachment
stages. The reduction in surface overpotential comes at the cost of a lesser gas evolution efficiency. We have
argued that bubble formation also delays the concentration overpotential from reaching a steady state value.
Therefore, we hold bubble formation partly accountable for the long-term transient behaviour of the cell voltage.

The second factor responsible for such long-term behaviour is the unsteadiness of the ohmic overpotential,
which must conform to the large relaxation time of ionic migration across the solution in the cell. Furthermore,
we have exposed the shielding effect by which bubbles increase the ohmic overpotential, which is naturally
alleviated upon bubble detachment. The magnitude of the ohmic losses and the blockage effect are drastically
intensified with insufficient excess of supporting electrolyte.

The insight and fundamental understanding that this contribution offers forms a useful base for future work
concerning the optimal design and operation of ring microelectrodes. We believe that these findings can have
important implications, for instance, in the design and advancement of gas-evolving electrochemical energy
conversion systems.
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Appendix A. Sample fabrication

The fabrication method is best explained with reference to Figure A-1, which depicts the cross section of the
substrate after the key steps in its fabrication process. In step 1, a silicon wafer (containing multiple samples)
with a 150 nm thick SiO2 layer is patterned using standard photolithography techniques. The Olin OIR 907-17
resist is spin-coated, followed by DC-sputtering of a 10 nm thick tantalum adhesion layer and a 100 nm thick
platinum layer with a custom-made sputter coater (T’COaty, Nanolab, MESA+ Institute). Step 2 shows the
substrate after the deposited metal has been patterned via a lift-off process. The resulting metal film forms a
ring shaped electrode with an inner radius of 400 µm and outer radius of 410 µm. A superhydrophobic cavity,
30 µm in diameter, is defined and created (steps 3 and 4) in the center of each electrode. The fabrication of
superhydrophobic cavities has been described elsewhere [8, 19]. Finally, in step 5 the wafer is cleaned with
acetone in an ultrasonic bath (VWR Ultrasonic Cleaner USC-THD, 45 kHz) to remove the photoresist and
diced (Dicing Saw Loadpoint Micro Ace 3) to extract the 10× 10 mm2 samples.

Appendix B. Geometric factor

The geometric factor β, defined in Equation (12), can be verbally interpreted as the current density ratio
between a disk/ring electrode and a hemispherical electrode of the same (outer) radius re required to sustain
a given steady-state concentration difference between the electrode surface and the bulk. It stands to reason
that thinner rings will have higher values β, primarily because they posses less surface area. The geometric
factor was computed numerically in FreeFem++ by solving the steady-state diffusion equation (see Supporting
Information). Values of β for a wide range of ring thicknesses are graphed in Figure A-2. The analytical value
β = 4/π for a flat disk (ri/re = 0) [28] has also been plotted. The dependance of β on the ring thickness is well
described by the fitting relation

β =
4

π

[
1 +

1

3

(
ri/re

1− ri/re

)]
. (B-2)
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Figure 1: Sketch of the alkaline water electrolysis cell.

Figure 2: A) Images sequence of a bubble growing on the artificial nucleation site
at various time intervals. Inside the bubble, dark circular shape, bright spots
result from reflections of the light source. The reflection of the bubble is seen on
the SiO2 substrate below the bubble neck. B) Schematic representations of the
gas concentration profile in the liquid at intervals comparable to A, where the
color bar indicates a low (yellow) and high (red) concentration of dissolved gas
in the electrolyte around the electrode (blue). The bubble takes up gas from the
surrounding liquid indicated by the dashed line. After bubble detachment, the
spirals indicate the convective flow induced by the displacement of the liquid
phase. C) The potential di↵erence measured during bubble evolution on the
cavity alone, the electric response to bubble detachment is indicated by the
arrows. A current density of 374 A/m2 was applied, a pH 7 solution was used as
electrolyte, and the radius of the cavity was 10 µm. D) The potential di↵erence
measured during bubble evolution on both cavity as well as the platinum ring
electrode. The fluctuation of the potential is attributed to the evolution of the
bubbles. A current density of 112 A/m2 was applied, a pH 1 solution was used
as electrolyte, and the radius of the cavity was 5 µm.
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Figure 2: Sequence of images, taken at a time t since the start of electrolysis, showing a hydrogen
bubble nucleating and growing from the hydrophobic micropit of the SiO2 substrate. The ring
electrode encircling the pit has been highlighted for clarity. The current density is 39.3 mA/cm2.
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Figure 3: Cell potential E and bubble radius a of the first three bubbles in the succession plotted
against elapsed time since the start of constant-current electrolysis. Three experiments at different
current densities are shown. The dashed black curves are fits of the form a2n/tn = mn = const., from
which the effective supersaturation ζn = mn/2ΛDH2

was then computed.
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Figure 4: Numerical solution of the dimensionless surface concentration, C̃ = (CH2−C∗
H2

)/(Css
H2
−C∗

H2
)

as a function of dimensionless time t̃ = DH2
t/r2e for the case of a thin ring, a disk and a hemispherical

electrode of radius re. The dashed curve is the analytical solution given in (11).
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Figure 5: Snapshots at DH2
t/r2e = 100 of the dimensionless concentration field of H2 gas in the

vicinity of the ring electrode in (a) the absence and (b) the presence of an encircled bubble. The
concentration has been nondimensionalised as c̃ = nH2

FDH2
A(cH2

− C∗
H2

)/Ire (see Supporting In-
formation). The initial supersaturation (c̃ = 0) is set at ζ∗ = C∗

H2
/kH2p − 1 = 0.5, similar to the

effective supersaturation observed in our experiments at the lowest current density. We take I/A = 19
mA/cm2 and the dimensionless interfacial concentration at the bubble (saturation concentration) is
correspondingly set to c̃ = −0.005. The electrode thickness is that of our experiments, ri/re = 0.976.
The c̃ = 0, 0.01, 0.02 and 0.03 contours have been outlined for clarity.
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Figure 6: (a) Steady-state concentration field of cations or equivalently anions, in an axisymmetric
closed domain of similar dimensions to our experimental cell. Panel (b) shows a close-up of the ionic
concentration field in the vicinity of the ring electrode, whereas panel (c) shows the same close-up
in the absence of the bubble. The concentration has been nondimensionalised as c̃ = 2FD−A(c± −
C∗

±)/Ire (see Supporting Information). The initial bulk concentration corresponds to c̃ = 0; the 0,
0.01, 0.02 and 0.03 contours have been outlined for clarity.
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Figure 7: Steady-state electric potential field in (a) the absence and in (b) the presence of a bubble
for electrolyte concentration level Γ = 0.002. The electric potential has been nondimensionalised as
φ̃ = Fφ/RT , and shifted in order to make the potential zero at the cathode. The contours for φ̃ = 8,
10, ... 22 have been outlined for clarity. The location of the cathode and anode are as indicated in
Figure 6.

Figure A-1: Cross-sectional overview of the fabrication steps (not to scale).
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Figure A-2: Numerical values of β (dots) as a function of the ring thickness. The fitting curve is
given by Equation (B-2).
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Transport of dissolved hydrogen gas

In this first section we present the mathematical formulation implemented in the main manuscript to numerically
compute (i) the time-evolving H2 concentration field in the presence of a bubble and (ii) the ring geometric factor
β by means of the steady-state concentration field.

Concentration field in the presence of a bubble

The concentration of dissolved H2 gas evolves according to the diffusion equation,

∂cH2

∂t
= DH2

∇2cH2
, (S1)

subject to the initial condition cH2(x, t = 0) = C∗
H2

and boundary conditions

c = kH2p, on the bubble surface, (S2)

∂cH2

∂x
= − I/A

nH2
FDH2

, on the cathode surface, (S3)

∂cH2

∂x
= 0, on the remaning boundaries. (S4)

Here x denotes the coordinate pointing normally outwards (into the fluid) from the surface. Note that C∗
H2

is
some initial bulk concentration, assumed uniform, and that the remaining boundaries consist of the substrate
surface, axis of symmetry and infinity. On the bubble surface, which is treated as a stationary sphere by virtue of
the pseudosteady approximation (cf. main manuscript), the dissolved concentration of H2 gas corresponds to the
saturation concentration of H2 in water at a given pressure p. Henry’s coefficient of H2 in water is kH2 ' 7.7×10−6

mol/m3Pa at room temperature.
Let us now define a dimensionless concentration and time as

c̃ =
nH2FDH2

(I/A)re

(
cH2
− C∗

H2

)
, t̃ =

DH2t

r2e
. (S5)

Additionally, let ∇̃ = re∇ and x̃ = x/re. The system in dimensionless form becomes

∂c̃

∂t̃
= ∇̃2c̃, (S6)

subject to the initial condition c̃(x̃, t̃ = 0) = 0 and boundary conditions

c̃ =
nH2

FDH2

(I/A)re

(
kH2

p− C∗
H2

)
, on the bubble surface, (S7)

∂c̃

∂x̃
= −1, on the cathode surface, (S8)

∂c̃

∂x̃
= 0, on the remaning boundaries. (S9)
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Geometric factor

The geometric factor was computed numerically from the steady-state diffusion equation

∇2cH2 = 0 (S10)

on a large (ideally semi-infinite) axisymmetric domain with boundary conditions

cH2 = Css
H2
, on the (ring) cathode surface, (S11)

∂cH2

∂x
= 0, on the substrate and axis of symmetry, (S12)

cH2
= C∗

H2
, at infinity. (S13)

The steady-state concentration on the electrode surface is denoted by Css
H2

whereas C∗
H2

is the initial bulk concen-
tration, assumed uniform. It is convenient to work with the following dimensionless concentration,

c̃ =
cH2
− C∗

H2

Css
H2
− C∗

H2

(S14)

together with ∇̃ = re∇ and x̃ = x/re. The dimensionless system becomes ∇̃2c̃ = 0, with c̃ = 1 on the electrode
surface, c̃ = 0 at inifinity and zero flux at the substrate surface and axis of symmetry. Such a system was solved
in a large axisymmetric 100re square domain. The geometric factor β is mathematically defined as the mean
concentration flux (the flux is usually not uniform) across the electrode surface. For a horizontal ring of outer
radius re and inner radius ri, the factor can be numerically computed as

β = − 1

π (1− r2i /r2e)

∫ 1

ri/re

2π
∂c̃

∂z̃

∣∣∣∣
z̃=0

dr̃, (S15)

where (r̃, z̃) = (r/re, z/re) are dimensionless cylindrical coordinates.

A note on the boundary conditions employed on the electrode surface

The simulations reported in the main sections of the manuscript assume that the current density at the electrodes
is uniform. In other words, we impose a uniform concentration or potential gradient (Neumann-type) boundary
condition at the electrodes, rather than the more realistic (Dirichlet-type) boundary condition of uniform concen-
tration or potential that we use for instance to obtain β. The reason is simplicity: galvanostatic conditions imply
that the value of the mean current density is known. Hence, the values of the mean surface concentration and
potential fluxes are also known; the values of the surface concentration and potential are not. It is imperative to
realise that both conditions are strictly incompatible with one another (except if the domain is 1D or spherically
symmetric), meaning for example that the current density on the ring electrode cannot be uniform indeed if the
potential is known to be uniform everywhere on its surface. Consequently, one should be aware that the solution
changes slightly when switching from one boundary condition to the other.

Steady-state ionic transport model

In this second section we will derive the equations that are employed in the main manuscript to compute the
steady-state ionic concentration and electric potential fields within our constant-current water electrolysis cell.
The layout of the axisymmetric numerical domain is sketched in Figure S1(a). It will be shown that under a
specific set of assumptions and approximations, the steady-state transport equations and boundary conditions
simplify to those found in Figure S1(b).

Governing equations

The ionic transport within the electrolyte solution is governed by the Nernst–Planck equation,

∂cj
∂t

= Dj∇2cj +∇ ·
(
DjzjF

RT
cj∇φ

)
−U · ∇cj + Sj , (S16)

where cj is the molar concentration and Dj is the diffusivity of species j = Na+, HCO3
– , CO3

2– , OH– and H3O+,
these being the main ions present in a sodium bicarbonate solution. The electric potential is denoted by φ whereas
zj is the charge of the species, R = 8.314 Jmol−1K−1 is the gas constant, T = 293 K the absolute temperature
and F = 96485 C/mol is Faraday’s constant. Electroneutrality implies∑

j

zjcj = 0. (S17)
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Figure S1: (a) Sketch of axisymmetric cell undergoing alkaline water electrolysis, in which OH–

ions are produced and consumed at the cathode and anode, respectively. Other ions present in
sodium bicarbonate electrolyte solution are also indicated. (b) Steady-state transport equations and
boundary conditions of the total concentration of cations or anions, c±, and the electric potential
field φ. Symbols a1, b1, a2, and b2 are constants given by equations (S31)–(S34). Vector x̄ denotes
the unit normal pointing out from the cell boundaries.

The flow velocity field, if any, is denoted by U . The equilibrium reactions between the different ions are taken into
account through the source term Sj . In this context, Sj is the local production or recombination rate per unit
volume of species j. Charge is conserved throughout all equilibrium reactions. Therefore,∑

j

zjSj = 0. (S18)

In sodium bicarbonate solution, the following chemical equilibrium reactions are known to take place:

H2CO3 + OH− 
 HCO3
− + H2O, pKb1 = 7.65 (S19)

HCO3
− + OH− 
 CO3

2− + H2O, pKb2 = 3.67 (S20)

H3O+ + OH− 
 2 H2O, pKw = 14 (S21)

Most of the carbonic acid breaks down into molecules of dissolved CO2 and water: H2CO3 → CO2 + H2O. The
base dissociation constant is related to the concentrations through

Kb =
[HB+][OH−]

[B]
(S22)

for an acid–base reaction of the form: HB+ + OH− 
 B + H2O. Additionally, Kw = [H3O+][OH−].

Equilibrium limits: infinite and zero buffer capacity

In a 0.010 M sodium bicarbonate solution of pH 7.4, the equilibrium reactions (S19)–(S21) yield the following
equilibrium concentrations:

C∗
Na+ = C∗

HCO3
− = 0.010 M, C∗

CO3
2− = 1.2× 10−5 M, C∗

OH− = 2.5× 10−7 M, C∗
H3O+ = 4.0× 10−8 M. (S23)

In the alkaline electrolysis cell, OH– ions are produced at the cathode and consumed at the anode. We therefore
expect an equilibrium overconcentration of OH– ions (with respect to C∗

OH−) in the vicinity of the cathode, and
an underconcentration in the vicinity of the cathode. An excess of hydroxyl ions favours their recombination into
carbonate and bicarbonate ions, and viceversa, in compliance with the equilibrium reactions. The equilibrium
concentrations of HCO3

– , CO3
2– and OH– will readjust to oppose a given change in OH– concentration, ∆COH− ,

as shown in Figure S2.
It is seen that when ∆COH− < 10−3 M, the concentration of the predominant species (HCO3

– ) stays largely
invariant. Moreover, the increment of the OH– equilibrium concentration remains very small. In this regime, the
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Figure S2: Equilibrium concentrations of species j = HCO3
−, CO3

2– and OH– that result from a
sudden (local) concentration change ∆COH− from the initial equilibrium value C∗

OH− . (a) Response to
a sudden overconcentration, ∆COH− > 0 (cathode) and (b) a sudden underconcentration ∆COH− < 0
(anode). The dashed line indicates the sudden concentration of OH– , i.e., in the absence of equilibrium
reactions.

solution can be treated as a perfect buffer. It stands to reason that the source term in the transport equation for
HCO3

– must be much smaller than the diffusion or migration terms.
Hereon let us denote the sum of some property over all cations and all anions with subscripts + and −

respectively, i.e., for a given quantity X,

X− = XHCO3
− +XOH− +XCO3

2− , X+ = XNa+ +XH3O+ (S24)

Since the hydronium concentration is very low, the cation concentration is c+ ' cNa+ . In the limit of infinite buffer
capacity, where ∆COH− < 10−3 M, we have that HCO3

– is the predominant anion. Hence,

c− ' cHCO3
− , (S/D)− = 0, c− = c+ (S25)

Note that the third equality is established by electroneutrality, assuming that the solution essentially contains
only homovalent ions (in this case |z+| = |z−| = 1). As ∆COH− increases beyond 10−3 M, the solution gradually
losses its buffer capacity. When ∆COH− > 10−1 M, the buffer solution has lost all its buffering capacity and OH–

becomes the predominant species. The source term in the transport equation for OH– is therefore negligible. In
the limit of zero buffer capacity,

c− ' cOH− , (S/D)− = 0, c− = c+ (S26)

Derivation of the model equations

In the steady state and in the absence of advection, the sum of the Nernst–Planck equation (S16) for all charged
species gives

∇2(c+ + c−) = (S/D)+ + (S/D)− (S27)

Note that the migration terms have cancelled out by virtue of electroneutrality. Since c+ ' cNa+ , the cations
do not undergo any equilibrium reaction, hence (S/D)+ = 0. We will assume that the electrolyte behaves as a
perfect buffer. This is justified since the small current densities employed ensure that almost everywhere in the
solution the variation in ionic concentration remains small, namely ∆C∗

−/C
∗
− � 1. It should be pointed out that

this assumption breaks down first within the thin diffusion layer closest to the ring cathode surface where the local
concentrations of OH– and CO3

2– are highest, even possibly exceeding the concentration of HCO3
– if the current

density is large enough. Under the limit of infinite buffer capacity, equation (S27) simplifies to

∇2c± = 0, (S28)

where c± = c+ = c− denotes the total concentration of cations or anions. To satisfy the Nernst–Planck equation
in (S16), it follows from Equation (S28) that

∇ · (c±∇φ) = 0, (S29)

4



from which the electric potential field φ may be calculated.
The boundary conditions for c± and φ at the cathode are prescribed under the assumptions of infinite buffer

capacity and uniform current density. The former assumption implies that the relevant diffusion coefficient D−
that determines the ionic boundary layer thickness at the electrodes is that of HCO3

– as opposed to that of OH– .
The latter assumption implies the imposition of constant flux: JOH− = I/AFnOH− . One has that

I/A

FD−nOH−
= −∂c−

∂x
− z−F

RT
C−

∂φ

∂x
,

0 = −∂c+
∂x
− z+F

RT
C+

∂φ

∂x
, (S30)

where x is the coordinate in the normal direction pointing outwards from the cathode surface, whereas C− and
C+ denote the ionic concentrations evaluated on the cathode surface. Noting that C− = C+ = C±, z+ = −z− = 1
and nOH− = 1, the two conditions in Equation (S30) can be added to obtain a single boundary condition for c±,

∂c±
∂x

= − I/A

2FDHCO3
−
. (S31)

Substitution of Equation (S31) into Equation (S30) finally yields the boundary condition for the electric potential,

F

RT

∂φ

∂x
=

I/A

2FD−C±
, (S32)

Similarly, at the anode we have
∂c±
∂x

=
I/Aa

2FD−
(S33)

and
F

RT

∂φ

∂x
= − I/Aa

2FD−C±
, (S34)

where Aa is the anode area and C± is now the concentration on the anode surface. Zero concentration flux and zero
potential flux boundary conditions apply on the remaning boundaries (including the bubble surface), cf. Figure
S1(b). The total number of ionic species, equal to C∗

±V (with C∗
± the initial bulk concentration of cations or anions

and V the solution volume), is thereby conserved.

Nondimensionalisation of the model equations

Let us define the dimensionless counterparts of the ionic concentration, bulk concentration, and electric potential
as follows:

c̃± =
2FD−

(I/A)re

(
c± − C∗

±
)
, C̃∗

± =
2FD−C

∗
±

(I/A)re
, φ̃ = Fφ/RT. (S35)

In dimensionless form, the governing model equations become

∇̃2c̃± = 0, (S36)

∇̃ ·
[(
c̃± + C̃∗

±

)
∇̃φ̃
]

= 0, (S37)

where ∇̃ = re∇ and x̃ = x/re . Boundary conditions on the cathode surface are

∂c̃±
∂x̃

= −1,
∂φ̃

∂x̃
=

1

C̃± + C̃∗
±
, (S38)

where C̃± is the dimensionless concentration at the cathode surface. On the anode surface we have

∂c̃±
∂x̃

= A/Aa,
∂φ̃

∂x̃
= − A/Aa

C̃± + C̃∗
±
, (S39)

where C̃± now denotes the dimensionless concentration at the anode surface. The electrolyte concentration level Γ
defined in Equation (16) of the main manuscript is related to C∗

± through Γ = C∗
±re/L. In our case a concentration

level of Γ = 0.002 is therefore equivalent to setting C∗
± = 0.05 since L/re = 25.
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