
Causal Behaviours and NetsJoost-Pieter KatoenDepartment of Computer Science, University of TwenteP.O. Box 217, 7500 AE Enschede, The Netherlands\Abandonment of causality as a matter of principleshould be permitted only in the most extreme emergency"Albert Einstein, 19241Abstract. Speci�cation formalisms in which causality and independence ofactions can be explicitly expressed are bene�cial from a design point of view.The explicit presence (or absence) of a causal dependency between actionscan be used e�ectively during the design. We consider a speci�cation formal-ism in which causal relations between actions play a central role and providea semantics in terms of (an extension of) labelled place/transition nets. Thebehaviour of nets is de�ned by labelled partially ordered sets.1 IntroductionA number of formal description techniques are known that assist the developmentof complex distributed systems. Although such techniques are a signi�cant contribu-tion to the treatment of complexity in, for instance, protocol design and veri�cation,an engineer may wonder whether the abstractions made by these approaches areappropriate. From an engineer's view, the preferred scenario is to �rst investigatewhich design concepts are convenient and what their intended meaning should be[33]. Once this is investigated, an appropriate and intuitively appealing representa-tion of these concepts can be chosen, eventually resulting in a \design" formalism, aformalism that can be used at di�erent stages of the design trajectory. Such consid-erations have led to the introduction of a design model which comprehends designconcepts, an overall design methodology, and a design formalism [32, 33]. A fulltreatment of this model is given in [8].Needless to say, a (design) formalism should have a formal semantics. This gives aprecise meaning to the introduced concepts, forms a basis for the de�nition of equiv-alence notions and implementation relations that are suitable to e�ectively supportthe design trajectory, and is indispensable for the development of tools. A formaltreatment of the formalism in [8, 32, 33] is currently lacking. This paper presentsa formal semantics of the kernel of the proposed formalism | causal relations andcausal behaviours | in terms of place/transition nets [27].The formalism is adherent to the true concurrency (or partial-order) approach.In a nutshell the main novelties of the formalism are the inclusion of labelled internalactions on which no synchronisations may take place but which are visible by the1 A. Pais, `Subtle is the Lord' { The science and life of Albert Einstein. Oxford Univ. Press,1983.



environment (unlike the usual invisible � or i), a generalisation of sequential com-position for composing behaviours, and the treatment of di�erent types of causalityat a syntactical level which enables expressing interleaving of actions syntactically.The basic ingredient of the formalism are causal relations between actions. Causalrelations can be of various types. In current process algebras [1, 14, 23] such relationsare induced by means of parallel composition, sequential composition, and so on, andare restricted to be of the `and'-type. For example, a ; b speci�es that b is enabledonce a has occurred and (a jjj b) ; c speci�es that c is enabled once both a and bhave occurred (in either order). Using causal relations this is denoted as a! b anda ^ b ! c, respectively. The latter construct is called `and'-causality. The naturalcomplementary construct, a _ b! c, called `or'-causality, denotes that c is enabledonce either a or b has occurred before. The fact that b is disabled by a is denotedby : a! b (`not'-causality), and means that once a occurs b becomes disabled.Event-based models and Petri nets are well-suited for providing a semantics tothe formalism at hand. Due to the presence of not-causalities a type of event struc-ture, like prime and stable event structures [34], whose interpretation can be givenin terms of families of con�gurations is insu�cient as pointed out in [21, 28]. Moresophisticated event-based models [15, 21, 25] support the notion of asymmetric con-ict, a notion that corresponds to not-causality. The mapping of the formalism tosuch models is, however, not straightforward, and | in some cases | even impos-sible due to some (technical) restrictions. In this paper we take Petri nets [27, 29]as a basis for providing a semantics. Petri nets are based on causal relations (i.e.,ows) between transitions, have an intuitive graphical representation, an extensivetool support is available, and a lot of theories on extensions are known | like timed,stochastic, and coloured nets | that may be useful when considering the full for-malism [8]. A summary of net theory is given in Appendix A. The merits of givingan operational interpretation of a speci�cation formalism in terms of nets is wellrecognized | a large number of attempts for other formalisms like CSP [10], ACP[31], and LOTOS [9] have been made.The main contribution of this paper is the de�nition of a relation between theconcepts of causal relation and behaviour, adopted from [8, 32, 33], and nets in afully compositional way. This work can be used as a basis for de�ning an opera-tional semantics of the full formalism, incorporating data and time, to determinethe expressivity of the formalism, and to prove certain properties of speci�cations.The behaviour of nets is de�ned by families of labelled partially ordered sets [28].Based on this partial-order semantics two expansion theorems are de�ned that enablecomposed behaviours to be rewritten into equivalent monolithic ones2.2 Related WorkThe use of causalities for the description of distributed systems is not new and is, infact, introduced by Lamport, with his so-called `happened before' relation3 betweenevents [20]. The description of a distributed system by means of combining causal2 Limits on the available space prevent us from providing all proofs of our results; cf. [18].3 The term `happened before' is somewhat misleading as it suggests a temporal ordering,not a causal ordering. A causal ordering implies a temporal one, but not vice versa.



relations | to our knowledge | originates from [19] by introducing and-causalities.A more formal treatment of causal relations (again only including and-causalities) isdescribed in [5]. The incorporation of disabling (or not-causalities) between actionsin a speci�cation language was coined originally by Janicki [16].An elaborated treatment of causal relations (excluding not-causalities) can befound in [11, 13]. The most extensive treatment of causality is given in [12] whichincorporates all causality types. Gunawardena uses the notion of geometric automatafor the operational characterization of his formalism. It turns out that the set oftraces of a geometric automaton is a pure transitive trace set. (A trace set is transitiveif the pre�x ordering on traces up to permutation is a partial order. Pureness meansthat each action appears at most once in any trace.) However, not the entire classof pure transitive trace sets can be generated by the class of geometric automata.Although geometric automata are quite similar to the formalism we present in thispaper they are not that expressive and do not support the notion of behaviour.[4] introduces a (graphical) speci�cation language for concurrent systems. In theirnotation, Bolognesi and Ciaccio use and- and or-causalities plus a symmetric not-causality to express the constraints on the temporal ordering of events, the so-called`when' constraints. By using symmetric not-causality a standard choice is expressed.They lack, however, a means to express ordinary (asymmetric) not-causalities. In [4]a preliminary interleaving semantics for their notation is given. The true concurrencysemantics in this paper can be used for the `when' constraints of their notation.We conclude by stating that various research activities on the fundamental notionof causality are currently ongoing, e.g. on how to express causalities [26], and theuse of causalities for the design and synthesis of distributed algorithms [30].3 Causal Relations and BehavioursThe behaviour of a distributed system consists of actions and causal relations be-tween them. A causal relation describes the conditions for a single action to happen.The class Pr of these conditions, called preconditions, is de�ned as follows. Leta 2 Act and n 2 I, where Act denotes the universe of action symbols and I;Jarbitrary �nite index sets.De�nition 1. E ::= true j false j a j : a j entryn j (E ^ E) j (E _ E) .a 2 E is true i� a occurs in E. Preconditions di�er from boolean expressions since: is only applicable to actions, not to preconditions in general, e.g. : (a ^ b) isnot an allowed precondition, whereas : a _ : b is. Unary operators bind strongerthan binary ones and ^ and _ bind equally strong. Parentheses are omitted whenthis does not introduce ambiguities.A causal relation consists of an action and a precondition stating the necessaryand su�cient conditions for the enabling of that action.De�nition 2. (E; a) is a causal relation for a 2 Act [ f exitk j k 2 J g and E 2 Pr.A causal relation (E; a) is usually written as E ! a. It is assumed that an actionis unique and occurs at most once in a system run4. This, in fact, implies that each4 In literature this is also often called an event.



causal relation E ! a should be read as E ^ newa ! a where newa is a predicatewhich is true i� a has not yet appeared. For the sake of convenience we omit thissyntactical construct and leave it implicit. In the semantics | of course | thisinterpretation will be made explicit.Example 1. Some examples of causal relations and their intuitive meaning are asfollows. a! b denotes that a is causal for the occurrence of b, that is, if b happensthen a must have happened before, true ! a expresses that a is always allowed tooccur, : a ! b expresses that if a and b both occur, b should occur before a, and: a _ b ! c expresses that if c happens then either a has not happened before orb has happened before.The interpretation of a ! b is that b is enabled | and thus may occur | once aappeared. This is called may-enabling and is the opposite of forcing the appearanceof b once a has occurred (must-enabling).entryn and exitk (n 2 I, k 2 J ) denote so-called entry and exit points. An entrypoint de�nes a point from which actions in a behaviour can be enabled and an exitpoint de�nes the conditions that can be used to enable actions of other behaviours.This allows one to connect behaviours by connecting entries and exits. Entry andexit points are just placeholders and should be distinguished from actions.Using causal relations, behaviours can be constructed. A behaviour consists oftwo types of actions: those that are internal, and those on which participation withother behaviours is possible. Elements of the latter category are called interactions.Opposed to process algebras where internal actions are turned into silent actions(e.g. denoted i), internal actions, or simply actions, are labelled.De�nition 3. A simple behaviour B is a triple hI;A; Si with I (I � Act), a �niteset of interactions, A (A � Act), a �nite set of actions A such that I \A = ?, anda �nite set of causal relations S = fE1 ! a1; : : : ; En ! an g satisfying:1. f a1; : : : ; an g n f ai j 9 k : ai = exitk g = I [ A2. 8Ei ! ai; Ej ! aj 2 S : i 6= j ) ai 6= aj3. 8E ! a 2 S; b 2 E : b 2 I [ A _ (9n : b = entryn) .The �rst two conditions imply that each action, interaction, and exit of B appearsprecisely once in the right-hand side of one of the causal relations of B. (Here, it isassumed that each exit is uniquely numbered.) The last condition states that anyaction in the precondition of one of the causal relations of B must either be an actionof B or an entry. I [ A is called the alphabet of B.Example 2. The most elementary behaviour is B?=h?;?;?i. Other example be-haviours are hf a; b g;?; f : a! b; : b! a gi, hf a; b g;?; f a! b; b! a gi, hf d g;f f; e g; f true ! d; d ! e; e _ d ! f gi, and hf a; b g;?; f entry1 ! a; a ! b; b !exit1 gi.Let G be a set of interactions, G � Act, and C a partial function, not necessarilyinjective, mapping entries of one behaviour to exits of others. The class of �nitebehaviours, Beh, is de�ned as:De�nition 4. B ::= hI;A; Si j (B jjGB) j (B�C B) .



The simplest behaviour is the behaviour de�ned according to De�nition 3. It doesnot consist of any sub-behaviours. There are two ways in which behaviours can becomposed into more complex behaviours. In the �rst type of composition synchro-nisation on a set of interactions G is performed. This is quite similar to multi-waysynchronisation. For B1 jjGB2 it is assumed that G � I1 [ I2 and that B1 and B2have disjoint sets of actions, entries, and exits.In B1�C B2, conditions of exit points of B1 are connected to entry points inB2. C de�nes which exits of B1 are connected to which entries of B2. Recall thatentry and exit points are just placeholders and should be distinguished from actions.Linking entries and exits is therefore essentially di�erent from synchronisation oninteractions. This form of composition can be considered as a generalization of se-quential composition. It is assumed that two behaviours whose exits and entries arelinked have disjoint sets of actions, interactions, entries, and exits.jjG and �C bind equally strong and associate to the left. Parenthesis are omit-ted when not causing ambiguities.Note 5. We assume that in a causal relation of the form E ! exitk, E does notcontain any : a occurrences. It would be di�cult to interpret such causal relations inconnecting behaviours as the non-occurrence of an action in one behaviour becomesa precondition for an action in another behaviour. Although this assumption is notessential for our results, it allows for a smoother and more intuitive presentation.4 Semantical ModelOne of the major characteristics of Petri nets is that causal dependencies and inde-pendencies between actions may be represented explicitly [27]. Independent actionsare not temporally ordered | as in interleaving semantics | but are treated inde-pendently as intended. In addition, Petri nets are simple and intuitive and allow forthe representation of interleaving of actions. Independence and interleaving can thusbe distinguished5. These aspects make Petri nets well suited for providing a formal,operational interpretation of causal relations and behaviours.The basic idea is that transitions correspond to actions, and ows to causalrelations. The concept of may-enabling is modeled conveniently in nets as enabledtransitions may �re but are not forced to do so. The net corresponding to a! b isdepicted in Fig. 1(a). The causal dependence between a and b is explicitly reectedin the net | transition b is only enabled after a has �red | and the fact thateach action is unique is represented by equipping each transition with a single placeinitially containing one token and having no input transitions. Fig. 1(b) and (c) showthe nets corresponding to a ^ b! c and a _ b! c, respectively. In (b) transitionsa and b must have �red in order to enable c, and in (c) either a or b must have �redto enable c.Not-causalities seem to require an extension of nets, known as inhibitor arcs[24]. An inhibitor arc connects a place s to a transition t such that t is enabled i�5 This does not hold when an interpretation of nets is given in terms of sets of step se-quences where each step consists of a single transition. In this interpretation independenttransitions can only �re in an interleaved order (see also section 6).
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bFig. 1. Elementary causal relations in nets.s contains no tokens (and, of course, its normal places contain su�cient tokens).The net corresponding to : a ! b is depicted in Fig. 1(d) where an inhibitor arcis represented as a line with a small circle at its end6. As inhibitor arcs complicatethe interpretation of nets considerably [6] and hinder compositionality we stick totraditional nets (see Fig. 1(e)).Entries and exits are placeholders and are represented as places. A similar treat-ment of entries and exits is present in Petri Boxes [3].4.1 Labelled Place/Transition NetsAs a semantical model for causal behaviours we consider a generalisation of place/tran-sition nets (P/T-nets, see Appendix A) with unbounded capacity of places and arcweights equal to one. The generalisation is called labelled P/T-net, simply callednet in the sequel, and is a P/T-net equipped with a labelling of places (with a setof entries and exits), and a labelling of transitions (with action symbols). Formally,De�nition 6. A labelled net is a 6-tuple N b=(S; T;M0; F; �; �) where (S; T;M0; F )is a P/T-net, � a labelling of places S �! P(f ek j k 2 J g [ fxn j n 2 I g) and �a labelling of transitions T �! Act, satisfying(8 s 2 S : j fxn 2 �(s) g j � 1) ^ (8 t1; t2 2 T : t1 6= t2 ) �(t1) 6= �(t2)) .� labels a place of N with a set of entries and exits. (ek is used as abbreviationfor entryk and xn for exitn.) A place is labelled with at most one exit point. Weconsider nets upto isomorphism and duplication equivalence [3]. So, two nets whichonly have di�erent place and/or transition identities and/or duplicated places7 areconsidered to be equivalent. Nets are represented with a minimal number of places.Some notational remarks are in order. Places, transitions, ows, and markings arerepresented in the usual way. Identities of transitions are indicated at the right or leftside of transitions, and transition labels are indicated in the center of a transition.Place labels are indicated in the middle of a place, or at the left or right side of it.6 Although it seems that both transitions a and b are initially enabled, this is not the caseaccording to the formal semantics in [6].7 Two places are duplicated when they have the same initial marking, label, presets andpostsets.



Place labels equal to ? are omitted. When there exists a ow between s and t andvice versa this is indicated by a bidirectional arrow.A distinction with other types of nets is that we use transition sets (see De�ni-tion 43), instead of transition bags [6] as generalisation of a single transition. Thissimpli�cation is possible since any transition in our nets can �re at most once.4.2 Operations on Labelled NetsIn this section we de�ne two operations | compose and join | on nets which will beused in the next section for de�ning a compositional semantics of causal behaviours.The basic idea behind composition is to combine transitions, while for joining placesare combined. The formal de�nition of the two operations is technically involved.The intuition of the operators will be illustrated by examples (see also next section).Let Ni = (Si; Ti;M0i ; Fi; �i; �i) for i=1; 2 be labelled P/T-nets.Composition At the composition of nets N1 and N2 equally labelled transitionswhose label is in some given set of actions G are combined. Transitions whose labelis not in G are paired with the auxiliary symbol `�' such that all transitions of theresulting net are pairs. Transitions in N1 (N2) labelled with an label in G, but forwhich there is no accompanying transition in N2 (N1) disappear in the resulting net.As a prerequisite to the full de�nition of composition we de�ne the pairing of setsof transitions with respect to set G. For set of transitions T and action set G, letTG = f t 2 T j �(t) 2 G g and �TG = T n TG.De�nition 7. T1~G T2 b=( �TG1 �f� g) [ (f � g� �TG2 ) [ f (t1; t2) 2 TG1 �TG2 j �1(t1) =�2(t2) g.Proposition 8. G = rng(�1) \ rng(�2) ) 8 t1 2 TG1 : (9 t2 2 TG2 : (t1; t2) 2T1~G T2).De�nition 9. S1 +G S2 b= f s 2 S1 j �s [ s� 6= ?^ (( �s [ s�) � (T2 [ f � g)) \T1~G T2 = ? g [ f s 2 S2 j �s [ s� 6= ?^ ((T1[f � g)�( �s [ s�))\T1~G T2 = ? g:For composition, the incoming (outgoing) places of a paired transition are formedby the union of the incoming (outgoing) places of its components. The places ofthe combined net are the places of N1 and N2 where the places which have becomedisconnected are eliminated. The marking of places is left unchanged.De�nition 10. Given action set G, the composition of N1 and N2 satisfying S1 \S2 = ?, denoted by N1 �G N2, is net (S; T;M0; F; �; �) with1. S = (S1 [ S2) n (S1 +G S2)2. T = T1~G T23. M0 = (M01 [M02 ) � S4. �(t1; t2) = �t1 [ �t2 and (t1; t2)� = t�1 [ t�2 with �� = �� = ?5. � = (�1 [ �2) � S6. (t1 = � ) �((t1; t2)) = �2(t2)) and (t1 6= � ) �((t1; t2)) = �1(t1)).



� means restriction. If G equals the set of all common action symbols of two nets(that is, G = rng(�1) \ rng(�2)) then �G is abbreviated as � . Note that in thiscase no transitions are eliminated.Example 3. The composition operator is exempli�ed in Fig. 2. In the �rst example(a) the two transitions labelled c, transitions z and 3, are combined and the restof the transitions remain. For examples (b) and (c) the argument nets are identicaland only the set G di�ers. In case (b) there is no transition in the right net labelledb and transition x disappears from the resulting net. Transitions labelled a and care combined. Note that in the resulting net transition c can never appear. In case(c) no combination of transitions labelled b is required (b 62 G) and only transitionslabelled a and c are combined.
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The marking of a paired place is the sum of the markings of its components, andthe labelling of such a place is the union of the labels of its components minus thelabels in C. Equally labelled transitions are paired as well, and other transitions areleft unchanged (by combining them with `�'). Labelling of transitions is analogousto labelling in composition. A ow between (t1; t2) and (s1; s2) is introduced i� aow exists between t1 and s1 in N1, or between t2 and s2 in N2.De�nition 13. The join of nets N1 and N2, N1+C;P N2, is (S; T;M0; F; �; �) with1. S = S1 ?P S22. T = T1~G T2 where G = rng(�1) \ rng(�2)3. M0((s1; s2)) =M01 (s1) +M02 (s2) where M0i (�) = 0.4. �(t1; t2) = f (s1; s2) 2 S j s1 2 �t1 _ s2 2 �t2 gand (t1; t2)� = f (s1; s2) 2 S j s1 2 t�1 _ s2 2 t�2 g where �� = �� = ?5. �((s1; s2)) = (�1(s1) [ �2(s2)) n dom(C [ C�1) where �i(�) = ?6. (t1 = � ) �((t1; t2)) = �2(t2)) and (t1 6= � ) �((t1; t2)) = �1(t1))
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are combined. Figs. 3(b,c) depict examples of yC . Here, places labelled x in theleft argument are combined with the place labelled e in the right argument.Proposition 15. N1yC N2 is a labelled P/T-net.5 A Compositional SemanticsA semantics is a mapping which assigns to every syntactical construct a meaning orinterpretation, that is, an element of a semantical domain. In this section we de�nea net semantics which assigns to every behaviour B 2 Beh a net [[B ]]. This is donein a compositional way, starting from a mapping of causal relations onto nets.5.1 Simple BehavioursThe net representation of elementary causal relations is illustrated in Fig. 4. Thefollowing causal relations are considered: (a) true! a, (b) false! a, (c) entryn ! a,(d) a ! b, (e) : a ! b, (f) true ! exitk, (g) false ! exitk, (h) entryn ! exitk,(i) a ! exitk, (j) a ! a, and (k) : a ! a. For the sake of brevity, a completede�nition is omitted. Remark that false! a, a! a, and : a! a all denote that ais permanently disabled.
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(a) (b) (c)

a b

cd

a b

c

a

bcFig. 7. Example nets corresponding to behaviours.Example 9. As an example of a generated net that contains confusion (see De�ni-tion 50) consider behaviour B = hf a; b; c g; f true ! a; a ! b; : b ! c gi: [[B ]] isillustrated in Fig. 7(c). Let M be the marking obtained by executing transition afrom the initial marking, that is, M0 a=)M . The conict sets of c for markings M0and M are c(c;M0) = ? and c(c;M) = f b g. Then (M0; c; a) is a confusion sinceM0 f c;a g=) ^ M0 a=)M ^ c(c;M0) 6= c(c;M):(Note that (M0; a; c) is not a confusion. Therefore, this type of confusion is some-times called asymmetric confusion [29].) In words, when c �res in the initial markingwe obtain a marking without conicts, whereas the �ring of a in the initial markingleads to a conict between b and c.5.2 Composed BehavioursIn order to de�ne the mapping of composed behaviours onto nets in a compositionalway, the operators on nets de�ned in section 4 can be used.De�nition 19. For B1; B2 2 Beh, G � I1 [ I2 and C a function from entries toexits de�ne [[B1 jjGB2 ]] b= [[B1 ]] �G [[B2 ]] and [[B1�C B2 ]] b= [[B1 ]]yC [[B2 ]]:Proposition 20. For all B 2 Beh : [[B ]] is a labelled P/T-net.A net is calledK-safe i� each place in any reachable marking from the initial markingthe number of tokens is at most K, for some �xed natural K. A net is called boundedsafe if there exists a K for which the net is K-safe.Proposition 21. For all B 2 Beh : [[B ]] is bounded safe.



5.3 Recursive BehavioursThis paper only deals with �nite behaviours. For specifying realistic distributedsystems recursion is indispensable. Recursive causal behaviours can be speci�ed byrelaxing the constraints on causality-oriented composition { e.g. by allowing multipleexits to be linked to a single entry (see [8]). As an example of a simple tail-recursivespeci�cation, let B1 = h?;?; f true ! exit1 gi and B2 = hf a g;?; f entry1 ! a; a!exit2 gi. For C = f (entry1; exit1); (entry1; exit2) g let B = B1�C B2. B is intendedto be a behaviour that can perform an a action in�nitely often.
a a a . . . . . . .Fig. 8. An in�nite net representation.As each transition can �re at most once, recursive behaviours have to be repre-sented by in�nite nets. For example, a straightforward possibility for a net semanticsof B is depicted in Fig. 8.8 A semantics for recursive behaviours can be provided byde�ning a complete partial order (cpo) on labelled P/T-nets. Without going into alldetails, the basic idea is to consider each de�nition B := X as an equation of theform B = FX(B), where FX is a function that substitutes a net for each occurrenceof B in X. [[B ]] is now de�ned as the solution of the equation B = FX(B). WhenFX is continuous with respect to the cpo then the solution of this equation is de�nedas the least upper bound of the chain F 0X(?); F 1X(?); F 2X(?); : : :. Thus, [[B ]] can becomputed by generating (�nite) approximations.Due to the exibility of linking exits and entries recursive behaviours of variouscomplexity can be de�ned [8]. For the regular types of recursion such as tail recur-sion the approach sketched above is directly applicable. It is for further study toinvestigate a feasible class of recursive behaviours.6 Labelled Partially Ordered SetsDi�erent interpretations of nets can be de�ned. One of the simplest interpretations isin terms of sets of step sequences where each step consists of a single transition (tracesor occurrence sequences). This boils down to giving an interleaving semantics to nets.For example, using such a semantics the behaviours of Example 6 are considered tobe equivalent, as their nets have the same set of traces f "; a; b; ab; ba g, where "denotes the empty trace. The fact that B2 can perform f a; b g as a single step (andB1 not) is abstracted from in this interpretation.A natural next step is to consider nets to be equivalent when they have the sameset of step sequences | with steps of arbitrary cardinality. This type of semanticsis known as step semantics. In this interpretation the independence of transitions istaken into consideration, but the causal dependencies between transitions are not.8 The fact that this net can also be �nitely represented is not important for this discussion.



For instance, B1 = hf a; b g;?; f true ! a; true! b gi and B2 = hf a; b g;?; f true !a; true _ a! b gi have the same set of step sequences. The fact that B2 allows b tobe causally dependent on a (and B1 not) is abstracted from in this interpretation.In [28] it is argued convincingly that a semantics in terms of families (i.e., sets)of labelled partially ordered sets (lposets) forms the right basis for a lot of concur-rency models. Interleaving and step semantics can be de�ned as abstractions of sucha semantics. Using lposets the above behaviours B1 and B2 are distinguished |hf e; e0 g; f e � e0 g; f (e; a); (e0; b) gi is an lposet of B2 but not of B1. In this sectionwe give an lposet semantics for the nets generated by [[ ]].For Petri nets a partial-order semantics is traditionally de�ned by means of as-sociating a set of processes to N [2]. A process is a speci�c type of occurrence net |an acyclic net where each place has at most one output transition and at most oneinput transition | and represents one possible behaviour of N . From a (labelled)occurrence net it is straightforward to obtain an lposet. We belief that the recipedescribed below to obtain lposets is simpler and more intuitive.6.1 Decorated TracesThe basic idea is to label each token with the identity of the transition that has gen-erated this token most recently. In this way, tokens are no longer anonymous objectsmoving around the net according to some �ring rules, but they carry informationthat facilitates determining the causal dependencies between transitions (see below).Tokens present in the initial marking are not generated by some transition and areuniquely indicated by a natural. Let T � b=T [ IN denote the set of token labels.De�nition 22. For net N , M : S ! P(T �) is a labelled marking of N .In the sequel of this section we assume a net to have a labelled marking. A transitionis now enabled with respect to a certain set V of labelled tokens. As we considernets with arc weights one such a selection can be considered as a function assigningto each input place of a transition to �re a token label (i.e., an element of T �).De�nition 23. Transition (t; V ) is enabled in labelled markingM , denoted M (t;V )=) ,i� V : �t! T � such that 8 s 2 �t : V (s) 2M(s).Notice that �rings of transitions by consuming di�erent sets of tokens are now ex-plicitly distinguished. For instance, in case of a single transition t with a singleinput place s containing two tokens, labelled ta and tb, respectively, (t; (s; ta)) and(t; (s; tb)) denote di�erent enablings of t. Firing of (t; V ) is de�ned as follows.De�nition 24. For M;M 0 labelled markings of N and t 2 T , M (t;V )=)M 0 i�1. M (t;V )=) ^ (8 s; s0 2 �t : V (s) \ M(s0) 6= ? ) V (s) = V (s0))2. M 0(s) = 8>><>>:M(s)� V (s) [ f t g if s 2 �t \ t�M(s)� V (s) if s 2 �t ^ s 62 t�M(s) [ f t g if s 62 �t ^ s 2 t�M(s) otherwise



Tokens are not labelled uniquely | when a transition t �res it produces a tokenlabelled t for each of its output places. Labelling tokens enables the reconstructionof causality information from traces. To this end it su�ces to equip each individualelement of a trace with a set of transitions, identifying the causal dependencies.De�nition 25. � = (t0; rng(V0)) : : : (tn; rng(Vn)) is a decorated trace of N i�9M1; : : : ;Mn : (8 i : 0 � i < n :M i (ti;Vi)=) M i+1):The set of decorated traces of N is denoted DT (N).6.2 Extracting Lposets from Decorated TracesDe�nition 26. A labelled partially ordered set (lposet) is a triple hE;�; `i where Eis a �nite set of events, � a partial order on E, and ` : E ! Act a labelling function.Constructing lposets out of decorated traces is quite straightforward.De�nition 27. For � = (t0; T0) : : : (tn; Tn) a decorated trace let T� b= f t0; : : : ; tn g.Proposition 28. For � = (t0; T0) : : : (tn; Tn) : Ti \ T � T� for all 0 � i � n.De�nition 29. Let � = (t0; T0) : : : (tn; Tn) a decorated trace of N . The precedencerelation ��� T� � T� is de�ned by ti �� tj i� ti 2 Tj \ T for 0 � i; j � n.�� is de�ned as �� b= ���, i.e., the reexive and transitive closure of ��.Proposition 30. For � = (t0; T0) : : : (tn; Tn) 2 DT (N) : ti �� tj ) i � j.Theorem31. �� is a partial order on T�.The family of lposets of net N is de�ned as the set of lposets associated with sometrace of N . Here it su�ces to take traces as a basis rather than step sequences | inthe case of �nite steps (as we consider) each step of �nitely many transitions can besimulated by a trace. Taking traces thus does not restrict the possible behaviours.De�nition 32. For net N , Lpos(N) b= f hT�;��; � � T�i j � 2 DT (N) g.Example 10. Consider B with f true ! a; true ! b; a _ b ! c g. The traces, dec-orated traces, and lposets of [[B ]] are presented in Table 1. 9 For trace abc twodecorated traces are obtained, representing that c causally depends on either a or b.For families of lposets the actual event names are irrelevant; they are just uniqueidentities. This means that in fact we are interested in families of lposets modulo arenaming morphism. For example, let L1 and L2 be lposets with sets of events E1and E2, respectively. L1 and L2 are isomorphic i� there is a bijection � : E1 ! E2such that �(e) = e0 ) `1(e) = `2(e0), and e �1 e0 , �(e) �2 �(e0).9 Strictly speaking, traces should be sequences of transitions rather than of labels of tran-sitions. For convenience, we use labels here. In addition, singleton sets are denoted bytheir single element and `�' denotes an initial token.



Trace Decorated Trace � hT�;��; � � T�i" () h?;?;?ia (a; �) hta;?; (ta; a)ib (b; �) htb;?; (tb; b)iab (a; �) (b; �) hf ta; tb g;?; f (ta; a); (tb; b) giba (b; �) (a; �) hf ta; tb g;?; f (ta; a); (tb; b) giac (a; �) (c; a) hf ta; tc g; ta � tc; f (ta; a); (tc; c) gibc (b; �) (c; b) hf tb; tc g; tb � tc; f (tb; b); (tc; c) giacb (a; �) (c; a) (b; �) hf ta; tb; tc g; ta � tc; f (ta; a); (tb; b); (tc; c) gibca (b; �) (c; b) (a; �) hf ta; tb; tc g; tb � tc; f (ta; a); (tb; b); (tc; c) giabc (a; �) (b; �) (c; a) hf ta; tb; tc g; ta � tc; f (ta; a); (tb; b); (tc; c) giabc (a; �) (b; �) (c; b) hf ta; tb; tc g; tb � tc; f (ta; a); (tb; b); (tc; c) giTable 1. Decorated traces and family of lposets for a _ b! c.For B with alphabet f a; b g and causal relations f true! a; : a! b g we obtainfor trace ba the lposet with tb � ta. The intuitive interpretation is that if bothta and tb occur in a system run, then tb causally precedes ta (as in b ! a). Thisinterpretation is identical to the interpretation of asymmetric conict in event-basedmodels [21, 25]. An alternative would be to consider it a temporal precedence ratherthan a causal one. It is for further study to investigate this alternative.There is, however, one problem with the generation of lposets from nets obtainedfrom [[ ]]: for example, for [[B ]] where B has alphabet f a; b; c g and causal relationsf true ! a; true ! b; : a _ b ! c g, we obtain for trace ab two lposets | onein which there is no relation between ta and tb, and one in which there is such arelation. The �rst is correct, but the latter suggests a causal relation between b anda, which is absent in B. The problem stems from the net representation [[B ]] as inthis representation ta is not prevented from consuming the token generated by tb.Thus we conclude that the procedure in this section is applicable to a (some-what) restricted set of causal behaviours to obtain families of lposets. The class ofbehaviours to which it is applicable is denoted Beh� and is determined by puttingrestrictions on the preconditions allowed. These restrictions prevent negative causali-ties in combination with positive causalities to occur in the context of an or-causality.De�nition 33. Q(E;F ) b= (9 a 2 E; b 2 F : (: a) 2 E ^ b 6= a ^ (: b) 62 F ).De�nition 34. R(E) is true i� each subexpression (E1 _ E2) of E satis�es:Q(E1; E2) ^ :Q(E2; E1).For S a set of causal relations R(S) is true i� R(Ei) holds for all Ei ! ai in S.De�nition 35. Beh� is the largest subset of Beh such that any subexpression B0of B 2 Beh satis�es1. B0 = hI;A; Si ) R(S)2. B0 = B1�C B2 ) R(S) with{ S = f ((E[entryi1=E1]) : : :)[entryjn=En]! e j E ! e 2 S2 g



{ C = f (entryi1 ; exit1); : : : ; (entryjn ; exitn) g; Ek ! exitk 2 S1.The approach of decorating tokens with the label of the transition that generatedthis token most recently is inspired by [7]. There, an equivalence notion on nets isde�ned at the net level (i.e. not on some underlying model such as occurrence graphsor (l)posets) exploiting the preservation of causality information in traces. The maindi�erence with our approach is that we keep track of the causalities between transi-tions rather than between their labels. This implies that in the approach of [7] thebranching information is lost (in fact, they consider pomsets rather than lposets;pomsets are isomorphism classes of lposets rather than sets of lposets [28]).7 Expansion LawsAn equivalence notion on causal behaviours is useful to decide whether two speci-�cations can be considered to be the same. Two behaviours are causally equivalentwhen they have the same set of lposets.De�nition 36. 8B1; B2 2 Beh� : B1 �lpos B2 i� Lpos([[B1 ]]) = Lpos([[B2 ]]).Complex (distributed) systems can hardly be described as a monolithic speci�cation.Such speci�cations need to be structured in order to keep them comprehensible andwill be composed of sub-speci�cations. The operations jjG and �C are meansto combine speci�cations, that is, causal behaviours. For veri�cation and analysispurposes it is bene�cial to be able to calculate from a composed speci�cation theequivalent monolithic one. Below two expansion theorems are presented that allowfor transforming causal behaviours of the form B1 jjGB2 and B1�C B2, respectively,into equivalent monolithic behaviours. Let Bi be behaviour hIi; Ai; Sii (i 2 1; 2).E[b=false] denotes E where all b's are replaced by false ((: b)[b=false] b=true).Theorem37. 8B1; B2 2 Beh�; G � I1 [ I2, B1 jjGB2 �lpos hI;A1 [ A2; Si with1. I = (I1 [ I2) n (G n (I1 \ I2))2. S is the smallest set such that{ 8 a 2 G \ I1 \ I2 : (E1 ! a 2 R1 ^ E2 ! a 2 R2) ) (E1 ^E2)! a 2 S{ 8 a 62 G : (E ! a 2 R1 [ R2) ) E ! a 2 Swhere for i = 1; 2 and G n (I1 \ I2) = f b1; : : : ; bn gRi = f ((E[b1=false]) : : :)[bn=false]! a j E ! a 2 Si g .Example 11. Let B1 = hf a; b; c g;?; f true ! a; a! b; b! c gi andB2 = hf a; c; d g;?; f true ! a; a! d; a ^ d! c gi. ThenB1 jjf a;c gB2 �lpos hf a; b; c; d g;?; f true^ true! a; a! b; b^ a^ d! c; a! d giB1 jjf a;b;c gB2 �lpos hf a; c; d g;?; f true! a; false ^ a ^ d! c; a! d giLet B1 = hf b; c g; f a g; f true ! a; a! b; b! c gi andB2 = hf b; e g; f d g; f true ! d; d! e; e _ d! b gi. ThenB1 jjb B2 �lpos hf b; c; e g; f a; d g; f true! a; a^ (e _ d)! b; b! c; true! d; d! e gi:



Theorem38. 8B1; B2 2 Beh� and C = f (entryi1 ; exit1); : : : ; (entryjn ; exitn) g apartial function from entries of B2 to exits of B1, B1�C B2 �lpos hI1 [ I2; A1 [ A2;Si where for Ek ! exitk 2 S1 (0 < k � n)S = fE ! e 2 S1 j 8 k : 0 < k � n : e 6= exitk g [f ((E[entryi1=E1]) : : :)[entryjn=En]! e j E ! e 2 S2 g:Example 12. Consider B1 = hf a; b g;?; f true ! a; true ! b; a ^ b ! exit1 gi andB2 = hf c g;?; f entry1 ! c gi. De�ne B = B1�C B2 with C = f (entry1; exit1) g.Then, by Theorem 38, B �lpos hf a; b; c g;?; f true ! a; true! b; a ^ b! c gi.8 Conclusions and Future WorkIn this paper we de�ned an operational, compositional semantics of the basic in-gredients of the formalism in [8, 32, 33]. The notions of causal relation and causalbehaviour were mapped on an extension of labelled place/transition nets, a gener-alisation of the notion of Petri Boxes [3]. We believe that the net representationhelps in getting a better intuitive understanding of the formalism and is useful asan operational model.An underlying semantics in terms of labelled partially ordered sets (lposets) wasgiven, using decoration of traces. Based on this semantics two expansion theoremswere de�ned that allow for the transformation of composed behaviours into equiv-alent monolithic ones. These expansion theorems are helpful for veri�cation andanalysis purposes and turned out to be reasonably simple and intuitive.The number of extensions to our work are numerous. To mention a few:{ Extension of our work to deal with recursive behaviours.{ Generation of families of lposets out of nets in a compositional way.{ Incorporation of data, time, and probabilities. Extensions of nets such as colourednets [17] and timed Petri nets [22] are expected to be useful here.Acknowledgements: Lex Heerink is acknowledged for comments on an early draft. ChrisVissers, Rom Langerak, Robert Huis in 't Veld, Arend Rensink and the members of theArchitecture Group are thanked for valuable discussions and their useful comments.A A Summary of Net TheoryDe�nition 39. (S; T; F ) is a net with S a �nite set of places, T a �nite set of transitionswith S \ T = ?, and F � (S � T ) [ (T � S), the ow relation with T � dom(F [ F�1).Note that in the above de�nition, self-loops are not prohibited as for arbitrary s 2 S andt 2 T (s; t) 2 F and (t; s) 2 F is allowed. Let N = (S; T; F ).De�nition 40. For transition t 2 T; �t b= fs 2 S j (s; t) 2 Fg is the preset of t, andt� b= fs 2 S j (t; s) 2 Fg is the postset of t.In a similar way �s and s� are de�ned for s 2 S.De�nition 41. For net N , M : S �! IN is a marking of N .



De�nition 42. A place/transition (P/T) net is a 4-tuple (S; T;M0; F ) with (S; T; F ) a�nite net, and M0 an initial marking.In the sequel we often omit the pre�x P/T, and write simply net instead of P/T-net.According to [27] we consider marked nets, as all arc weights are equal to one and eachplace has an unbounded capacity. Let N = (S; T;M0; F ).De�nition 43. A transition set U is a non-empty set of transitions, i.e. U � T ^ U 6= ?.For f t g we often simply write t. #(S) denotes the cardinality of arbitrary set S. #a(S) isthe number of occurrences of a in S. That is, #a(S) is one if a 2 S and zero otherwise.De�nition 44. U is enabled in M , denoted M U=) , i� 8 s 2 S : M(s) �Pt2U #s( �t).De�nition 45. For M1;M2 markings of N and U a transition set of N , M1 U=)M2 i�M1 U=) ^ 8 s 2 S : M2(s) =M1(s) + (Xt2U #s(t�)�Xt2U #s( �t)):De�nition 46. The set [M ] of reachable markings of M is the smallest set of markings ofN such that M 2 [M ] ^ 8M1 2 [M ]; U a transition set of N : M1 U=)M2 ) M2 2 [M ].De�nition 47. N is K-safe i� for some �xed natural K 8 s 2 S;M 2 [M0] :M(s) � K:De�nition 48. t1; t2 2 T are in conict in M i� M t1=) ^ M t2=) ^ :M f t1;t2 g=) .De�nition 49. For transition t 2 T and marking M such that M t=) , the conict set oft in M is c(t;M) b= f t0 2 T jM t0=) ^ :M f t;t0 g=) g:De�nition 50. (M; t1; t2) is a confusion i�M f t1;t2 g=) ^M t2=)M 0 ^ c(t1;M) 6= c(t1;M 0).References1. J. Baeten and W. Weijland. Process Algebra. Cambridge University Press, 1990.2. E. Best and R. Devillers. Sequential and concurrent behaviour in Petri net theory.Th. Comp. Sci., 55:87{136, 1987.3. E. Best, R. Devillers, and J. Hall. The Box calculus: a new causal algebra withmulti-label communication. In G. Rozenberg (ed), Advances in Petri Nets, LNCS609:21{69. 1992.4. T. Bolognesi and G. Ciaccio. Cumulating constraints on the `when' and the `what'.In R. Tenney et al (eds), Formal Description Techniques VI, pp. 433{448. 1994.5. M. Broy. Formalization of distributed, concurrent, reactive systems. In E. Neuholdand M. Paul (eds), Formal Description of Programming Concepts, pp. 319{361. 1991.6. G. Chiola, M. Ajmone Marsan, G. Balbo, and G. Conte. Generalized stochasticPetri nets: A de�nition at the net level and its implications. IEEE Trans. on SoftwareEng., 19(2):89{106, 1993.7. R. Coelho da Costa and J.-P. Courtiat. Using Petri Nets as a model for PetriNets. Proc. IEEE Workshop on Future Trends of Distr. Comp. Syst., pp. 41{47. 1992.8. L. Ferreira Pires. Architectural Notes: a Framework for Distributed Systems Devel-opment. PhD thesis, Univ. of Twente, 1994.
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