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Abstract

We characterise the set of dominant strategy incentive compatible (DSIC), strongly budget
balanced (SBB), and ex-post individually rational (IR) mechanisms for the multi-unit bilateral
trade setting. In such a setting there is a single buyer and a single seller who holds a finite
number k of identical items. The mechanism has to decide how many units of the item are
transferred from the seller to the buyer and how much money is transferred from the buyer to
the seller. We consider two classes of valuation functions for the buyer and seller: Valuations
that are increasing in the number of units in possession, and the more specific class of valuations
that are increasing and submodular.

Furthermore, we present some approximation results about the performance of certain such
mechanisms, in terms of social welfare: For increasing submodular valuation functions, we
show the existence of a deterministic 2-approximation mechanism and a randomised e/(1 — e)
approximation mechanism, matching the best known bounds for the single-item setting.

1 Introduction

Auctions form one of the most studied applications of game theory and mechanism design. In an
auction setting, a single seller or auctioneer runs a pre-determined procedure or mechanism (i.e.,
the auction) to sell one or more goods to the buyers, and the buyers then have to strategise on
the way they interact with the auction mechanism. An auction setting is rather restrictive in that
it involves a single seller that is monopolistic and is assumed to be non-strategic. While this is a
sufficient assumption in some cases, there are many applications that are more complex: It is often
realistic to assume that a seller expresses a valuation for the items in her possession and that a
seller wants to maximise her profit. Such settings in which both buyers and sellers are considered
as strategic agents are known as two-sided markets, whereas auction settings are often referred to
as one-sided markets.

The present paper falls within the area of mechanism design for two-sided markets, where
the focus is on designing satisfactory market platforms or intermediation mechanisms that enable
trade between buyers and sellers. In general, the term “satisfactory” can be tailored to the specific
market under consideration, but nonetheless, in economic theory various universal properties have
been identified and agreed on as important. The following three are the most fundamental ones:

o Incentive Compatibility ((DS)IC): Tt must be a dominant strategy for the agents (buyers
and sellers) to behave truthfully, hence not “lie” about their valuations for the items in the
market. This enables the market mechanism to make an informed decision about the trades
to be made.
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e Individual Rationality (IR): It must not harm the utility of an agent to participate in the
mechanism.

e Strong Budget Balance (SBB): All monetary transfers that the mechanism executes are
among participating agents only. That is, no money is injected into the market, and no
money is burnt or transferred to any agent outside of the market.

This paper studies the capabilities of mechanisms that satisfy these three fundamental properties
above for a very simple special case of a two-sided market. Bilateral trade is the most basic
such setting comprising a buyer and a seller, together with a single item that may be sold, i.e.,
transferred from the seller to the buyer against a certain payment from the buyer to the seller.
The bilateral trade setting is a classical one: It was studied in the seminal paper [20] and has
been studied in detail in various other publications in the economics literature. Recent work in the
Algorithmic Game Theory literature [3, [4], [I0] has focused on the welfare properties of bilateral
trade mechanisms. These works assume the existence of prior distributions over the valuations
of the buyer and seller, that may be thought of as modelling an intermediary’s beliefs about the
buyer’s and seller’s values for the item.

The present paper studies a generalisation of the classical bilateral trade setting by allowing
the seller to hold multiple units initially. These units are assumed to be of a single resource, so
that both agents only express valuations in terms of how many units they have in possession. The
final utility of an agent (buyer or seller) is then determined by her valuation and the payment she
paid or received. We focus our study on characterising which mechanisms satisfy the the above
three properties and which of these feasible mechanisms achieve a good social welfare (i.e., total
utility of buyer and seller combined).

Due to its simplicity, our setting is fundamental to any strategic setting where items are to be
redistributed or reallocated. Our characterisation efforts show that all feasible mechanisms must
belong to a very restricted class, already for this very simple setting with one buyer, one seller,
and a relatively simple valuation structure. The specific mechanisms we develop are very simple,
and suitable for implementation with very little communication complexity.

Our Contribution. Our first main contribution is a full characterisation of the class of truthful,
individually rational and strongly budget balanced mechanisms in this setting. We do this sep-
arately for two classes of valuation functions: submodular valuations and general non-decreasing
valuations. Section [B] presents a high-level argument for the submodular case. A full and rigor-
ous formal proof for both settings is given in Essentially, for the general case, any
mechanism that aims to be truthful, strongly budget balanced and individually rational can only
allow the agents to trade a single quantity of items at a predetermined price. The trade then
only occurs if both the seller and buyer agree to it. This leads to a very clean characterization
and has the added benefit of giving a robust, simple to understand mechanism: the agents do not
have to disclose their entire valuation to the mechanism, and only have to communicate whether
they agree to trade one specific quantity at one specific price. For the submodular case, suitable
mechanisms can be characterised as specifying a per-unit price, and repeatedly letting the buyer
and seller trade an item at that price until one of them declines to continue.

Secondly, we give approximation mechanisms for the social welfare objective in the Bayesian
setting in Section [ for the case of submodular valuations. Theorem [£1] presents a 2-approximate
deterministic mechanism. For randomised mechanisms, we show a e/(e — 1)-approximation in
Theorem

Related Literature. The first approximation result for bilateral trade was presented in [19],
where for the single-item case the author proves that the optimal gain from trade can be 2-
approximated by the median mechanism, which is a mechanism that sets the seller’s median val-
uation as a fixed price for the item, and trade occurs if and only if p lies in between the buyer’s
and seller’s valuation and the buyer’s valuation exceeds p. The analysis in [I9] is done under the
assumption that the seller’s median valuation does not exceed the median valuation of the buyer.
The gain from trade is defined as the increase in social welfare as a result of trading the item. [3]
extended the analysis of this mechanism by showing that it also 2-approximates the social welfare
without the latter assumption on the medians.

In [3], the authors furthermore consider the classical bilateral trade setting (with a single item)
and present various mechanisms for it that approximate the optimal social welfare. Their best



mechanism achieves an approximation factor of e/(e —1). As in the present paper, there are prior
distributions on the traders’ valuations, and the quantity being approximated is the expectation
over the priors, of the optimal allocation of the item.

The weaker notion of Bayesian incentive compatibility is considered in [4], where the authors
propose a mechanism in which the seller offers a take-it-or-leave-it price to the buyer. They prove
that this mechanism approximates the harder gain from trade objective within a factor of 1/e
under a technical albeit often reasonable MHR condition on the buyer’s distribution.

The class of DSIC, IR, and SBB mechanisms for bilateral trade was characterised in [§] to be
the class of fixed price mechanisms. In the present work, we characterise this set of mechanisms
for the more general multi-unit bilateral trade setting, thereby extending their result. The gain
from trade arising from such mechanisms was analysed in [9].

Various recent papers analyse more general two-sided markets, where there are multiple buyers
and sellers, who hold possibly complex valuations over the items in the market. [I0] analyse a
more general scenario with multiple buyers, sellers, and multiple distinct items, and use the same
feasibility requirements as ours (DSIC, IR, and SBB). [23] have considered a similar setting but
focus on gains from trade (GFT) (i.e., the increase in social welfare resulting from reallocation of
the items) instead of welfare. They initially considered a multi-unit setting like ours (albeit with
multiple buyers and sellers), and they extend their work in [22] to allow multiple types of goods.
They present a mechanism that approximates the optimal GFT asymptotically in large markets.
[2] designs two-sided market mechanisms for one seller and multiple buyers with a temporal com-
ponent, where valuations are correlated between buyers but independent across time steps. A good
approximation (of factor 1/2) of the social welfare using the more permissive notion of Bayesian
Incentive Compatibility (BIC) was achieved by [6]. Their optimality benchmark is different from
the one we consider as they compare their mechanism to the best possible BIC, IR, and SBB
mechanism. A very recent work, [I], proposes mechanisms that achieve social welfare guarantees
for both optimality benchmarks. [I3] considers optimizing the gains from trade in a two-sided
market setting tailored to online advertising platforms, and the authors extend this idea further in
[12] by considering two-sided markets in an online setting.

The literature discussed so far aims to maximise welfare under some budget-balance constraints.
An alternative natural goal is to maximise the intermediary’s profit. This has been studied ex-
tensively starting with a paper by Myerson and Satterthwaite [20], which gives an analogue of
Myerson’s seminal result on optimal auctions, for the independent priors case. Approximately
optimal mechanisms for that settings have further been studied. [111 2T] The correlated-priors case
has been investigated from a computational complexity perspective by [15], as well as links back
to auction theory [I4]. Two adversarial, online variants of market intermediation were studied in
[16], [18].

2 Preliminaries

In a multi-unit bilateral trade instance there is a buyer and seller, where the seller holds a number
of units of an item. This number will be denoted by k. The buyer and seller each have a valuation
function representing how much they value having any number of units in possession. These
valuation functions are denoted by v and w, respectively. Precisely stated, a valuation function
is a function v : [k] U {0} — R>¢ where v(0) = 0. Note that we use the standard notation [a],
for a natural number a, to denote the set {1,...,a}. We denote by v the valuation function of
the buyer, drawn from f, and we denote by w the valuation function of the seller, drawn from g.
For ¢ € [k], the valuation v(g) or w(q) of an agent (i.e., buyer or seller) expresses in the form of a
number the extent to which he would like to have ¢ units in his possession.

A mechanism M interacts with the buyer and the seller and decides, based on this interaction,
on an outcome. An outcome is defined as a quadruple (¢g,qs, pB, ps), where gg and gg denote
the numbers of items allocated to the buyer and the seller respectively, such that g + qs = k.
Moreover, pp and ps denote the payments that the mechanism charges to the buyer and seller
respectively. Note that typically the payment of the seller is negative since he will get money in
return for losing some items, while the payment of the buyer is positive since he will pay money in
return for obtaining some items. Let O be the set of all outcomes. For brevity we will often refer
to an outcome simply by the number of units traded ¢p.

Formally, a mechanism is a function M : ¥ x ¥g — O, where X5 and X g denote strategy
sets for the buyer and seller. A direct revelation mechanism is a mechanism for which X5 and g



consists of the class of valuation functions that we want to consider. That is, in such mechanisms,
the buyer and seller directly report their valuation function to the mechanism, and the mechanism
decides an outcome based on these reports. We want to define our mechanism in such a way that
there is a dominant strategy for the buyer and seller, under the assumption that their valuation
functions are in a given class V. It is well known (see e.g. [5]) that then we may restrict our
attention to direct revelation mechanisms in which the dominant strategy for the buyer and seller
is to report the valuation functions that they hold. Such mechanisms are called dominant strategy
incentive compatible (DSIC) for V. We will assume from now on that M is a direct revelation
mechanism. In this paper, we consider for V two natural classes of valuation functions:

e Monotonically increasing submodular functions, i.e., valuation functions v such that for all
x,y € [k] where < y it holds that v(z) —v(z — 1) > v(y) — v(y — 1) and v(z) < v(y).
This reflects a common phenomenon observed in many economic settings involving identical
goods: Possessing more of a good is never undesirable, but the increase in valuation still goes
down as the held amount increases. For a monotonically increasing submodular function v
and number of units z € [k], we denote by ©(z) the marginal valuation v(x) —v(zx—1). Thus,
it holds that o(z) > ¥(y) when = < y.

e Monotonically increasing functions, i.e., valuation functions v such that v(z) < v(y) for all
x <y, where z,y € [k].

Besides the DSIC requirement, there are various additional properties that we would like our
mechanism to satisfy.

e Ideally, our mechanism should be strongly budget balanced (SBB), which means that for any

outcome (¢p,qs, pp,ps) that the mechanism may output it holds that pg = —pg. This
requirement essentially states that all money transferred is between the buyer and the seller
only.

e Additionally, we want that running the mechanism never harms the buyer and the seller.
This requirement is known as (ez-post) individual rationality (IR). Note that when v and w
are the valuation functions of the buyer and the seller, then the initial utility of the buyer is
0 and the initial utility of the seller is w(k). Thus, a mechanism M is individually rational
if for the outcome M(v,w) = (gB,4qs,pB,ps) it always holds that v(¢gg) — pp > 0 and

w(gs) — ps > w(k).

e We would like the mechanism to return an outcome for which the total utility is high. That
is, we want the mechanism to maximise the sum of the buyer’s and seller’s utility, which is
equivalent to maximizing the sum of valuations v + w when strong budget balance holds.

We characterise in Section B the class of DSIC, SBB, IR mechanisms for both valuation classes.
In Section [4 we subsequently provide various approximation results on the quality of the solution
output by some of these mechanisms. For these results, we assume the standard Bayesian setting:
The mechanism has no knowledge of the buyer’s and seller’s precise valuation, but knows that
these valuations are drawn from known probability distributions over valuation functions. Our
approximation results provide mechanisms that guarantee a certain outcome quality (which is
measured in terms of social welfare, defined in Section[d]) for arbitrary distributions on the valuation
functions.

Formally, in the Bayesian setting, a multi-unit bilateral trade instance is a pair (f, g, k), where
k € N is the total number of units that the seller initially has in his possession, and f and g are
probability distributions over valuation functions of the buyer and the seller respectively. Note
that we do not impose any further assumptions on these probability distributions.

3 Characterisation

In [8] the authors prove that every DSIC, IR, SBB mechanism for classical bilateral trade (i.e. the
case where k = 1) is a fized price mechanism: That is, the mechanism is parametrised by a price
p € R>q such that the buyer and seller trade if and only if the buyer’s valuation exceeds the price
and the price exceeds the seller’s valuation. Moreover, in case trade happens, the buyer pays p to
the seller. In this paper we characterise the set of DSIC, IR, and WBB mechanisms for multi-unit
bilateral trade, and we thereby generalise the characterisation of [§].



Theorem 3.1. Any mechanism that satisfies DSIC, IR and SBB must be a sequential posted
price mechanism with a fixed per-unit price p, potentially with bundling, which we will refer to as
a multi-unit fixed price mechanism. Such a mechanism iteratively proposes a quantity q of units
to both the buyer and seller simultaneously, which the seller and buyer can choose to either accept
or reject. If both agents accept, q additional units are reallocated from the seller to the buyer, the
buyer pays pq to the seller, and the mechanism may then either proceed to the next iteration or
terminate. If one of the two agents rejects, the mechanism terminates. Quantity ¢ may vary among
iterations, but must be pre-determined prior to execution of the mechanism.

For increasing submodular valuations, any number of iterations is allowed. For general increas-
ing valuations, the mechanism is further restricted to execute only one iterations (or equivalently,
it may only offer one bundle for a fixed price).

In simple terms, our result states that for the submodular valuations case, the only thing to be
done truthfully in this setting is to set a fixed per-unit price p, and ask the buyer and seller if they
want to trade one or several units of the good at per-unit price p. This repeats until one agent
rejects. In the general monotone case this is further restricted to a single such proposed trade.
The following is a brief high-level (informally stated) argument of the proof of Theorem Bl for the

submodular setting. We refer the reader to for the complete proof.

Lemma 3.2. All prices must be fized in advance, and cannot depend on the bid / valuation of
neither the seller nor the buyer.

Proof. This follows immediately from DSIC and SBB: By DSIC, for any outcome, the price charged
to the buyer can’t depend on the buyer’s bid, otherwise one can construct scenarios in which the
price charged by the buyer could be manipulated to the buyer’s benefit by misreporting the bid.
The same holds for the seller. By SBB the payment of the buyer completely determines the
payment of the seller (the payment is simply negated) so neither payment can depend on either’s
bid. O

Theorem 3.3. Suppose in a DSIC, SBB, IR mechanism the price for the outcome in which q units
are traded is qp for a fixed per-unit price for all potential outcomes. Then the allocation chosen
for a given pair of valuation functions is the one arising when asking bidders sequentially if they
want to trade one unit (or a bundle of units), until one rejects.

Proof. To see this, consider the seller’s utility function us(q) = ¢-p + w(k — ¢) and the buyer’s
utility function uy(q) = v(q) — ¢ - p, if ¢ units would be traded at unit price p. Since both valuation
functions are concave, it is easy to see that both utility functions are concave, and each has a single
peak (one or more equal adjacent maxima, and no further local maxima). Furthermore they both
start at 0, and once either of them becomes negative, it stays negative. Suppose we sequentially
ask both bidders if they want to trade one unit for price p, until one rejects. Then the quantity
traded is min(argmax(us), argmax (up)), i.e. the first of the two peaks. If the mechanism iteratively
proposes them bundles ¢, g2, ..., then the same expression on the traded quantity would apply,
but with the utility functions restricted to the domain {0, q1,q1 + ¢2,...}. If we ask them about
the big all-k-item bundle, we would choose the bundle outcome iff u(k) > u(0), for both, and 0
if for either of them w(0) > wu(k), i.e. if one (the first) of the peaks of the two utility functions
restricted to {0,k} is at 0.

Now, DSIC means that for any bid of the opposing agent, the agent cannot get anything better
than what she gets by telling the truth. If the quantity traded by the mechanism would be larger
than min(argmax(us), argmax (uyp)), then the bidder with the lowest peak could improve her utility
by claiming that all outcomes higher than her peak are wholly unacceptable (utility less than 0)
to them; by IR, the mechanism would then be forced to trade the quantity at the first peak. If, on
the other hand, the traded quantity would be less than the quantity of the first peak, then both
players would gain by lying, in order to make the mechanism choose to trade a higher quantity (if
such a quantity is at all present in the mechanism’s set of tradeable quantities.) o

Theorem 3.4. In a DSIC, SBB, IR mechanism, all potential outcomes, i.e., (quantity,price)-pairs,
must have the same per-unit price.

Proof. Suppose two outcomes have different per-unit prices. W.l.o.g. suppose for ¢ < g2, p1/q1 <
p2/qa, i.e. the per-unit price is higher in the larger allocation. Then there exists a valuation
function vs; for the seller in which the seller prefers outcome g2 over ¢, but both give positive



utility; and there exists another valuation function vss that gives negative utility for g1, but the
same utility for go. Le. 0 < us1(q1) < us2(ge) but use(q1) < 0 < usa(g2) = us1(g2). Now if for a
given buyer’s valuation, the chosen outcome given vs; is g1, then the seller would have an incentive
to misreport vs2, making outcome ¢; unavailable to the mechanism due to IR, thus making it choose
q2. Vice versa, if per-unit prices are decreasing, the same argument works for the buyer. o

Together, these three results give a full characterisation of the class of DSIC, IR, SBB mech-
anisms in this setting, although in our full formal proof that we provide in we need
to take into account many further technical obstacles and details. There is, in particular, a tie-
breaking rule present, that takes into account what should happen when the buyer or seller would
be indifferent among multiple possible quantities, or when they would get a utility of 0 given the
proposed prices and quantities.

For the case of general monotone valuations, any such mechanism must be further restricted
to offering only a single outcome (other than no-trades) to the bidders. The complete proof can

be found in

4 Approximation Mechanisms

In this section we study the design of DSIC, IR, SBB mechanisms that optimise the social welfare,
i.e., the sum of the buyer’s and seller’s valuation. From Theorem [B.I] our characterization states
that such a mechanism needs to be a multi-unit fixed price mechanism, so that the design chal-
lenge lies in an appropriate choice of unit-price p and quantities offered at each iteration of the
mechanism.

We focus on the case of increasing submodular valuations. Obviously, every item traded can
only increase the social welfare. Therefore, given that the objective is to maximise it, we repeatedly
offer a single item for trade[] The challenge lies thus in determining the right unit price p. It is
easy to see that no sensible analysis can be done if absolutely nothing is known about the valuation
functions of the buyer and seller. Therefore, we assume a Bayesian setting, as introduced in Section
in order to model that the mechanism designer has statistical knowledge about the valuations of
the two agents: The buyer’s (and seller’ valuation is assumed to be unknown to the mechanism,
but is assumed to be drawn from a probability distribution f (and g) which is public knowledge.
We show that we can now determine a unit price that leads to a good social welfare in expectation.

For a valuation function v of the buyer, we write ¥ to denote the marginal increase function
of v: 9(q) = v(q) —v(¢g — 1) for ¢ € [k]. Thus, ¢ is a non-increasing function. Similarly, for
a valuation function w of the seller, we write w to denote the marginal decrease function of w:
w(q) = wlk —qg+1) —w(k — q), for ¢ € [k], so that & is a non-decreasing function. Thus, for all
q € [k], the increase in social welfare as a result of trading ¢ items as opposed to ¢ — 1 items is
0(q) — w(q). Note that therefore if v and w are increasing submodular valuation functions of the
buyer and seller respectively, then the social welfare is maximised by trading the maximum number
of units ¢ such that 9(g) > w(q). We measure the quality of a mechanism on a bilateral trade
instance (f, g, k) as the factor by which its expected social welfare is removed from the expected
optimal social welfare OPT(f, g, k) that would be attained if the buyer and seller would always
trade the maximum profitable amount:

max{q':0(¢') >w(¢')}
E |wk) + > (0(q) — w(q))

v~ fiwevg

OPT(f,g,k)

q=1
max{q":9(q")>w(q")}

DO > (0(q) —w(q))

v~ fiwevg

g=1 q=1

For g € [k] and a seller’s valuation function w, we denote by GFT (v, w, q) the value max{0, 0(q) —
w(q)} (where “GFT” is intended to stand for “Gain From Trade”). Note that GFT (v,w,q) is

L Also, with respect to our tie-breaking rule mentioned at the end of the last section: We simply employ the tie
breaking rule that favours the highest quantity to trade, which is the dominant choice when it comes to maximising
social welfare.



non-increasing in ¢ and that OPT(f, g, k) can be written as

k
OPT(f,9,k) = Bungib(q) + GFT(v,w,q)].

q=1

Note that a social welfare as high as opt OPT(f, g, k) can typically not be attained by any DSIC,
IR, SBB mechanism. However, it is still a natural benchmark for measuring the performance of
such a mechanism, and we will see next that there exists such a mechanism that achieves a social
welfare that is guaranteed to approximate OPT(f, g, k) to within a constant factor. In particular,
for a mechanism M, let gy (v, w) be the number of items that M trades on reported valuation
profiles (v, w), and define

SW(M, (gv fv k)) = Ev~f,w~g[v(QM(va w)) + ’U(k - QM(v,w))]

as the expected social welfare of mechanism M. We say that M achieves an a-approzimation to
the optimal social welfare, for « > 1, it OPT (g, f,k)/SW (M, (g, f, k)) < «
We show next that the multi-unit fixed price mechanism where p is set such that

k
S Proglig) < pl = k/2

achieves a 2-approximation to the optimal social welfare.

Theorem 4.1. Let (f,g,k) be a multi-unit bilateral trade instance where the supports of f and g
contain only increasing submodular functions. Let M be the multi-unit bilateral trade mechanism
where at each step one item is offered for trade at price p = 22:1 Pr,4[w(q) < p] = k/2, until
either agent reject the offer (informally: p is the price such that the seller is expected to accept to
trade half of his units at price p). Mechanism M achieves a 2-approximation to the optimal social
welfare.

Proof. Let v be an arbitrary buyer’s valuation function. We show that the mechanism achieves a
2-approximation if f is the distribution having only v in its support, and hence v is the buyer’s
valuation with probability 1. It suffices to prove the claim under this assumption, because the unit-
price p depends on distribution g only. Hence, if M achieves the claimed social welfare guarantee
for every fixed buyer’s valuation function, then it also achieves this guarantee for every distribution
on the buyer’s valuation. For ease of notation, we will abbreviate SW (M, (f, g, %)) to simply SW
and we let £ = max{q : 9x(q) > p} be the highest quantity that the buyer would like to trade at
unit-price p. In the remainder of the proof, we will omit the subscript w ~ g from the expected
value operator.

We first observe that STV can be written as follows, where we write 1[-] to denote the indicator
function and E, for the event that 0(q) > p > w(q).

E,)JGFT (v, w q))]

k

+E| Y () (1)

q={+1

M=~ 1 Mw

—E | (@(q) + 1[E)GFT (v, w,q))

=

q=

We will bound these last two expected values separately in terms of OPT(f, g, k), and subsequently
we will combine the two bounds to obtain the desired approximation factor.
We start with the quantities up to ¢, for which first rewrite the expression as follows.

4

14
Z E,|GFT (v, w q))] > Ew +ZP1~ E[GFT(v,w,q)) | B,

4
=> E[ —I—ZPr E[GFT(v,w,q)) | E,].



Now, observe that Pr[E,] = Pr[p > w(q)] for quantities ¢ < ¢. Since 25:1 Prlp > w(q)] = k/2

and Prlp > w(q)] is decreasing in ¢, this implies that Zf;:l PrE,] = 2521 Prip > w(q)] > £/2.
Using additionally the fact that E[GFT (v, w,q)) | E4] is also non-increasing in ¢, we obtain the

following bound.

¢ ¢ ¢ Pr[B,] ¢
B | Y (0(0) + 1EJGFT (0 w.0) | > 3 Biie)] + == S BGET (0, .0) | B
9= q; 1 , 9=
> 3 Elig)] + 5 Y BIGFT(v,w,0)) | EJ

£
> S Bla(@)] + 5 Y BIGFT(v,w,q))

£
> 5 Y Blala) + GFT(v,w,q) @

For the quantities higher than ¢, we first observe that non-increasingness of Pr[w(q) < p] in the
quantity ¢ implies that Pr[w(q) > p| is non-decreasing in ¢q. Moreover, Z’;Zl Pr[w(q) <p| =k/2
means that Z];:l Prlu(q) > p] = Z];:l Pr[w(q) < pl, hence it holds that Z];:Hl Pr[w(q) > p] >
2521 Pr[w(q) < p]. Therefore, we derive

k

B wl)| =5 > Bl +5

q=0+1

q=0+1 qg=L+1
k 1 k
> - E[i(g)] + 5 D 9(g)Pr[i(g) > p]
q=0+1 qg=L+1
1< 1 &
q=0(+1 q={+1
1 k
Z 5 E[w(q) + GFT(’U,’LU, q)]a (3)
q=(+1

where the second inequality holds because w(q) conditioned on w(gq) > p is always higher than

0(q) which does not exceed p. Moreover, the third inequality follows because E[GFT (v, w,q)] =

E[(9(q)—w(q))1(0(q) > w(q))] < E[0(q)1(d(q) > w(q))] < E[d(q)1(p > w(q))] = 2(¢)Pr[p > w(q)].
We now use (2) and (B]) to bound () and obtain the desired inequality

OPT(f,g,k)

SW >
- 2 )

N =
(]~

E[w(q) + GFT (v,w,q)] =

q

which proves the claim. O

The above 2-approximation mechanism is deterministic. We show next that we can do better
if we allow randomisation: Consider the Generalized Random Quantile Mechanism, or M, which
draws a number z in the interval [1/e, 1] where the CDF is In(ez) for « € [1/e,1]. The mechanism
then sets a unit price p(x) such that E,[max{q : w(q) > gp(z)}] = 2521 Pr,[w(q) < p(z)] =
xk, repeatedly offering single item trades as before. In words, the price is set such that the
expected number of units that the seller is willing to sell, is an x fraction of the total supply, where
x is randomly drawn according to the probability distribution just defined. This randomised
mechanism satisfies DSIC, IR, and SBB, because it is simply a distribution over multi-unit fixed
price mechanisms. Note that this mechanism is also a generalisation of a previously proposed



mechanism: In [3], the authors define the special case of this mechanism for a single item, and
call it the Random Quantile Mechanism. They show that it achieves a e/(e — 1)-approximation
to the social welfare, and we will prove next that this generalisation preserves the approximation
factor, although the proof we provide for it is substantially more complicated and requires various
additional technical insights.

Theorem 4.2. Let (f,g,k) be a multi-unit bilateral trade instance where the supports of f and g
contain only increasing submodular functions. The Generalised Random Quantile Mechanism Mg
achieves a e/(e — 1)-approximation to the optimal social welfare.

Proof. As in the proof of Theorem [l we fix a valuation function v for the buyer. It suffices to
prove the claim under this assumption, because the unit-price p depends on distribution g only.
For ease of notation, we will again abbreviate SW (Mg, (f, g, k)) to simply STV.

We first rewrite OPT'(f, g, k) as follows:

k
OPT(f,g,k) = Ey[max{d(q), ¥(q)}]

k k
=Y Eu[0(q)] + Y Eul(w(g) — 8(g)1[ir(q) > d(q)]]
‘Z; . q=
= 0(q) + > Euli(g) — i(q) | b(g) > (q)] - Pra[ir(q) > i(q)]
k k
=> i(g)+ Y _(Buli(g) | w(g) > d(q)] — 8(q)) - Pru[ib(q) > 6(b)]. (4)

In the remainder of the proof, we will derive a lower bound of (1 — 1/e) times the expression
@) on SW, which implies our claim. We first observe that ST can be bounded and rewritten as
follows.

SW =3 Euli(@)1[w(q) = (a)] + Y Prufi(e) < 2(¢)Euws[0(a)1[p(z) € [i(q), 5(¢)]

+ ;;Eww[ﬁ(q)l[p(x) € [w(q),3(9)]] | w(q) < 0(q)]] - Pru[w(q) < o(q)]
- gﬁ(q)Prw [w(q) > 9(q)]
+ ;;(Ew[w(q) | w(q) > 0(q)] — 0(q))Pr[w(q) > i(q)]
. ng [o@1p() € [5(a),5(0)] | () < D(@)]Prali() < 9(a)
- gﬁ(q)Prw [w(q) > 9(q)]
+ ;Zlaq)m Ip(@) € [ia), 9(q)] | 0(g) < ()] - Prafiv(g) < i(q)] (5)
+ i(Ew[w(Q) | w(q) > 0(q)] — 9(q))Prw(q) > 9(q)]



Next, we bound the first part (@) of the last expression, i.e., excluding the last summation.
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=(1-1/e))d(q), (6)

where for the inequality we used that both 9(¢) and Pr,[w(q) < ©(q)] are non-increasing in
q, so that replacing all the probabilities by the average probability xzk/k yields a lower value.
Substituting (@) by (6) and using the expression (@) for OPT then yields the desired bound.

0(q))Pry[w(q) > ﬁ(q)])
= (1-1/e)OPT(f,g,k).
O

Currently we have no non-trivial lower bound on the best approximation factor achievable by
a DSIC, IR, SBB mechanism, and we believe that the approximation factor of e/(e — 1) achieved
by our second mechanism is not the best possible. For our first mechanism, it is rather easy to see
that the analysis of the approximation factor of our first mechanism is tight, and that it is a direct
extension of the median mechanism of [19], for which it was already shown in [3] that it does not
achieve an approximation factor better than 2: The authors show that 2 is the best approximation
factor possible for any deterministic mechanism for which the choice of p does not depend on the
buyer’s distribution.

For the more general class of increasing valuation functions, an approximation factor of (2e —
1)/(e — 1) ~ 2.582 to the optimal social welfare is achieved by a mechanism of [3]: They use a
e/(e — 1)-approximation mechanism for the single-item setting, which yields a (2e — 1)/(e — 1)
approximation mechanism for the multi-unit setting through a conversion theorem which they
prove. We note that their conversion theorem is more precisely presented for the setting with a
buyer and a seller who holds one divisible item. However, their proof straightforwardly carries
over to the multi-unit setting. It would be an interesting open challenge to improve this currently
best-known bound of (2¢ — 1)/(e — 1) for general increasing valuations.
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A Proof of the Characterisation for General Valuations

We denote the class of monotonically increasing submodular functions with domain [k] by S,. We
denote the class of monotonically increasing functions with domain [k] by Zj.

The definition below defines the multi-unit fixed price mechanisms as a direct revelation mech-
anism. From the point of view of providing a rigorous proof, this is more convenient to work with
than the sequential posted price definition given in the main part of the paper.

Definition A.1. Let p € R>o, let S C [k], and let T = (7,75, Tn) be a vector of three tie-breaking
functions specified below. The multi-unit fixed price mechanism M), s, is the direct revelation
mechanism that returns for a multi-unit bilateral trade instance (f, g, k) an outcome My, g - (v, w) =
(gB,qs,pB,ps) on reported valuation functions v and w, where

e 7(v) C arg, max{v(q) —gp:q € SU{0}} and 75(v) # 9,
e 75(w) C arg, max{w(k —q) +qp:q € SU{0}} and 7s(w) # 9,

o 7n(v,w) is a tie-breaking function that selects an element in Tp(v) N Tg(w) in case this in-
tersection is non-empty,

min{max7p(v),max7s(w)} ifdpNds =2,
qp =k —qs = :
Tn (v, w) otherwise.

® PB = —pPs = 4BP-

Informally stated, the mechanism offers the buyer and seller a fized unit price p and a set of
quantities S. It then asks the buyer and seller which quantity in S U {0} they would like to trade
when for each unit the buyer would pay p to the seller. The mechanism then makes the buyer
and seller trade the minimum of these two demanded numbers at a unit price of p. Typically the
preferred quantity is unique for both the buyer and the seller, but in case of indifferences the buyer
and seller will specify a set of multiple preferred quantities. In such cases, the tie-breaking functions
T, Ts determine which quantities among the sets of indifferences are considered for trade, and the
tie-breaking function 1 is finally used to determine the traded quantity in case the sets selected by
T and Tg intersect. Otherwise, the minimum of the maximum quantities of T and Tg is traded.

It turns out that multi-unit fixed price mechanisms characterise the set of all DSIC, IR, and SBB
mechanisms with respect to monotonically increasing submodular valuation functions. Moreover,
with the additional restriction that S is a singleton set, they characterise the set of all DSIC, IR,
and SBB mechanisms with respect to monotonically valuation functions.

We first prove sufficiency.

Theorem A.1. For all p € R>g and S C [k], the mechanism is IR, SBB, and DSIC with respect
to the class of monotonically increasing submodular valuation functions. Moreover, if |S| = 1,
then Ml, s - is IR, SBB, and DSIC with respect to the class of monotonically increasing valuation
functions.

12



Proof. First we prove the statement for the class of monotonically increasing submodular valuation
functions. The SBB property holds trivially by definition of the mechanism, pp = —ps.

Let v and w be increasing submodular valuation functions of the buyer and seller. Let ¢ and pp
be the quantity given to the buyer and payment made by the buyer under the outcome M), g - (v, w).
If 75(v) N 7s(w) is non-empty, then the function 7 selects a utility maximizing quantity for both
the buyer and seller, so IR obviously holds in that case. If 75(v)N7s(w) = &, the mechanism M, g -
is IR for the buyer: his utility is v(¢p) — pp = v(¢B) — ¢p = v(min{max 75 (v), max 7g(w)}) —
min{max 75 (v), max 75 (w) }p. The value max 75(v) is defined as a utility-maximizing quantity in
S for the buyer, given that the buyer pays p for each unit. If the buyer’s valuation function v
is submodular, getting any quantity less than max7p(v) at a price of p per unit will yield the
buyer a non-negative utility. Therefore, the buyer’s utility is non-negative. For the seller, the
argument to establish the IR property is similar: His utility is w(k—q¢p)+pp = w(k—qB)+qsp =
w(k—min{max 75(v), max 7s(w) })+ min{max 75 (v), max 75(w) }p. The value max 7¢(w) is defined
as a utility maximizing quantity in S for the seller to give to the buyer, given that the seller receives
a payment of p for each unit. As the buyer’s valuation function v is submodular, giving any quantity
less than max 75(w) to the buyer at a price of p per unit will yield the seller a non-negative increase
utility. Therefore, the seller’s utility increase is non-negative.

For the DSIC property, observe that if the mechanism sets gg € 75(w), then the mechanism
chooses the outcome that is the utility-maximizing one for the seller among all outcomes in the
range of the mechanism. On the other hand, if ¢gg € 75(v) \ 7s(w) then the seller can only
manipulate the outcome by misreporting a valuation that causes gp to attain a smaller value, and
hence in this case the mechanism will select an outcome where a smaller quantity is traded against
a price of p per unit. By increasingness and submodularity of the seller’s valuation function, this
will result in a lower utility for the seller. Hence, it is a dominant strategy for the seller to not
misreport his valuation function. For the buyer, the argument is similar: If the mechanism sets
gp € 7(v), then the mechanism chooses the outcome that is the utility-maximizing one for the
buyer among all outcomes in the range of the mechanism. On the other hand, if g5 € T5(w)\ 75(v)
then the buyer can only manipulate the outcome by misreporting a valuation that causes gp to
attain a smaller value, and hence in this case the mechanism will select an outcome where a smaller
quantity is traded against a price of p per unit. By increasingness and submodularity of the buyer’s
valuation function, this will result in a lower utility for the buyer. Hence, it is a dominant strategy
for the buyer to not misreport his valuation function.

Next, we prove the statement for the larger class of monotonically increasing valuation functions.
Again, the SBB property holds trivially.

As we now work under the assumption that |S| = 1, let ¢ be the quantity such that S =
{¢q}. Let v and w be increasing valuation functions for the buyer and seller respectively. By
definition of the mechanism and the increasingness of the valuation functions, it holds that 75 (v) €
{{¢},{0},{q,0}}. Likewise, 7s(w) € {{q}, {0},{q,0}}. Therefore, for both the buyer and seller,
the traded quantity is 0 or the unique positive quantity ¢ in case he prefers trading ¢ units at least
as much as trading 0 units. Hence the buyer and seller both experience a non-negative increase
in utility for the outcome decided by the mechanism. This establishes IR. For DSIC, observe
that if a positive quantity is traded in the selected outcome under truthful reporting, then the
only effect that misreporting can achieve is that a quantity of 0 at a price of 0 is traded instead,
which would leave both the buyer and the seller with a 0 increase in utility, hence this will not
increase either player’s utility. If on the other hand a quantity of 0 is traded at a price of 0, then
{0} = 75(v),0 & T5(w) or {0} = 7s(w),0 & 75(v) or 0 € T5(v),0 € Tg(w). In the first case, clearly
the buyer is not incentivised to manipulate the mechanism into producing the alternative outcome
where ¢ units are traded, and the seller is unable to manipulate the mechanism into producing that
outcome as it selects the minimum of 7g(w) and 75(w), where the latter equals {0} regardless of
the sellers report. For the second case, symmetric reasoning can be applied to conclude that none
of the two agents are incentivised to misreport. For the third case, it trivially holds that none of
the agents are incentivised to manipulate the mechanism into trading ¢ instead of 0 units. This
establishes DSIC. O

Next, we show necessity, i.e., all DSIC, IR, and SBB direct revelation mechanisms are multi-unit
fixed price mechanisms.

Theorem A.2. Let M be a multi-unit bilateral trade mechanism that is IR, SBB, and DSIC with
respect to the class of monotonically increasing submodular valuation functions. Then, there exist
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p € R>o, S C [k], and 7 such that M = M, 5 .. Moreover, if M is also IR, SBB, and DSIC with
respect to the bigger class of monotonically increasing valuation functions, then |S| = 1.

We divide this proof up into several lemmas. We start by proving the theorem for the smaller
class of monotonically increasing submodular valuation functions. First, we show that whenever M
trades the same number of items for two distinct pairs of valuation functions, then it must charge
the same payments. Second, we extend this by showing that whenever the mechanism trades
distinct numbers of items for any two distinct pairs of valuation functions, then the mechanism
must charge the same price proportional to the number of items traded. It follows that we may
associate to M a unit price p such that the payment from the buyer to the seller is always ¢pp,
where gp is the traded quantity. Lastly, we show that there is a set S such that the range of
quantities that the seller may let the mechanism trade from (by means of reporting a valuation
function to the mechanism), is equal to (S U {0}) N [arg, max{v(q) — pq : ¢ € SU{0}}]. By the
fact that the valuation functions are increasing and submodular, and by the fact that M is DSIC,
it follows that truthful reporting of the seller will result in the mechanism trading

arg, max{w(k — q) + pq : ¢ € (SU{0}) N [arg, max{v(q) — pg : ¢ € SU{O}}]}

units. This expression is equal to min{maxdp,maxds} if dg Ndg = & (where dp and dg are
defined as in Definition [A]) , and otherwise it is a set from which an arbitrary quantity 7(v, w)
may selected. This implies that Ml = M, 5 . for the appropriate choices of p, S, and 7.

With respect to the larger class of monotonically increasing valuation functions, the set of
DSIC, IR, and SBB mechanisms must be smaller. We prove for this class that whenever the set
S consists of more than one quantity, then there must be a pair of valuation functions in which
either the buyer or seller is better off by not truthfully reporting his valuation function.

We now proceed by stating and proving formally the claims sketched above. In the proofs
of the claims below, we use the following terminology and notation. For ease of exposition, we
denote from now on an outcome by a pair (g, p) where ¢ is the traded number of units (i.e., the
quantity that the buyer gets assigned) and p is the payment of the buyer, which is equal to the
negated payment of the seller by the SBB property. For a reported valuation v of the buyer,
let M, = {0 € O] 3w : M(v,w) = o} be the menu of outcomes offered to the seller when the
buyer reports v. That is, when the buyer reports v, the seller can select one of the outcomes
o in M, by reporting (not necessarily truthfully) some valuation in reply to v. Likewise, we let
Ny ={o€ O | Fv: M(v,w) = o} be the menu of outcomes offered to the buyer when the seller
reports v. We let M = |J, M, = |J, Nw be the set of all outcomes that the mechanism can
produce, and we let S be the projection of M on the quantity obtainable by the buyer (i.e., the
set S consists of all quantities that the mechanism can possibly trade).

The next lemma shows that there is a unique payment that the mechanism charges for every
quantity in S, which implies that M consists of at most k& outcomes.

Lemma A.3. Let M be IR, SBB, and DSIC with respect to the class of valuation functions C,
where C is either S, or Ij.. Let (v,w) and (v',w’) be two pairs in C*. Let M(v,w) = (¢B, pB) and
M(v',w') = (¢, p)- If a8 = qj, then pp = ply.

Proof. As M is DSIC, it is immediate that for every v” and for every quantity g it holds that there
are no two distinct payments p, p’ such that (¢,p) and (g, p’) are both in M,. Also, let (¢,p) and
(¢',p") be in M, where g < ¢’. Then p < p’, as otherwise there are valuations of the seller where
misreporting results in trading less items at a higher price, which would violate the DSIC property.

Let (v,w) and (v/,w’) be as in the statement of the lemma, i.e., such that ¢g = ¢)3. When the
buyer reports v and the seller reports w, by assumption (¢g, pg) is the outcome, so (¢p, pg) € M,.
Define the valuation function w* as the function that grows linearly, extremely steeply up to the
quantity k — gg = k — ¢z, and grows extremely slowly at a rate of ¢ > 0 from k — gp onward. We
define the function v* similarly: It grows at an extremely high rate up to the quantity ¢p = ¢
and grows at extremely slow rate € from ¢z onward.

We first consider a deviation by the seller from (v, w) to (v, w*). Let (¢q,p) € M, be the outcome
of the mechanism on report (v,w*). As we have chosen the valuation w* to be sufficiently steep
up to k — ¢p items, IR would be violated for a seller with valuation w* if more than ¢p items are
traded.

Suppose now that upon report (v, w*) the mechanism trades strictly less than ¢p items. i.e.,
q < qg. We prove that then, p = pp: If we would assume p < pp, then a seller with valuation w*
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would misreport w, as in terms of valuation he is practically indifferent between trading ¢ and ¢p
items (e needs to be chosen small enough for this), and his received payment would increase from
p to pp. If on the other hand we would assume that p > pp, then a seller with valuation w would
misreport w* as he would retain more items, and receive a higher payment. Thus p = pp.

By entirely analogous reasoning, when (v',w*) is reported to the mechanism, the mechanism
also trades ¢z = gp items or less. Let ¢’ < g be the number of traded items under (v, w*). The
payment is equal to p’z, and if less than ¢p items are traded, then w'(k — ¢') = w'(k — ¢B).

Next, we define from w* a valuation function w** for which it holds that under (v, w**) and
(v',w**) the same number of items is traded at prices pp and p'y respectively. We do this as
follows: If ¢ = ¢ then we simply let w** be w*. Otherwise, if ¢’ # ¢, assume without loss of
generality that ¢’ > ¢ and let @w* be the valuation function that grows extremely steeply up to
k — ¢ units and increases extremely slowly after k — ¢ units. By considering the deviation by the
seller from profile (v, w*) to profile (v, w*), we see that under (v, @w*) at most ¢’ units are traded
and the payment is still equal to gp. Likewise, under (v',@w*) at most ¢’ items are traded and the
payment is ¢5. Thus, the minimum number of traded items among the pair of strategy profiles
(v,@*) and (v',@*) is larger than the minimum number of traded items among the pair (v, w*)
and (v, @*). Repeating this operation will thus eventually yield a strategy profile w** such that
under (v, w**) and (v', w**) the same number of items is traded at prices pp and p'y respectively.

Now, if we would suppose for contradiction that pp # p/z, then we may assume without loss of
generality that pp < pz. When the seller reports w**, a buyer with valuation function v would now
be incentivised to report the valuation function v’ instead of v, since then his payment decreases,
and he still receives the same number of items. This is a contradiction to the DSIC property.
Therefore, pp = p’z which proves our claim. O

By Lemma [A_ 3] there is a unique payment for each quantity ¢ € S, and we denote this payment
by p(g). The next lemma extends the previous lemma by stating essentially that payments must
grow linearly with the number of allocated items, when one of the players changes his reported
valuation.

Lemma A.4. Let M be IR, SBB, and DSIC with respect to the class C, where C is either Sy or
Ty. Let (v,w) and (v',w') be two pairs in C*. Let M(v,w) = (¢B,4qs,pB,ps) and M(v',w') =
(qle(I,/S‘vplBapiS') Iqu > 0; then p/B = (Q}g/QB)PB

Proof. First we show that p(-) is a non-decreasing function. Suppose that this is not true, and
assume that (¢, p(q)) and (¢’, p(q)) is the pair of outcomes in M such that (i) ¢ > g and p(q) > p(q’),
(ii) there is no ¢” € S such that ¢’ > ¢’ > ¢ and (iii) ¢ is minimal. Let (v,w) and (v, w’) be
two valuation profiles that result in these two respective outcomes (q,p(q)) and (¢’,p(q)). Let w*
be a valuation function that increases linearly at an extremely high rate up to k — ¢’ and increses
extremely slowly afterward. We now see that when (v, w*) is reported, ¢’ units or less are traded
due to IR, and in fact at most ¢ units are traded due to DSIC (because, if ¢’ units were traded,
a seller with valuation w* would misreport w to trade less units for more money), and no less
than ¢ units are traded due to DSIC, where ¢"” < ¢ is the least quantity such that p(¢”) = p(q).
(Otherwise the seller with valuation w* could misreport w and trade more units at almost the
same valuation, for significantly less money. We use here that w* increases sufficiently slowly on
the interval [k — ¢/, k]). We also observe that when (v’,w*) is reported, (i) ¢’ units or less are
traded due to IR, (ii) the traded quantity cannot be any quantity with a higher payment than
p(q') since otherwise a seller with valuation w’ would misreport w* if the buyer reports v, and
(iii) the traded quantity cannot be any quantity with a lower payment than p(q’) since otherwise
a seller with valuation w* would misreport w’. Thus, exactly ¢’ units are traded when (v, w*) is
reported. We conclude that (q,p(q)) and (¢’,p(¢’)) are both in N, and therefore a buyer with
valuation v would have an incentive to misreport v’ if the seller reports w*, which violates DSIC
and yields a contradiction. We conclude that the payment function p(-) is non-decreasing.

Also, note that 0 € S and p(0) = 0 as otherwise the IR property would be violated for a buyer
whose valuation is identically 0 and a seller whose valuation is strictly increasing: When such a
valuation profile is reported, the seller’s valuation implies that no positive number of items can
be traded for payment 0; the buyer’s valuation implies that no positive number of items can be
traded for a positive payment; so 0 items must be traded for a payment that is not positive (due
to IR of the buyer) and not negative (due to IR of the seller).

The claim of this lemma is equivalent to the claim that there exists a unique value p such that
p(q) = pq for all ¢ € S. We will demonstrate this by means of contradiction: Suppose that there is
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no such value p. Let ¢ be the lowest quantity in S such that p(¢”) # p(q)q¢” /q for all ¢’ € S, ¢" < q.
Let ¢’ be the highest quantity in S such that p(q¢”) = p(¢')q" /¢’ for all ¢" € S,q¢" < ¢’. Note that
there is no ¢’ € S such that ¢ < ¢ < ¢, and that p(-) behaves linearly up to ¢/, and that ¢
essentially serves as the least witness for the non-linearity of p(-).

We distinguish two cases: The case where p(q)q’'/q > p(¢'), and the case where p(q)q’/q < p(q').
First let us assume that p(q)q’/q > p(q'). We will derive a contradiction by constructing valuation
functions (v*,w*) for the buyer and seller such that the following properties are satisfied: (i)
outcomes (g,p(q)) and (¢',p(¢’)) are in M,» and N,»«; (ii) the buyer with valuation v* strictly
prefers outcome (¢’, p(¢q’)) over all outcomes in N« \ {(¢’, p(¢))}; and (iii) the seller with valuation
w* strictly prefers outcome (g, p(q)) over all outcomes in M~ \ {(g,p(¢))}. This is a contradiction
because (ii) requires that the mechanism outputs (¢’, p(¢’)) (otherwise the buyer with valuation v*
would be incentivised to misreport so that (¢’, p(¢’)) is output) and (iii) requires that the mechanism
outputs (¢, p(q)) (otherwise the seller with valuation w* would be incentivised to misreport so that
(¢, p(q)) is output).

Therefore, we will now define the appropriate valuations v* and w*. Let v* be a valuation
function that grows linearly at an extremely high rate up to quantity ¢’ and increases extremely
slowly afterward. This causes all outcomes where a positive quantity is traded a positive utility
for the buyer with valuation v*, moreover, the maximum utility for such a buyer is achieved at
outcome (¢’,p(¢q’)). This already establishes property (ii). To see that property (i) holds, let w be
any seller’s valuation so that (¢', p(q¢’)) € N,, (which must exist because ¢’ € S). By the definition
of v*, the mechanism selects outcome (¢’,p(¢’)) on report (v*,w) and therefore (¢',p(q’)) € My-.
Now, consider any valuation profile (v, w) that results in outcome (g, p(q)), so that (¢, p(q)) € M,.
Let w’ be the valuation function that grows linearly at an extremely high rate up to quantity k — ¢
and after that point grows linearly at a rate of p(¢)/q — ¢/q up to quantity k. The initial increase
up to point k — ¢ is so steep that the seller can never experience a utility above w’(k) when any
quantity higher than q is traded. The value € > 0 is chosen to be so small that the only outcome at
which a seller with valuation w’ has a positive utility is (¢, p(q)). Therefore, upon report (v, w’) the
mechanism outputs (¢,p(¢)) and we may infer that N, = {(¢,p(q)), (0,0)}, from which it follows
that (q,p(q)) € M,«, as (g, p(q)) must be the selected outcome upon report (v*,w) (by the DSIC
property). This establishes property (i) for v*.

For valuation function w*, let w* increase linearly at an extremely high rate up to quantity
k — g, and increase extremely slowly afterwards. Clearly, the seller with valuation w* prefers
the outcome (g,p(q)) among all outcomes in M, which establishes property (iii). Let (v,w) be
any report upon which the mechanism outputs (g, p(q)), so that (¢,p(q)) € M,. Then (¢,p(q))
is also output upon report (v, w*) which establishes that (q,p(q)) € Ny«. Next, let (v,w) be
any report upon which the mechanism outputs (¢’,p(q’)), so that (¢’,p(¢')) € Ny. Let v' be a
function that increases at rate p(q’)/q¢’ + €/¢' for sufficiently small ¢ > 0 up to quantity ¢’, and
increases extremely slowly afterward. Then (¢’,p(¢’)) is output when (v, w) is reported, so that
(¢',p(¢")) € M. Moreover, trading any quantity higher than ¢’ would yield a negative utility
for a buyer with valuation v’ (because € is extremely small). Therefore, for ¢’ > ¢’ it holds that
(¢",p(¢")) & M, and in particular (q,p(q)) € M,,. Thus, when (v',w*) is reported, the outcome
(¢',p(¢")) is output by the mechanism, and this establishes that (¢/,p(¢")) € Ny~. Note that here
we need that p(q’) > 0, which is the case as the outcome the mechanism returns on (v’,w’) is IR
by assumption and the valuation functions are monotonically increasing. This completes the proof
for the case where p(q)q¢’/q > p(¢').

For the case where p(q)q'/q < p(¢’) we proceed in a similar fashion: Again, we will derive a
contradiction by constructing valuation functions (v*,w*) for the buyer and seller such that (i)
outcomes (¢,p(q)) and (¢’,p(¢’)) are in M~ and N,»; (ii) the buyer with valuation v* strictly
prefers outcome (g,p(q)) over all options in Ny« \ {(¢,p(¢))}; and (iii) the seller with valuation
w* strictly prefers outcome (¢, p(q’)) over all options in M,« \ {(¢,p(q))}. This is a contradiction
because (ii) requires that the mechanism outputs (g, p(q)) (otherwise the buyer with valuation v*
would be incentivised to misreport so that (g, p(q)) is output) and (iii) requires that the mechanism
outputs (¢’,p(¢’)) (otherwise the seller with valuation w* would be incentivised to misreport so that
(¢',p(q")) is output). Note that the difference with the previous case is that here we construct v*
such that the higher of the two quantities g and ¢’ is preferred, instead of the lower one. Likewise,
w* is now constructed such that the lower of the two quantities is preferred instead of the higher
one.

We start in this case with the construction of w*. Let w* be a valuation function that increases
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linearly at an extremely high rate up to quantity k —¢. From k —q to k — ¢/, valuation w* increases
by an amount of p(q) — p(¢’) + ¢, where € > 0 is sufficiently small, and w* increases extremely
slowly from k — ¢’ onward. The increase in valuation from quantities ¥ — ¢ to k — ¢ is slightly
higher than the amount by which the payment changes among the quantities ¢ and ¢/, this causes
the seller with valuation w* to encounter a slightly lower (but positive) increase in utility when
quantity ¢ is traded instead of quantity ¢’. Moreover, among all quantities in S up to ¢’, the
maximum utility for a seller with valuation w* is achieved at quantity ¢’, which already establishes
property (iii). Lastly, note that due to the extreme steepness of w* up to k — ¢, the utility of
the seller is lower than w*(k) when any quantity higher than ¢ is traded, so the mechanism will
never do so by the IR constraint. It remains to establish property (i). Let (v, w) be any report
where the mechanism selects outcome (¢’,p(¢’)). It follows by DSIC that outcome (¢’, p(q’)) will
also be selected on report (v, w*), so that (¢’,p(¢")) € Ny=. Next, let (v,w) be any report where
the mechanism selects outcome (¢, p(q)). Let w’ be a valuation function that increases extremely
steeply up to k — ¢ and increases extremely slowly afterwards, so that the report (v,w’) results
in (¢,p(¢q)) and hence (q,p(q)) € Ny, and because of IR we also infer that (¢”,p(q")) & My
when ¢’ > ¢. Let v’ be a valuation function that increases linearly up to quantity g and increases
extremely slowly afterwards, where v(q) = p(q)+e¢, and € > 0 is sufficiently small. Note that trading
a positive quantity lower than ¢ would result in a negative utility for a buyer with valuation v/,
so that such outcomes are not in M,,. Therefore, when (v',w’) is reported the outcome selected
by the mechanism must be (¢,p(q)), which shows that (¢,p(q)) € M, . It follows now that the
selected outcome upon report (v, w*) must be (g, p(q)) which yields (g, p(¢q)) € N+ and establishes
property (i) for w*.

Lastly, we design v*. Let v* simply increase extremely steeply up to the quantity ¢, and increase
extremely slowly afterwards, so that a buyer with valuation v* experiences positive utility for all
outcomes in M, and maximum utility when outcome (g, p(q)) is selected. This straightforwardly
establishes property (ii). For property (i), let (v, w) be any profile where outcome (g, p(q)) results,
so that (¢,p(q)) € N,. By DSIC, outcome (g,p(q)) is also selected when (v*,w) is reported, so
(q,p(q)) € M,~. Next, let (v,w) be any profile where outcome (¢’, p(¢')) results, so (¢’,p(¢’)) € M,.
Let w’ be a function that increases extremely steeply up to quantity k£ —¢’, and increases extremely
slowly afterwards, so that trading any quantity higher than ¢’ would result in a decrease in utility
for a seller with valuation w’ (hence the mechanism cannot trade such quantities when w’ is
reported, by the IR property), and the maximum increase in utility is achieved when (¢’,p(¢’))
is chosen. Therefore reporting (v, w’) results in outcome (¢’,p(¢’)), thus (¢’,p(¢’)) € Ny and
(¢",p(q")) & Ny for all ¢" > ¢. Therefore, when (v*,w’) is reported, outcome (¢’,p(q’)) is
selected, which establishes property (i) for v* and completes the proof for the case p(q)q’/q > p(q’).

O

Let M be IR, SBB, and DSIC with respect to the class of monotonically increasing submodular
valuation functions. From the above it follows that for a mechanism that is IR, SBB, and DSIC
with respect to Sy, or Zy, there exists a price p € R>¢ such that for all pairs (v, w) of monotonically
increasing submodular valuation functions, the payment charged to the buyer is ¢gp (and the
payment charged to the seller is —ggm by SBB). We will refer to p as the unit price.

The above corollary establishes the needed properties on the payments of the mechanism. The
remaining lemmas use Lemma [A.4] by implicitly assuming the existence of the unit price p in their
statement, and they characterise the quantities S tradable by the mechanism and the quantities
that appear in the menus M, and N,,. The next lemma states that the utility maximizing outcome
in S for a buyer with any valuation function v is always in M,,.

Lemma A.5. If Ml is SBB, IR, and DSIC with respect to Sk, and suppose that unit price p is
positive. Then, for allv € Sy, it holds that (q,p(q)) € M, for the lowest q in the set arg, max{v(q)—

p(q) 1 q € S}.

Proof. Let q be the lowest quantity in arg, max{v(q) —p(q) : ¢ € S}. Let (v,w’) be any report
that results in outcome (q,p(q)), so that (¢,p(q)) € N,. Let w* be a valuation function that
increases extremely steeply up to the quantity k& — ¢ and increases extremely slowly afterwards.
Observe that by our assumption that p > 0, a seller with valuation w* strongly prefers outcome
(q,p(q)) over all other outcomes in S, and trading any quantity larger than ¢ would violate IR.
by DSIC, outcome (q,p(q)) is thus selected when (v’ w*) is reported, hence (q,p(q)) € Ny and
(¢',p(q")) & Ny~ for all ¢ > g. So when (v, w*) is reported, an outcome is selected from N, that
maximises the utility of the buyer with valuation v, and this outcome is (g, p(q)).
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The following lemma strengthens the previous.

Lemma A.6. Suppose M is SBB, IR, and DSIC with respect to Sy, and suppose that unit price p is
positive. Let v € S and let ¢ < minarg,, max{v(¢') —p(q') : ¢ € S} be a quantity not exceeding the
least utility-mazimizing quantity for a buyer with valuation v. It holds that arg, max{v(q’) —p(q’) :
q € S,q < q} is the singleton set containing the quantity ¢ = max S N [q], and that ¢ € M,,.

Proof. Note that the existence of the unit price p implies that the utility function of the buyer
is a submodular function of the traded quantity. Therefore, the utility function for a buyer with
valuation v is increasing up to the least utility-maximizing outcome in S, after which it stays
constant up to the highest utility-maximizing outcome in S, after which it starts decreasing.
Let g be any quantity less than or equal to the least utility-maximizing quantity, i.e., less than
minargmax{v(q’) —p(¢’) : ¢ € S}. Then, the utility-maximizing quantity ¢’ in S N [g] for a buyer
with valuation v is max.S N [¢]. It remains to prove that (¢',p(q’)) is in M,. Let (v',w’) be any
report resulting in outcome (¢’, p(q’)), so that (¢',p(¢’)) € N,». Let w” be any function increasing
extremely steeply up to quantity k — ¢/, after which it increases extremely slowly. Then (¢’,p(¢’))
is the result of report (v',w”), and note that it is not IR to trade a quantity exceeding ¢’ when
w’ is reported, so (¢”,p(q")) & Ny for ¢ > ¢', and (¢’,p(¢")) € Ny». Therefore, when (v, w’)
is reported, a quantity of ¢’ is traded, and no higher quantity. (Note that we use positivity of p
here.) Thus, (¢/,p(¢")) is in M,, which proves the claim. O

The above lemma shows that for a mechanism M that is SBB, IR, and DSIC with respect to
Sk, if p > 0, then for any v € S, the menu M, that the buyer presents to the seller includes
the outcomes (g, p(q)) such that ¢ is in the subset of S obtained by truncating S at the buyer’s
least-quantity utility-maximizing outcome.

We can prove the following symmetric lemma for the seller.

Lemma A.7. Suppose M is SBB, IR, and DSIC with respect to S and suppose that the unit
price p is positive. Let w € Sy and let ¢ < minarg, max{w(k —¢') +p(¢') : ¢ € S} be a quantity
not exceeding the least utility-maximizing quantity for a seller with valuation w. It holds that
arg, max{w(k—q')+p(q’) : ¢ € S,q" < q} is the singleton set containing quantity ¢ = max SN[q],
and that ¢ € Ny,.

Proof. Note that the existence of the unit price p implies that the increase in utility of the seller
is a submodular function of the traded quantity ¢. Therefore, the function for a buyer with
valuation v is increasing up to the least utility-maximizing outcome in S, after which it stays
constant up to the highest utility-maximizing outcome in S, after which it starts decreasing.
Let ¢ be any quantity less than or equal to the least utility-maximizing quantity, i.e., less than
minargmax{w(k — ¢') + p(¢’) : ¢ € S}. Then, the utility-maximizing quantity ¢’ in S N [g] for
a seller with valuation w is max S N [g]. It remains to prove that (¢/,p(¢’)) is in N,,. Let (v/,w’)
be any report resulting in outcome (¢, p(q’)), so that (¢’,p(¢’)) € Nu . Let v be any function
increasing at a rate p + € up to quantity ¢’, for a sufficiently small € > 0, after which it increases
extremely slowly. Then (¢’,p(¢’)) is the result of report (v”,w’), and note that it is not IR to trade a
quantity exceeding ¢’ when v” is reported, so (¢, p(q")) & M, for ¢ > ¢', and (¢, p(¢")) € Ny».
Therefore, when (v”,w) is reported, a quantity of ¢’ is traded, and no higher quantity. Thus,
(¢',p(¢")) is in M,,, which proves the claim. O

The above lemma shows that for any unit price mechanism M that is SBB, IR, and DSIC
with respect to Sg, for any w € Sk, the menu M, that the seller presents to the buyer includes
the outcomes (g, p(q)) such that ¢ is in the subset of S obtained by truncating S at the buyer’s
least-quantity utility-maximizing outcome.

The last two lemmas combined imply that the menu of buyer consist of the outcomes (g, p(q))
in S where the quantity does not exceed the least utility-maximizing outcome, plus an additional
arbitrary subset of utility-maximizing outcomes; and the same holds for the seller. We will show
that next.

Lemma A.8. Suppose M is SBB, IR, and DSIC with respect to Sy, and suppose that the unit price
p is positive. Let v,w € Sy. Let ¢ = minarg,, max{v(q") — p(¢") : ¢" € S} be the least utility
mazximizing quantity for the buyer with valuation v, then M, = {(¢",p(¢")) : ¢" € SN[g]}UT where
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T C arg, max{v(q")—p(q¢") : ¢" € S}. Similarly let ¢ = min arg,, max{w(k—q")+p(¢") : ¢" € S}
be the least utility maximizing quantity for the seller with valuation w, then N, = {(¢”,p(¢")) :
q" € SN[y UT" where T" C arg,, max{w(k — ¢") + p(q") : ¢" € S}.

Proof. Lemmas [AJ6] and [A7] show that M, 2 {(¢",p(¢")) : ¢" € SNq]} and Ny, 2 {(¢",p(¢")) :
q" € SN[q]}. Let ¢ € S such that ¢ > maxarg,, max{v(¢") — p(q”) : ¢" € S} and let § € S such
that ¢ > maxarg,, max{w(k — ¢") + p(q”) : ¢" € S}. It suffices to show that (¢,p(q)) ¢ M, and
that (3, p()) & Na.

Suppose (§,p(4)) € M,. Let w* be a valuation function increasing extremely steeply up to
quantity k — ¢, and increases extremely slowly afterwards. By DSIC, the outcome (G, p(q)) is
selected on report (v,w*), where we use that p > 0. However, by Lemma it holds that
(q,p(q)) € Ny~, so that it also must hold by the DSIC property that outcome (g, p(q)) is selected,
which is a contradiction.

Suppose (¢,p(§)) € Nyw. Let v* be a valuation increasing at extremely high rate up to quantity
g, that increases extremely slowly afterwards. By DSIC, the outcome (g, p(q)) is selected on report
(v*,w). However, by Lemma [A] it holds that (¢’,p(¢’)) € Ny, so that it also must hold by the
DSIC property that outcome (g, p(q)) is selected, which is a contradiction. o

We are now finally ready to prove the necessity-part of our characterisation of IR, DSIC, SBB
multi-unit bilateral trade mechanisms.

Proof of Theorem[4.2. By Lemma [A.3] for all ¢ € S there is a price p(q) such that a payment
of p(q) is charged whenever ¢ units are traded. By Lemma [A.4] there is a unit price p such that
p(q) = p-q for all ¢ € S. This establishes already that the payment function of any IR, DSIC,
and SBB mechanism is in accordance with Definition [A.] hence it remains to establish that the
traded quantity is also prescribed by Definition [A.1l

First we consider the special case p = 0. By increasingness of the valuation function of the
seller, it follows that the mechanism can only trade a quantity of 0 units in order to satisfy IR.
Subsequently it follows by IR and SBB that the mechanism is required to charge a payment of 0.
A mechanism that always trades 0 units at price 0 is by definition equal to a mechanism My & -,
where 7 is arbitrary and irrelevant as there is only a single outcome that the mechanism outputs.

Next, assume that p > 0. We prove the claim separately for Sy, and Z, and we start with S. By
LemmalA.§| for every pair of valuations (v, w) it holds that M, = {¢g € S : ¢ < minarg; max{v(¢)+
p(¢')}} UT where T is an arbitrary set of utility-maximizing quantities in S for a buyer with
valuation v, and N,, = {g € S : ¢ < minarg,, max{w(k —¢') +w(q)}} UT" where T" is an arbitrary
set of utility maximizing quantities in S for a seller with valuation w. Let 7g(w) be the seller’s
utility maximizing quantities in N,, and let 75(v) be the buyer’s utility-maximizing quantities
in M,. If 7g(w) and 75(v) intersect, then by DSIC, mechanism must output any quantity in
Ts(w) N 7p(v): call this quantity 7~(v,w). Otherwise, if 7¢(w) N 75(v) = &, the mechanism
must output min{max 7¢(w), max 75(v)}, in order to satisfy the DSIC property: Assume that and
max7p(v) > max7s(w) (the other case is symmetric) and suppose that the mechanism trades
any quantity ¢ # max7g(w). Since the traded quantity ¢ must lie in the intersection of M,
and N, and since 7p(v) and 7g(w) are sets of highest quantities in M, and N, respectively,
we have ¢ < max7g(w). Hence, among the quantities in N,, a quantity less than max 7g(w) is
traded, but the buyer prefers quantity max 7g(w) because max 7g(w) is closer to the buyer’s set
max 75 (v) of utility-maximizing quantities in M,, which would give the buyer a higher utility due
to submodularity. The buyer would thus misreport such that max 7g(w) is output instead. Note the
tie-breaking functions 7 = (75, 7s,7n) we just established, as well as the derived traded quantity
q given to the buyer, agree precisely with those of Definition [A.T] We complete the equivalence by
noting that 0 € S as we can define a seller’s utility function that grows extremely steeply up to
quantity &, so that (0,0) is the only IR outcome. This implies that M = M), ¢\ 10},

It remains to prove the claim for Z. Suppose for contradiction that there are at least two
positive quantities ¢, ¢’ in S, where 0 < g < ¢. We apply the same technique as in Lemma [A.4]
Let (v, w) be a valuation profile such that the mechanism selects (¢, p(q)) when (v, w) is reported,
and let (v',w’) be a valuation profile such that the mechanism selects (¢’,p(¢’)) when (v',w’) is
reported.

Let v* be a valuation function that increases extremely slowly up to quantity ¢ — 1, then jumps
to a value of pg + 2¢ at quantity ¢ and proceeds again to grow extremely slowly up to quantity
¢ — 1, and finally jumps to a value of pq’ + € at quantity ¢’ after which it grows extremely slowly
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onward. The only IR quantities that the mechanism can trade when a buyer reports v* are 0, ¢, and
q'. As (q,p(q)) € Ny, the mechanism must select the outcome (g, p(q)) when (v*, w) is reported,
because of DSIC. So, (¢,p(q)) € M,~. Next, we construct a function w” for which it holds that
(q,p(q)) € Ny» and (¢',p(q’)) € Ny»: Valuation w” is defined such that it increases extremely
steeply up to the quantity k—¢’. Subsequently it increases by an amount of p+ (¢’ +1)e to quantity
k —q' + 1, and it increases at a rate of p — ¢ afterward. Note that the only IR quantities that can
be traded under w” are 0 and ¢’. We thus have that (¢,p(q)) & Ny~ and (¢',p(¢’")) € Ny because
(¢',p(¢’)) in M, and by DSIC the mechanism must select (¢’,p(q')) when (v',w”) is reported.
Therefore, when (v*,w') is reported, (¢, p(q’)) is selected so we see that (¢', p(q')) € M,-.

Let w* be a valuation function defined as follows. Let € > 0 be sufficiently small. We let w* (k) =
kp, and for all ¢” > 0 not equal to q or ¢, We let w*(k —¢”) =p- (k—¢") — ¢, so that the seller’s
increase in utility for trading ¢” units is p¢”’ — (w* (k) —w*(k—q")) = pq" — (pk—p(k—q")+¢€) = —¢,
so when w* is the valuation of the seller, the mechanism cannot trade ¢” items as that would violate
IR. Moreover, we define w*(k—¢q) = p-(k—¢q)+¢ and w*(k—¢') = p- (k—q’) + 2¢, so that trading ¢
or ¢’ units leads to an increase in utility for a seller with valuation w* and so that trading ¢” units
is the preferred quantity to trade for a seller with valuation w*. We now see that (¢’, p(q')) € Ny~
because (¢’,p(¢’)) is in M, so that by DSIC the mechanism outputs (¢’, p(¢’)) on report (v, w*).
Next, we construct a function v for which it holds that (¢’,p(¢’)) € My~ and (q,p(q)) € M.
This function is defined as follows: v(¢"”) = pg” — € for all ¢" except ¢, where v(q) = pg+ e. When
a buyer reports v”, by IR the mechanism can either trade 0 or ¢ units and no other quantity.
On report (v”,w) the mechanism must output (¢q,p(q)) due to DSIC and because (¢,p(q)) € Ny,
by assumption. Thus (¢,p(q)) € Ny and (¢',p(¢')) & My, hence when (w*,v’) is reported the
mechanism outputs (g, p(q)) because of DSIC. This establishes (p, p(q)) € Nyy».

We thus have constructed two functions v* and w* for which it holds that both (g, p(¢)) and
(¢’,p(¢')) are in both M,- and N,~. Moreover, a buyer with valuation v* strictly prefers (¢, p(q))
over (¢',p(q")), so by DSIC the mechanism must output the outcome (g,p(q)) when (v*,w*) is
reported. However, a seller with valuation w* strictly prefers (¢, p(¢')) over (g, p(q)), so by DSIC
the mechanism must output the outcome (¢’,p(¢’")) when (v*,w*) is reported, which is a contra-
diction. So, we must refute the assumption that there are at least 2 quantities that the mechanism
can trade.

Hence, either (0,0) is always output, in which case the claim is trivial (the mechanism is equal
to My, & -, where 7 is not relevant), or there is a unique positive quantity ¢ such that the mechanism
selects either (g,p(q)) or (0,0) and outputs (g, p(q)) on at least one valuation profile (v, w). It now
suffices to prove, by definition of the mechanism (Definition [AZT]), that outcome (g, p(q)) is selected
if both players experience an increase in utility from this outcome. Let (v',w’) be an arbitrary
valuation profile for which the latter holds. As (q,p(q)) € M,, we infer that (q,p(q)) is output
on report (v,w’) so that (p,p(q)) € M/,. Thus, by DSIC, the mechanism must select (g, p(q)) on
report (v',w’) as otherwise a buyer with valuation v’ would report v instead. This proves that the
mechanism equals M, (4 p(g))},7- O
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