
On Specifying Real-Time Systems
in a Causality-Based Setting*

Joost-Pieter Katoen =, Rom Langerak =, Diego Latella b and Ed Br inksma a

"Faculty of Computing Science, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

b CNUCE Istituto del CNR, Via Santa Maria 36, 56100 Pisa, Italy

Abstract . Event structures are a prominent noninterleaving model for con-
currency. Real-time event structures associate a set of time instants to
events, modelling absolute time constraints, and to causal dependencies,
modelling relative delays between causally dependent events. We introduce
this novel temporal model and show how it can be used to provide a de-
notational semantics to a real-time variant of a process algebra akin to
LOTOS. This formalism includes a timed-action prefix which constrains the
occurrence time of actions, a timeout and watchdog (i.e., timed interrupt)
operator. An event-based operational semantics for this formalism is pre-
sented that is shown to be consistent with the denotational semantics. As
an example we use an infinite buffer with time constraints on the message
latency and the rates of accepting and producing data.

1 I n t r o d u c t i o n

Timed extensions of interleaving models for concurrency have been investigated
thoroughly in the last decade. Although there are many dii~erent ways in which
time can be incorporated in labelled transition systems, the most prominent
interleaving model, it seems that this issue is quite well-understood, cf. [2, 21].

The incorporation of quantitative information in noninterleaving models, such
as event structures [27], pomsets [24], and Mazurldewicz traces [19], has received
scant attention in the literature. Since these models are attractive at the design
stages in which the observational behaviour is no longer prevalent, but where
the intensional system characteristics dominate, we argue that such models in
particular should deal with issues like time and probability. In these design
stages it is of utmost importance how actions are scheduled in time and with
what probability certain alternative executions, which at a more high level of
abstraction could be faithfully modelled by nondeterminism, can appear.

* The work in this paper is partially funded by C.N.R. - Progetto Bilaterale: Esten-
siom probabilistiche e temporali dell'algebra di processi LOTOS basate su strutture
di eventi, per la specifica e analisi quantitative di sistemi distribuiti, by C.N.P~. -
Progetto Coordinato: Strumenti per la specifica e verifica di proprieta' critiche di
sistemi concorrenti e distribuiti.

386

This paper therefore proposes a real-time extension of (a variant of) event struc-
tures; probabilities are dealt with in [6, 15l. The real-time model is used as a
vehicle to provide a denotationai semantics to a temporal process algebra based
on a kernel which is akin to LOTOS [4]. This formalism includes a timed action-
prefix operator which constraints the occurrence time of actions, and a timeout
and watchdog (i.e., timed interrupt) operator.

The inclusion of time in partial-order models is not new: e.g., extensions are
known of pomsets [7], configurations [18], (and, or}-automata [12], sets of posets
[13] and event structures [20]. In [16] we proposed a model of timed event struc-
tures with a notion of urgency. Such a notion is stronger than strictly necessary
for modelling timeouts and makes urgent events have an unpleasant global im-
pact. The timed extension of causal trees [101 resembles the model we present
in this paper. We are, however, unaware of any proposal that incorporates time,
timeouts, and watchdogs in a partiai-order setting. These ingredients are con-
sidered to be essential to specify real-time systems.

We use extended bundle event structures [17], an adaptation of Winskel's event
structures [27] to fit the specific requirements of multi-party synchronization
and disruption ([>). Since we believe that both interleaving and noninterleaving
models are legitimate and complementary in the system design process we also
consider an event-based operational semantics for the real-time process algebra
at hand which, by omitting event identifiers, results in an interleaving semantics.
The two semantics are proven to coincide (i.e., strong timed (event) bisimulation
equivalent) and thus can be used in a coherent way. This also facilitates the
comparison of our timed partial order model and the wealth of existing timed
interleaving models. (For space reasons we refer to the proofs of claims to [14].)

2 The language

This paper is based on the process algebraic language PA, in fact LOTOS with
a somewhat more concise syntax, generated by the following grammar:

B --= o I , / I B I B + B I B B I B[H] f B \ a I B >> B f B [> B I P"

We assume a given set of observable actions Act and an additional invisible
action T; T r Act. 0 denotes inaction; x/ represents the successful termination
process, a; B denotes the action-prefix of a E Act U { T } and B, The choice
between B1 and B2 is denoted B1 + B2 and their sequential composition by
B1 >> B2. B1 IIGB2 denotes parallel composition where actions in G (G C
Act) are synchronization actions. Ill abbreviates [Iz, i.e., parallel composition
without synchronization. B[H] denotes the relabeUing of B according to H where
H : Act ~ Act. B \ G denotes hiding, with G C Act. B1 [> B2 denotes the
disruption of BI by B2; i.e., B1 may at any point of its execution disrupted
by B2, unless it terminated. Finally, P denotes a process instantiation where a
behaviour is considered in the context of a set of process definitions of the form
P := B where B possibly contains occurrences of P. The precedences of the

387

composition operators are, in decreasing binding order: ; , +, H, [>, >>, \ and
~. Trailing 0s are usually omitted.

The standard (interleaving) semantics of PA is presented in Table 1, in the style
of [23]. The special action 5 indicates the successful termination action of a
behaviour; we assume 5 r Act. All relabelling functions H are extended to
Act U { % 5 } under the requirement that H(9-) = % H(6) = 6 and for a 6 Act we
have H(a) r { % 6 }. G' denotes G U { 6 }.

F- j ~--,o
I- a; B - - - ~ B

BI ~ B~I }- BI + B2 ~ B~I

B~ --~ B~ a -r 6 ~- Bx >> B2 --~ B~. >> B2
B1 ~ B~ [-- B1 >> B2 - -~ B2

B~ ~ B~ ~- B1 [> B, e__, BI
B2- -~B~ ~ B I [> B 2 ~ B ~

B2--~ B~ a C O' ~ BI I[o Bu'--~ BI IIo B'~
B~ - '~ B'I A Bu --~ B ~ G ~ 2

B-e - ,B ' a ~ O ~- B \ G - ~ B ' \ G
B,,,,~,B ' aeG ~- B\G-~B'\G

B - - ~ B' }'- B[H] a(a),B'[H]
B - ~ B ~ P := B ~- P - -~ B'

Table 1. Structured operational semantics of PA.
The real-time process algebra PAR is obtained by generalising action-prefix and
adding two timed operators D and P, to PA. We use Time -]R + U { 0, oo } as
time domain, T to range over ~(Time), and t to range over Time. (T) a; B
denotes the timed action-prefiz of a and B where a is allowed (but not forced)

to occur at some t 6 T. We write (t) a for (It, cr a and a for (0) a. B1 ~ B2
denotes the timeout of B1 by B2 at time t; initially it behaves like B1, but if
B1 does not perform any action before t (since the enabling of this behaviour)
then the control is passed to B2. At time t a nondeterministic choice between
Sl and B2 appears, t> is called a 'weak timeout' [21]. P, is a watchdog operator;

initially B1 ~ B2 behaves like B1 but at time t control is passed to B2 provided

B1 is not yet successfully terminated. Note that in B1 D/32 control is passed
to B2 only if B1 does not perform any actio~ either internal or not--before t,

whereas in B1 ~,/32 control is passed to B2 at time t, regardless of the activities
of B1 until time t (with the exception of termination).

An interaction can only occur when all participants are ready to engage in it.
E.g., consider a; (T1) b H{a,b} a; (T2) b. If ta denotes the time of occurrence of
action a, action b is enabled at any time in ta+T1Nta+T2 = ta + (T1 nT2), where
t + T denotes { t+t' I f 6 T }. Notice that interactions may become impossible

388

due to incompatible t iming constraints in the part icipat ing behaviours. E.g., if
T1 NT~ = ~ , action b can never occur. Before defining the denotat ional (Sect. 5)
and operat ional (Sect. 8) semantics of PAR, in the sequel we shortly recall ex-
tended bundle event structures and we introduce their real-t ime extension.

3 E x t e n d e d b u n d l e e v e n t s t r u c t u r e s

(Extended bundle) event structures [17] consist of events labelled with actions
(an event modelling the occurrence of its act ion), together with relations of
causality and conflict between events. System runs can be modelled as par t ia l
orders of events satisfying certain constraints posed by the causality and conflict
relations between the events.

Asymmetric conflict is a binary relation, denoted 4 , between events and the
intended meaning of e ~ e' is that (i) if e ~ occurs it disables the occurrence
of e, and (ii) if e and e t both occur in a single system run then e causally
precedes e'. Notice tha t it is not required for ~ to be symmetric , hence the name
~asymmetric' , which, in this context, does not mean that e ~ e' =~ e ~ ~ e as
it might suggest, e -~ d and e' -,~ e is allowed and is equivalent with e # d , the
usual symmetr ic conflict in event structures ~.

Causality is represented by a binary relation, the bundle relation, denoted by ~--~.
For set X of events, that are pairwise in conflict, and event e, X ~ e means
that if e happens in a system run, exactly one event in X has happened before
(and caused e). This enables us to uniquely define a causal ordering between
the events in a system run. X is called the bundle set. When there is neither a
conflict nor a causal relation between events they are independent. Once enabled,
independent events can occur in any order or in parallel.

D e f i n i t i o n 1. An event structure ~ is a quadruple (E, ~-,, ~-~, l) with E, a set of
events, ~ C E x E, the (irreflexive) asymmetric conflict relation, ~-* C_ P (E) x E ,
the bundle relation, and I : E ~ L, the action-labelling function, where L
is a set of action labels, such tha t V X C E, e E E we have X ~ e implies
Ve~,e ~ E X : e ~ e " =~ e ~ ~ e ~.

The constraint specifies that for bundle X ~ e all events in X are in mutua l
conflict. Event structures are graphically represented in the following way. Events
are denoted as dots; near the dot the action label is given, e ~ e ~ is indicated by
a dot ted arrow from e to e'; if also e' ~ e, then a dotted line is drawn instead.
A bundle X ~ e is indicated by drawing an arrow from each event in X to e
and connecting all arrows by small lines. We denote an event labelled a by ea.
EBES denotes the class of event structures; ~ ranges over EBES.

In the sequel we adopt the following notations. For sequences a --- z l . . . z,~, let
denote the set of elements in r that is, ~ ~- { x l , . . . , x n } . For non-empty

2 The terminology 'asymmetric' is adopted from [17, 22].

389

sequence a, let ai denote the prefix of a up to the (i -1) - th element, that is,
ai & x l . . . xi-1, for 0 < i ~< n + l . For a a sequence of events e l . . . en we define
ell(a) ~ { e � 9 1 4 9 ~ e i } a n d s a t (a) __a (- e � 9
e ~ X N ~ ~ O }. cfl(a) is the set of events that are disabled by some event in
a. sat(a) is the set of events that have a causal predecessor in a for all bundles
pointing to them. That is, for events in sat(a) all bundles are 'satisfied'. The set
of events 'enabled' by a, en(a), is defined as en(a) A_ sat(a) \ (cfl(a) U ~).

Event traces consist of distinct events (i.e., ei r aT) and are conflict-free (ei
cfl(ai)). In addition, each event in the event trace is preceded in the sequence
by a causal predecessor for each bundle pointing to it (i.e., ei �9 sat(ai)).

D e f i n i t i o n 2. An event trace a of s is a sequence of events el . . . en with ei E
en(ai), for all 0 < i ~ n. Let T (s denote the set of event traces of s

Example 1. Fig. l(a) has bundles { ea } ~ ee, { eb } ~-* ec, { eb } ~ ed, and a
' {eo} symmetric conflict between ee and ed. Fig. l(b) has { ea, ea } ~ eb, ex

I and { e a } ~-* e~. Some event traces of Fig. l(a) are ea eb ec, eb ed ea and eb ea.
b

Ca)

b

a

(b) (c)

Fig, 1. Some example event structures.

Event structures can be used to provide a noninterleaving semantics to PA in a
compositional way. For finite behaviours this is defined in Appendix A.
The expressions corresponding to Fig. 1 are as follows: (a) a; c [l{c } b; (c + d),
(b) Ca; xl l la; U) 5), and (c) a; ((5[> c) IIId).

4 Real - t ime event structures

Time is added to bundle event structures in two ways. To specify the relative
delay between causally dependent events time is associated to bundles, and in
order to facilitate the specification of timing constraints on events that have
no bundle pointing to them (i.e., the initial events), time is also associated to
events. Though it seems sufficient to only have time labels for initial events,
synchronization of events makes it necessary to allow for equipping all events
with time labels, including the non-initial ones.

We assume mappings T and 9 to associate a set of time instants, to bundles and

events, respectively. A bundle X ~-~ e with T((X, e)) = T is denoted by X ~ e;
its interpretation is that if an event in X has happened at a certain time, then e

390

is enabled t t ime units later, for any t E T. :D(e) = T means that e can happen
at any t E T from the beginning of the system, usually time 0.

In order to specify t imeout mechanisms we use urgent events. These events are
forced to occur once they are enabled.

Definit ion 3. A real-time event structure F is a quadruple (s :D, T, /g) with s
an event structure (E,--% ~-*, l), :D : E -----* ~(Time), the event delay function,
T : ~ * ~O(Time), the bundle delay function, and /g : E ~ Bool, the urgency
predicate such that for all e E E wi th / / (e) :

1. V e ' E E , X C _ E : ((e ' . , ~ e V e ~ e ') ^ X ~ e) ~ (X ~ e ' V X . ,~e ')

2. 3 t e T i m e : : D (e) C[t , t] V (3 X C _ E : X T e A T_C[t , t])

Here, X -~ e ~ equals (V e" E X : e" -~ e~). Note that O ~-* e' for all e ~.

The first constraint requires that the enablings of an urgent event e are either
contained in the enablings of an event e ~ that it disables, i.e., e ~ ~ e, or tha t
an enabling of e is disabled by e ~ (the case e ~ e ~ is identical). This constraint
enforces that as soon as e ~ is enabled either e is also enabled (provided e is not
disabled in another way), or is permanently disabled, since some enabling of e
is disabled (by e~). As a result the global impact of urgent events is limited; see
also [16]. Thus, in order to decide whether e ~ can occur--once it is enabled-- i t
suffices to consider the local (and urgent) disablings of e ~.

The second constraint ensures that urgent events are enabled at a single t ime
instant, if ever. The motivation for this constraint is that urgent events are used
for the sole purpose of modelling timeouts, and a t imeout typically can appear
at a single time instant only.

Let EBESR denote the class of real-time event structures. Bundle and event
delays are depicted near to a bundle and event, respectively. Urgent events are
denoted by open dots, other events by closed dots. Zero delays are omitted.

For events that have more than one bundle pointing to them we take the following
T ~

interpretation. Consider { ea } T ec and { eb } ~ ec. If ea happens at t ime ta
and eb at time tb, then ee is enabled at any t E (ta+T) N (tb+Tt). When the
intersection of two (or more) sets of time instants is empty this means that the
event at hand cannot occur at any time and will be permanently disabled.

The notion of timed event trace is defined as a generalization of the notion of
event trace. A t imed event (e, t) denotes that e happened at t ime t. For sequences
of t imed events a = (el, t l) . . . (en, t,) let [a] ~ e l . . . en. Let time(a, e) denote
the set of time instants at which e E en([a]) could happen, given that each
event e~ in a occurred at t ime ti. Event e can occur if (i) its absolute delay
:D(e) is respected, (ii) the t ime relative to all its immediate causal predecessors
is respected, and (iii) for each event ej with ej ~-~ e we have that e occurs at at
least tj . (ii) and (iii) take care of the fact that events cannot occur before their
causes, entailing that causal ordering implies temporal ordering. So, time(a, e) is

391

obtained by intersecting :D(e) with proper sets (/-/1 a n d / / 2 below) representing
the constraints (ii) and (iii):

time(a,e) & N({9(e)} u//1 u//2) where
H I = { t ~ + T] 3 X C _ E : X T e ^

The notion of timed event trace is now defined as follows. Let Min(T) denote
the minimum of set T. For T = 0, Min(T) ~= oo.

D e f i n i t i o n 4. A timed event trace of F = (E, :D, 7-, U) is a sequence a of timed
events (e l , t x) . . . (en, tn) with ei E E, ti e Time, satisfying e l . . . e n E T(s
ti E time(ai, ei), for all 0 < i ~< n, and

Vi, e : (e E en([ai]) A b/(e) A (ei ~ e V e ,,,,, ei)) ~ ti <~ Min(time(r

Let TT(I') denote the set of timed event traces of F. The first two constraints are
self-explanatory. The third constraint takes care of the fact that urgent events
may prevent the events that they disable (or by which they are disabled) to
occur after a certain time. That is, event e~ can occur at time t~ provided there
is no enabled urgent event e that disables ei (or that is disabled by e~) and that
(if it occurs) must occur before ti.

[3,71 { 2,4,6 }

c d

[30,30]

(a) Co)

Fig. 2. Two real-time event structures.

Example 2. Fig. 2 depicts a real-time event structure with T(({ ea }, ec)) = [3, 7],
7"(({ eb }, ec)) = [5, 12] and 7"(({ eb }, ed)) = { 2, 4, 6 , . . . }. Event delays are all
zero. For the following sequences of timed events the conditions are given under
which they are timed event traces of Fig. 2(a):

(Ca, ta) (eb, tb) (ed, td)
(ca, ta) (eb,tb) (ec, tc)

For Fig. 2(b) we obtain:

(e~ (ec,tc)
(Ca, ta) (eb, tb) (ec, tc)

if td E { tb+2, tb+4,. . . }, and

if max(ta+3, tb+5) ~ tc ~< min(ta+7, tb+12).

if ta /> 1 A ta+3 ~< tc x< ta+30, and

if t , >/1 ^ tb = t ,+30 A t~ > /max(t ,+3 , tb).

Timed event traces do respect causality, but not necessarily time. That is, two
(or more) independent events can occur in a trace in either order regardless of

392

their timing. For example, (eb, 1)(Ca, 3) and (ca, 3)(eb, 1) are timed event traces
of Fig. 2(a). The choices correspond to the possible interleavings of the causally
independent events. Since the causal ordering between events implies their tem-
poral ordering the causal ordering can never contradict the temporal order, see
also [1].

The following result implies that for any ill-timed event trace ~ there exists a
corresponding time-consistent event trace cd, that can be obtained from ~ by
swapping repeatedly ill-timed pairs of timed events.

T h e o r e m 5 . Vt' < t :cr (e , t) (e ' , t ') or' E T r (F) =~ ~ (e ' , t ') (e , t) ~' E Tr(F).

Note that the reverse implication does not hold; for instance, if e causally de-
pends on e ~ then the order of events e t e in a trace cannot be reversed since this
would contradict their causal ordering.

5 Event structure semantics

This section presents a causality-based semantics for PAR using real-time event
structures. We define a mapping ER[] : PAR ~ EBESR. For convenience we
use the denotational semantics St[] for the untimed case which is defined in
Appendix A. Recursion is dealt with in Sect. 6.

Definit ion 6. # : PAR ~ PA is defined as follows:

#(0) ~ 0

*((T) a ; B) & a; *(B)

~i(BI op B2) --& ~(B1) op ~(B2) for op e { +, Ila, >>, [> }

~$(opB) -& op~i(B) for op E { \ , [] }

~i(B) is the untimed behaviour corresponding to B obtained by omitting all
time annotations in B and converting ~> and 1~ into + and [>, respectively.
The purpose of the internal event introduced by the timeout operator will be
explained later on.

In the rest of this section let s = Fi = (s for i = 1,2, with
~i = (Ei, "~i, ~"~i,li) and E1 A E2 = ~. The functions in/t and ex/t which
denote the set of initial and termination events, respectively, are defined for
event structures in Appendix A and are used for real-time event structures in
the same way, that is init(Fi) A init(s and exit(Fi) A= exit(s Let Eu denote
the (infinite) universe of events.

393

Def in i t ion 7. s] : PAR --* EBESR is defined for 0, ~/, and (T) a ; as follows:

zR[0] ~ (e ' [~ (0) l , o , o , o)
s ~/] ~ <s], { (e,, Time) }, O, { (e,, false) })

s a; B1] a ((E,"*z,~-*,ll U {(ea, a)}),2),T,H) where

E = E1 U { e, } for e. e Eu \ E1
= ~ u ({{eo}} • E,)

i

2) = { (ea, T) } U (Et x { Time })

~" = ~ u { (({eo },~),2)1(~)) I e e E l }
H = ldt U { (ea, false) }.

The semantics of 0 and ~/ is self-explanatory. In s a; B1] a bundle is
introduced from a new event ea (labelled a) to all events in Ft. The delay of
each of these events, e, becomes relative to e~, so each bundle { e~ } ~-~ e is
associated with a time delay :DiCe), and 2)(e) becomes Time. 2)(ea) becomes T.
In the untimed case it suffices to only introduce bundles from e to the initial
events of F1, cf. Appendix A. The bundles to all events of F1 that are introduced
in the timed case are used for the sole purpose of making delays relative to ea.
Fig. 3, e.g., shows (a) s and (b) s a; B] .

b
1

d d
[~,5] e.. [~,5] / t ~

%

"'-.. e a J [0,17] "'... e
= C / [0,171 [2 7) ~

- w - - w w

4 (7,41] 4
(a): B (b): ([2,7)) a ; B

Fig. 3. Example of semantics for timed action prefix.

Def in i t ion 8. s]

s BIOpB2] &
~R[op B1]

s B1 >> B2] =~

t - - - +

1=
2)=
T =

: PAR , EBESR is defined for \, [], +, >> and [> as:

(s ~Ii(BI~ l, V l U V2, (TI U 'T2,/~tl U U2), op e {q-, [>}
(E ' [~ (o p B 1) I , ~ I , ~ , U t) for op E { \ , [] }

((Ez U E2,~,~-~,I),2),T, Ht UH2) where

"'1 U ""2 u{(e,e') le, e' E ex/K-rt) ^ e#e ' }

~ i u ~2 u ({ e~ (r l) } x E2)
((ll U 12) \ (exit(Fz) x {6})) U (exit(F1) x {-r})
2)z U (E2 x { Time })

u ~ u { ((e~t(rl), e),2)2(e)) I e e E2 }.

For op equal to choice or disrupt s Bt op B2] is the untimed event structure
of the corresponding expression in PA, s ~(Bi op B2)], where the timings of

394

events and bundles in I'1 and F2 are unaffected. Similarly, s] is defined for
relabelling and hiding. The events of s >> B2] are those in E1 U E2.
Bundles are introduced between the successful termination events of/~1 and the
events in T2. The reason for introducing bundles go all events of / '2 is to make
the event delays in T2 relative to the termination of/~1. This is similar as for
t imed action-prefix.

Now we consider parallel composition. Recall from Appendix A that events are
pairs of events of/'1 and F2, or with one component equal to *. The delay set of an
event is the intersection of the delay sets of its components that are different from
*. The time set associated with a bundle is equal to the intersection of the time
sets associated with the bundles we get by projecting on the i-th components
(i=l, 2) of the events in the bundle, if this projection yields a bundle in/~i.

For E = (El U { * }) x (E2 U { * }), (el, e2) e E and X C_ E let for i=1, 2
projection be defined as pri,((ez , e2)) A = = ei, if ei r * and pri(X) " {pr~(e) I e E
X fl dom(pri) }. Let Ti((O, ei)) = Time.

D e f i n i t i o n 9 . s] : PAR , EBESR is defined for llo as follows:

ER [Bt [IG B2] ~ (ff [~/f(B1 JIG B2)], :D, T, L/) where

:D((el,e2)) = Dl(e l) O D2(e2) with Z~i(*) = Time.

T((X, (et, e2))) = Tt((Pr t (X) , el)) f3 Tz((pr2(X), e2))

/ /((ez,e2)) = L/l(el) V b/2(e2) with/ / i (*) = false.

E:rample 3. Consider B1 = ([1, 7)) a ;
([4,9]) a; (2) bl[b(((4,27]) b+ (3) d).
constructed from ER[B1] and s B2].

a 5 b a 2
[L7) / "~ I'{a'b} [4,9]

{ 1,3,6}

(5) b l[b ({1, 3, 6 }) c; (7) b and B2 =
Fig. 4 shows how ~R[Bt II{a,b} B2] is

b
(4,27] =

3 0
d

a 5 b

[4~7) ~ (4,27]

c 7

{ 1,3,6 } d

Fig. 4. Example of semantics for parallel composition.

t
In ER[B1 t> B2] a new internal, urgent event er is introduced that models the
expiration of the timer. Since either the timer expires or Bz performs an initial
action before (or at) t, event er is put in mutual conflict with all initial events
of F1. The events of F2 can only occur after the timeout; this is modelled in the
same way as for action-prefix: a bundle { er } ~-* e is introduced for all e E F2.
The delay of these bundles is determined as in the action-prefix case. The event
delay of e~. becomes It, t] such that it can only occur at t time units since the

enabling of s ~ B2]. So, s ~ B2] equals ~R~Bz + ([t,t]) r ; B2]
where v is urgent.

395

D e f i n i t i o n l 0 . s t> B2] _A ((E,~'*,~-*,ll U 12 U {(er,'r)}),T),~F,U) with

E = E1 U E2 U {er } for some er e EU \ (El U E2)

: "~1 U "~2 U (init(F1) x { e,- }) U ({ e,- } x init(F1))
P"+ :I"+1 U I-'>2 U ({ { e . r } } X E 2)

'~) ~-- Vl U { (e,., [t,t]) } U (E2 x {Time})

T=T1 U~ U { (({e~-},e),'D2(e))leEE2}
U : Ul U ~'~2 U { (e-r, true) }.

Example,~. Let B1 = (2) a ; (5) b III ([6, 21)) c and B2 = (3) d; (2) g I1~ ([27, 41]) g.

Fig. 5 illustrates how s ~ B2] is constructed from s] and s].

a 5 b 12 d 2 g [6,21) 0. c r .~ ~ r .--., =

2 c 3 [27,41] .i, 3 d g
�9 [12,12i" . . 2 .__

[6,21)
[27,41]

Fig. 5. Example of semantics for timeout opertor ~>.

A similar approach could be taken for the watchdog operator (using [> rather

than +), but B1 I~ B2 can also be modelled without urgent events. Consider
s [> B2], and (i) restrict all event delays in/"1 by [0,t] ensuring that these
events can only occur at time t at the latest, and (ii) postpone all events in/ '2
by t such that these events can only occur from t on, cf. Fig. 6.

D e f i n i t i o n l l . s ~ B2] ~ s ~ B2)],~D,~I U ~F2,Ul U U2) with

= { n [o,t]) e E, } u { (e, l e e

a 2 b 6 d a 2 b
�9 = [3,6] ". ~ [0,6]

= -- ~1~ [4,32) .." [3,7] C ""
�9 [6,6] O.c . .

% ," .o~

6 ""~'" [10,38)
d

Fig. 6. Example of semantics for watchdog operator.

6 R e c u r s i o n

In this section we consider (process instantiation and) recursion. We assume a
behaviour is always considered in the context of a set of process definitions of
the form P := B where B is a behaviour possibly containing occurrences of P.

396

E ~ [P] for P := B is defined in the following way by using standard fixed point
theory [26]. A complete partial order (c.p.o.) -4 is defined on real-time event
structures with the empty event structure (i.e., s [0]) as the least element •
Then for each definition P := B a function Y=v is defined that substitutes a real-
time event structure for each occurrence of P in B, interpreting all operators
in B as operators on real-time event structures, yr~ is shown to be continuous,
which means that s can be defined as the least upper bound (1.u.b.) of
the chain (under -4) • ~'~(• 5rs(YrB(• For this paper we just define
the appropriate ordering -4, the corresponding 1.u.b., and present the main re-
sults. Given these ingredients it is rather straightforward to define a continuous
function yrB. Further details can be found in [14].

D e f i n i t i o n l 2 . Let Fi = ((Ei,"*i,~-*i,li),29~,Ti,/4i) for i = 1,2. 1"1 _ 1"2 iff
E1 C E2, ~ 1 = ' ~ 2 N(E1 x El) , 11 = 12 r El , T~I = 2)2 r El,/4~ =/42 ~ EI, and

1. ~ = { ((X n E~),e) l e e E~ ^ X~--~2e},and

2. Ve �9 El : ~((X n El, e)) = ~((X, e)).

where r denotes restriction. It is straightforward to verify that -4 is a partial order
with _l_ = ((0, O, O, O), O, O, O) as least element. For conflicts we require that
no new conflicts appear in I'2 between events that are already in F1. Similarly,
the first constraint forbids the introduction of bundles in F2 pointing to events
in Fx for which there exists no projected bundle in El. Note that this constraint
allows for bundles to grow in such a way that the old bundle set is contained in
the new one. The last constraint forces those bundles to keep the same delay.

The 1.u.b. [Ji F~ of a chain F1 _~ F2 __.... can be characterized as follows. For the
set of events, conflicts, labeling function, and event delays we simply take the
union of all events, conflicts, labellings and event delays of the event structures
in the chain. As bundles may grow this approach does not apply to the set of
bundles. Suppose Fj has bundle Xj ~ j e. According to the definition of ~ there
is a series of bundles Xj ~ j e, Xj+I ~ j + x e , . . . satisfying Xk+l N Eh = Xk for
k >~ j . Then the 1.u.b. contains bundle ([in Xj+n) ~ e. For/"1 <~/'2 4 . . . :

Def in i t ion 13. [Ji Fi _a ((U{ E~, U{ ~+~, ~ , U~ li), Ui 2)i, T, Ui/4i) with

~ = {((J~Xk,e)[3j:(Vk>/j:Xk~ke A Xk+inEk=Xk)}

T= {(((J~Xk,e),T)[3j:(Vk1>j:xkTke A Xk+inEk=Xk)}.

P r o p o s i t i o n 14. [Ji 1"~ is the least upper bound of chain F1 <1 1"2 <3

P r o p o s i t i o n 15. For 1"1 ~_ 1"2 -4 . . . a chain: TT([[i Fi) = ~J~ Nj>~i TT(1"j).

Def in i t i on 16. For P := B a process definition let s ~- LJi Yr~(-L) �9

397

7 E x a m p l e : a t i m e - c o n s t r a i n e d F I F O b u f f e r

We show how PAR and real-time event structures can be used to specify real-
time systems by treating a time-constrained first-in first-out (FIFO) buffer. This
example is taken from [28]; the only difference is that we consider a buffer of
infinite length. A simple way to specify a FIFO buffer is by using an abstract
data type queue:

Fifo(w: queue) := ~ ([w = (=)~'] ~ rd. ; Fifo(w') + w~. ; Fifo(wq~)))
x6D

D is a set of data values that can be buffered, wrx denotes the writing (i.e.,
insertion) of x 6 D into the buffer and rdx denotes the reading (i.e., removal) of
z from the buffer. ~ is a generalized version of the choice operator; (x) denotes
a singleton queue containing x and ~ denotes concatenation of queues. [hi --~ E
denotes that E can be executed if condition b holds.

The FIFO buffer should model a communication network with the following
timing constraints [28]: (i) message latency in the range of 2 to 5 time units; (ii)
message input rate set to 1 message per time unit; (iii) message output rate of
1 message per two time units. These time constraints are maintained by:

TD := (wr= ; ([2,5]) rd=) III TD
Wr := wr~ ; WF where Wr I := (1) wrx ; WF

R d := rdx ; Rd' where Rd' := (2) rdz ; Rd'

The required buffer is obtained by putting these processes in parallel with Fifo:
Fifo(()) II Rd II Wr II TD where II is a shorthand for IIAct, i.e., full synchroniza-
tion. This specification strongly resembles the timed CSP specification in [28].

A problem with this specification is that it prescribes a mutual exclusion between
reading and writing: at any moment one may either choose to read (provided the
buffer is not empty) or to write. However, intuitively reading and writing should
be to a certain extent independent. If the queue contains one or more elements,
it should be possible to read them in parallel with writing new elements. The
mutual exclusion constraint is especially unnatural if reading and writing take
place at different locations (which is quite common in case of a communication
network). We therefore propose a different way of modelling a time-constrained
FIFO buffer in which we exploit the use of event structures:

Cell := wp; ~ wr~ ;((1) w~lll ([2, 51) rp; ~d, ;(2) ~)
xED

Chain := (Cell II{~.,..~ Cbain[wp := w~,~p := ~N) \ {w~,r~ }

Bur := China \ { wp, rp }

The real-time event structures corresponding to the Cell and But" processes are
depicted in Fig. 7(a) and (b), respectively. The unlabelled, grey dots represent

398

rp rdx 2 rn rdxl 2 rdx2 2 = - rdx3 2

.) o -~- = $

wp wr x 1 w n . Wrxl 1 wrx2 I Wrx3 1

(a), (b)

Fig. 7. Real-time event structure of a time-constrained FIFO buffer.

internal events. Process Cell describes a buffer cell allowing the writing and
reading of a data value. The actions top and rp ensure that the cell waits before
writing resp. reading; w n and r n indicate the finish of writing and reading and
are used in Chain to 'start' the next cell. Chain puts an unbounded number
of cells in parallel using an appropriate renaming function. Finally, process Bur
hides the write-previous and read-previous actions of the front cell.

8 E v e n t - b a s e d o p e r a t i o n a l s e m a n t i c s

Most timed process algebras are based on an interleaving semantics. In order
to facilitate a comparison with these existing approaches and to investigate the
'compatibility' of our proposal with the standard (interleaving) semantics of
LOTOS we present an event-based operational semantics for PAR. We define
as adopted from [5]--a transition system (in the sense of [23]) in which we keep
track of the (times of) occurrence of actions rather than the actions themselves
as is usual in structured operational semantics. This results in a t imed event
transi t ion system.

Each occurrence of an action-prefix, ~/, and ~> is subscripted with an arbitrary
but unique event identifier, denoted by a Greek letter. These identifiers play the
r61e of event names. For Ha new event names can be created. If e E B and
e ~ E B', then possible new names for events in B I] a B ' are (e, .) and (* ,e ')
for unsynchronized events and (e, e') for synchronized events. The operational

semantics defines a set of transition relations (e,a,t) ~ . B (e,a,t) ~ B ~ denotes
that B can perform event e, labelled with action a 6 Act ~'6, at time t E Time,
and subsequently evolve into B ~. *> is the smallest relation closed under all
inference rules of Table 2.

Let ut(B) denote the set of time instants at which B can initially perform an
urgent event. Let PA + denote PAR including the auxiliary operators ~[] and ~{ }
(see below).

Defini t ion 17. ut : PA + > lO(Tirne) is defined by:

{ t ' + t l t ' e ut(B)}
ut(B1 opB~) ~ ut(B1)U ut(B2)for op E {-t-, [>, IIG }

ut((B }) { t' ut(B) It' f> t }
ut(B1 >> B~) -~ ut(B1)

ut(op B) -~ ut(B) for op E { \, [] }

399

ut(B1 ~ B2) & ut(B1) U { t }

ut(B~ ~ B2) & ut(B1) U ut(*[B2l)
ut(P) ~ ut(B) for P := B.

For all other syntactical constructs let ut(B) & ~.

Let mr(B) abbreviate M/n(ut(B)), where Min of the empty set equals c~. In
order to let ut be well defined we require process instantiations to occur in a
weakly guarded way (i.e., they should become guarded after a finite number of
substitutions of bodies for their process names).

I- ~/~ (~,~r,~):. 0
t e T ~" (T) a t ; B (~'"'*),,*[B]

B (~,-,o ,: B' ~ e[Bl I~'"'~+"),, *'[B'I
Bz (e,~,0, B~ t ~< mt(B2) I- B1 + B2 (~,a,t),, B~
B2 (~.a,t),) B~ t ~ mt(B1) b- B1 + B~ (~.a,t) ,) B' 2

B1 (r a r ~- B I > > B 2 (~,- ,0: .B~>>B2
Bz (e,~.0,, B~ I- Bz >>B2 (~'"t),, ~[B2]

B1 (~,a,t),tB~ (a r A t<mt (B2)) F- BI [>B2 (~,.,0::B~[>~{B~.}
Bz (~,$,0.B~ t<mt(B~.) I- B I [> B 2 (~'$'~),IB~
B2 (~.a.~) . B I 2 2 t ~ m t (B 1) F- B I [> B 2 (e,~,0,B,

B (~'='t),,B' t ~ t ' ~- r (e'='t), , t '{B'}

B1 (e,a#):. B~' a r G ~ b B~ [[a B2 ((e'*)'a#) :: B~ [[u B2
B~ (e,~,0::B,2 a ~ G ~ b BI[[aB2 ((*,e},a,0....B~[[~B~

Bz (e,=,*) ,, B~ A B2 (~'='*) ,, B'2 a ~ G ~ b B1 [[u B~ ((~'~)'='*) ,, B[{[~ B'2
B (~'='*)::B' a C G b B \ G (~'='*),,B'\G
B (~'"'*).B' a ~ G ~- B \ G (~ '"*) : :B ' \G

I~,a,*),, S' e BIg] r162 s ' [g]

B~ (~'='r t '~<t ~- BzD~B2 -B~
t (~b,.,t) ~ [B2] t~mt (B~) b BzD~B2

B~ (~'~'g)::B~' t ' ~ t I- B ~ � 9 BI

B2 (~'~'r B' *)) 2 t ~mt (B~) F- B1 � 9 (~,a,~+t')))~rB,t 2]
B (r B' (P := B) K P= (=~,,,,0,t ~r(S')

B (*,-,0. B' ~- r (B) ('r ~r(B')

Table 2. Event-based operational semantics for PAR.

~ /can perform the successful termination action 5 at any time t. (T) a~ ; B can
perform event ~ at time t, t E T, and evolves into t [B] . ~' [B] can be considered
as behaviour B shifted t' t ime units in advance. That is, if B can perform event
~, say, at time t, then r can perform ~ at time t+t' . Note that r is only

400

an auxiliary construct; it has no counterpart at the language level. The rules for
parallel composition in which no synchronization takes place, for hiding, and for
relabelling are straightforward extensions of the untimed rules. Synchronization
can only take place when both participants can perform an equally labelled
event whose label is in G (or equals ~) at time t. The rules for >> are also a
straightforward extension of the rules for the untimed case except that in case
B1 performs a successful termination action ~ at time t, then B1 >> B2 evolves
into ~ [B2] rather than B~. This represents that t time units have passed before
B2 can start with its execution.

The rules for B1 + B~ are somewhat adapted since (initial) urgent events in B1
5

or B2 can decide the choice. E.g., in (12) a + ((18) b C> x ([1, 7) c) event X will
occur at time 5, and resolve the choice in favour of B2. In general, if B1 performs
an event at time t then B1 + B~ can perform the same provided that B2 cannot
perform an urgent event at any time earlier, i.e., if t ~ rot(B2). By symmetry,
a similar condition is obtained for B~ performing an event. Similar conditions
appear for [>, C>, and , .

If B1 performs an event at t and evolves into B~ then B1 [> B2 can do the
same while evolving into B~ [> ~{ B2 }. ~{ B2 } behaves like B2 except that it
is unable to perform events before t. The other inference rules for disrupt are
straightforward extensions of the rules for the untimed case.

The inference rule for ~' { B } is that if B can perform an event at time t, then
~~ { B } can do so if t/> t'. Note that ~' { B } is--like ~' [B]---an auxiliary operator
that cannot be used by the specifier.

If B1 performs an event at time ~', with t' ~ t, and evolves into B~ then B1 ~ B2
can do the same; in this case the possibility that B2 happens is dropped since
B1 has performed an action before (or at) time t. At t the timeout event
can happen and the resulting behaviour is ~[B2], B2 shifted t time units in
advance. This can only be done if t ~ rot(B1). This condition ensures that ~ is
not performed if B1 can perform an urgent event before t.

If B1 performs an event (which is not a successful termination event) at time t',

with t' ~ t, and evolves into B~ then B~ , B~ can do the same while evolving

into B~ ~ B~; the possibility for disruption (at time t) by B~ remains. If B~
terminates successfully at t', t' ~ t, disruption by B~ becomes impossible (like

for B~ [> B~). If B~ performs an event at t' and evolves into B~ then B~ �9 B2
can perform the same at t + t' (provided B1 cannot perform an urgent event
before t) and evolves into ~ [B~].

It is assumed that each process instantiation of P is uniquely identified. Dif-
ferent occurrences of the same process instantiation should produce different
event transitions. In addition, event transitions cannot be repeated. For P :=
([2,7]) ~ P ~ we first have an event transition with (~,~,t) for t ~ [2,7]; the
next time that action u occurs it should be labelled with a label different from
~. These complications are resolved by using an event renaming operator that

401

prefixes all events in a behaviour with a certain occurrence identifier. 7r(B) is
behaviour B where all event identifiers in B are prefixed with ~.

Let UE(B) denote the set of urgent events in B. (This function can easily be
defined by induction on the structure of B and is omitted here.) V B E PA+:

P r o p o s l t i o n l 8 . (t ~ mt(B)) ~ (Ve E UE(B),t ~ < t : B (e,~,t')/,~).

Let ~ ~ denote the usual sequence-closure of the transition relation (~'a'0 3~.
The consistency between the denotational and operational semantics of PAR is

T h e o r e m 19. VB E PAR: TT(s B]) = { ~ 13 B' : B " ,, B ' }

9 C o n c l u s i o n s a n d r e l a t e d w o r k

This paper concerns a real-time extension of (a variant of) event structures, a
partial-order model for concurrent systems. The original incentives of our work
are to study the expressiveness of event structures to effectively support the
specification of distributed systems and to facilitate formal representation of
performance and reliability aspects. A secondary aim is to (formally) relate the
real-time extension of event structures to interleaving models for concurrency
such that partial-order and interleaving models can be used coherently in the
system design process and can be compared in a perspicuous way.

To achieve this we proposed a real-time variant of extended bundle event struc-
tures, used this model for providing a (noninterleaving) denotational semantics
to a real-time process algebraic formalism that includes a timeout and watchdog
operator, and constructed a corresponding event-based operational semantics.
This shows that event structures are suitable for modelling real-time systems.
Both semantics are characterized by the absence of any mechanism that explic-
itly models the passage of time; time is treated as a parameter. The event-based
operational semantics is a conservative extension of the standard interleaving
operational semantics of LOTOS.

An interaction can take place if all participants can engage in it at the same time
instant. The interaction cannot appear if such common time instant does not
exist. Since in our model we do not have an explicit notion of the passage of time
such an impossible interaction does not result in behaviours which do block the
passage of time (timelocks) in the entire system--even in causally independent
parts--but simply in the local impossibility to execute the event at hand.

The model based on timed-actions allows for the generation of ill-timed traces
like in [1]. Recently, [11] proposed a timed process algebra with the theoreti-
cal CSP parallel operator that also includes ill-timed traces. In the proposals
[1, 11] sub-processes have their independent local clock, and since local clocks
are only synchronized at interaction, ill-timedness appears. We believe that the
operational semantics presented in this paper is simpler by avoiding local clocks.

402

I l l - t imedness is a p h e n o m e n o n t h a t is some t imes exp l i c i t l y avo ided by o the r s
(l ike in r ea l - t ime A C P [3] and T I C [25]), s ince the p recedence of t i m e d events
in t he t r ace does no t reflect the o rde r in t ime . To our op in ion i l l - t imed t r aces
a r e no t t h a t obscure , s ince for each i l l - t imed t r ace the re exis ts a c o r r e s p o n d i n g
t ime -cons i s t en t t r ace wi th the s ame t i m e d events. Moreover , we t h i n k t h a t t h e
avo idance of t h e m leads to a more c o m p l i c a t e d o p e r a t i o n a l semant ics .

A c k n o w l e d g e m e n t s . Thanks to Pedro d 'Argenio and Arend Rensink for suggestions.

A Denotat iona l semantics of PA

In this appendix we provide the full definition of the causali ty-based semantics of
PA. The initial events and successful terminat ion events of an event s tructure are:
init(s ~- {e E E] -~(3X C_ E : X ~-* e) } and exit(E) ~ {e E E l l (e) = 6}. We
suppose there is an infinite universe Ev of events. Let s | Bi] --- s = (El, ~*i, ~--~i, li),
for i=l, 2 with E1 n E2 = 0 . (If E1 N E2 r O then a suitable event renaming can be
applied extended to ~*, ~-*, and l.)

In s B1] a bundle is introduced from the new event ea (labelled a) to all ini t ial
events in s as e~ causally precedes these events. s + B2] is equal to the union
of s and s extended with mutual conflicts between all init ial events of s and ~2
such tha t in the resulting structure only either B1 or B2 can happen. s \ G] is
identical to s except tha t events labelled with a label in G are now labelled with r
turning those events into internal ones. s B1 [H]] is defined similarly where events are
relabelled according to H (o denotes usual function composition).

s >> B2] is equal to the union of s and s where bundles are introduced from
the successful terminat ion events of s to the init ial events of s (To create bundles,
mutual conflicts are introduced between the successful terminat ion events of s This
corresponds with the fact tha t these init ial events can only occur if B1 has successfully
terminated. The successful terminat ion events of s are relabelled into internal events.
s [> B2] is equal to of s with s extended with some addit ional asymmetric con-
flicts. Firs t , each event in s may be disabled by an initial event of s This models tha t
B1 is disrupted once an initial event of B2 happens. In addition, after the occurrence
of a successful terminat ion event in s no initial event of s can happen anymore.

The events of s Ila B2] are constructed in the following way: an event e of s or s
tha t does not need to synchronize is paired with the auxiliary symbol *, and an event
which is labelled with an action in G $ is paired with all events (if any) in the other
process tha t are equally labelled. Thus events are pairs of events of s and s or with
one component equal to *. Two events are now put in conflict if any of their components
are in conflict, or if different events have a common component different from �9 (such
events appear if two or more events in one process synchronize with the same event in
the other process). A bundle is introduced such tha t if we take the projection on the
i - th component (i=1, 2) of all events in the bundle we obtain a bundle in s].

For G C Act, E~ & {e E El I I~(e) E G 6 } is the set of synchronization events and
E{ & Ei \ E~ the set of non-synchronizing events.

403

Defin i t ion 20. C[] : PA ; EBES is defined as follows:

~[01 ~ (o , o , o , o)

E [J] _a ({ e , } , O , O , { (e , , 6) }) for some e, E Ev and

~[a; S l] A (El U { e . } , -~I ,~ ,Z l U { (e . , a) }) for e. e E~ \ E l
I--+ = I--+ 1 U ({ { e a } } x ~ l l / t (~ l))

E[Bt + B 2] -~ (El U E2,'~'~,~-*l U ~-*n,lt Ul2) where

- - = - ~ u -~2 u (inJtC&) x ~t(~2)) u (init(~2) x init(~,))

E[B1 \ G] -~ (E 1 , - ~ , ~ 1 , /) where
(l~(e) e G =, ice) = ~) ^ (Zl(e) r V =. Z(e) = lice))

C[BI[H]] -~ (E I , - ~ , , ~ I , H o h)

s >> B2] & (El U E2,~,~-*,I) where

-~ = -~1 u ~ 2 u { (e,e') I e,e' e e~t(~l) ^ e # e' }

Z = ((11 U ~2) \ (e=t(&) x {~})) U (e~tC&) • {~})

E|B1 [> B2] & (E~ u E 2 , ~ , ~ 1 U ~2,1x u/2) where
= ",,'~ O "~2 U (El x init(s U (/n/t(s x ex/t(s

s limB2| a__ (E,...*,~-*,l) where
E = (E(x { , }) U ({ , } • E~) U

{ (~i ,~) e S~ x E; I ~(el) = U.(~,.) }
(e , ,e~) . ~ (e, " '1 e~,) V (e~ . . ~ e~,) V (e , ,e~) ".~ ' '

(e, = e~. # * ^ e2 # ~,) V (e~ = e~ #- * ^ ea r e~)

x ~ (el ,~) ~ (~x~ c_ El : Xl ~ i ~ ^ X = { (e,e') e E I e E Xl })
V (:IX~ C_ E~: Xg. ~--~ e~AX = { (e,e') E E le' e x2})

l ((e ~ , e 2)) = i f e~ = * then 12(e2) else 11(el) .

Here we use a slight variant of s], denoted s]. s] introduces not only bundles
from e~ to the initial events of s but to all events in s Similarly, for >> s]
introduces bundles from ex/t(s to all events in s These additional bundles do not
pose any problems, since T(EIB]) = T (s for B E PA.

R e f e r e n c e s

1. L. Aceto ~ D. Murphy. On the ill-timed but well-caused. In E. Best, ed, Uoncur'
93, LNCS 715: 97-111. Springer-Verlag, 1993.

2. It. Alur & D.L. Dill. A theory of timed automata. Th. Comp. Sci., 126:183-235,
1994.

3. J.C.M. Baeten & J.A. Bergstra. Real time process algebra. Formal Aspects of
Uomputing, 3(2):142-188, 1991.

4. T. Bolognesi ~ E. Brinksma. Introduction to the ISO specification language LO-
TOS. Computer Networks and ISDN Systems, 14:25-59, 1987.

5. G. Boudol & I. Castellani. Flow models of distributed computations: three equiv-
alent semantics for CCS. In]. ~ Comp., 114: 247-314, 1994.

6. E. Brinksma, J.-P. Katoen, It. Langerak & D. Latella. Performance analysis and
true concurrency semantics. In T. Rus & C. Itattray, eds, Theories and Ezperiences
for Real-Time System Development, pp. 309-337. World Scientific, 1994.

404

7. R.T. Casley, It.F. Crew, J. Meseguer & V.it. Pratt. Temporal structures. Mathe-
matical Structures in Computer Science, 1(2):179-213, 1991.

8. J.W. de Bakker, W.-P. de Roever & G. Rozenberg, eds. Linear Time, Branch-
ing Time and Partial Order in Logics and Models for Concurrency, LNCS 354.
Springer-Verlag, 1989.

9. M. Diaz & R. Groz, eds. Formal Description Techniques V. North-Holland, 1993.
10. C. Fidge. A constraint-oriented real-time process calculus. In [9], pp. 363-378.
11. It. Gorrieri, M. Itoccetti & E. Stancampiano. A theory of processes with dura-

tional actions. Th. Camp. Sci., 140:73-94, 1995.
12. J. Gtmawardena. A dynamic approach to timed behaviour. In B. Jonsson &

J. Parrow, eds, Concur' 94: Concurrency Theory, LNCS 836: 178-193. Springer-
Verlag, 1994.

13. W. Janssen, M. Poel, Q. Wu & J. Zwiers. Layering of real-time distributed pro-
cesses. In H. Langmaack, W.-P. de Roever & J. Vytopil, Formal Techniques in
Real-Time and Fault-Tolerant Systems, LNCS 863: 393-417. Springer-Verlag, 1994.

14. J.-P. Katoen. Quantitative and Qualitative Extensions of Event Structures. Pb_D
thesis, University of Twente, 1996.

15. J.-P. Katoen, It. Langerak & D. LateUa. Modelling systems by probabilistic pro-
cess algebra: An event structures approach. In It.L. Tenney, P.D. Amer & M.U.
Uyar, eds, Formal Description Techniques VI, pp. 253-268. North-Holland, 1994.

16. J.-P. Katoen, D. Latella, It. Langerak, E. Brinksma & T. Bolognesi. A consistent
eansality-based view on a timed process algebra. In A. Cornell & D. Ioneseu, eds,
Proc. 3rd Amast Workshop on Real-Time System Development, pp. 212-227, 1996.

17. It. Langerak. Bundle event structures: a non-interleaving semantics for LOTOS.
In [9], pp. 331-346.

18. A. Maggiolo-Schettini & J. Winkowski. Towards an algebra for timed behaviours.
Th. Camp. Sci., 103:335-363, 1992.

19. A. Mazurkiewicz. Basic notions of trace theory. In [8], pp. 285-363.
20. D.V.J. Murphy. Time and duration in noninterleaving concurrency. Fund. Inf.,

19:403-416, 1993.
21. X. Nicollin & J. Sifakis. An overview and synthesis on timed process algebras. In

J.W. de Bakker et. al, eds, Real-Time: Theory in Practice, LNCS 600: 526-548.
Springer-Verlag, 1992.

22. G.M. Pinna & A. Poign~. On the nature of events: another perspective in concur-
rency. Th. Camp. Sei., 138(2):425-454, 1995.

23. G.D. Plotkin. A structural approach to operational semantics. Tech. Rep. DAIMI
FN-19, Computer Science Department, Aarhus University, 1981.

24. V.R. Pratt . Modeling concurrency with partial orders. Int. J. of Parallel Pro-
tramming, 15(1):33-71, 1986.

25. J. Quemada, D. de Frutos & A. Azcorra. TIC: A Timed Calculus. Formal Aspects
of Computing, 5:224-252, 1993.

26. D.A. Schmidt. Denotational Semantics: a methodology for language development.
Allyn & Bacon, 1986.

27. G. Winskel. An introduction to event structures. In [8], pp. 364-397.
28. J.J. Zic. Time-constrained buffer specifications in CSP+T and timed CSP. ACM

Transactions on Programming Languages and Systems, 16(6):1661-1674, 1994.

