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ABSTRACT
In our current society, unobtrusive sensing has become an impor-
tant tool to monitor the physical world, as it is easy to use and
privacy-aware. Remote sensing is a new and heavily researched
technology based on the analysis of radio signals. A particular field
research in this area is the analysis of channel state information
with the raw signal, as this contains the most information. While
most research focuses on analysis of individuals or clustered data,
little to no research has gone into the analysis of channel state
information of multiple people over multiple days for different and
comparable activities. This dataset contains data of nine different
participants over three different days, with an two participants
repeating the activities over an additional three days. The dataset is
available at the 4TU.ResearchData under the CC BY-NC-SA license
[4].

CCS CONCEPTS
• Computer systems organization → Sensor networks; • Net-
works→Wireless local area networks; •Human-centered com-
puting → Ubiquitous and mobile computing.

KEYWORDS
datasets, channel state information, human activity recognition,
device-free sensing, 802.11n, data stability
ACM Reference Format:
Jeroen Klein Brinke and Nirvana Meratnia. 2019. Dataset: Channel state
information for different activities, participants and days. In DATA’19 ’19:
Proceedings of the Second Workshop on Data Acquisition To Analysis, No-
vember 10, 2019, New York, NY, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3359427.3361913

1 INTRODUCTION
There is an increasing demand to monitor and control the world
unobtrusively. This is supported by evolving technologies; enabling
smaller and smarter solutions with better performance than cur-
rent solutions. These techniques are often applied to humans; be it
for security, safety or health reasons. This is not exclusive to hu-
mans either, as animals and structures are continuously observed
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through these pervasive systems. One could think of structural or
vehicle health monitoring for preventive maintenance, the tracking
of animals and poachers, and the security in a city centre.

For these situations in which continuous monitoring is required,
two techniques are currently superior: audiovisual technologies
and wireless sensor networks. Audiovisual technologies are based
on video and sound. These are accurate and interpretable by hu-
mans, yet they are considered privacy invasive. This means these
technologies can often not be used due to privacy concerns. Wire-
less sensor networks are the more privacy-aware alternative, as it
becomes harder for humans to interpret the signals. Furthermore,
they are considered to be unobtrusive as they often consider of
small sensors, barely causing any impairment to the user. However,
they are in fact still obtrusive physically, as sensors often need to
be worn on and in the body.

Remotely sensing the human body is the only way to achieve
true unobtrusive sensing. In order to achieve this, current research
has shifted to remote sensing [1, 2, 8, 12]: analysing how activities
and/or events affect the environment. An increasingly popular tech-
nique used for remote sensing is based on channel state information.
Channel state information takes advantage of the multipath effect
and provides information regarding the propagation of traces from
the transmitter to the receiver, measured over different subcarriers
and antenna pairs.

Human activity recognition is a field often tackled by this new
idea of remote sensing. Research has shown that measuring physi-
ological signals [5, 7, 9, 10] and general activity recognition [1, 5,
6, 11] can all be achieved through channel state information. The
user-friendliness of remote systems is higher, as no wearables are re-
quired. Another incentive is the sense of privacy as it is more likely
people would feel more comfortable with no cameras, microphones
or wearables (Hawthorne effect).

1.1 Uniqueness of the dataset
Clearly labeled datasets with proper metadata including channel
state information are hard to find, as they are often not shared. The
ones that are shared are often lacking documentation or metadata.
Furthermore, collecting varied data from multiple participants over
multiple days is often challenging due to time constraints and
availability.

This dataset is unique in that data is collected from nine different
participants over three days, while two participants also repeated
the experiments over the course of a total of three days. It allows
researchers to test their model on i) same participant (50 trials per
activity), ii) different participants on the same day, iii) different par-
ticipants over different days and iv) same participants over different
days.
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2 DATA COLLECTION
2.1 Hardware and software
A dedicated transceiver node was designed for this research, con-
sisting mainly of a Gigabyte Brix IoT. The hardware of the Brix was
modified to fit an Intel Ultimate Wi-Fi Link 5300 NIC (Figure 1).
The Intel NIC was chosen in order to use the open CSI platform
by D. Halperin et al. [3]. Effort was put into using micro-PCs, but
these were not stable enough in combination with the Intel 5300.
This is likely due to the Intel 5300 being heavily outdated hardware.
The specifications of the final design can be found in Table 1 and
the final solution can be found in Figure 1.

Table 1: Hardware specifications Gigabyte Brix IoT

Component Specifications
Processor Intel Apollo Lake N34500
RAM 1x HyperX 8GB DRR3L-SO DIMM 1866 MHz

Hard drive Transcend MTS800 SSD 128 GB (M.2 2280)
Graphics card None

Wireless adapter Intel N Ultimate Wi-Fi Link 5300
Size 165x105x27mm

Operating System Ubuntu 14.04.4

The software developed for the receiver node was essentially a
wrapper, allowing CSI collection for custom duration and sampling
rate (depending on the activity). The node initiated the collection
by pinging the access point. The access point replied to the node
and for this reply the channel state information (amplitude and
phase) over 30 subcarriers was recorded. Therefore, the sampling
rate is not necessarily the number of frames measured per second,
but rather the number of pings sent from the node to the access
point.

Afterwards, the receiver node would synchronise with a server
(a Raspberry Pi with an external hard drive) and store the files in a
logical order on the hard drive. Synchronisation was done using
the same network between activities. The files were automatically
converted by the Raspberry Pi from .dat to .mat and .h5 to analyse
them through MATLAB and Python. The Raspberry Pi was located
within the same room, but at a safe distance away from the nodes.

Figure 1: Inside of the Gigabyte Brix IoT (receiver node) with
the Intel 5300 NIC

2.2 Data acquisition
2.2.1 Experimental setup. In order to produce a dataset that is
reminiscent of day-to-day living, an actual (small) living room
was used in student housing. The living area is approximately
379x345cm and enclosed by two concrete walls (379cm), a full glass
wall (305 cm) and an "open space", partly blocked by a hard plastic
toilet box (179cm), leading into the kitchen and sleeping area. The
total dimensions of the studio are 861x345cm (Figure 2).

(a) Clap (b) Walk (c) Wave (d) Jump (e) Sit (f) Fall

Figure 2: Layout of the experiment studio, including visual-
ization of performed activities. Transmitter and receiver are
the red and green square, respectively.

The setup consisted of a custom Gigabyte Brix IoT connected
to an access point (TP-LINK AC1750). The distance between the
transmitter and receiver was approximately 250cm, where the ac-
cess point was located on a table (50cm off the ground) and the
receiver node was located on a shelf on the wall (160cm off the
floor). Furthermore, there was a laptop to monitor the status of the
nodes and a screen showing experiment instructions and progress
to the participants. The room also contained a yoga mat to indicate
the perfect location to perform activities. Also located in the room
were a L-shaped sofa, table (with a plant), TV (and furniture), desk
(with a chair), and a bookcase with books. All of these were either
in the line-of-sight between the nodes or within the immediate
vicinity of the either the node or the access point.

2.2.2 Connectivity. There are different connectivity options using
the Linux CSI Tool [3]. The two main ones are using aWiFi network
(which this dataset used) or the 802.11n injection mode. For this
dataset, the node initiates the transmission by pinging the access
point. The access point then returns a frame for which the channel
state information is captured. The most important incentive to use
an existing WiFi network, was that it was important to replicate a
real-life setting. Injection mode requires more modifications to the
access point and a continuous transmission (thus causing a lot of
interference on the specified GHz band). The rate at which the node
was pinging the access point was 20 Hz. This low frequency was
chosen over higher frequencies used in past works [11], as real-life
solutions should not flood the network. A 2.4 GHz network was
used, as this is still the most available one in most homes. Frames
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were transmitted at 48 Mbps using 64QAM(1/2) using mostly 3x3
MIMO for 5 seconds. After each 5 seconds, there was a 1 second
buffer to flush the data. Note that this does not mean that 100 traces
were recorded per second, as frames get lost.

2.2.3 Participants. A majority of papers using channel state infor-
mation for activity recognition focus on either a single participant or
generalizing all data. Nine participants were selected with strongly
different characteristics when it comes to height and weight. The
dataset does not contain this information due to the participants
not willing to share confidential information. The 9 participants
were spread over the course of 3 days, meaning there were three
participants on each day. However, due to availability constraints,
participants were welcomed at any time and therefore there is
no consistency between recording times throughout the days (see
Table 2).

Table 2: Timesheet participants per day (GMT+1), each ex-
periment took 1 hour

Day 1 Day 2 Day 3 Day 6 Day 7 Day 8
1 2 3 4 5 6 7 8 9 6 8 6 8 6 8

T
im

es

11:30
13:00
14:00
15:00
16:00
17:30
19:00
20:00
21:00
22:00

2.2.4 Activities. The performed activities were full-body activities
to visibly change the channel state information to the human eye.
Minor activities (such as hand gestures) or physiological signals
(such as heart rate) do not cause enough disturbance on the chan-
nels to differentiate them using the human eye. For the analysis of
impact on the channel state information, it was thus more beneficial
to consider these activities. The activities include clapping, walking,
waving, jumping, sitting and falling (see bottom of Figure 2). Jump-
ing was excluded from the experiments for the two participants
performing over multiple days due to health concerns.

2.2.5 Days. Experiments were conducted over multiple days to
investigate WiFi signals changing throughout and over days, due
to external influences. These influences include other wireless net-
works (on the same channel), mobile devices and physical changes
in the environment (such as furniture being replaced). As this re-
search focuses on the use of a wireless network, rather than the
802.11n injection mode, stability over days is captured.

2.3 Dataset
The dataset is available at the 4TU.ResearchData under the CC
BY-NC-SA license with the DOI 10.4121/uuid:42bffa4c-113c-46eb-
84a1-c87b6a31a99f [4].

2.3.1 Overview. Each experiment contained 5 or 6 activities, where
each activity contains of 50 trials.Each trial took 5 seconds, resulting
in 250 seconds for the each activity. This means the total time each
experiment captured data was 1500 seconds. This is excluding the

buffer periods between trials. Per second, 20 pings were initiated,
meaning ideally 5000 frames were recorded per activity. A visual-
ization of the data can be found in Figure 3 for all activities. Note
that these are chosen as they are quite distinctive. Depending on
the participant and day, trials may include more or less distinctive
activities as shown here. Each trace also contains more information
regarding noise and antennas [3].

(a) Clapping (b) Walking (c) Waving

(d) Jumping (e) Sitting (f) Falling

Figure 3: Visualization of the amplitude (x-axis) for 1 subcar-
rier and 6 antenna pairs (3x2MIMO) over 100 frames (y-axis)

2.3.2 Metadata. Datawas collected fromNovember 13, 2018 through
November 20, 2018. Files are ordered in a clear manner, spread over
different folders per day. The naming of the files is done in the
following fashion:

./day<n>/<p>_<a>_<t>.<dat|mat>
where n ∈ {1, 2, 3, 6, 7, 8} for days, p ∈ {1, 2, 3} for participants,
a ∈ {clappinд,walkinд,wavinд, jumpinд, sittinд, f allinд} and t ∈
{1..50}. Note that participants are denoted from 1 to 3, depending
on the day, unlike Table 2 where participants are numbered from 1
to 9.

Except for falling, all activities were monitored continuously.
This means that the data contains a lot of different phases of each of
the activities and that no starting point is comparable. For example
in waving, a trace could start with the participant moving the hand
from left to right, but also with the participant moving the hand
from right to left. This increases the diversity in the dataset.

For d = {1, 2, 3}, participants were instructed to perform the ac-
tivities more freely. This meant participants were allowed to change
the way they performed activities throughout the experiments and
walk freely in the experiment area. This was most noticeable for
d = 2.

For d = {6, 7, 8}, participants were instructed to repeat the same
experiments at approximately the same time each day. The partici-
pants performed the activities in the same order every day and an
effort was made to replicate the appearance of each participant by
making sure the outfit and hairstyle were the same throughout the
experiments. Furthermore, an effort was made to replicate the activ-
ities in the same way by showing a video of the first day. Jumping
was excluded from the list of activities.
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(a) Lost traces (b) Frame loss

Figure 4: Visualization of received traces and frame loss within traces for days, participants and activities (in %)

2.3.3 Dataset analysis. During the statistical analysis, we denote
the following notation for easy reference:

• d ∈ {1, 2, 3, 6, 7, 8} as a given day d .
• a ∈ {clappinд,walkinд,wavinд, jumpinд, sittinд, f allinд}
as a given activity a

• p = {d, s}whered is a given day and s the index for a specific
participant on a d . Note that p(2, 3) = p(6, 2) = p(7, 2) =
p(8, 2) and p(3, 2) = p(6, 1) = p(7, 1) = p(8, 1).

• t ∈ {1..50} as a given trial t .
The dataset should contain 420000 frames when considering 5

seconds per frame with 20 Hz. However, it turns out the actual
dataset consists of 407978 frames due to frame loss and corrupted
files. Out of all files, only 2 traces had 0 frames (Figure 4a). This
figure shows most experiments have at least a single recorded trace,
with the exception for d = 1, s = 1,a = walkinд, t = 50 and
d = 1, s = 3,a = clappinд, t = 41.

For the remaining traces, 97.14% of the expected frames were
collected, meaning 2.86% of all frames were lost. This is confirmed
by Figure 4b, as an average loss of 3.05% per day, activity and
participant can be found here. As these are averaged over multiple
trials, there are some outliers. Figure 5 shows that while most trace
lengths are in the range of [90; 110], some received fewer frames
(as low as 20).

For the entire dataset there were always 3 receiving antennas
(Nrx). However, for a total of 1782 traces the number of transmitting
antennas was 2 instead of 3 (0.44%). For the rates, this was slightly
different. The total range of rates can be split into two categories,
low (< 278) and high (> 8468). Here, the high rates correspond to
the 48 Mbps. There are 404254 traces with high rates, accounting
for 99.09% of the dataset.
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