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“Abandonment of causality as a matter of principle
should be permitted only in the most extreme emergency”
Albert Einstein, 1924"

Abstract. Specification formalisms in which causality and independence of
actions can be explicitly expressed are beneficial from a design point of view.
The explicit presence (or absence) of a causal dependency between actions
can be used effectively during the design. We consider a specification formal-
ism in which causal relations between actions play a central role and provide
a semantics in terms of (an extension of) labelled place/transition nets. The
behaviour of nets is defined by labelled partially ordered sets.

1 Introduction

A number of formal description techniques are known that assist the development
of complex distributed systems. Although such techniques are a significant contribu-
tion to the treatment of complexity in, for instance, protocol design and verification,
an engineer may wonder whether the abstractions made by these approaches are
appropriate. From an engineer’s view, the preferred scenario is to first investigate
which design concepts are convenient and what their intended meaning should be
[33]. Once this is investigated, an appropriate and intuitively appealing representa-
tion of these concepts can be chosen, eventually resulting in a “design” formalism, a
formalism that can be used at different stages of the design trajectory. Such consid-
erations have led to the introduction of a design model which comprehends design
concepts, an overall design methodology, and a design formalism [32, 33]. A full
treatment of this model is given in [8].

Needless to say, a (design) formalism should have a formal semantics. This gives a
precise meaning to the introduced concepts, forms a basis for the definition of equiv-
alence notions and implementation relations that are suitable to effectively support
the design trajectory, and is indispensable for the development of tools. A formal
treatment of the formalism in [8, 32, 33| is currently lacking. This paper presents
a formal semantics of the kernel of the proposed formalism — causal relations and
causal behaviours  in terms of place/transition nets [27].

The formalism is adherent to the true concurrency (or partial-order) approach.
In a nutshell the main novelties of the formalism are the inclusion of labelled internal
actions on which no synchronisations may take place but which are visible by the

L A. Pais, ‘Subtle is the Lord’ The science and life of Albert Einstein. Oxford Univ. Press,
1983.



environment (unlike the usual invisible 7 or i), a generalisation of sequential com-
position for composing behaviours, and the treatment of different types of causality
at a syntactical level which enables expressing interleaving of actions syntactically.

The basic ingredient of the formalism are causal relations between actions. Causal
relations can be of various types. In current process algebras [1, 14, 23] such relations
are induced by means of parallel composition, sequential composition, and so on, and
are restricted to be of the ‘and’-type. For example, a; b specifies that b is enabled
once a has occurred and (a|||b); ¢ specifies that ¢ is enabled once both a and b
have occurred (in either order). Using causal relations this is denoted as a — b and
a A b — c, respectively. The latter construct is called ‘and’-causality. The natural
complementary construct, a V b — ¢, called ‘or’-causality, denotes that c is enabled
once either a or b has occurred before. The fact that b is disabled by a is denoted
by —a — b (‘not’-causality), and means that once a occurs b becomes disabled.

Event-based models and Petri nets are well-suited for providing a semantics to
the formalism at hand. Due to the presence of not-causalities a type of event struc-
ture, like prime and stable event structures [34], whose interpretation can be given
in terms of families of configurations is insufficient as pointed out in [21, 28]. More
sophisticated event-based models [15, 21, 25] support the notion of asymmetric con-
flict, a notion that corresponds to not-causality. The mapping of the formalism to
such models is, however, not straightforward, and — in some cases — even impos-
sible due to some (technical) restrictions. In this paper we take Petri nets [27, 29]
as a basis for providing a semantics. Petri nets are based on causal relations (i.e.,
flows) between transitions, have an intuitive graphical representation, an extensive
tool support is available, and a lot of theories on extensions are known  like timed,
stochastic, and coloured nets — that may be useful when considering the full for-
malism [8]. A summary of net theory is given in Appendix A. The merits of giving
an operational interpretation of a specification formalism in terms of nets is well
recognized — a large number of attempts for other formalisms like CSP [10], ACP
[31], and LOTOS [9] have been made.

The main contribution of this paper is the definition of a relation between the
concepts of causal relation and behaviour, adopted from [8, 32, 33|, and nets in a
fully compositional way. This work can be used as a basis for defining an opera-
tional semantics of the full formalism, incorporating data and time, to determine
the expressivity of the formalism, and to prove certain properties of specifications.
The behaviour of nets is defined by families of labelled partially ordered sets [28].
Based on this partial-order semantics two expansion theorems are defined that enable

composed behaviours to be rewritten into equivalent monolithic ones?.

2 Related Work

The use of causalities for the description of distributed systems is not new and is, in
fact, introduced by Lamport, with his so-called ‘happened before’ relation® between
events [20]. The description of a distributed system by means of combining causal

% Limits on the available space prevent us from providing all proofs of our results; cf. [18].
3 The term ‘happened before’ is somewhat misleading as it suggests a temporal ordering,
not a causal ordering. A causal ordering implies a temporal one, but not vice versa.



relations  to our knowledge  originates from [19] by introducing and-causalities.
A more formal treatment of causal relations (again only including and-causalities) is
described in [5]. The incorporation of disabling (or not-causalities) between actions
in a specification language was coined originally by Janicki [16].

An elaborated treatment of causal relations (excluding not-causalities) can be
found in [11, 13]. The most extensive treatment of causality is given in [12] which
incorporates all causality types. Gunawardena uses the notion of geometric automata
for the operational characterization of his formalism. It turns out that the set of
traces of a geometric automaton is a pure transitive trace set. (A trace set is transitive
if the prefix ordering on traces up to permutation is a partial order. Pureness means
that each action appears at most once in any trace.) However, not the entire class
of pure transitive trace sets can be generated by the class of geometric automata.
Although geometric automata are quite similar to the formalism we present in this
paper they are not that expressive and do not support the notion of behaviour.

[4] introduces a (graphical) specification language for concurrent systems. In their
notation, Bolognesi and Ciaccio use and- and or-causalities plus a symmetric not-
causality to express the constraints on the temporal ordering of events, the so-called
‘when’ constraints. By using symmetric not-causality a standard choice is expressed.
They lack, however, a means to express ordinary (asymmetric) not-causalities. In [4]
a preliminary interleaving semantics for their notation is given. The true concurrency
semantics in this paper can be used for the ‘when’ constraints of their notation.

We conclude by stating that various research activities on the fundamental notion
of causality are currently ongoing, e.g. on how to express causalities [26], and the
use of causalities for the design and synthesis of distributed algorithms [30].

3 Causal Relations and Behaviours

The behaviour of a distributed system consists of actions and causal relations be-
tween them. A causal relation describes the conditions for a single action to happen.
The class Pr of these conditions, called preconditions, is defined as follows. Let
a € Act and n € 7, where Act denotes the universe of action symbols and Z,J
arbitrary finite index sets.

Definition1. F ::= true | false | a | =a | entry, | (E A E) | (E V E)

a € F is true iff a occurs in E. Preconditions differ from boolean expressions since
- is only applicable to actions, not to preconditions in general, e.g. = (a A b) is
not an allowed precondition, whereas —a V —b is. Unary operators bind stronger
than binary ones and A and V bind equally strong. Parentheses are omitted when
this does not introduce ambiguities.

A causal relation consists of an action and a precondition stating the necessary
and sufficient conditions for the enabling of that action.

Definition 2. (E, a) is a causal relation for a € Act U { exity, | k € J } and E € Pr.

A causal relation (F,a) is usually written as £ — a. It is assumed that an action
is unique and occurs at most once in a system run*. This, in fact, implies that each

* In literature this is also often called an event.



causal relation £ — a should be read as E A new, — a where new, is a predicate
which is true iff ¢ has not yet appeared. For the sake of convenience we omit this
syntactical construct and leave it implicit. In the semantics — of course — this
interpretation will be made explicit.

Example 1. Some examples of causal relations and their intuitive meaning are as
follows. a — b denotes that a is causal for the occurrence of b, that is, if b happens
then a must have happened before, true — a expresses that a is always allowed to
occur, —a — b expresses that if a and b both occur, b should occur before a, and
—a V b — c expresses that if ¢ happens then either ¢ has not happened before or
b has happened before.

The interpretation of a — b is that b is enabled — and thus may occur — once a
appeared. This is called may-enabling and is the opposite of forcing the appearance
of b once a has occurred (must-enabling).

entry,, and exity (n € Z, k € J) denote so-called entry and ewxit points. An entry
point defines a point from which actions in a behaviour can be enabled and an exit
point defines the conditions that can be used to enable actions of other behaviours.
This allows one to connect behaviours by connecting entries and exits. Entry and
exit points are just placeholders and should be distinguished from actions.

Using causal relations, behaviours can be constructed. A behaviour consists of
two types of actions: those that are internal, and those on which participation with
other behaviours is possible. Elements of the latter category are called interactions.
Opposed to process algebras where internal actions are turned into silent actions
(e.g. denoted i), internal actions, or simply actions, are labelled.

Definition 3. A simple behaviour B is a triple (I, A, S) with I (I C Act), a finite
set of interactions, A (A C Act), a finite set of actions A such that IN A = &, and
a finite set of causal relations S = { ¥y — ay,..., E, — a, } satisfying:

1 {ay,...,an }\{a; | Tk :a; = exity, } =TU A
2. VEi—>ai,Ej—>aj€S:i7éj = ai;éaj
3. VE—aeSbeE:beITUAV (In:b=entry,)

The first two conditions imply that each action, interaction, and exit of B appears
precisely once in the right-hand side of one of the causal relations of B. (Here, it is
assumed that each exit is uniquely numbered.) The last condition states that any
action in the precondition of one of the causal relations of B must either be an action
of B or an entry. I U A is called the alphabet of B.

Ezample 2. The most elementary behaviour is By=(&, &, &). Other example be-
haviours are ({a,b},9,{ "a—b, ~b—a}), {a,b},@,{a—=bb—a}), ({d},
{f,e},{true —» d,d - e,e V. d — f}), and {{a,b}, @, {entry;, — a,a — b,b —
exity }).

Let G be a set of interactions, G C Act, and C a partial function, not necessarily
injective, mapping entries of one behaviour to exits of others. The class of finite
behaviours, Beh, is defined as:

Definition4. B == (I,A,S) | (B||¢ B) | (B—¢ B)



The simplest behaviour is the behaviour defined according to Definition 3. It does
not consist of any sub-behaviours. There are two ways in which behaviours can be
composed into more complex behaviours. In the first type of composition synchro-
nisation on a set of interactions G is performed. This is quite similar to multi-way
synchronisation. For B ||g Bs it is assumed that G C I; U I, and that By and By
have disjoint sets of actions, entries, and exits.

In By —¢ Bs, conditions of exit points of By are connected to entry points in
Bs. C defines which exits of By are connected to which entries of By. Recall that
entry and exit points are just placeholders and should be distinguished from actions.
Linking entries and exits is therefore essentially different from synchronisation on
interactions. This form of composition can be considered as a generalization of se-
quential composition. It is assumed that two behaviours whose exits and entries are
linked have disjoint sets of actions, interactions, entries, and exits.

|l and »—¢ bind equally strong and associate to the left. Parenthesis are omit-
ted when not causing ambiguities.

Note 5. We assume that in a causal relation of the form E — exity, F does not
contain any — a occurrences. It would be difficult to interpret such causal relations in
connecting behaviours as the non-occurrence of an action in one behaviour becomes
a precondition for an action in another behaviour. Although this assumption is not
essential for our results, it allows for a smoother and more intuitive presentation.

4 Semantical Model

One of the major characteristics of Petri nets is that causal dependencies and inde-
pendencies between actions may be represented explicitly [27]. Independent actions
are not temporally ordered — as in interleaving semantics — but are treated inde-
pendently as intended. In addition, Petri nets are simple and intuitive and allow for
the representation of interleaving of actions. Independence and interleaving can thus
be distinguished®. These aspects make Petri nets well suited for providing a formal,
operational interpretation of causal relations and behaviours.

The basic idea is that transitions correspond to actions, and flows to causal
relations. The concept of may-enabling is modeled conveniently in nets as enabled
transitions may fire but are not forced to do so. The net corresponding to @ — b is
depicted in Fig. 1(a). The causal dependence between a and b is explicitly reflected
in the net transition b is only enabled after a has fired and the fact that
each action is unique is represented by equipping each transition with a single place
initially containing one token and having no input transitions. Fig. 1(b) and (c¢) show
the nets corresponding toa A b — cand a V b — ¢, respectively. In (b) transitions
a and b must have fired in order to enable ¢, and in (c) either a or b must have fired
to enable c.

Not-causalities seem to require an extension of nets, known as inhibitor arcs
[24]. An inhibitor arc connects a place s to a transition ¢ such that ¢ is enabled iff

5 This does not hold when an interpretation of nets is given in terms of sets of step se-
quences where each step consists of a single transition. In this interpretation independent
transitions can only fire in an interleaved order (see also section 6).



Fig. 1. Elementary causal relations in nets.

s contains no tokens (and, of course, its normal places contain sufficient tokens).
The net corresponding to —a — b is depicted in Fig. 1(d) where an inhibitor arc
is represented as a line with a small circle at its end®. As inhibitor arcs complicate
the interpretation of nets considerably [6] and hinder compositionality we stick to
traditional nets (see Fig. 1(e)).

Entries and exits are placeholders and are represented as places. A similar treat-
ment of entries and exits is present in Petri Boxes [3].

4.1 Labelled Place/Transition Nets

As a semantical model for causal behaviours we consider a generalisation of place/tran-
sition nets (P/T-nets, see Appendix A) with unbounded capacity of places and arc
weights equal to one. The generalisation is called labelled P/T-net, simply called
net in the sequel, and is a P/T-net equipped with a labelling of places (with a set
of entries and exits), and a labelling of transitions (with action symbols). Formally,

Definition 6. A labelled net is a 6-tuple N = (S, T, M°, F, A, u) where (S, T, M°, F)
is a P/T-net, A a labelling of places S — P({ex |k € T} U{an, |n€T}) and p
a labelling of transitions T' — Act, satisfying

(VseS:|{zneX(s)}|<1) A (Vti,ta €T 1ty #ta = p(tr) # p(tz))

A labels a place of N with a set of entries and exits. (e is used as abbreviation
for entry, and z, for exit,.) A place is labelled with at most one exit point. We
consider nets upto isomorphism and duplication equivalence [3]. So, two nets which
only have different place and/or transition identities and/or duplicated places” are
considered to be equivalent. Nets are represented with a minimal number of places.

Some notational remarks are in order. Places, transitions, flows, and markings are
represented in the usual way. Identities of transitions are indicated at the right or left
side of transitions, and transition labels are indicated in the center of a transition.
Place labels are indicated in the middle of a place, or at the left or right side of it.

§ Although it seems that both transitions a and b are initially enabled, this is not the case
according to the formal semantics in [6].

" Two places are duplicated when they have the same initial marking, label, presets and
postsets.



Place labels equal to @ are omitted. When there exists a flow between s and ¢t and
vice versa this is indicated by a bidirectional arrow.

A distinction with other types of nets is that we use transition sets (see Defini-
tion 43), instead of transition bags [6] as generalisation of a single transition. This
simplification is possible since any transition in our nets can fire at most once.

4.2 Operations on Labelled Nets

In this section we define two operations — compose and join — on nets which will be
used in the next section for defining a compositional semantics of causal behaviours.
The basic idea behind composition is to combine transitions, while for joining places
are combined. The formal definition of the two operations is technically involved.
The intuition of the operators will be illustrated by examples (see also next section).

Let N; = (Si, Ty, M2, F;, M, p;) for i=1,2 be labelled P/T-nets.

Composition At the composition of nets Ny and Ny equally labelled transitions
whose label is in some given set of actions G are combined. Transitions whose label
is not in G are paired with the auxiliary symbol ‘*” such that all transitions of the
resulting net are pairs. Transitions in Ny (N3) labelled with an label in G, but for
which there is no accompanying transition in Ny (N7) disappear in the resulting net.
As a prerequisite to the full definition of composition we define the pairing of sets
of transitions with respect to set GG. For set of transitions 7" and action set G, let

TG ={teT|ut)€G}and TC =T\ TC.

Definition 7. T} @¢ T = (TC x{*}) U ({* }xTE) U { (t1,t2) € TEXTE | pa(ty) =
pa(tz) }-

Proposition8. G = rng(u) Nng(pz) = Vt, € TF : Itz € Ty : (t1,t2) €
Ty ®g Tz).

Definition9. Si +¢ S2={s € S1 | *sUs* # GA((*sUs*) x (TL U {x})) N
Ti®cTo=2}U{s€ S| *sUs*#SAN((TWU{+}x(*sUs*)NT1®c T2 =2 }.

For composition, the incoming (outgoing) places of a paired transition are formed
by the union of the incoming (outgoing) places of its components. The places of
the combined net are the places of Ny and Ny where the places which have become
disconnected are eliminated. The marking of places is left unchanged.

Definition 10. Given action set G, the composition of Ny and Ny satisfying S1 N
Sy = @, denoted by Ny ¢ Na, is net (S, T, M, F, \, 1) with

S =(51US82)\ (S1+¢a S2)

T=T®gT,

MO = (MO UMY | S

.(tl,tz) = *%t; U *ty and (tl,tz). = tI U t5 with *x=x%* =g
A=A UX) TS

(o= = p((tr,t2)) = pa(tz)) and (1 7 = p((t.t2)) = pa(t)).

S T LN



| means restriction. If G equals the set of all common action symbols of two nets
(that is, G = rng(u1) N rng(p2)) then @ is abbreviated as @. Note that in this
case no transitions are eliminated.

Ezample 3. The composition operator is exemplified in Fig. 2. In the first example
(a) the two transitions labelled ¢, transitions z and 3, are combined and the rest
of the transitions remain. For examples (b) and (c) the argument nets are identical
and only the set G differs. In case (b) there is no transition in the right net labelled
b and transition x disappears from the resulting net. Transitions labelled a and ¢
are combined. Note that in the resulting net transition ¢ can never appear. In case
(c) no combination of transitions labelled b is required (b € G) and only transitions
labelled @ and ¢ are combined.

(1)
X E 1
= w 2 y
vy O Og 20 OO
C
. a[c] Sju

2 © @3

Fig. 2. Some example applications of ¢ .

Proposition11. Ny &g N, is a labelled P/T-net.

Joining The idea of joining is combining places of nets. The places of N} and N,
that are to be combined are determined by some predicate P. Places that are not
paired remain unchanged (technically this is achieved by combining them with a
special symbol ‘+” in a similar way as transitions are paired before). Thus, all places
of the resulting net are pairs. For predicate P and sets of places Sy, S, pairing of
places is defined by:

Definition 12. Sl *xp 522{(51,82) | P((Sl,SQ))} U ({S € Sl |VS, S 52 :
SP((s, ) ) x {+ ) U ({+} x {5 €85 | Vs € 815 ~P((',5) }).



The marking of a paired place is the sum of the markings of its components, and
the labelling of such a place is the union of the labels of its components minus the
labels in C. Equally labelled transitions are paired as well, and other transitions are
left unchanged (by combining them with ‘*’). Labelling of transitions is analogous
to labelling in composition. A flow between (t1,t2) and (s1, s2) is introduced iff a
flow exists between t; and sy in Ny, or between t5 and s in No.

Definition 13. The join of nets Ny and Na, Ny =¢ p N, is (S, T, M, F, \, 1) with

S = Sl*P SQ
T =T & T» where G = rng(p1) N rog(pe)
MO((s1,82)) = M{(s1) + M9 (s2) where M?(x) = 0.
*(ti,ta) ={(s1.52) €S |s1 € "1 V sy € *1a}
and (t1,t2)* = {(s1,52) € S| s1 €t} V s2 €13} where *x=%* =g
A((s1,82)) = (A1(s1) U Aa(s2)) \ dom(C U C1) where \;(x) = &
6. (tr =x = p((t1.t2)) = pa(t2)) and (81 # % = p((tr,t2)) =

x v 1 (x*) @\(*,1) v+ [ b]
(@ yé’\ w join  20) = 2@ O w2
z[d] 3[d] (23) @/

e

ot

x @ 1® «) [a]
(b) ) couple (x,6) , %l oo O
.2 [b]

«[a] V(5] 1 ? (x*) (v*)

(o) y: W couple (x,6) , = wa)

¢2

Fig. 3. Some example applications of =c¢ p.

In the next section we use =c,p in two ways. In the first way, the intuitive idea is
to combine places of two nets that form an input to an equally labelled transition
in both nets and, in addition, pairing places that have a common exit label. This
operation is denoted X (join). For the second operation, denoted ~¢c (couple),
the idea is to pair places in N; labelled with exits in C' to entries in N2 which are
combined according to C.

Definition14. 1. For C = & and P((s1,82)) = (3t € s} N sS: i (t) = pa(t)) V
(3&3 T e )\1(81) N )\2(82)) let N1 X Ny 2]\[1 #C’p Ns.
2. For C a partial function from entries of Ny to exits of Ny and P((s1,$2)) =
(3117 S )\1(81)7 e e )\2(52) : (l’, C) S C) let N1 IaYe N2 2]\/vl #C,P N2.

Ezample 4. An example of X is given in Fig. 3(a). Places of the argument nets
which are connected to the common transition d are paired, and the d transitions



are combined. Figs. 3(b,c) depict examples of ~¢ . Here, places labelled z in the
left argument are combined with the place labelled e in the right argument.

Proposition15. Ny ~¢ N» is a labelled P/T-net.

5 A Compositional Semantics

A semantics is a mapping which assigns to every syntactical construct a meaning or
interpretation, that is, an element of a semantical domain. In this section we define
a net semantics which assigns to every behaviour B € Beh a net [ B]. This is done
in a compositional way, starting from a mapping of causal relations onto nets.

5.1 Simple Behaviours

The net representation of elementary causal relations is illustrated in Fig. 4. The
following causal relations are considered: (a) true — a, (b) false — a, (¢) entry,, — a,
(d) a = b, (e) ma — b, (f) true — exity, (g) false — exity, (h) entry, — exity,
(i) @ — exity, (j) a — a, and (k) —a — a. For the sake of brevity, a complete
definition is omitted. Remark that false — a, a — a, and —a — a all denote that a
is permanently disabled.

® O ® O (® (o)
I I
(@ (b) (k)

(© (d) (e ® () (h) () 0]

Fig. 4. Net semantics of elementary causal relations.

Definition 16. For E, Es € Pr and ¢ € Act U { exity, | k € J } we define:

~[(Br A By) = e]=([Er—e] © [E2—c])
~ [(B1 V Bs) = ¢]2([E1 — e] ) [ B2 — ¢])

Proposition17. [E — e] is a labelled P/T-net.

The semantics of some elementary causal relations is illustrated in Fig. 5. The nets
corresponding to the following causal relations are presented: (a) a A b — ¢, (b)
aVb—e(c)maANb—ec (d naVb—oecand(e) naV ~b—ec

Recall that each causal relation £ — a should be read as F A new, — a, where
predicate new, is true iff @ has not occurred yet. The most obvious way to represent
this matter is to equip each transition with an additional input state (without any
incoming transitions) initially marked with a single token. For N this operation is
denoted as !N (a formal definition is straightforward and omitted). Then,



@ (b) ©
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A

Fig. 5. Net semantics of some and, or causal relations.

Definition 18. For simple behaviour B, [ B] is defined as follows (n > 0):
[{L,A{E —al,....En —a, D]ZEV([E1—»a1] & ... & [En — an]).

Ezample 5. Consider B with alphabet { a,b} and causal relations { —a — b, =b —
a}. Then [B] = 1([~a — b] & [ 7b — a]) is depicted in Fig. 6(a). This cor-
responds to the standard choice in process algebras. Thus, standard choice is not
considered as a primitive construct, as in process algebras, but is expressed using
causalities. As a second example consider alphabet { a,b} and set of causal relations

® ©®
] o]

@ (b) © (d)

Fig. 6. Semantics of some simple behaviours.

{a — b,b — a}. The resulting net is depicted in Fig. 6(b). Neither a nor b can fire,
and thus, the set of reachable markings only consists of the initial marking, M°.

Ezample 6. Consider behaviours B; and Bs with alphabet {a,b} and the following
sets of causal relations: By = {b V -b — a,a V —a — b}, and By = {true —
a,true — b}. In [ B; ] transitions a and b can execute one after the other, but not
simultaneously, cf. Fig. 6(c). (Note that we could omit one of the joined states of
a and b in [ By ], as they are duplicate states.) In [B2] a and b can occur in any
order, or even simultaneously, as they are independent, cf. Fig. 6(d).

Ezample 7. Consider B with {a,b,c,d} and { =¢ V d — a,a — b,—a V b —
¢, c — d }. Initially there is a choice between a and ¢. If a (¢) is chosen b (d) becomes
enabled and ¢ (a) becomes disabled. After the appearance of b (d), ¢ (a) becomes
enabled. The corresponding net is depicted in Fig. 7(a).

Ezample 8. Suppose we have three actions a, b, and ¢, say, with no conditions on the
occurrence of a and b, and where c is enabled after either a or b has occurred, but not
both. The set of causal relations is thus { true — a,true = b,(a V b) A (ma V —b)
— c¢}. The net corresponding to this behaviour is depicted in Fig. 7(b).



Fig. 7. Example nets corresponding to behaviours.

Ezample 9. As an example of a generated net that contains confusion (see Defini-
tion 50) consider behaviour B = {({a,b,c}, {true — a,a — b, b — c}). [B] is
illustrated in Fig. 7(c). Let M be the marking obtained by executing transition a
from the initial marking, that is, M° == M. The conflict sets of ¢ for markings M°
and M are cfl(c, M°) = @ and cfi(c, M) = {b}. Then (M?,c,a) is a confusion since

MO LY A MO M A cfi(e, MO) # cfl(e, M).

(Note that (M°, a,c) is not a confusion. Therefore, this type of confusion is some-
times called asymmetric confusion [29].) In words, when c fires in the initial marking

we obtain a marking without conflicts, whereas the firing of @ in the initial marking
leads to a conflict between b and c.

5.2 Composed Behaviours

In order to define the mapping of composed behaviours onto nets in a compositional
way, the operators on nets defined in section 4 can be used.

Definition 19. For By, Bs € Beh, G C I, U I, and C a function from entries to
exits define [[Bl HG Bg]]2 [[Bl]] Da [[BQ]] and [[Bl —C Bg]] = [[Bl ]] & Yo [[BQ]]

Proposition 20. For all B € Beh: [B] is a labelled P/T-net.

A net is called K-safe iff each place in any reachable marking from the initial marking
the number of tokens is at most K, for some fixed natural K. A net is called bounded
safe if there exists a K for which the net is K-safe.

Proposition 21. For all B € Beh: [ B] is bounded safe.



5.3 Recursive Behaviours

This paper only deals with finite behaviours. For specifying realistic distributed
systems recursion is indispensable. Recursive causal behaviours can be specified by
relaxing the constraints on causality-oriented composition — e.g. by allowing multiple
exits to be linked to a single entry (see [8]). As an example of a simple tail-recursive
specification, let By = (@, @, { true — exity }) and By = {({a }, @, { entry; — a,a —
exity }). For C = { (entry,, exity), (entry,, exity) } let B = By —¢ By. B is intended
to be a behaviour that can perform an a action infinitely often.

o

Fig. 8. An infinite net representation.

As each transition can fire at most once, recursive behaviours have to be repre-
sented by infinite nets. For example, a straightforward possibility for a net semantics
of B is depicted in Fig. 8.8 A semantics for recursive behaviours can be provided by
defining a complete partial order (cpo) on labelled P/T-nets. Without going into all
details, the basic idea is to consider each definition B := X as an equation of the
form B = Fx(B), where Fy is a function that substitutes a net for each occurrence
of B in X. [B] is now defined as the solution of the equation B = Fx(B). When
Fx is continuous with respect to the cpo then the solution of this equation is defined
as the least upper bound of the chain F (L), F% (L), F%(L),.... Thus, [ B] can be
computed by generating (finite) approximations.

Due to the flexibility of linking exits and entries recursive behaviours of various
complexity can be defined [8]. For the regular types of recursion such as tail recur-
sion the approach sketched above is directly applicable. It is for further study to
investigate a feasible class of recursive behaviours.

6 Labelled Partially Ordered Sets

Different interpretations of nets can be defined. One of the simplest interpretations is
in terms of sets of step sequences where each step consists of a single transition (traces
or occurrence sequences). This boils down to giving an interleaving semantics to nets.
For example, using such a semantics the behaviours of Example 6 are considered to
be equivalent, as their nets have the same set of traces {¢,a,b,ab,ba}, where ¢
denotes the empty trace. The fact that By can perform { a,b} as a single step (and
By not) is abstracted from in this interpretation.

A natural next step is to consider nets to be equivalent when they have the same
set of step sequences — with steps of arbitrary cardinality. This type of semantics
is known as step semantics. In this interpretation the independence of transitions is
taken into consideration, but the causal dependencies between transitions are not.

8 The fact that this net can also be finitely represented is not important for this discussion.



For instance, By = ({ a,b}, @, { true — a,true — b}) and By = ({a,b}, &, { true —
a,true V a — b}) have the same set of step sequences. The fact that By allows b to
be causally dependent on a (and By not) is abstracted from in this interpretation.

In [28] it is argued convincingly that a semantics in terms of families (i.e., sets)
of labelled partially ordered sets (Iposets) forms the right basis for a lot of concur-
rency models. Interleaving and step semantics can be defined as abstractions of such
a semantics. Using lposets the above behaviours B; and Bj are distinguished
({e, e },{e <€}, {(ea),(e,b)})is an Iposet of By but not of By. In this section
we give an lposet semantics for the nets generated by [ ].

For Petri nets a partial-order semantics is traditionally defined by means of as-
sociating a set of processes to N [2]. A process is a specific type of occurrence net —
an acyclic net where each place has at most one output transition and at most one
input transition and represents one possible behaviour of N. From a (labelled)
occurrence net it is straightforward to obtain an Iposet. We belief that the recipe
described below to obtain Iposets is simpler and more intuitive.

6.1 Decorated Traces

The basic idea is to label each token with the identity of the transition that has gen-
erated this token most recently. In this way, tokens are no longer anonymous objects
moving around the net according to some firing rules, but they carry information
that facilitates determining the causal dependencies between transitions (see below).
Tokens present in the initial marking are not generated by some transition and are
uniquely indicated by a natural. Let 7* =T U IN denote the set of token labels.

Definition 22. For net N, M : S — P(T*) is a labelled marking of N.

In the sequel of this section we assume a net to have a labelled marking. A transition
is now enabled with respect to a certain set V' of labelled tokens. As we consider
nets with arc weights one such a selection can be considered as a function assigning
to each input place of a transition to fire a token label (i.e., an element of T*).
Definition 23. Transition (¢, V) is enabled in labelled marking M, denoted M (ti>v) ,
it Vi *t — T* such that Vs € *t: V(s) € M(s).

Notice that firings of transitions by consuming different sets of tokens are now ex-
plicitly distinguished. For instance, in case of a single transition ¢ with a single
input place s containing two tokens, labelled ¢, and tp, respectively, (¢, (s,t,)) and
(t,(s,tp)) denote different enablings of ¢. Firing of (¢, V) is defined as follows.

Definition 24. For M, M’ labelled markings of N and ¢ € T, M % 017 iff

1. MY A (Ve s et V()N M) £0 = V(s)=V(s))
M(s)=V(s)U{t} ifse *tne*
, M(s) —V(s ifse *t A s¢gt®
Q'M(S){Mﬁsiu{f}) s LA set
M(s) otherwise



Tokens are not labelled uniquely when a transition ¢ fires it produces a token
labelled t for each of its output places. Labelling tokens enables the reconstruction
of causality information from traces. To this end it suffices to equip each individual
element of a trace with a set of transitions, identifying the causal dependencies.
Definition 25. o = (to,rng(Vo)) ... (tn, rng(Vy)) is a decorated trace of N iff

X .  (t:,V; :
IMY o M (Vi 0<i<n:M (t:>)MZ+1).

The set of decorated traces of N is denoted DT(N).

6.2 Extracting Lposets from Decorated Traces

Definition 26. A labelled partially ordered set (lposet) is a triple (E, <, £) where E
is a finite set of events, < a partial order on E, and ¢ : E — Act a labelling function.

Constructing Iposets out of decorated traces is quite straightforward.
Definition 27. For o = (to,1p) ... (tn,Tn) a decorated trace let Tp = {to,...,tn }.
Proposition 28. For o = (t0,10) ... (tn,Tn) : T; N T C Ty for all 0 < i < n.

Definition 29. Let 0 = (to,T0) ... (tn, T%) a decorated trace of N. The precedence
relation <,C Ty X T}, is defined by t; <, t; iff t; € T; NT for 0 < 4,5 < n.

<, is defined as <, = <%, i.e., the reflexive and transitive closure of <,,.
Proposition 30. For o = (to,Tp) ... (¢tn,Tn) € DT(N) 1 t; <o t; = i < j.
Theorem 31. <, is a partial order on T,.

The family of lposets of net N is defined as the set of Iposets associated with some
trace of V. Here it suffices to take traces as a basis rather than step sequences  in
the case of finite steps (as we consider) each step of finitely many transitions can be
simulated by a trace. Taking traces thus does not restrict the possible behaviours.

Definition 32. For net N, Lpos(N)={(T,,<,,u | T,) | 0 € DT(N) }.

Ezample 10. Consider B with {true — a,true — b,a V b — c}. The traces, dec-
orated traces, and lposets of [ B] are presented in Table 1. ? For trace abc two
decorated traces are obtained, representing that ¢ causally depends on either a or b.

For families of lposets the actual event names are irrelevant; they are just unique
identities. This means that in fact we are interested in families of lposets modulo a
renaming morphism. For example, let L; and Ly be lposets with sets of events E,
and FE5, respectively. Ly and Ly are isomorphic iff there is a bijection ¢ : Ey — FEj
such that ¢(e) = ¢ = £1(e) = La(€'), and e <1 €/ & @(e) <z H(€).

9 Strictly speaking, traces should be sequences of transitions rather than of labels of tran-
sitions. For convenience, we use labels here. In addition, singleton sets are denoted by
their single element and ‘x’ denotes an initial token.



Trace Decorated Trace o (T,,< I To)

€ 0 (2,2 @)

a  (a,x) (ta, @, (ta, a))

b (b**) <tb7 ( )>

ab  (a,*) (b, *) ({ta,tb} 2,{(ta.a), (ts,0) })

ba (b, *) (a; %) ({tarts },2,{ (ta. @), (s, ) })

ac  (a,*)(c a) ({taste }ta < te{ (ta,a), (te,c) })

be  (b,x)(c,b) ({toste }oto <te, {(ts,0), (te, 0) })

ach (av*) (C, CL) (b**) <{ta7tb te } ta < tm{(tava)v(tbv ) (tc C) }>
bea (bv*) (C7b) (av*) <{ta7tb te } ty <t67{(taaa)7(tbv )a(tcvc) }>
abe (aa*) (b7*) (C~ a) <{ta7tb 2 } ta < fte, { (taaa)z(tba ) (tc7c) }>
abe (av*) (b~*) (07 b) <{ta7tb le } ty < tcv{(tdva)7 (tbv ) (tc c) }>

Table 1. Decorated traces and family of lposets for a V b — c.

For B with alphabet { a,b} and causal relations { true — a, "¢ — b} we obtain
for trace ba the lposet with t, < t,. The intuitive interpretation is that if both
t, and t, occur in a system rum, then ¢, causally precedes t, (as in b — a). This
interpretation is identical to the interpretation of asymmetric conflict in event-based
models [21, 25]. An alternative would be to consider it a temporal precedence rather
than a causal one. It is for further study to investigate this alternative.

There is, however, one problem with the generation of Iposets from nets obtained
from [ ]J: for example, for [ B] where B has alphabet { a,b,c} and causal relations
{true — a,true — b, ma V b — ¢}, we obtain for trace ab two lposets — one
in which there is no relation between t, and t;, and one in which there is such a
relation. The first is correct, but the latter suggests a causal relation between b and
a, which is absent in B. The problem stems from the net representation [ B] as in
this representation ¢, is not prevented from consuming the token generated by t;.

Thus we conclude that the procedure in this section is applicable to a (some-
what) restricted set of causal behaviours to obtain families of lposets. The class of
behaviours to which it is applicable is denoted Beh* and is determined by putting
restrictions on the preconditions allowed. These restrictions prevent negative causali-
ties in combination with positive causalities to occur in the context of an or-causality.

Definition33. Q(E,F)=(3ac Ebe F:(—a)eE Nb#a N (b)) gF).

Definition 34. R(F) is true iff each subexpression (E; V FE3) of E satisfies
il Q(El, EQ) VAN Q(EQ, El).

For S a set of causal relations R(.S) is true iff R(E;) holds for all E; — a; in S.

Definition 35. Beh” is the largest subset of Beh such that any subexpression B’
of B € Beh satisfies

L. Bl:<IvA7‘S’> = R(S)
2. B' = By —c¢ Bz = R(S) with
= S = {(Blentry, /EV)...lentry,, /En] — ¢ | E— c € 52)



— C = {(entry, ,exity),..., (entry; ,exit,)}, Ex — exity € Sy.

The approach of decorating tokens with the label of the transition that generated
this token most recently is inspired by [7]. There, an equivalence notion on nets is
defined at the net level (i.e. not on some underlying model such as occurrence graphs
or (I)posets) exploiting the preservation of causality information in traces. The main
difference with our approach is that we keep track of the causalities between transi-
tions rather than between their labels. This implies that in the approach of [7] the
branching information is lost (in fact, they consider pomsets rather than lposets;
pomsets are isomorphism classes of Iposets rather than sets of lposets [28]).

7 Expansion Laws

An equivalence notion on causal behaviours is useful to decide whether two speci-
fications can be considered to be the same. Two behaviours are causally equivalent
when they have the same set of Iposets.

Definition 36. V By, B, € Beh™ : By =y, By iff Lpos([ B1]) = Lpos([ Bz2]).

Complex (distributed) systems can hardly be described as a monolithic specification.
Such specifications need to be structured in order to keep them comprehensible and
will be composed of sub-specifications. The operations ||¢ and —¢ are means
to combine specifications, that is, causal behaviours. For verification and analysis
purposes it is beneficial to be able to calculate from a composed specification the
equivalent monolithic one. Below two expansion theorems are presented that allow
for transforming causal behaviours of the form B ||g B2 and By — ¢ Bs, respectively,
into equivalent monolithic behaviours. Let B; be behaviour (I;, 4;, ;) (i € 1,2).
E[b/false] denotes E where all b’s are replaced by false (( —b)[b/false] = true).

Theorem 37. VBl,Bz € Beh*,G - Il U IQ, Bl ||G 32 Ripos <I, Al U Az,S) with

1. I=(LUL)\(G\(I1nI))

2. S is the smallest set such that
—VaEGﬂflﬂlgt(El—>GER1 N E2—>CL€R2) = (El/\Eg)—>a€S
- VadG:(F—-a€R UR)) = E—a€sS
where fori=1,2 and G\ (I; N I3) = {by,...,b, }

R; = {((E[b1/false]) .. .)[bn/false] = a | E — a € S; }

Ezample 11. Let By = ({a,b,c}, @, {true — a,a — b,b — ¢}) and
By ={{a,c,d}, @, {true —» a,a — d,a A d— c}). Then

Bi||{a,c} B2 Ripos {({a,b,c,d}, @, {trueAtrue —» a,a = b,bAaAd — c,a = d})
Bi |l abyec} B2 Ripos {{a,c,d}, @, {true — a,false A a A d— c,a —d})

Let By = {({b,c},{a},{true — a,a — b,b — ¢}) and
By ={{b,e},{d},{true = d,d = ¢,e V d— b}). Then

By ||p B2 ®ipos {({b,c,e},{a,d}, {true > a,aA(eVd) — bb— ¢ ,true —» d,d — e}).



Theorem 38. V By, B, € Beh® and C = { (entry, ,exit,),..., (entry; ,exit,)} a
partial function from entries of By to exits of By, By —¢ Ba Ripos (It U I, A1 U As,
S) where for By, — exity, € S1 (0 < k <n)

S={E—e€S5 |Vk:0<k<mn:e#exity}U
{((Elentry; /E\])...)[entry; /E,] —e|E —e€ Sy}.

Ezample 12. Consider By = ({a,b},d,{true — a,true — b,a A b — exity }) and
By = {{c},2,{entry;, — c}). Define B = By ¢ By with C = {(entry, exity) }.
Then, by Theorem 38, B =05 ({a,b,c}, @, {true — a,true — b,a A b—c}).

8 Conclusions and Future Work

In this paper we defined an operational, compositional semantics of the basic in-
gredients of the formalism in [8, 32, 33]. The notions of causal relation and causal
behaviour were mapped on an extension of labelled place/transition nets, a gener-
alisation of the notion of Petri Boxes [3]. We believe that the net representation
helps in getting a better intuitive understanding of the formalism and is useful as
an operational model.

An underlying semantics in terms of labelled partially ordered sets (Iposets) was
given, using decoration of traces. Based on this semantics two expansion theorems
were defined that allow for the transformation of composed behaviours into equiv-
alent monolithic ones. These expansion theorems are helpful for verification and
analysis purposes and turned out to be reasonably simple and intuitive.

The number of extensions to our work are numerous. To mention a few:

— Extension of our work to deal with recursive behaviours.

— Generation of families of Iposets out of nets in a compositional way.

— Incorporation of data, time, and probabilities. Extensions of nets such as coloured
nets [17] and timed Petri nets [22] are expected to be useful here.

Acknowledgements: Lex Heerink is acknowledged for comments on an early draft. Chris
Vissers, Rom Langerak, Robert Huis in 't Veld, Arend Rensink and the members of the
Architecture Group are thanked for valuable discussions and their useful comments.

A A Summary of Net Theory

Definition 39. (5,7, F) is a net with S a finite set of places, T a finite set of transitions
with SNT = @, and F C (S x T) U (T x S), the flow relation with T C dom(F U F~').

Note that in the above definition, self-loops are not prohibited as for arbitrary s € S and
t €T (s,t) € F and (t,s) € F is allowed. Let N = (S,T, F).

Definition 40. For transition t € T, *t={s € S | (s,t) € F} is the preset of t, and
t*={s € S| (t,5) € F} is the postset of t.

In a similar way ®s and s® are defined for s € S.

Definition 41. For net N, M : S — IN is a marking of N.



Definition 42. A place/transition (P/T) net is a 4-tuple (S, T, M°, F) with (S,T,F) a

finite net, and M° an initial marking.

In the sequel we often omit the prefix P/T, and write simply net instead of P/T-net.
According to [27] we consider marked nets, as all arc weights are equal to one and each
place has an unbounded capacity. Let N = (S,T, M°, F).

Definition 43. A transition set U is a non-empty set of transitions, i.e. U CT A U # @.

For {t} we often simply write t. #(S) denotes the cardinality of arbitrary set S. #,(S) is
the number of occurrences of a in S. That is, #,(S5) is one if a € S and zero otherwise.

Definition 44. U is enabled in M, denoted M == , iff Vs € S : M(s) > 20, cp #s(°1).

Definition 45. For M"', M? markings of N and U a transition set of N, M* = M2 iff

M'=5 AVseS: M (s)=M(s)+ (O #.(t) = > #.("t).

teu teu

Definition 46. The set [M] of reachable markings of M is the smallest set of markings of
N such that M € [M] A YM"' € [M],U a transition set of N : M* = M? = M’c [M].

Definition 47. N is K-safe iff for some fixed natural K Vs € S,M € [M°]: M(s) < K.
Definition 48. t;,t2 € T are in conflict in M iff M=% A M=% A ﬂM{tl:’t?}.

Definition 49. For transition ¢ € T' and marking M such that M:t>7 the conflict set of
tinMiscll(t, M)S{t' e T | M== A M5}y,

{ti,t2}

Definition 50. (M, t1,ts) is a confusioniff M~ = AM =% M’ Acfl(ty, M) # cfl(t,, M').
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