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Abstract

Software has integrated deeply into modern society, not only for small conveniences
and entertainment, but also for safety-critical tasks. As we increasingly depend
on software in our daily life, it becomes increasingly important that such software
systems are both reliable and correct with respect to their intended behaviour.
However, providing any guarantees about their reliability and correctness is very
challenging, as software is developed by humans, who by nature make mistakes.
This challenge is further complicated by the increasing demand for parallelism and
concurrency, to match the developments in processing hardware. Concurrency
makes software even more error-prone, as the concurrent interactions between
different subsystems typically constitute far too many behaviours for programmers
to comprehend. Software developers therefore need formal techniques that aid
them to understand all possible system behaviours, to ensure their reliability and
correctness.

This thesis contributes towards such formal techniques, and focusses in particular
on deductive verification: a software verification approach based on mathematical
logic. In deductive verification, the intended behaviour of software is specified in
a program logic, allowing the use of (semi-)automated tools to verify whether the
code implementation adheres to this specified behaviour, in every possible scenario.

More specifically, the work in this thesis builds on Concurrent Separation Logic
(CSL), a program logic that specialises in reasoning about concurrent programs,
targeting properties of functional correctness and safe memory usage. In recent
years, there has been tremendous progress on both the theory and practice of
CSL-based program verification. Nevertheless, many open challenges remain. This
thesis focusses on one such challenge in particular, namely on how to verify global
functional properties of real-world concurrent software, in a sound and practical
manner.

This thesis consists of three parts, each of which addresses the above challenge
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xii Abstract

from a slightly different perspective.

In Part I, we investigate how CSL can be used to mechanically verify the cor-
rectness of parallel model checking algorithms. Model checking is an alternative
approach for verifying software, which relies on exhaustively searching through all
possible system behaviours, to check whether they satisfy a given temporal specifi-
cation. The underlying search procedures are typically algorithmic, and are often
parallelised for performance reasons. However, to avoid a false sense of safety, it
is essential that these highly-optimised search algorithms are correct themselves.
We contribute the first mechanical verification of a parallel graph-based model
checking algorithm, called nested depth-first search (NDFS). This verification has
been performed using VerCors: an automated verifier that uses CSL as its log-
ical foundation. We also demonstrate how our mechanised proof of correctness
supports the easy verification of various optimisations of parallel NDFS.

Part II of this thesis contributes a practical abstraction technique for verifying
global behavioural properties of shared-memory concurrent software. Our tech-
nique builds on the insight that concurrent program behaviour cannot easily be
specified on the level of source code. This is because realistic programming lan-
guages have only very little algebraic behaviour, due to their advanced language
constructs. Instead, our approach allows specifying their behaviour as a math-
ematical model, with an elegant algebraic structure. More specifically, we use
process algebra as the modelling language, where the actions are abstractions of
shared-memory updates in the program. Furthermore, we extend CSL with logi-
cal primitives that allow one to prove that a program refines its process-algebraic
model. These refinement proofs solve the typical abstraction problem: establish-
ing whether the model is a sound abstraction of the modelled program. This
abstraction approach is proven sound with help of the Coq proof assistant, and
is implemented in the VerCors verifier. We demonstrate our approach on various
examples, including a classical leader election protocol, as well as a real-world
case study from industry: the formal verification of a safety-critical traffic tunnel
control system that is currently employed in Dutch traffic.

In Part III we lift our abstraction technique to the distributed case, by adapting
it to verify message passing concurrency. This adaption uses process-algebraic
models to abstract communication behaviour of distributed agents. Moreover, we
investigate how the refinement proofs allow deductive verification to be combined
with model checking, by analysing program abstractions using a model checker, viz.
mCRL2, to reason indirectly about the program’s message passing behaviour. This
combination builds on the insight that deductive verification and model checking
are complementary techniques: the former specialises in verifying data-oriented
properties, while the latter targets temporal properties of control-flow. Such a
combined verification approach is therefore a natural fit for reasoning about dis-
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tributed systems, as these generally deal with both computation (data) and com-
munication (control-flow). Our approach is compositional, is mechanically proven
sound with help of the Coq proof assistant, and is implemented as an encoding in
the Viper concurrency verifier.

Altogether, this thesis makes a major step forward towards the practical and re-
liable verification of global behavioural properties of real-world concurrent and
distributed software. The techniques proposed in this thesis are: reliable, by hav-
ing mechanically proven correctness results in Coq; are expressive, as they are
compositional and build on mathematically elegant structures; and are practical,
by being implemented in automated concurrency verifiers.
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CHAPTER 1

Introduction

Software has integrated deeply into modern society. In our everyday life, we make
heavy use of software systems, either directly or indirectly, sometimes consciously
and often unconsciously. For example, the cheese, tea and milk we may have for
breakfast ended up in our fridge as a result of a series of logistical processes, most
of which have been planned and controlled by smart algorithms. Then, before
going to work, we may check our phones for the weather forecast in order to adapt
our clothing, and on the way we let the traffic lights guide us, whose underlying
software ensures our safe arrival (assuming that all participants in traffic obey
the imposed traffic rules). While at work, we may use the internet to upload
or download required documents, or to communicate with colleagues. Our desk,
coffee mug, and even the office building itself are the result of computer-aided
design and production.

These few examples already illustrate how easy it is to overlook how deeply soft-
ware has integrated into society, not only for small conveniences and entertainment,
but also for safety-critical tasks. Society nowadays depends heavily on software.
This poses a very relevant question: to what extent can software be relied upon,
and what is the impact of software failure?

Software is inherently error-prone, as it is developed by humans, who by nature
make mistakes. Studies have shown that modern software contains 1 to 16 bugs
on average in every 1.000 lines of code [OW02, OWB04], already in sequential
(single-threaded) software, even after being tested!. It may not be so harmful
to encounter a software problem while, say, playing a computer game, yet the

1Even though software testing can help to reduce the number of bugs in software, it cannot
give any guarantees regarding the absence of bugs. This is also supported by the famous quote
“Program testing can be used to show the presence of bugs, but never to show their absence!” of
Edsger Dijkstra, 1969.



2 Chapter 1. Introduction

occurrence of one in, for example, medical /hospital systems or (air)traffic control
systems may have fatal consequences.

There are many classical (in)famous examples of such software disasters result-
ing from human-made mistakes, including the faulty Therac-25 radiation therapy
machine in 1985 [LT93], the Intel pentium FDIV flaw in 1994 [Pra95|, and the
exploding Ariane 5 airbus in 1996 [LLF196]. There are also many recent cases of
significant software failures, three of which are highlighted below.

1. In 2009, the emergency software system of the Ketelbrug (an 800m long
bridge spanning the Ketel-lake in the Netherlands) faulted?, causing a pas-
senger car to hit the bridge while partially opened. There are various other
known cases of software problems in Dutch bridge control systems, like the
Merwedebrug in Gorinchem in 2011, which remained open for 2,5 hours due
to failing software?. In 2019, the Dutch Ministry of Infrastructure and Water
Management declared that the control software for bridges and locks in the
Afsluitdijk (a major 32km long dam in the Netherlands) is unreliable and

contains serious errors®.

2. In 2013, the internet banking software of the Dutch ING bank seriously
malfunctioned®. This prevented online access to banking services, money
transferring included, and reportedly even altered the balance of bank ac-
counts. Many webstores suffered financially from the inability to transfer
money.

3. In 2018, the rail traffic around Schiphol shut down after a shoplifter ran into
the restricted airport tunnel®. This prevented the railway software to assign
arrival platforms to inbound trains, causing it to crash entirely due to an
integer overflow after having attempted 32.000 such platform assignments.
Ultimately over 70.000 passengers got delayed as result of this software crash.

To prevent such software failures in a society that increasingly relies on software
dependability, availability, predictability and correctness, research is much-needed

2J. de Rooij, Softwarefout veroorzaakte ongeluk Ketelbrug. Computable, March 7, 2011.
https://www.computable.nl/artikel/nieuws/security/3814774/250449/softwarefout-
veroorzaakte-ongeluk-ketelbrug.

3 Brug Gorinchem 2,5 uur open door softwarefout. NOS, August 13, 2011. https://nos.nl/
video/264106-brug-gorinchem-2-5-uur-open-door-softwarefout.

4C. van Nieuwenhuizen Wijbenga, Kamerbrief over bediening sluizen en bruggen Afsluit-
digk. January 31, 2019. https://www.rijksoverheid.nl/documenten/kamerstukken/2019/01/
31/bediening-sluizen-en-bruggen-afsluitdijk.

5A. Eigenraam, Grote storing bij ING - klanten in paniek wegens afwijkend saldo. NRC, April
3, 2013. https://www.nrc.nl/nieuws/2013/04/03/grote-storing-bij-ing-klanten-melden-
afwijkend-saldo.

6M. Duursma, Na 82.000 signalen ging het systeem klapperen. NRC, August 25, 2018. https:
//www.nrc.nl/nieuws/2018/08/25/na-32000-signalen-ging-het-systeem-klapperen.
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to guarantee that safety /business-critical software meets these qualitative aspects,
in every possible scenario!

The work in this thesis falls into this category of research, and is about software re-
liability, targeting parallel, concurrent, and distributed software in particular: soft-
ware that performs multiple tasks simultaneously, possibly using multiple physical
cores, potentially on different physical machines, connected via some network.

Concurrency in Software

To make matters on software reliability even more challenging and complex, it
is an increasingly common practice for software developers to utilise parallelism
and concurrency, to increase performance and make optimal use of the available
hardware resources. This is in sync with modern trends in hardware development:
since transistors on processing units cannot be made much smaller due to physical
limitations, hardware manufacturers instead increase the number of transistors per
processor.

Gordon Moore made a very famous prediction in 1965 [Moo65] regarding these
hardware trends, stating that “the number of transistors on a chip will double
every 18 months”, which is widely known as Moore’s Law. However, Moore’s
Law is now ending; even though Moore’s prediction remained valid for multiple
decades, it started to slow down roughly around 2010 [Pepl7], and has slowed
down further ever since. In practice this means that CPUs cannot be made much
faster. Instead, hardware manufacturers produce multi-core processors—CPUs
with multiple processing cores—to cope with the increasing demand of computing
power. These multi-core CPUs allow to perform different computations in parallel
(at the same time), and therewith obtain computational speedup.

However, these multi-core processors influence the way software is written. To
effectively utilise multiple cores, programmers must write their software with multi-
tasking in mind, by clearly identifying what parts of the computation can be
executed concurrently. This way of writing software is known as multithreading.

The use of parallelism and concurrency makes software extra sensitive to bugs and
errors. This is because the (non-deterministic) interactions of different concurrent
software components typically constitute an immense number of different possible
behaviours (usually exponential in the number of concurrent system components).
Too many behaviours for a software developer to be able to comprehend. This
makes finding errors in concurrent software a very challenging and daunting task,
as software bugs tend to reside in only very few of these behaviours.

As a consequence, the current standard in software development industry is to
make concessions between performance and correctness [GJS115, AB18|. Software
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developers are generally very reluctant to use parallelism or concurrency, in order
to keep their codebase better understandable, maintainable and testable. This is
in sharp contrast with the trends and developments in computing hardware, which
primarily aim to increase the opportunities for parallelism and concurrency.

To bridge this discrepancy between software and hardware developments, software
developers need tools and techniques that aid them to understand and manage all
possible system behaviours, so that concurrency can safely been employed.

This thesis contributes formal techniques and tools that are based on deductive
verification, that provide mathematically precise guarantees on the reliability
of parallel and concurrent software.

1.1 Formal Software Verification

Over the last 50 years there has been tremendous research on formal techniques and
tools to improve, or guarantee, the reliability of software systems [O’'R08, BH14Db].
These techniques are formal in the sense that they are based on mathematics,
allowing them to give mathematically precise correctness results. Techniques for
formal verification typically allow to define a specification for the software system,
capturing its intended behaviour, and then verify that the system implementation,
or an abstraction of it, adheres to the specified behaviour. The verification step is
often computer-aided, to be able to reason automatically about the many different
behaviours that software systems may conceal, with the help of a (semi-)automated
verification tool.

This thesis focuses primarily on deductive verification. More specifically, this the-
sis contributes abstraction techniques that allow to deductively verify concurrent
and distributed program behaviour, on a global level. We also investigate how
these abstraction techniques can be combined with model checking, which is an
alternative, algorithmic approach to formal software verification. Furthermore,
this thesis investigates how deductive verification techniques can be used to verify
the correctness of multi-core model checking algorithms, to increase the reliability
of their verdicts.

The remainder of this section gives an overview of the field of deductive verification;
first for sequential software (§1.1.1), and then for concurrent software (§1.1.2).
After that, §1.1.3 briefly elaborates on model checking, before Section 1.2 discusses
the various challenges in these two research fields that this thesis addresses.
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1.1.1 Deductive Verification of Sequential Software

Deductive verification is a formal technique to reason about software systems,
that has its roots in mathematical logic. In deductive verification, the intended
behaviour of software is specified in a program logic, allowing the use of (semi-
Jautomated tools to verify whether the system implementation adheres to this
specified behaviour, in every possible scenario. These tools reduce the problem
of verifying program correctness (with respect to the specified behaviour) to a
statement of mathematical logic, which can automatically be proven, e.g., using
SAT solvers [CKL04, CKSY05, IYGT08] or more recently, SMT solvers [LQOS,
BMR12, Sch16].

The strength of deductive verification is that it can reason precisely about all
possible software behaviours”. Deductive verifiers can therefore provide guarantees
about, e.g.: memory safety, freedom of concurrency errors like data-races, and
correctness with respect to the intended system behaviour.

Hoare Logic (1969)

The pioneers of deductive verification are Tony Hoare and Robert Floyd, by their
contribution of Hoare logic, in 1969 [Flo67, Hoa69| (also known as Floyd-Hoare
logic). Hoare logic provides a formal technique to reason about the correctness of
simple, sequential imperative programs.

The central logical components of Hoare logic are Hoare triples, which are of the
form {P} C{Q}, where C is a program, and P and Q are logical assertions, tra-
ditionally in first-order (predicate) logic. These Hoare triples give an axiomatic
meaning to programs, by describing their semantics as a simple proof system,
whose rules are generally referred to as Hoare (inference) rules. Hoare triples logi-
cally describe the effect of C on the program state, in terms of the assertions P and
Q, which are referred to as C’s precondition and postcondition, respectively. These
two assertions together constitute the specification of the program C, sometimes
also referred to as C’s contract. The operational meaning of Hoare triples is: start-
ing from a state satisfying P, the resulting state after execution and termination
of C satisfies Q.

Hoare logic reasoning is a compositional verification approach; the Hoare axioms
and inference rules allow to compose proofs of smaller programs to construct a
proof for a larger, composite program. Two examples of such rules are:

{Prei{Q) {912 {R} {PAb}Ci{Q} {PAb}C{Q}
{P}C; C2{R} {P}if b then C; else C; {Q}

"With respect to some chosen formal operational semantics of the target language.
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The above inference rules allow to compose the individual proofs of the programs
C7 and Cs into a proof of a composite program, e.g., C1;Cy. While composing
proofs in this way, proof obligations are generated, which can be proven to con-
clude correctness of the composite program. Dijkstra showed that these proof
obligations can be proven mechanically, using SAT or SMT solvers, by using a
predicate transformer semantics known as Dijkstra’s Weakest Precondition (WP)
calculus [Dij76]. This was the first step towards automated, tool supported de-
ductive software verification.

Separation Logic (2002)

Classical Hoare logic is fairly limited, in the sense that it does not easily allow to
reason about programs with shared mutable state. This limitation is overcome by
separation logic [Rey00, ORYO01, 1001, Rey02, O’H19a|, which is a program logic
that extends Hoare logic by adding logical constructs to reason about pointers:
data stored on the heap. Separation logic builds on earlier ideas of Burstall [Bur71],
and uses an assertion language that is a special case of the resource logic of Bunched
Implications (BI) [OP99, I001].

One of these new logical constructs is the assertion ¢ — v, which expresses that
the heap contains the value v at heap location £. Another new logical construct is
the connective P x Q known as the separating conjunction, which expresses that
P and Q are valid on disjoint parts of the heap. These two constructs can be used
together to reason about pointer aliasing. To give an example, ¢1 — 3 x {5 — 4
implies that ¢; # ¢y (i.e., {1 and ¢y are not aliases), since if they were aliases,
the heap could not be split into disjoint parts, so that both parts satisfy the
corresponding sub-assertion.

Separation logic has been applied to reason about realistic pointer-manipulating
programming languages, like Java and C, and has also shown to be mechanisable,
e.g., via symbolic execution [BCOO05]. One example of such a mechanisation is
the static program analyser Infer [CD11], which is used by Facebook to detect
memory leaks and null pointer dereferences in their production code [CDD*15].
Infer, however, cannot prove functional properties on the behaviour of the program.

Current State-of-the-Art

The initial developments of Hoare logic, separation logic, and (automated) weak-
est precondition reasoning inspired tremendous research in the field of deductive
verification; not only to propose more elaborate proof systems that target ad-
vanced language features [Par10, KJB*17], such as object-orientation, parallelism
and (fine-grained) concurrency, but also to develop verification tools that target
real-world programming languages [Beyl9, EHMU19].
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Notably, around 2000 the KeY project started [KeY], which led to the develop-
ment of the KeY verification system, aiming to verify sequential Java, annotated
with Hoare-style specifications. Other tools followed, including: Dafny [Leil0] (on
which IronClad [HHL*14] and IronFleet [HHK 15| are build), OpenJML [Cok14],
Frama-C [KKP*15], Why3 [FP13], KIV [RSSB98|, and many others.

These tools all have their own specialisation, e.g., by targeting a certain program-
ming language, or by supporting a specific logic. OpenJML, for example, targets
sequential Java programs that are annotated with specifications written in JML,
which stands for Java Modeling Language [LBR99, LPC*07]—an extensive spec-
ification language that is specific for Java. Frama-C, in turn, targets programs
written in C, and requires program behaviour to be specified in ACSL—a specifi-
cation language that is particular to C. KeY uses dynamic logic as its underlying
logical foundation for static analysis, while Frama-C uses weakest precondition
methods (among others).

Achievements and Challenges

These deductive verification tools have proven to be successful in practice, and
have contributed to the reliability of real-world software systems. A prominent
example of such a success is the detection of an intricate bug in the standard im-
plementation of OpenJDK'’s Java.utils.Collection.sort() algorithm [GRB*15], also
known as TimSort, using KeY, in 2015. This verification case study had a par-
ticular high impact, as the TimSort algorithm is used daily by billions of users
worldwide. To give another example, Frama-C has successfully been applied on
several safety-critical industrial case studies [CDDL12, KKP*15, SAB116], com-
prising up to 50.000 lines of program code.

Nevertheless, many open challenges in deductive software verification remain. One
important challenge is reducing the number of annotations (i.e., pre- and postcon-
ditions, and invariants) needed to deductively verify a program. Especially for
larger programs—say, programs with >200 lines of code, which is already consid-
ered reasonably large in the deductive verification community—it is not unusual
for verification tools to require more lines of specifications/annotations than actual
code.

Another important such open challenge, is to reason about real-world parallel and
concurrent software. All verification tools mentioned so far solely target sequential
software, with the exception of Frama-C, who has limited support for reasoning
about POSIX threads in C, using its Mthread plugin [YB12]. This thesis focusses
primarily on how to deductively verify concurrent and distributed software, in an
expressive, reliable and practical manner.
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1.1.2 Deductive Verification of Concurrent Software

Concurrency reasoning is more challenging than reasoning about sequential soft-
ware, since one has to deal with the additional complexity of considering all pos-
sible non-deterministic thread interactions. A concurrent program may behave
in different ways, depending on how the threads are interleaved at runtime. It
is possible that some of these interleavings bring undesirable concurrency events,
such as data-races: two threads that access the same location in memory, at the
same moment, where at least one of them is a write access.

The goal of concurrency verification is showing freedom of such undesired phe-
nomena, and showing correctness with respect to a (Hoare-style) specification, in
all possible thread interleavings.

Owicki—Gries (OG) Reasoning (1976)

The pioneers in the direction of deductive concurrency verification were Susan
Owicki and David Gries. They contributed extensions to Hoare logic to reason
about concurrent programs [OG75]. The most important extension is the following
Hoare logic rule for concurrency.

{P1}C1 {91} {P2} C2 {92} the proofs of C; and Cy are non-interfering
{PL AP} Cr || C2{Q1 A Qa2}

This rule allows composing the individual proofs of two programs, C; and Cs,
into a proof of their parallel composition, C; || Ca, given that these two proofs do
not interfere (the notion of interference is left informal for now). Intuitively, the
proofs of C; and Cy are non-interfering if the proof {P;} C1 {Q1} is stable under
modifications done by the program Cs, and vice versa.

A major limitation of OG reasoning, is that the non-interference condition makes
the logic non-modular. The classical example that shows this, is the proof of the
program x := x + 1 ||  := x + 1, consisting of two threads that increment a shared
variable by one. To satisfy the non-interference condition, auxiliary state needs to
be maintained, by writing extra annotations purely for the purpose of specification,
to specify the exact contributions of both threads as a global property. However,
for this classical example, the amount of auxiliary state needed is exponential in the
number of proof obligations. Moreover, OG reasoning is also non-compositional:
adding a third thread may require one to change the proof of the other two threads.
The OG approach therefore does not scale to real-world industrial code.
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Rely-Guarantee (RG) Reasoning (1983)

Cliff Jones proposed a concurrency reasoning approach in 1983, known as rely-
guarantee (RG) reasoning [Jon83], that improves on the classical Owicki—Gries
approach. RG reasoning targets concurrent programs in which threads are allowed
to interfere. The RG approach is also modular. Instead of requiring auxiliary
state, RG requires extra specifications for each thread, that express the reliances
on the environmental threads under which the current thread executes, as well as
guarantees that the thread makes to the environmental threads. These rely and
guarantee clauses make the approach modular.

On the other hand, RG reasoning is relatively hard to apply in practice. In addi-
tion to the standard Hoare-style specifications, users also have to give a separate
specification of thread interference, which is often non-intuitive, and non-trivial to
come up with and to specify.

Concurrent Separation Logic (2007)

Later, in 2007, Concurrent Separation Logic (CSL) has been proposed by O’Hearn
[O’HO7] and Brookes [Bro07]|. CSL is a program logic that extends separation logic
to reason thread-modularly about shared-memory concurrent programs. This is
done using the following proof rule, that allows reasoning independently about
threads that access disjoint parts of shared memory.

{P1} C1{Q1} {P2} C2 {Q2}
{P1 %P2} C1 || C2{Q1 * Qa}

More specifically, CSL uses the separating conjunction from separation logic to
express that C7 and C5 work on disjoint portions of the heap. This implies freedom
of data races, for any program for which a proof can be derived. To give an
example, CSL allows proving {z — — xy — —}[z] :=3 || [y] :=4{z — 3xy — 4},
where [-] denotes heap dereferencing, as the specification implies that = and y are
not aliases. For this reason, the above proof rule allows decomposing this proof
into two smaller proofs: {x +— —}[z] :==3{z — 3} and {y — —} [y] := 4 {y — 4}.

As illustrated already by the above rule and example, CSL comes with a strong
notion of ownership of shared memory. The specification of threads need to be
very explicit in the memory footprint that is needed by the thread’s programs,
using the - — - points-to assertion of separation logic. However, in many practical
realistic scenarios, threads do not work on purely disjoint memory, but instead
work together on a shared portion of memory. To handle such sharing situations,
CSL has support for reasoning about atomics—statically-scoped locks—that al-
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low threads to obtain access permission for a shared part of the heap, without
introducing data races and without breaking thread-modularity.

Modern Logics for Concurrency Reasoning

CSL has had significant impact on the field of concurrency verification [BO16,
PSO18], both in theory and in practice. For this reason, Brookes and O’Hearn
received the Gddel Prize in 2016, for their invention of CSL. The work in this
thesis also builds heavily on CSL.

One of these advances is the merge of CSL with rely-guarantee reasoning, by
Vafeiadis and Parkinson in 2007, resulting in a program logic called RGSep [VPO07].
This logic simplifies the specification of thread-interference with respect to classi-
cal RG reasoning, by exploiting the notion of disjointness that CSL offers. RGSep
is supported by the tools SmallFootRG [CPV07] and CAVE [Vafl0Oa, VaflOb].
Furthermore, Gotsman et al. [GBCT07] propose extensions to CSL to deal with
dynamically-scoped locks. In 2009, deny-guarantee was proposed [DFPV09]|, which
is a program logic that deals with dynamic thread creation and fork/join concur-
rency. This line of research extends further to very elaborate concurrency logics,
like CAP (Concurrent Abstract Predicates) [DYDGT10, SB14|, TaDa (for ab-
stracting time and data) [RPDYG14, RPDYG15|, and ultimately Iris [JSST15,
JKBD16, KJB"17], a higher-order CSL framework. Ilya Sergey maintains a CSL
family tree online [CFT], that gives a more complete overview of concurrency logics
that extend CSL.

Even though these modern program logics and frameworks are mathematically el-
egant and very expressive, their usage requires much expertise and insight into the
underlying proof method. Moreover, at the time of writing, most of these logics can
only be used in pen-and-paper style, or at best semi-automatically, in the context
of interactive proof assistants like Coq [CWP, BC10] and Isabelle/HOL [NWP02].

To be able to target real-world programming languages like Java and C, it is
important that such program logics are applicable automatically, and on the level
of source code, with help of automated verification tools.

Modern Tools for Concurrency Verification

Several such verification tools have been proposed, most of which build on SMT
solvers like Z3, to discharge all generated verification conditions. Compared to
theoretical /interactive approaches like for example Iris, such automated tools make
a trade-off between expressivity and usability: they do not require user interaction,
other than providing a specification (e.g., in pre/postcondition style).

An example of such an automated tool is VeriFast [JSPT11], a verifier that tar-
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gets single- and multi-threaded Java and C programs that are annotated with pre-
and postconditions written in separation logic. Another such tool is the Viper
verifier [JKM™*14, MSS16], which provides a verification infrastructure based on
separation logic®, that makes it easy to implement intricate verification techniques
for programs with persistent mutable state. The VerCors verifier  BDHO17], which
is maintained at the University of Twente, builds on top of Viper, and targets con-
current programs written in Java [AHHH15| and OpenCL [ADBH15] (i.e., GPU
kernels). VerCors is logically based on CSL and performs a correctness-preserving
translation of any input verification file to the Viper language. This allows del-
egating the generation of verification conditions to Viper and their verification
ultimately to Z3 [MBO0S|.

Despite much effort in research on tool-aided concurrency verification, there are
still many open challenges [ZS15, HH17, HJ18]. This thesis focusses on one such
open challenge in particular, namely on: how to verify global functional properties
of real-world concurrent software, in a reliable and practical manner.

The current standard approach of proving global properties of concurrent program
behaviour is to specify global invariants: logical assertions that remain preserved
after the execution of every instruction in the code. However, finding global invari-
ants may sometimes be non-intuitive and cumbersome, and can also be restrictive.
For example, in some situations it may be desirable to temporarily violate a global
invariant, provided that environmental threads are not able to observe this viola-
tion. Sometimes these global invariants take the form of transition systems, like
in CAP, or more abstractly, as monoids, like in Iris. Nevertheless, as discussed be-
fore, this line of work is mostly theoretical and hard to implement into automated
tools.

In contrast, this thesis contributes practical techniques that allow to specify global
concurrent program behaviour abstractly, as a mathematical model, with elegant
algebraic structure. These abstraction techniques are practical, by making a trade-
off between expressivity and usability. Rather than aiming for a unified approach
to concurrency reasoning, we propose powerful and sound techniques that are im-
plemented in automated concurrency verifiers, to be able to reason about realistic,
real-world programming languages.

This thesis contributes practical and reliable abstraction techniques for ver-
ifying global behavioural properties of real-world concurrent and distributed
software.

80r actually a program logic called Implicit Dynamic Frames [LMS09], which is shown to be
equivalent to separation logic [PS11].
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1.1.3 Model Checking

An alternative approach for reasoning about concurrent program behaviour is
model checking [Cla08, CHVBI1S|. This is a field of research that was started by
Clarke and Emerson in 1981 [CE82], and independently by Quielle and Sifakis in
1982 [QS82].

Model checkers consider an abstract model of a software system, often given as
a finite transition system, and automatically verify properties on this model.
These properties are typically specified in a modal/temporal logic, like (vari-
ants/extensions of) LTL [Pnu77], CTL [EC80, CE82|, or, more generally, the
p-calculus [EC80, Koz82]. This automated verification is done algorithmically,
rather than deductively, by means of exhaustively searching the underlying state
space of the model. These exhaustive searches yield a counter-example in case the
specified property does not hold, in the form of a trace in the search space, that
represents the violated behaviour.

The main advantage of model checking over deductive verification is that it pro-
vides more automation. This is because, unlike deductive verifiers, model checkers
generally do not search for a correctness proof of the system under verification®,
but instead explore its underlying state space and analyse all possible execution
traces. The only ingredients needed by a model checker are an abstract description
of the software system, and a specification of this system in a temporal logic.

One the other hand, a well-known effect of this exhaustive search is the problem
of state-space explosions. This problem refers to the combinatorial explosion of
the size of the search space, in the number of variables and parallel components in
the input model. This effect limits the scalability of model checking to real-world
industrial software. Moreover, model checking suffers from the well-known abstrac-
tion problem [PGS01]: does the abstract model soundly reflects the behaviour of
the actual system it models?

Combining Model Checking with Deductive Verification

Regarding expressivity, model checkers target different kinds of properties than
deductive verifiers. Deductive verification is primarily concerned with reasoning
about properties that are data-oriented [ACPS17], that is, properties that relate
the output of functions to their input (for example, that the sort(zs) function
yields a sorted permutation of the input sequence zs). Model checkers, on the other
hand, are mostly concerned with temporal properties of control-flow [Shal8], for
example, every logout(u) event must be preceded by a login(u) of the same

9Modern model checking approaches like IC3 [CG12] actually do this, but in a more limited
and restrictive manner compared to the deductive verification techniques mentioned earlier.
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user u. Even though model checkers often have some limited support for handling
data, verifying data-oriented properties is not their primary strength nor concern
(partly because they are to a large extend finite-state approaches). For this reason,
model checking and deductive verification have shown to be complementary in
nature [MNO95, Uri00, ACPS15, ACPS17, Shal§].

This thesis investigates how model checking and deductive verification can
be combined, to exploit their complementarity and resolve the abstraction
problem of model checking, for the verification of concurrent and distributed
software.

1.2 Challenges in Concurrency Verification

The overview of formal software verification given in the previous section already
poses various open challenges for practical concurrency reasoning. This thesis
focusses on one such challenge in particular, namely on: how to verify global be-
havioural properties of real-world concurrent software, in a reliable and practical
manner.

This thesis is organised into the following three parts, each of which addresses the
above challenge from a slightly different perspective:

I. Reliability of software verification techniques. Part I of this thesis in-
vestigates how concurrent separation logic can be used to mechanically verify
the correctness of heavily optimised, parallel model checking algorithms.

II. Verifying functional properties of shared-memory concurrent soft-
ware. Part II investigates how global behavioural properties of shared-
memory concurrent programs can be specified and mechanically be verified,
by means of abstraction.

ITI. Verification of distributed software using complementary techniques.
Part III investigates how deductive verification and model checking, which
have shown to be complementary techniques, can be combined to verify
global behavioural properties of message-passing distributed software.

The remainder of this section discusses each of these three challenges in detail.
It also presents the problem statements and the three research questions that are
addressed in the three parts of this thesis.
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1.2.1 Reliability of Software Verification Techniques

As discussed earlier, nowadays there are many techniques for software verifica-
tion, as well as (semi-)automated tools that support these. Modern verifica-
tion techniques no longer aim to verify simple artificial languages (e.g., the sim-
ple language that Hoare logic is formalised on), but instead increasingly aim to
target intricate, real-world language features, ranging from relaxed/weak mem-
ory models [vVZNT11, LV15, LGV16, LVK™17, SM18|, to compiler optimisa-
tions [VBC*15, DBG18], to correct compilation stacks [Ler09, Chl10, KMNO14,
LKT™19], as well as real-world modern programming languages like Rust [JJKD17],
Python [EM18], and Go [VSC]. Consequently, the underlying mathematical prin-
ciples of these verification techniques become more and more complex, to deal with
these advanced features. This poses a relevant challenge: how to ensure that the
mathematical principles of these techniques remain sound, while their complexity
increases.

Furthermore, the verification tools that implement these principles are themselves
written in software, developed by humans. These tools tend to follow trends
in hardware and software development, for example to parallelise their imple-
mentations, so that search spaces of large systems can be explored faster. The
LTSMIN model checker [KLM™15], for example, has multiple parallel back-ends
(both explicit-state [LPW11] and symbolic [DP15]), to be able to process billions
of states per second. This raises the challenge: how to ensure that their imple-
mentations are correct themselves, to prevent such tools from giving a false sense
of safety?

Machine-Checked Verification Tools

A popular trend to increase the confidence of the correctness of modern program
logics is to embed them into interactive proof assistants, like Coq, Isabelle, or
PVS [ORS92]. Such interactive theorem provers in turn guarantee the correctness
of their own results, by trusting on a very small critical kernel of axioms, whose
validity is widely agreed upon [ARSCT09, HN18].

To give some examples, recent program logics like CAP, Iris, Disel [SWT17],
Iron [BGKB19] and Aneris [KJTOL19| all have mechanically checked soundness
proofs in Coq, and are all implemented as a shallow embedding in Coq. An-
other example is the Refinement Framework [LT12, Lam13], which has its roots
in Isabelle/HOL.

As a consequence, the ability to reason with these logics is also confined to the
Coq or Isabelle environment, in an interactive, semi-automated way, via the use
of tactics. This makes it hard to reason about realistic programs, written in real-
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world programming languages, as one would then have to guide the interactive
proof through all the intricate details of the underlying operational semantics of
the targeted programming language, which does not scale very well.

However, here we should remark that, despite this potential issue of scalability, the
VerifyThis software verification competition [EHMU19] has been won twice in a
row already by an Isabelle team, using the Refinement Framework; in 2018 and in
2019. This success is mainly because interactive proof assistants give better control
on the generated proof obligations, and on selecting the strategy for proving these,
compared to automated verifiers. Nevertheless, the Refinement Framework solely
targets sequential programs that are written in an Isabelle-embedded language.
In order to scale to real programming languages, the degree of proof automation
should also scale. For exactly this reason, automated verifiers make a compromise
between automation and control: they give the verification engineer less control
on how the verification conditions are actually proven, in exchange for better
automation.

In contrast to interactive verifiers, it is far less common for automated deductive
verifiers to have a trusted, machine-checked foundation. This is primarily because
automated verifiers aim to target real-world industrial programming languages,
e.g., Java and C, whose semantics is very difficult to formally specify, let alone to
build upon'®. Most automated verifiers instead build on mathematical principles
that are manually proven sound, and discharge all generated proof obligations to
SMT solvers like CVC4 and Z3. However, some verification tools invested in a
machine-checked correctness proof of a core subset of their theoretical foundation,
e.g., Featherweight VeriFast [JVP15] and Smallfoot [Appllb| (the latter in the
context of the Verified Software Toolchain [Applla]). Arguably the most real-
istic and manageable approach for ensuring that automated verifiers are reliable
themselves is to mechanise the proofs of their metatheory with a proof assistant.

This thesis also follows the latter, more realistic approach, by contributing verifi-
cation techniques for concurrency that are proven sound using the Coq theorem
prover, and are implemented in the concurrency verifier VerCors.

Verifying Parallel Model Checking Algorithms

For deductive verification it is relatively easy to provide such machine-checked
correctness results of the underlying foundations, as these build on mathemati-
cal logic. For other formal techniques it may be much harder to establish such
a mechanically verified core. Model checkers, for example, have an algorithmic

10See for example the complexity of the work of Robbert Krebbers [Krel4, Krel5] on the
formalisation of the C standard in Coq, or the K-Java project [BR15|, which is a complete
executable operational semantics for Java 1.4.
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foundation. Moreover, recent model checkers like LTSMIN heavily exploit paral-
lelism to quickly search through large state spaces, and thus build on a foundation
of intricate, heavily optimised parallel algorithms. Establishing the correctness of
such multi-core algorithms is therefore highly non-trivial.

There is some existing work on verifying the outcome of model checkers [NamO1,
GRT18]|, by generating a deductive proof alongside the verdict of model checking,
which can be checked independently. Also several fully verified sequential model
checkers have been proposed [Spr98, ELN*13, Neul4, BL18, WL18|, whose im-
plementation are fully machine-checked by either Coq or Isabelle. Nevertheless,
to the best of our knowledge, there does not exists a mechanical verification for a
parallel model checking algorithm (prior to this thesis).

This challenge is addressed in the current thesis, focusing in particular on graph-
based algorithms for parallel model checking. More specifically, Part I of this thesis
addresses the following research question:

How can concurrent separation logic be used to specify and mechan-

RQ 1 ically verify parallel graph-based algorithms for model checking?

1.2.2 Verifying Behavioural Properties of Concurrent
Software

The main challenge of concurrency reasoning over reasoning about sequential soft-
ware is that one has to deal with the vast number of potential system behaviours
that are the result of the many possible thread interleavings. This makes it difficult
to precisely specify thread interaction on a global level, e.g., with shared-memory
or with other threads. In contrast, it is relatively straightforward to specify the
global system behaviour in a sequential setting.

The standard, classical approach in concurrency verification to specify global prop-
erties is to impose global invariants, either on the contents of the heap [Mey88,
CKO05, O'HO7] or on the message exchanges between threads [WL89]. The classical
work on CSL, for example, has a built-in notion of global invariants, called resource
invariants, which can only temporarily be violated by a thread when it holds the
global lock. However, such invariant properties are limited in the sense that they
are “static”: they cannot easily express how system behaviour evolves over time.
This is apparent in the classical Owicki—Gries example mentioned earlier, which
consists of a very simple concurrent program, whose correctness proof requires a
global invariant that is exponential in size, relative to the number of threads. This
example clearly demonstrates that global invariants do not always scale.
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To resolve this, many alternative approaches have been proposed that build on
ideas of assume-guarantee (AG) reasoning [RHH'01]. Notably, modern program
logics like (impredicative) CAP and Iris provide protocol-like specification mech-
anisms, allowing to formally define how shared state is permitted to evolve over
time, in shared-memory concurrent programs. Such “protocols” typically take the
form of state-transition systems (e.g., in CAP or Disel), or more abstractly, as user-
defined monoids [JSST15] (e.g., in Iris, as well as logics building on Iris). However,
this line of work is mostly theoretical, or can at best be applied semi-automatically,
via a shallow embedding in Coq. Making these ideas to also work with automated
concurrency verifiers for real-world languages is still an open challenge.

This challenge is addressed in the current thesis, focussing in particular on ab-
straction techniques to specify global system behaviour, in a sound and practical
manner. More specifically, Part II of this thesis gives an answer to the following
research question:

How can global behavioural correctness properties of shared-memory
RQ 2: concurrent programs be specified and mechanically verified, by means
of abstraction?

1.2.3 Combining Complementary Verification Techniques for
Reasoning About Distributed Software

As discussed earlier, there are several potential approaches to formally verifying
concurrent and distributed systems, two of which are deductive verification and
model checking. However, these different approaches focus on different aspects
of correctness. Deductive verification focusses primarily on data-oriented prop-
erties, for example by relating the output of functions to their input (e.g., the
function sort correctly sorts the input array). Algorithmic verification, on the
other hand, primarily targets control-oriented properties, and is mostly concerned
with the order in which certain atomic events may occur (e.g., users may withdraw
money only after having successfully logged-in). These two notions of data and
control-flow are complementary in nature. Of course, one could for example en-
code transition systems as invariants during deductive verification, or incorporate
limited support for data in model checkers (which is what mCRL2 does). But such
handling of data and control-flow are not the primary strengths of these respective
verification approaches.

Especially in a distributed setting it would make sense for verification techniques
to address both aspects of data and control-flow, as distributed programs typically
deal with both computation (data) and communication (control-flow). The use of
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only a single verification approach, e.g., deductive verification or model checking
alone, may be insufficient to capture all program aspects.

Deductive verification, for example, has its power in modularity and composition-
ality: they require modular independent proofs of the (distributed) threads, and
allow to compose these into a single proof of the global system. However, due
to the communicational nature of distributed systems, it can be hard to give an
isolated proof for each thread, as their behaviour for a large part depends on their
interaction with the environment. Another option would be the imposition of net-
work invariants [WL89]: global invariants that span over a network of distributed
agents. However, as already discussed in §1.2.2, these are often limited in their
expressivity.

Model checkers, on the other hand, have their strength in automation: they only
require an abstract description of the concrete system implementation, together
with a temporal specification. However, model checking is mostly a finite-state
approach, which limits its ability to reason about data. Some model checking
approaches, like nuXmv [CCD™14] (which is based on IC3), allow to reason about
infinite domains, e.g., integers, reals and uninterpreted functions, but still in a more
limited and restricted sense than deductive verification. This is primarily because
the specification language has less support for data incorporation. Model checking
also suffers from the typical abstraction gap: is the model a sound abstraction of
the modelled system?

Practical verification techniques that exploit the complementary nature of data-
and control-flow are therefore needed, but are currently relatively unexplored [APS16,
ACPS17|. This thesis addresses the challenge of soundly combining algorithmic
and deductive techniques for verifying distributed message-passing software in a
practical, modular, and compositional manner. To do so, we further explore the
abstraction techniques that Part II of this thesis contributes. In particular, we in-
vestigate if these can be used to capture the communication behaviour of message
passing programs, and can subsequently be model checked, in such a way that the
verified properties can soundly be projected onto program behaviour.

More specifically, Part III of this thesis answers the following research question:

How can the strengths of deductive and algorithmic verification
RQ 3: soundly be combined, to specify and mechanically verify global be-
havioural properties of distributed message-passing software?
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1.3 Contributions

This thesis contributes to both theory and the practice of deductive concurrency
verification. The main contributions of this thesis are threefold, as summarised
below, corresponding to the three research questions posed earlier.

I. Automated verification of parallel model checking algorithms. Part I
of this thesis contributes the mechanised verification of a parallel graph-based
model checking algorithm, called nested depth-first search (NDFS). We prove
soundness and completeness of NDF'S using concurrent separation logic, and
mechanise this correctness proof in VerCors. Moreover, we demonstrate how
this mechanised proof allows establishing correctness of various optimisa-
tions of parallel NDFS. As far as we are aware, this is the first mechanised
verification of a multi-core model checking algorithm.

II. Practical abstractions for verifying shared-memory concurrency.
Part IT of this thesis contributes a practical deductive verification technique
to reason about global functional properties of shared-memory concurrent
programs, by means of abstraction. The main idea is that concurrent pro-
gram behaviour is not specified directly on the level of source code, but rather
as a mathematical model, with more elegant algebraic structure. More specif-
ically, we use process algebra as the modelling language. The key novelty is
that this approach is expressive as well as practical, by being supported by
the VerCors verifier. Moreover, the metatheory of this approach has been
proven sound in Coq. The approach is demonstrated on various case stud-
ies, including a classical leader election protocol, as well as a real-world case
study from industry: the formal verification of a safety-critical traffic tunnel
control system that is currently employed in Dutch traffic.

ITI. Practical abstractions for verifying message-passing concurrency.
In Part III, we lift this abstraction approach to the distributed setting, by
using process algebra to abstract message passing behaviour of distributed
threads. Moreover, we combine deductive verification with model check-
ing, by allowing to model check the process-algebraic model for properties
regarding communication, and use their results in the deductive proof of
the program. This combined verification approach thereby allows reasoning
about both data and communication of distributed systems. The approach is
modular and compositional, proven sound with Coq, and practical by being
implemented in Viper.

The remainder of this section briefly elaborates on the approach and contributions.
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1.3.1 Automated Verification of Parallel Nested DFS

Part I of this thesis answers RQ 1, and covers the mechanical verification of
multi-core model checking algorithms using concurrent separation logic. More
specifically, we mechanically verify a multi-core version of the nested depth-first
search (NDFS) algorithm [CVWY92, HPY96, SE05], which solves the LTL model
checking problem.

NDFS is a graph algorithm that takes a (Biichi) automaton as input, and searches
for accepting cycles in this automaton. To clarify, automata have a notion of
accepting states (i.e., states can be marked as being accepting), so that accepting
cycles are cycles that contain at least one accepting state. This is useful, since
the problem of LTL model checking can be reduced to finding accepting cycles in
automata [BKO0S|.

In 2011, Laarman et al. parallelised the NDFS algorithm [LLP*11]. This paral-
lelised version of NDF'S, referred to as parallel NDF'S in the sequel, spawns multiple
threads that all perform an instance of NDFS, while sharing information regard-
ing (nested) search progress. Parallel NDFS is currently deployed in the LTSMIN
model checker.

The sharing of progress information between workers makes it very difficult to
establish correctness (i.e., soundness and completeness) of parallel NDF'S, already
manually, as shown by the handwritten proof in the original paper. A particular
difficulty of parallel NDF'S, is that workers may get in each other’s way, by block-
ing their search progress via information sharing, possibly preventing them from
detecting accepting cycles. It can, however, be shown that not all accepting cycles
can be missed in this way.

This thesis demonstrates that verification tools for concurrent separation logic,
like Viper and VerCors, are nowadays mature enough to be able to mechanise the
correctness proofs of such intricate parallel graph algorithms. More specifically, we
verify soundness and completeness of parallel NDFS, using concurrent separation
logic, and mechanise this proof using the VerCors concurrency verifier. While
doing so, many proof steps that were left implicit in the original proof have been
made explicit. This mechanised proof is inspired by the original, handwritten
proof, and extends an earlier verification of sequential NDFS [Pol15] in Dafny. We
also show how having a mechanised proof allows various optimisations of parallel
NDFS to be easily verified.

To the best of our knowledge, this is the first mechanised verification of a multi-
core model checking algorithm. This verification effort increases the reliability
of parallel NDFS, and therewith also of the model checkers that implement this
algorithm.
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1.3.2 Practical Abstractions for Shared-Memory
Concurrency

Part II of this thesis answers RQ 2, and contributes a practical abstraction tech-
nique for verifying global behavioural properties of shared-memory concurrent soft-
ware. The key idea is that such properties are not specified on the source code
level, which usually has only very little algebraic behaviour (e.g., due to com-
plex language features for locking and concurrency), but are instead specified as a
mathematical model with elegant properties and structure. These models give an
abstract view on concurrent program behaviour, by describing the atomic changes
to the shared state, thereby hiding all irrelevant implementation details.

More specifically, our approach allows specifying the behaviour of shared-memory
concurrent programs as a process-algebraic model. Many believe that process al-
gebra provides a mathematically elegant way of describing concurrent program
behaviour, at the right level of abstraction [ABC10]. In our approach, the actions
of process-algebraic models correspond to shared-memory updates during program
execution. This correspondence is formally proven: we extend CSL with primitives
to deductively prove that the program refines its process-algebraic model, by link-
ing the actions to concrete instructions in the program. By doing so, our approach
resolves the typical abstraction problem: establishing whether the abstract model
is a sound abstraction of program behaviour. The established refinement relation
between programs and models preserves safety properties: we may reason about
action sequences on the abstraction level, and project this reason onto program
behaviour.

To briefly illustrate how this abstraction approach works, we revisit the Owicki—
Gries (OG) example mentioned earlier, whose implementation is given in Fig-
ure 1.1a. The goal is to verify that, after termination of both threads, the value at
heap location x has been incremented by 2. The traditional approach of verifying
this property, is to maintain auxiliary state to keep track of the contributions of
each thread. This is, however, a non-modular approach, as it requires an expo-
nential amount of auxiliary state relative to the number of threads.

Our approach is to abstract the shared-memory update [z] := [z] + 1 as a process-
algebraic action incr, so that the behaviour of the program can be globally de-
scribed as the process incr || incr. Moreover, our approach allows Hoare-style
contracts to be assigned to each action which describe the corresponding change
in the program. The contract of the incr action is: {true}incr{X = \old(X) + 1},
where the variable X is linked to the heap location [z]. One can then analyse
all possible traces of incr || incr to conclude that this process indeed describes the
desired OG property.

The next step is to establish that the program adheres to this process-algebraic
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1 atomic { 4 atomic {
2 [x] = [z] + 1 5 [x] = [z] +1;
3 } 6 }
(a) The classical Owicki-Gries example, where [ -] denotes heap dereferencing.
1 atomic { 6 atomic {
2 action (incr) { 7 action (incr) {
3 [a]i=[a] 4+ 1 8 [z]:=[2]+ 1

a } 9 }
5 } 10 }

(b) The above example, but now specified with so-called action annotations.

Figure 1.1: The Owicki-Gries example, consisting of two threads that both incre-
ment a common heap value. Figure (a) shows the example without annotations,
whereas (b) gives the action annotations required by our abstraction approach.

description. This is done by means of extra program annotations, which are shown
in Figure 1.1b. To clarify, action annotations are used to connect the concrete
instructions [z] := [z] + 1 in the program to the incr actions in the process-algebraic
model. These annotations are enough to automatically prove that the OG program
refines the incr || incr process. This implies that the process-algebraic specification
is a sound abstraction of the program behaviour, with respect to updates to [z].

This verification approach is compositional and thread-modular. Moreover, the
metatheory of this technique is mechanically proven correct using the Coq proof
assistant, and thus reliable. Furthermore, this approach has been implemented in
the VerCors concurrency verifier, and is therefore also practical. We demonstrate
this abstraction approach on various examples, including a leader election protocol,
as well as an industrial case study, concerning the formal verification of a safety-
critical traffic tunnel control system.

1.3.3 Practical Abstractions for Message Passing
Concurrency

Part IIT of this thesis answers RQ &, and builds further on the process-algebraic
program abstractions, by investigating their use in a distributed setting. Here
we use process algebra as a language to abstract message passing behaviour of
distributed programs (instead of updates to shared memory, as in Part IT).

In particular, we investigate how process-algebraic reasoning can be combined
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1 send §; 4 y :=recv;
2 I :=recv; 5 send (y * 3);
3 assert x = 24;

Figure 1.2: A simple example of synchronous message passing, using two threads.

with deductive reasoning, to reason about both computational and communica-
tional aspects of distributed programs. As discussed earlier, deductive verification
(viz. concurrent separation logic) specialises in reasoning about computational
properties, while algorithmic verifiers (e.g., model checkers like mCRL2) specialise
in verifying temporal properties. We investigate how both of these complemen-
tary aspects can be combined, into a practical approach for verifying distributed
programs.

To illustrate how this abstraction approach works, consider the example program
of Figure 1.2. This program consists of two threads that communicate via syn-
chronous message passing, meaning that all send operations block until they are
matched by a recv in another thread. The goal is to verify whether the assertion
on line 3 holds.

This program is hard to reason about using standard approaches like CSL. This
is because the asserted property is inherently global: it validity depends on the
computation of, and interaction with, the other thread. More advanced program
logics and approaches, like assume-guarantee reasoning, might help, but the extra
specifications for assumptions and guarantees from/to the environment may not
always be easy to specify, especially when the program becomes more complicated.

Our approach is to specify the send /receive behaviour of this program as a process-
algebraic model, for example P || P2, where P; and P» are defined as:

Py, 2 send(8) - B, recv(z) - 7(z = 24) Py £ %, recv(y) - send(y x 3)

In this approach, all send actions correspond to send instructions in the program,
and likewise for recv and recv. Moreover, the assertion in the program can be
modelled as the ? action. One may now proceed to analyse all traces of Py || P2
using a model checker, viz. mCRL2, to reason indirectly about the send/recv
behaviour of the program. For this particular process, there is only one such
trace possible, namely “comm(8) - comm(24) - 7(24 = 24)”, where comm denotes the
synchronisation of a send with a recv, i.e., a communication action. This trace
gives evidence that the property of interest indeed holds. Finally, by using our
refinement technique, we may use this property in the deductive proof of the
program, to proof the assertion.
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This verification approach is thread-modular and compositional, is proven sound
with help of the Coq proof assistant, and is implemented in the Viper concurrency
verifier.

1.4 Thesis Structure

Part I of this thesis is organised as follows:

Chapter 2 gives preliminaries on the theory of deductive verification, first in a
sequential setting (Hoare logic), and then in a concurrent setting (Concur-
rent Separation Logic). After that, we introduce VerCors and explain how
VerCors implements the concepts of CSL to reason automatically about con-
current software. The chapter concludes with a short verification example.
This chapter is based on the following publications:

e S. Blom, S. Darabi, M. Huisman, and W. Oortwijn. The VerCors Tool
Set: Verification of Parallel and Concurrent Software. In N. Polikarpova
and S. Schneider, editors, integrated Formal Methods (iFM), volume
10510 of LNCS, pages 102-110. Springer, 2017

e S. Joosten, W. Oortwijn, M. Safari, and M. Huisman. An Exercise in
Verifying Sequential Programs with VerCors. In A. Summers, editor,
Formal Techniques for Java-like Programs (FTfJP). ACM, 2018

Chapter 3 answers RQ 1, by contributing a formal, mechanised proof for the
verification of the parallel NDFS algorithm in VerCors. The chapter first
gives an informal correctness proof of parallel NDFS, and then explains how
this proof is encoded and proven by VerCors. The chapter concludes by
explaining how this verification allows easily verifying correctness of vari-
ous optimisations of parallel NDFS. This chapter is based on the following
publication:

e W. Oortwijn, M. Huisman, S. Joosten, and J. van de Pol. Automated
Verification of Parallel Nested DFS. In Submitted, 2019

Part IT of this thesis is organised as follows:

Chapter 4 answers RQ 2, by illustrating our process-algebraic abstraction ap-
proach on various examples, including: a concurrent implementation of a
GCD algorithm, a locking protocol, and on the formal verification of a clas-
sical leader election protocol, implemented on shared-memory. This chapter
is based on the following publication:
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e W. Oortwijn, S. Blom, D. Gurov, M. Huisman, and M. Zaharieva-
Stojanovski. An Abstraction Technique for Describing Concurrent Pro-
gram Behaviour. In A. Paskevich and T. Wies, editors, Verified Soft-
ware: Theories, Tools, and Experiments (VSTTE), volume 10712 of
LNCS, pages 191-209, 2017

Chapter 5 presents the formalisation of the abstraction approach introduced in
Chapter 4, consisting of (1) the syntax and semantics of the process alge-
bra language for the abstractions; (2) the syntax and semantics of a simple
programming language that is used to formalise the approach on; (3) the
syntax and semantics of the assertion language; (4) the proof rules of the
program logic, which extends on CSL; (5) soundness of the program logic;
and (6) details on its implementation in VerCors. This chapter is based on
the following publication:

e W. Oortwijn, D. Gurov, and M. Huisman. Practical Abstractions for
Automated Verification of Shared-Memory Concurrency. In D. Beyer
and D. Zufferey, editors, Verification, Model Checking, and Abstract
Interpretation (VMCAI), LNCS. Springer, 2020. To appear

Chapter 6 illustrates our abstraction approach on an industrial case study, cov-
ering the formal verification of a safety-critical tunnel system. In this case
study, the mCRL2 process algebra language is used to model the state-
machine specification of the tunnel system, which is provided by the Dutch
government. After this, we use our abstraction technique to formally prove
that the resulting process-algebraic model is a sound abstraction of the actual
code implementation. We also verified some properties over this model, and
found some undesired behaviour, which we could reflect back onto program
behaviour. This chapter is based on the following publication:

e W. Oortwijn and M. Huisman. Formal Verification of an Industrial
Safety-Critical Traffic Tunnel Control System. In W. Ahrendt and
S. L. Tapia Tarifa, editors, integrated Formal Methods (iFM), LNCS.
Springer, 2019. To appear

Part 11T of this thesis is organised as follows:

Chapter 7 answers RQ 3, by discussing how process-algebraic abstractions can
be adapted and used in a distributed setting, to reason about message passing
behaviour. In addition, we show how this combines with algorithmic analysis,
allowing the use of model checking to conclude properties about message
exchanges, while using deductive verification to reason about computations.
This chapter is based on the following publication:
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e W. Oortwijn and M. Huisman. Practical Abstractions for Automated
Verification of Message Passing Concurrency. In W. Ahrendt and S. L.
Tapia Tarifa, editors, integrated Formal Methods (iFM), LNCS. Springer,
2019. To appear

Chapter 8 concludes the thesis, by revisiting the three research questions, and
by giving an overview of further challenges and future work.

A complete list of publications by the thesis’ author (including submitted ones) is
provided in Appendix C on page 261.

1.4.1 Suggested Method of Reading

Figure 1.3 shows the thesis structure, and gives the suggested method of reading.

1.4.2 Sources

All definitions and proofs in this thesis have been formalised either in VerCors or
Coq. The sources can be found in a Git repository available at:

https://github. com/wytseoortwijn/SupplementaryMaterialsThesis

We often omit details or proofs from lemmas and theorems given in this thesis,
since the formalisation is quite involved. These details are deferred to the ap-
pendix, or otherwise to the encodings in VerCors or in Coq.
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CHAPTER 2

Background on Deductive
Concurrency Verification

Most of the techniques in the following chapters rely on (concurrent) separation
logic, and discuss verification examples or case studies that have been worked-out
in the VerCors concurrency verifier. This chapter gives the required background
information on the theory and practice of concurrency verification.

Section 2.1 starts by giving background on Hoare logic and concurrent separation
logic. Section 2.2 discusses how VerCors applies these theories to reason auto-
matically about various forms of concurrency'. Finally, Section 2.3 demonstrates
VerCors on a slightly bigger verification example that is taken from the VerifyThis
2018 verification competition: the verification of a gap buffer?.

2.1 Deductive Software Verification

This thesis primarily studies deductive verification techniques to reason about both
sequential and concurrent software. Deductive reasoning here means reasoning
logically about the meaning of a program, by deriving logical conclusions about it
based on premises or axioms that capture the meaning of its subprograms.

2.1.1 Hoare Logic

The pioneers on deductive software verification are Tony Hoare and Robert Floyd,
who invented (Floyd—)Hoare logic in 1969 [Flo67, Hoa69]. Hoare logic provides
a formal technique to reason about the correctness of sequential imperative pro-

IThis section is based on the article [BDHO17].
2This section is based on the article [JOSH18].
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grams. The central logical constructs of Hoare logic are Hoare triples, which have
the form

{P}C{Q} (2.1)
where C' is a program, and P and Q are logical assertions, traditionally in first-
order logic. These Hoare triples give an azxiomatic meaning to programs, by de-
scribing their semantics as a proof system. In particular, they describe the effect
of the computation of the program C in terms of the assertions P and Q, which
are referred to as C’s precondition and postcondition, respectively. The intuition
of Hoare triples in an operational sense is that, starting from any program state
satisfying P, the final program state upon termination of C' will satisfy Q. This
notion of correctness is called partial correctness. There is also a notion called total
correctness, often written [P] C [Q], that requires C' to also necessarily terminate.
This relation between the axiomatic meaning of Hoare triples and operational
meaning of programs is often made explicit, by means of a soundness theorem.

Hoare logic provides a compositional proof system, consisting of axioms and in-
ference rules that allow to prove that programs are correct with respect to their
specifications, i.e., pre and postconditions. By compositional we mean that these
inference rules follow the structure of the program: they allow to compose proofs
of smaller programs to construct proofs of larger, composite programs.

We write - {P} C {Q} to indicate that a proof can be derived for the Hoare triple
{P} C {Q} by using the inference rules of Hoare logic. Furthermore, we say that
a specified program {P} C' {Q} is verified if a proof can be derived for it, that is,
if - {P}C{Q}.

The most important Hoare logic rules are listed below.

Assignment. The following axiom, named HT-ASSIGN, handles = := e instruc-
tions, which assign the evaluation of the expression e to a local variable zx.
HT-ASSIGN describes that, to prove that an arbitrary assertion P holds after
computing the assignment, one needs to assume that P|[x/e] holds before the
assignment, i.e., P with every free occurrence of x substituted by e:

HT-ASSIGN

FA{Plz/e]} z := e{P}

Sequential composition. The inference rule HT-SEQ for the sequential compo-
sition C4; Cs of two programs C; and C, states that, if proofs can be derived
for C; and Cs, then these can be composed into a proof derivation for Cy; Co,
under the condition that C7’s postcondition coincides with Cs’s precondition:

HT-SEQ
F{PrCi{Q}  F{Q}C:{R}
= {P} 01; CQ {R}
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Conditionals. The following rule for if b then C; else Cs programs states that, if
proofs can be derived for the subprograms C7 and C5 in which the Boolean
condition b respectively holds or not holds, then these two proofs can be
composed into a single proof of the composite if-statement:

HT-IF
F{PAbtCi{Q}  H{PA-b}Co{Q}
- {P}if b then C; else C; {Q}

Loops. The inference rule HT-WHILE for while-loops, while b do C, requires the
existence of a loop invariant P, and states that, if P holds: (i) before entering
the loop, (ii) is preserved by every iteration of the loop, and (iii) holds
afterwards, then P is a specification for the program while b do C"

HT-WHILE

F{P Ab}C{P}
F {P} while b do C {P A —b}

Consequence. The rule of consequence, HT-CONSEQ, allows strengthening the
precondition and weakening the postcondition of any proof derivation. The
entailment P F Q means that Q is provably a logical consequence of P, that
is, @ can be proven to hold under the hypothesis that P holds:

HT-CONSEQ
PEP  H{P}C{Q} QFQ
- {PyC{Q)

Dijkstra has shown in 1976 that, given any program C (in the simple language for
which Hoare logic reasoning is formalised), determining whether C' satisfies a given
specification P, Q, i.e., F {P} C {Q}, can be automated and reduced to a problem
of satisfiability solving. This is done by defining a predicate transformer semantics
for programs, that determine their weakest preconditions. More concretely, the
weakest precondition of a program C' with respect to a postcondition Q is defined
in terms of a function wp(C, Q), by structural recursion on C. A definition of wp
can be found in the original work of [Dij76].

Determining weakest preconditions has shown to be an effective strategy for pro-
gram verification, since proving whether - {P} C' {Q} has shown to be equivalent
to proving whether wp(C, Q) follows from P:

F{P}C{Q} if and only if FP = wp(C, Q)

The latter strategy is effective, as it provides more automation than determining
whether - {P} C {Q} can be derived, since, for example, application the HT-SEQ
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rule requires one to find an intermediate assertion. The wp predicate transformer
provides an automated technique for finding such intermediate assertions.

The theory of Hoare logic and wp-reasoning have inspired tremendous research,
and form the basis of many modern tools and techniques for program verifica-
tion [BH14a), including Viper and VerCors (see §2.2), which we use later, in
Chapters 3—-7.

2.1.2 Owicki—Gries Reasoning

The classic system of Hoare logic only allows reasoning about sequential programs.
Reasoning about concurrent software is more challenging, as this requires reasoning
about all possible interactions and interleaving of concurrent threads.

The first steps towards concurrency verification were made by Susan Owicki and
David Gries in 1976 [OGT75], by extending Hoare logic with the following inference
rule, sometimes called the Owicki-Gries rule, for parallel composition:

F{Pi1}C1 {91} F{P2} C2{Q2} provided that the proof derivations
F{P1 AP} Cy || Co {Q1 A Qo) of C1 and Cs are non-interfering.

The exact definition of proof interference is quite technical. Intuitively, two proof
derivations + {P;} C; {Q;} for i = 1,2 are interference-free if - {P1} C1 {Q1} is
stable (remains derivable) under any assignments executed by Cs, and vice versa.

However, this extra condition of non-interference makes the Owicki—Gries rule
non-compositional: the required information of interference is not present in the
specifications of C; and Cs, and has to be derived separately from the proof
derivations of C7 and C5. This non-compositionality limits the applicability of the
Owicki—Gries approach. For example, from a software development perspective,
it disallows developing C; and C5 independently, as the Owicki-Gries proof rule
requires global information of the whole composite system C; || C2 [XRH97].
This observation leads to the insight that, in order for the proof rule for parallel
programs C; || Cy to be compositional, the information of thread interference
should be present in the specifications of C; and Cs.

2.1.3 Concurrent Separation Logic

The above insight regarding compositionality motivated the development of con-
current separation logic (CSL) [O’HO7, Bro07], an extension of Hoare logic for
reasoning about concurrent heap manipulating programs. More specifically, CSL
is able to reason about concurrent programs that interact with a shared heap, and
can also reason about basic locking, by having a proof rule for atomic programs,
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which are of the form atomic C. This thesis primarily focuses on CSL, or more
specifically, on intuitionistic> CSL with support for permission accounting.

Ownership and disjointness. The two central concepts of CSL are ownership
and disjointness of ownerships. CSL extends the assertion language of Hoare logic
with predicates of the form ¢ <% v, which express that the heap contains the value
v at location ¢. Moreover, m € (0, 1]g is a fractional permission [Boy03, BCOP05]
that determines the amount of ownership that is available for ¢: the predicate
RN provides write access to £, whereas £ <= v with m < 1 provides read-only
access to £. We use the shorthand notation ¢ < — to abbreviate Jv. £ < v.

The notion of disjointness is implemented via the P Q connective, which is known
as the separating conjunction. The assertion P*Q, which is read “P and separately
Q7 states that the ownerships expressed by P and Q are disjoint, e.g., disallowing
them both to express write access to a common heap location. CSL comes with
the following rule that allows heap ownership to be split and merged, where the
notation 4 means that the entailment rule holds in both directions:

“—-SPLIT-MERGE
/i i N S Ry P+ N S AP N

The key idea of CSL is that the * connective can be used to express information
regarding thread interference. If two programs C; and C5 can be specified and
proven to operate on disjoint parts of the heap, then their specifications can safely
be combined into a specification of the composite program C; || Cs, in a composi-
tional manner. The <»-SPLIT-MERGE rule then allows splitting heap ownership (in
the left-to-right direction), to be distributed over concurrent threads, and allows
these ownerships to be merged (right-to-left) when the threads terminate and con-
verge. Additionally, the soundness argument of CSL ensures that the total sum
of permissions for any heap location does not exceed 1, which implies that any
verified program is free of data races. A data race occurs when two threads access
a common entry on the heap, where at least one is a write access.

Moreover, we present an intuitionistic version of CSL, which means that it includes
the following entailment rule that allows “forgetting” about resources:

*-WEAK

PxQkFP

Including the *-WEAK rule in the CSL proof system gives the advantage that one
may write specifications that express properties over only parts of the heap, i.e.,

3Intuitionistic here means that the proofs of programs do not necessarily have full knowledge
of the contents of the heap. The proofs are allowed to forget/lose knowledge of the heap, with
fits naturally with the garbage collected nature of languages like Java or C+#.
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the exact contents of the heap does not have to be specified. Intuitionistic CSL
therefore befits garbage collected languages, where the exact contents of the heap
are never really known.

Program judgments. In CSL, judgments of programs are of the form:
REA{P}C{Q} (2.2)

where {P} C {Q} is a standard Hoare triple, and R is a resource invariant that
captures the ownerships that are protected by thread synchronisation mechanisms,
such as locks. Resource invariants can only be acquired and used in the context
of atomic programs, atomic C, as these gain exclusive access to the heap by the
scheduler during program execution.

The operational meaning of a program judgment is that, starting from any state
satisfying P xR, the invariant R is preserved throughout execution of C, and any
final state upon termination of C' satisfies Q * R.

The most important new proof rules of CSL w.r.t. Hoare logic are given below.

Heap allocation. The following proof rule HT-ALLOC covers z := alloc e in-
structions, with e an expression, which allocate a fresh location on the heap
and write the value [e] to it (i.e., the result of evaluating e). The location
of the allocated heap cell is then written to the variable z.

HT-ALLOC

x & fv(R,e)
R+ {true} z := alloc e {z < ¢}

A heap ownership predicate x L eis produced by this rule, that (i) expresses
write access to the allocated heap cell, and (ii) states that it holds the value
represented by e. Write access is ensured, since the thread that executed the
alloc instruction has exclusive knowledge of the existence of this new heap
cell. The function fv is for obtaining the set of free program variables in its
operands.

Heap reading. The instruction x := [e] denotes reading from the heap, where
[e] denotes heap dereferencing, with e an expression whose evaluation deter-
mines the heap location to dereference. The proof rule HT-READ for heap
reading is similar to HT-ASSIGN (page 32), but expresses that at least read
access is needed for the dereferenced heap location.

HT-READ

x € V(R e e)
REA{P[z/e]xe e }x:=[e]{P*xese}
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Heap writing. The following proof rule, HT-WRITE, describes that heap writing
[e] := €’ requires write access to the heap location described by e, and ensures
that after its computation the heap holds the value e’ at this location.

HT-WRITE
RE{e —}[e] :i=¢ {e <> €}

Heap deallocation. The instruction dispose e deallocates the heap cell at loca-
tion e. Its proof rule, named HT-DEALLOC, requires exclusive (write) access
to this heap location, and consumes the heap ownership predicate.

HT-DEALLOC
R+ {e <> —}dispose e {true}

Note that, even though the proof system already includes the *-WEAK rule
to forget about heap ownership, the above HT-DEALLOC rule is still needed,
as it forces all ownership of a heap cell to be lost after its deallocation.

Parallel composition. The following proof rule states that, if proofs can be
derived for the programs C; and Cy, stating that both operate on disjoint
parts of the heap, then these can be composed into a proof for C || Cs.

HT-PAR
RF{’Pl}Cl{Ql} fV(R,Pl,Cl,Ql)ﬂmOd(Cg>
RE {PQ}CQ{QQ} fV(R7P2,CQ,Q2)mmOd(Cl)

R E {Pl *PQ}Cl || CQ {Ql * QQ}

The auxiliary mod(C) operation yields the set of local variables that are
written to by C. The two extra premises on the right are needed for sound-
ness, and exclude data races on the stack, i.e., data races with respect to
local variables. If desired, one may get rid of these two extra conditions by
treating “variables as resources” [BCY06], that is, by assigning and explicitly
handling ownership of local variables, in the same style as heap ownership.

0
0

Atomics. The following proof rule for atomic C' programs enables one to obtain
the resource invariant for the proof of the inner program C.

HT-ATOM

true - {P*xR}C{Q*R}
R+ {P}atomic C {Q}

Resource invariant sharing. The proof system of CSL allows sharing resources,
by extending the resource invariant with disjoint parts R’ of the local state:

HT-SHARE

R+R'F {P}C{Q}
RE{P«R'}C{Qx«R'}
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Frame rule. Finally, the following important inference rule, known as the frame
rule, makes (concurrent) separation logic a scalable technique for reasoning
about concurrent programs: it enables local reasoning [ORYO01]. More specif-
ically, it allows localising the proof of a program C' to only the resources that
are needed by C| i.e., C’s footprint:

HT-FRAME

REA{P}C{Q} fv(F) Nmod(C) =0
REA{P*xF}C{Qx*F}

The assertion F in HT-FRAME is often referred to as the frame (or the frame
aziom) [MHS81]. The frame is the part of the local state that is not accessed
nor changed by C—it is in fact disjoint from the footprint of C, due to x*.
The extra premise is needed to ensure that also among local variables the
frame F is independent of the footprint of C. Like with HT-PAR, one may
get rid of this extra premise by treating local variables as resources [BCY06]
and explicitly track their ownerships.

Example 2.1.1 (Application of the frame rule). The following proof tree shows
the use of HT-FRAME to derive a proof for the program [x] := 3.

HT-WRITE

Rb{z < —}[z] :=3{z >3}
RE{z D —xy S THa] :=3{z 5 3xy 57}

HT-FRAME

Also observe that the assertion T < — % y < 7 disallows x and y to be aliases,
since if they were aliases, the total amount of available permissions for this heap
location would be (at least) 1+ 7, and would thus exceed 1, which is not possible.

Example 2.1.2 (Handling concurrency and atomics). Figure 2.1 shows a proof for
the specification {x < 1} atomic [z] := 7 || atomic y := [z] {z <> —xy > 0}, in
which the HT-PAR, HT-ATOM and HT-SHARE rules are applied. Notice that atomics
are required here, since otherwise there would be a data-race on the heap location
x. The proof strategy is to share the ownership x <L 1 with the resource imnvariant,
so that both threads can obtain permission to dereference x when needed.

2.2 The VerCors Concurrency Verifier

This section gives an overview of concurrency verification using the VerCors veri-
fier [BDHO17]|, which we use in various chapters of this thesis. VerCors uses CSL
as its logical foundation, and allows verifying data-race freedom, memory safety,
and functional correctness of concurrent programs written in high-level languages.
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[ OpenCL | > VerCors Viper

= QL =N

=> | Transformations |
Java :>

Figure 2.2: The architecture of the VerCors verifier.

Z3

Multiple widely-used languages with parallelism and concurrency features are tar-
geted, such as Java, OpenCL, and OpenMP for C. VerCors essentially implements
CSL for reasoning about various programming and concurrency models, including
object-orientation (e.g., Java), homogeneous parallelism (e.g., GPGPU kernels of
OpenCL), dynamically scoped parallelism (e.g., fork/join concurrency), and de-
terministic parallelism (e.g., OpenMP compiler directives for parallelisation).

VerCors is a tool of static verification in a design-by-contract fashion: it analyses
the source code of an input program without actually executing it, to determine
whether it satisfies a given specification. The specifications are given in the form
of program annotations, as pre- and postconditions in the style of JML [LBR99|.

Section 2.2.1 provides a quick description of the architecture of VerCors, after
which Section 2.2.2 discusses several examples to illustrate its support for concur-
rency reasoning, and explains how this reasoning connects to CSL (i.e., §2.1.3).

2.2.1 Architecture of VerCors

The main aim of VerCors is to make existing program verification technology us-
able for high-level programming languages and advanced language features. This
is reflected in the design of VerCors, which is implemented as a collection of com-
piler transformations and uses the existing Viper technology as back-end [MSS16].
Figure 2.2 gives an overview of the architecture of VerCors. Viper allows reasoning
about programs with persistent mutable state, annotated with separation logic-
style specifications. The compiler transformations are used to transform different
high-level language/concurrency features into Viper code. The Viper technology
provides two styles of reasoning: verification condition generation (via Boogie),
and symbolic execution. The symbolic execution engine is the most powerful and
provides support for, e.g., quantified permissions, which we heavily rely upon.

VerCors takes as input programs written in high-level programming languages, an-
notated with JML-style annotations, and transforms these into verification prob-
lems encoded in the Viper language. The current supported input languages are
Java, PVL, OpenCL, and OpenMP for C. VerCors supports reasoning about the
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main concurrency-related features of these languages. The support for OpenCL
covers only the verification of kernels, including barrier synchronisation and atomic
operations, but not host code (which would mostly require engineering). PVL,
which abbreviates Prototypal Verification Language, is a Java-like procedural toy
language used for quick prototyping of new verification features. Notably, it has
support for kernels and host code. VerCors also supports a substantial subset of
OpenMP, essentially characterising deterministic parallel programming.

VerCors is designed with modularity in mind. As a result, VerCors can easily
be extended with new parallel or concurrent pointer languages, by providing a
parser that transforms input programs and their specifications into the interme-
diate language of VerCors. All further program transformations are defined over
this intermediate language, thereby automatically providing verification support
for the features of the extended language.

2.2.2 Concurrency Reasoning with VerCors

To reason about concurrent software, VerCors uses (the principles of) intuitionistic
CSL as its logical foundation. More precisely, VerCors builds on Implicit Dynamic
Frames (IDF) [SJP09, SJP12], which is a variant of separation logic that is essen-
tially equivalent to (intuitionistic) CSL [PS11], but that fits more naturally with
object-oriented languages, and makes specification writing more convenient.

IDF uses the same principles of ownership and disjointness of shared memory as
CSL, but uses a slightly different way to specify ownership. In VerCors, ownership
of shared memory, e.g., a field f of an object o, is specified with a Perm(o.f,7)
permission predicate, where m denotes the amount of ownership that is available
for o.f, in the same style as the < predicates of CSL. These predicates may also
be split and merged likewise, using the following rule.

PROC-SPLIT-MERGE
Perm(o.f, w1 + m2) A Perm(o. f,m1) * Perm(o.f, m2)

Moreover, IDF allows expressions to be heap-dependent (i.e., to refer to shared
memory), but enforces that any reference to shared memory is framed by a per-
mission predicate, that gives the required access rights. For example, if o.f were
an integer field, then Perm(o.f,7)*o0.f > 0 would be a properly framed assertion:
the access to o.f is preceded by an ownership predicate that provides the required
access rights. However, the assertion o.f > 0 (without Perm predicate) would not
verify, nor would o.f > 0 * Perm(o.f,7), since in these cases the access to o.f is
not framed (is not preceded by) permission specifications* to read from o.f.

4Notice that, due to these framing conditions, the separating conjunction is no longer com-
mutative, i.e., P * Q does not necessarily entail Q % P in IDF, which is in contrast to CSL.
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In the remainder of this thesis we sometimes switch between using the CSL and
IDF formalisms. More specifically, verification examples and case studies that
have been performed with VerCors (e.g., Chapters 3 and 6, and the remainder of
this chapter) are presented in IDF style, whereas the more theoretical chapters
(e.g., Chapters 4-5 and 7) build on CSL, and are therefore presented as such.

The remainder of this section discusses various examples of concurrency reason-
ing with VerCors. §2.2.2.1 discusses basic handling of ownership, after which
§2.2.2.2 explains how loops are specified and verified. §2.2.2.3 and §2.2.2.4 dis-
cusses statically-scoped parallelism and locking, respectively, in the style of GPU
kernels. Finally, §2.2.2.5 and §2.2.2.6 discuss dynamically-scoped (fork/join) con-
currency and non-reentrant locking in VerCors, respectively.

2.2.2.1 Specifying Ownership

To better illustrate how ownership is specified in VerCors, consider the following
simple example program, consisting of a class Counter with an integer field counter,
and a procedure incr(int n) that increases counter by a specified amount n.

Example 2.2.1 (A simple counter).

class Counter do
int counter;

‘ counter := counter +n;

1

2

3

4 | void incr(int n)
5

6 | end

7

Even though the above program does not have any specification annotations yet,
if one would run VerCors on it, it will complain about insufficient permission for
the assignment to counter on line 5. This is because VerCors by default checks
for memory safety. Observe that counter is shared memory, and may potentially
be accessed by other threads concurrently, and thereby cause undesirable memory
access patterns like data races. To prevent these, VerCors requires to specify write
permission to counter, as a precondition of incr, in the following way.

Example 2.2.2 (Specifying ownership to this.counter).
requires Perm(this.counter,1);
ensures Perm(this.counter,1);
void incr(int n)
counter := counter +n;
end

(2 N I
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The Perm ownership predicates may be split and merged along their fractional
permissions, and be separated by separating conjunction. To illustrate this, the
annotations in the following example are equivalent to the ones of Example 2.2.2,
where the purple lines {-- -} are internal, intermediate proof steps that are gener-
ated and proven automatically by VerCors.

Example 2.2.3 (Splitting and merging ownership). On line 5 in the following
example, the PROC-SPLIT-MERGE rule is applied right-to-left, to merge the read
ownerships to counter into write ownership, whereas on line 8 it is applied to split
this write ownership back into separate read ownerships.

requires Perm(counter, %) * Perm(counter, %),
ensures Perm(counter, 1) x Perm(counter, 3);
void incr(int n)
{Perm(counter, %) * Perm(counter, %)}
{Perm(counter,1)}
counter := counter + n;
{Perm(counter,1)}
{Perm(counter, %) * Perm(counter, i)}
end

© 0 N0 ok W N =

However, the total sum of fractional permissions for any shared location cannot
exceed one. Any assertion that expresses ownership more than one for any shared
location is equivalent to false, as is illustrated below.

Example 2.2.4 (Ownership exceeding write permission). In the following code
snippet, the required permissions are first merged on line 5, which allows false to be
deduced on line 6, using the rule of consequence, HT-CONSEQ (defined on page 33).

requires Perm(counter, 1) x Perm(counter, %);
ensures false;
void incr(int n)
{Perm(counter, 1) x Perm(counter, ]Z)}
{Perm(counter, 2)}
{false}
counter := counter +n;

{false}

end

© W N o s W N

Besides heap ownership specifications, VerCors also allows writing functional spec-
ifications, for example that, after termination of incr, the value at counter has
indeed been increased by n. This is shown by the following example.
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Example 2.2.5 (Functional specification of incr).

1 requires Perm(counter,1);
2 ensures Perm(counter,1);

3 ensures counter = \old(counter) + n;
4 void incr(int n)

5 ‘ counter := counter +n;

6 end

Note that, if one would remove the postcondition on line 2 of Example 2.2.5, the
program would no longer verify, as in that case the postcondition on line 3 would no
longer be framed by access rights to counter. This is expected: if no permission to
counter were available, then counter = \old(counter) + n cannot be guaranteed,
as another thread might invalidate this postcondition right after termination of
incr.

As discussed already, an important aspect of VerCors is that it builds on intuition-
istic separation logic. This means that proof derivations do not have to be aware
of the exact contents of the heap. In contrast, in classical separation logic the proof
needs to state exactly what is in the heap. VerCors uses intuitionistic CSL, since
it fits more naturally with the garbage-collected nature of modern programming
languages like Java and C#, where the exact contents of the heap is never exactly
known. As a consequence, VerCors may lose (forget about) resources if desired,
as is indicated by the following code snippet.

Example 2.2.6 (Leaking ownership of counter). The code snippet presented below
shows an application of the *-WEAK rule (page 35) on line 9, after the ownership
of counter has been splitted on line 8.

1 requires Perm(counter,1);

2 ensures Perm(counter, 1);

3 ensures counter = \old(counter) + n;

4 void incr(int n)

5 | {Perm(counter,1)}

6 counter := counter +n;

7 | {Perm(counter,1) x counter = \old(counter) + n}

8 | {Perm(counter, 3) * Perm(counter, 1) x counter = \old(counter) + n}
o | {Perm(counter, }) * counter = \old(counter) + n}
10 end

Observe that the Perm ownership annotations (e.g., lines 1 and 2 in the above
example) have a different meaning than annotations that express functional cor-
rectness (e.g., line 3). For example, the precondition on line 1 in Example 2.2.6
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requires any thread invoking incr to give up the specified permission to counter,
i.e., the predicate Perm(counter, 1) is consumed /inhaled in the proof system. Con-
versely, the ensures clause on line 3 expresses that, after termination of incr, the
calling thread gets back (part of) the ownership to counter, i.e., the predicate
Perm(counter, %) is produced /exhaled in the proof system. The functional spec-
ification on line 3 is different, in the sense that it expresses a Boolean property
that relates the output of incr to its input. In separation logic, such assertions
are often referred to as pure assertions, whereas assertions that express ownership
(e.g., lines 1 and 2) are referred to as spatial assertions. There are some logical dif-
ferences between spatial and pure assertions. For example, the negation of spatial
assertions is not defined, e.g., =Perm(counter, 1) has no meaning in VerCors.

Of course, leaking ownership as shown in Example 2.2.6 has consequences. For
example, the following example program would fail to verify.

Example 2.2.7 (Insufficient ownership). Consider the following code snippet that
extends Example 2.2.6. The second call to incr on line 6 will fail, as there is
sufficient permission available to satisfy incr’s precondition, due to leakage.

1 requires Perm(counter,1);
2 void incr2(int n)
3 | {Perm(counter,1)}

4 | incr(n);

5 | {Perm(counter, 1) x counter = \old(counter) + n}

6 | incr(n); // verification failure: precondition not satisfied!
7 end

Ownership leakage is sometimes used as a trick to specify that certain fields become
read-only from some point on (e.g., after calling some function).

2.2.2.2 Loops and Loop Invariants

Reasoning about loops is slightly more involved than reasoning about other control-
flow language constructs, since it is generally not known how many times a loop
will iterate, or even whether it will terminate or not. To deal with this uncertainty
it is common to maintain a loop invariant: an assertion that holds before entering
the loop and after termination of the loop, and that can be reestablished after
every iteration of the loop (see also the HT-WHILE rule on page 33).

Example 2.2.8 illustrates how loops are specified in VerCors. It shows a simple
procedure, named £ill, that “fills” a given integer array A in the sense that a value
k is written to every entry of A. The example uses context P annotations, which
are shorthands for requires P; ensures P and are written to reduce duplication.



46 Chapter 2. Background on Deductive Concurrency Verification

Example 2.2.8 (Specifying while loops).
1 context A # null;
2 context V& j.0 < j < A.length — Perm(Alj],1);
3 ensures Vj.0 < j < A.length — Alj] =k;
4 void £ill(int[] A, int k)
5 | int i:=0;

loop invariant A # null;

loop _invariant ¥« j.0 < j < A.length = Perm(A[j],1);
loop invariant 0 < i < A.length;

10 | loop invariant Vj. 0<j <i = A[j] =k;

11 | while i < A.length do

12 Ali] == k;

13 1:=14+1;

14 | end

© 0w N o

15 end

The loop _invariant annotations in Example 2.2.8 together form the assertion
P in the Hoare logic rule HT-WHILE (page 33). In order to verify the property of
functional correctness of £i11 on line 3, the loop body needs to have write access
to A[i] on every iteration i. To resolve this, lines 2 and 8 specify write access for
every element in A, using a special V* quantifier, which is known in the literature
as the iterated separating conjunction. In particular, in the above example, the
quantified expressions on lines 2 and 8 are a shorthand for expressing:

Perm(A[0],1) * Perm(A[1],1) % --- * Perm(A[A.length — 1],1) (2.3)

More precisely, W . P(x) expresses the iteration P(uvg) * P(v1) * - - - of assertions
P(v;) for all values v; of the appropriate type, conjoined by .

2.2.2.3 Statically-Scoped Concurrency

Notice that all iterations of the while-loop in Example 2.2.8 operate on disjoint
memory, and are thus independent of one another, which gives easy opportunities
for parallelism. VerCors has support to reason about statically-scoped parallel con-
structs, like GPGPU kernels, which spawn a number of threads that execute the
same program uniformly, but with different data (which is known as the SIMD pro-
gramming model). In the previous example, £i11 may be parallelised by spawning
a thread for each element in A in the style of GPU kernels, so that each thread
tid only writes to A[tid] and performs one iteration of the loop, as follows.

The contract at lines 6-8 is called an iteration contract, and constitutes the pre-
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Example 2.2.9 (Statically-scoped parallelism).

1 context A # null;

2 context V& j.0 < j < A.length — Perm(Alj],1);
3 ensures Vj.0 < j < A.length — Alj] =k;
4 void parfill(int[] A, int k)

5 | par int tid := 0 to A.length

6 context A # null;

7 context Perm(A[tid], 1);

8 ensures A[tid] = k;

9 do

10 | Altid) := k;

11 | end

12 end

and postcondition of every parallel instance. From a separation logic point-of-
view, the parallel block on lines 5-11 together with its iteration contract are an
instance of a generalised version of the HT-PAR proof rule (page 37), namely:

HT-PAR-N

Vtid € [0,n]y . F {P(tid)} Cpa {Q(tid)}
- (V& tid € [0, ]y P(tid)} Co || -~ || Crn {Vx tid € [0, ]y O(tid)}

The pre- and postconditions of the iteration contract on lines 6-8 correspond to
the parameterised assertions P(tid) and Q(tid) in the above rule, respectively. In
this case, the iteration contract specifies the ownership assigned to every thread
tid, namely Perm(A[tid],1), as well as their contribution, A[tid] = k. VerCors
automatically combines these contributions (by solving the iterated separating
conjunction in HT-PAR-N’s conclusion) to ensure the property on line 3.

VerCors is able to reason about more elaborate applications of statically-scoped
parallelism, like GPU kernels with atomics and barriers [ADBH15], essentially by
using the same principles. For example, VerCors can also reason about reduction
patterns in GPU kernels [BDHO17], e.g., kernels that have as input an array, and
produce only a single scalar value as output (for example the sum of all elements
of the input array). Furthermore, VerCors is able to reason about deterministic
parallel programs in the context of OpenMP [DBH17|. Here, VerCors is able to
verify whether sequential C programs annotated with OpenMP compiler directives
can safely be parallelised, without changing the functional meaning of the program
with respect to sequential execution. For more details we refer to [Dar18].
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2.2.2.4 Statically-Scoped Locking

In the parallel program of Example 2.2.9, all threads work on disjoint parts of
the heap. However, in many practical scenarios the shared-memory accesses of
different threads overlap. Example 2.2.10 presents one such scenario: a concurrent
program that determines the sum of all elements of a given input array A.

Example 2.2.10 (Statically-scoped locking). Verification of the following code
snippet requires an application of the HT-SHARE rule (see page 37) on lines 8-17,
as well as an application of the HT-ATOM rule (also on page 37) on lines 13-15.

class Summation do
int sum;

1
2
3
4 | context A # null;

5 | context V«j.0 < j < A.length = Perm(A[j], 3);
6 | context Perm(sum,1);

7 | void summation(int[] A)

8

9

invariant Perm(sum,1) do
par int tid := 0 to A.length
10 context A # null;
11 context Perm(A[tid], 3);
12 do
13 atomic do
14 | sum := sum + A[tid];
15 end
16 end
17 end
18 | end
19 end

The program of Example 2.2.10 takes an integer array A as input, calculates
the sum of all A’s elements, and writes the result to the integer field sum. The
calculation of the sum is done concurrently, by spawning a thread for each element
of A, that contributes the value A[tid] to the total sum. What makes this example
difficult, is that all threads need to be able to write to sum. This is solved using
atomics, on lines 13—-15, using the language construct atomic C, which creates an
implicit lock with a static scope that guarantees atomic execution of the program
C. This in itself is not enough: the lock should protect enough resources so that
each thread can do the assignment of sum on line 14. This is ensured by the
invariant Perm(sum,1) construct on line 8, that indicates that the lock should
protect write access to sum, i.e., the predicate Perm(sum,1).
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Observe that the invariant R’ do C' end command is an implementation of the
HT-SHARE proof rule (introduced on page 37), with R’ the assertion that is being
shared. For our example this means that, in the body program of invariant
(lines 9-16) the write access to sum is no longer available, as it is protected by the
resource invariant. Recall from HT-ATOM that this resource invariant can only be
reacquired in the context of an atomic program, which we do on lines 13-15.

Note that this example only shows the distribution of ownership over threads and
locks, and does not contain any functional specifications. Determining whether
the correct sum has been calculated after all threads have terminated is slightly
more complex: this would require to maintain some auxiliary state to explicitly
track the contributions of each thread. More specifically, auxiliary state would
be needed to express that, when thread tid has terminated, it has contributed
Altid] to sum, and conversely, that sum is the summation of the contributions
of all threads that have currently terminated. We do not present the auxiliary
annotations required for verifying functional correctness here, but point out that
a verified version can be found online at [Sup].

2.2.2.5 Dynamically-Scoped Concurrency

Besides statically-scoped (SIMD) concurrency, VerCors also supports reasoning
about dynamically-scoped concurrency, e.g, fork/join threading for languages like
Java. Example 2.2.11 illustrates how VerCors handles fork/join concurrency on a
small example: recursively calculating the N*" Fibonacci number, where a new
thread is forked for every recursive invocation.

The example consists of a class Fib that has two integer fields, in and out, that
hold the input and output of the algorithm, respectively. The actual Fibonacci
algorithm is performed by the run procedure. In the non-trivial case in which
2 < in, run first instantiates two new objects of class Fib (on lines 16 and 18), which
in the proof system generates new permission predicates (see lines 17 and 19). This
matches with the HT-ALLOC proof rule for heap allocation given earlier, on page 36.
Then, when forking a new thread for executing fi.run() on line 20, all ownership
required by fi.run’s precondition is consumed; in this case half the ownership of
f1.in and full ownership of fi.out. Line 21 shows the remaining ownership of the
current thread. Notice that the handling of fork requires an application of the
frame rule, HT-FRAME, to frame-out half of the ownership of fi.in; and likewise
for the fork on line 22. Also notice that forking a thread generates a special Join
predicate (see lines 21 and 23), which is a token that gives the right to join that
thread, on lines 24 and 26. These tokens are needed to ensure soundness of the
logic, to prevent generating inconsistencies by joining threads multiple times. The
Join tokens are consumed when joining the threads, and are exchanged for the
postconditions of f;.run() and f.run(), see lines 25 and 27; respectively.
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Example 2.2.11 (Fork/join concurrency—calculating Fibonacci). The following
code snippet shows a classical example of fork/join concurrency: calculating the
Fibonacci number fib(N) of a given integer N. For presentational clarity the in-
termediate proof steps in purple only illustrate the distribution of ownership.

1 class Fib do
2 | int in, out;

3

4 |requires 0 < N;

5 | ensures Perm(in, 1) * Perm(out,1) *x in = N;
6 | Fib(int N)

7 | |in:=N;

8 | end

9

10 | context Perm(in, 3) * Perm(out, 1) x 0 < in;
11 | ensures out = fib(in); // the mathematical definition of Fibonacci
12 | void run()

13 if in < 2 then

14 ‘ out :=1in;

15 else

16 Fib f1 := new Fib(in — 1);

17 {Perm(fi.in, 1) x Perm(fy.out, 1) *---}

18 Fib fo := new Fib(in — 2);

19 {Perm(fy.in, 1) « Perm(fi.out,1) « Perm(fa.in, 1) * Perm(fy.0out,1) * -}
20 fork fi.runQ);

21 {Join(f1) = Perm(f1.in, 5) * Perm(fs.in, 1)  Perm(fa.out, 1) % - - -}

22 fork fo.runQ);

23 {Join(f1) = Join(f2)  Perm(fy.in, 1) x Perm(fo.in, 3) % - -}

24 join fi;

25 {Join(f2) x Perm(f1.in, 1) * Perm(f1.out, 1)  Perm(fo.in, 3) % - -}

26 join fo;

27 {Perm(fi.in, 1) x Perm(fy.out, 1) * Perm(fs.in, 1) x Perm(fo.out, 1) * - -}
28 out := fi.out + fo.out;

29 end

30 |end

31 end

2.2.2.6 Dynamically-Scoped Locking

Finally, Example 2.2.12 gives an example of dynamically-scoped locking, i.e., lock-
ing using lock and unlock language constructs, which allow the scope of the
critical region to dynamically be determined. VerCors natively supports reasoning
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Example 2.2.12 (Locks with dynamic scopes). The following code snippet shows
an example of dynamically-scoped non-reentrant locking, containing a procedure
atomic_incr that atomically increments a shared class field val by one.

1 class AtomicVal do

2 |int val;

3

4 |lock invariant Perm(this.val, 1) * this.val > 0;
5

6 | requires 0 < init;

7 | AtomicVal(int init)

8 {Perm(val, 1)}

9 val := init;
10 {Perm(val, 1) * val = init}
11 | end
12
13 | void atomic_incr()
14 {true}
15 lock this;
16 {Perm(wal, 1) * val > 0}
17 val := val + 1;

18 {Perm(val, 1) * val > 1}
19 unlock this;
20 {true}
21 |end
22 end

about non-reentrant locking, meaning that acquiring the same lock twice leads to
a deadlock in the program. However, reentrant locks have also been investigated.
We refer to [HHHOS]| for the underlying theory, and [Amil8] for VerCors support.

One of the key ingredients is a lock invariant, declared on line 4, which corresponds
to the resource invariants discussed earlier (e.g., on page 37). The lock invariant
of any object o determines the resources that are protected by the lock of 0. These
resources must be transferred to the lock invariant at the end of the constructor;
line 11 in the example. From that point on, these resources can only be obtained
while holding the lock, like on line 15, and must be transferred back to the lock
invariant when releasing the lock using unlock (see line 19).
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1 void left () 20 void insert(int c)

2 | if (I #0) then 21 | if (I =r) then

3 l:=1-1,; 22 ‘ grow();

4 r=r—1; 23 | end

5 alr] := a[l]; 24 | all] i =¢

6 | end 25 | l:=1+1;

7 end 26 end

8 void right () 27 void grow()

9 |if (r # a.length — 1) then 28 | int n := a.length;
10 all] := a[r]; 29 | int[] b := new int[n + KJ;
11 l:=1+1; 30 | for (i:=0 to ) do
12 ri=r-+1; 31 | b[i] := ali;
13 | end 32 | end
14 end 33 | for (i :==r ton) do
15 void delete() 34 ‘ bli + K] = ali];
16 | if (I #0) then 35 | end
17 ‘l::l—l; 36 | ri=r+K;
18 | end 37 | a:=1b;
19 end 38 end

Figure 2.3: The basic operations on gap buffers.

2.3 Verifying a Gap Buffer Implementation

We now illustrate VerCors on a slightly bigger, yet sequential case study, namely
the first challenge of the VerifyThis 2018 verification competition [HMM™*19]. This
challenge involves verifying four basic operations on a gap buffer, which is a data-
structure commonly used in text editors to move the text cursor, and to add or
delete characters at the cursor’s current location.

A gap buffer is an integer array a, together with two indices 0 <1 < r < a.length,

such that a[l],...,a[r] is a gap: a region of unused entries in a. The index [
represents the current position of the cursor, and the contents of the gap buffer is
represented as the section a[0],...,a[l —1],alr],...,ala.length — 1].

2.3.1 Problem Description

Figure 2.3 gives the implementation of four basic operations on gap buffers, namely:
left and right for moving the text cursor to the left and right, respectively;
insert for inserting a character at the position of the cursor; and delete for
deleting the character at the cursor’s position. These four operations assume the
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array a to be global, as well as the indices [ and r. Moreover, while inserting a
character with insert it may happen that the gap is empty, i.e., that [ = r. In
that scenario, the procedure grow is called on line 22, which enlarges the array a
by creating a gap of size K (which is assumed to be a positive integer).

The verification challenge is: verify in a modular way that the gap buffer behaves
as intended with respect to the operations described in Figure 2.3. This intended
behaviour should be specified in terms of a continuous representation of the buffers’
content, for example as a sequence of characters.

2.3.2 Verification Approach

Our general approach is to represent the buffer’s content as a sequence zs of
integers and to verify the following:

o After calling left, right and grow the buffer’s content is still represented
by xs.

e After calling delete the buffer’s content is represented by zs|.. 1]+ zs[l+1..],
provided that a delete was possible, with [ the cursor location after the call
to delete®.

e After calling insert the buffer’s content is represented by zs[..1 — 1]+ {c} +
xs[l — 1..], with ¢ the inserted character and [ the cursor location after the
call to insert.

The sequence slicing notations xs[n..] and zs[..n] are currently not natively sup-
ported by VerCors. Instead, we implemented these using two auxiliary opera-
tions over sequences, Skip(zs,i) and Take(zs, i), to skip and take the first i en-
tries of the given sequence zs, respectively. These two operations are defined in
Figure 2.4. The slicing shorthand notations are however used in the remainder
of this section for presentational convenience, so that zs[n..] £ Skip(zs,n) and
zs[..n] £ Take(ws,n).

2.3.3 Solution

Figure 2.5 shows the annotated version of the gap buffer implementation, with
the annotated specifications displayed in blue. The presented annotations are
somewhat simplified for the sake of brevity.

We define and use an auxiliary predicate Represents(xs) to specify the intended
behaviour of the gap buffer using a sequence zs that represents the buffer’s content.

5The + operator has been overloaded to represent sequence concatenation, and {c} is the
singleton sequence containing c as its value.
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1 requires n < |zs|;

2 ensures n < 0 = \result = zs;

3 ensures 0 <n = |\result| = |zs| — n;

4 ensures 0 <n = (Vi.0 <iAi<|zs|—n = axs[n+i] = \result[i]);
5 seq(int) Skip(seq(int) zs, int n) =

6 0<mn?Skip(tail(zs),n —1): as;

7

8 requires n < |zs;

9 ensures n < 0 = \result = seq(int) { };
10 ensures 0 <n = |\result| =n;
11 ensures (Vi.0 <iAi<n = zs[i] = \result[i]);
12 seq(int) Take(seq(int) zs,int n) =
13 0 <n ?seq(int) { head(zs) } + Take(tail(zs),n — 1) : seq(int) { };

Figure 2.4: Definitions of the Skip and Take operations, and their specifications.

Figure 2.6 shows the definition of Represents. Notably, line 2 asserts read access
for [, r and a, so that the remaining definition of Represents may read from these
locations. The fractions % are somewhat arbitrary; the key point is that we did
not express write permissions, so that we can be sure that a does not change and
the contracts in Figure 2.5 may also still read from [ and r (e.g., at lines 16, 17,
and 28). Line 4 (Fig. 2.6) asserts write permission for every element of the array
a using an iterated separating conjunction Vx. Finally, lines 5-6 assert that a is
properly abstracted by the integer sequence zs. More specifically, they express
that the contents of xs coincides with the contents of a, minus the gap (i.e., minus

the section a[l],...,a[r — 1] of a).

The predicate Represents(zs) is used in Figure 2.5 to specify the functional be-
haviour of the gap buffer, and is folded and unfolded in every operation to provide
access to its contents. The sequence zs is specified using a given annotation,
stating that xs is a ghost parameter—an extra argument only for the sake of spec-
ification. Ghost parameters should be instantiated when calling the corresponding
method, e.g., on line 38, using a with {---} annotation.

Also note that we slightly altered the implementations of grow and insert by
making the gap size K a parameter, to simplify verification. The implementation
of grow is omitted for brevity; the annotations mostly consist of loop invariants
for the two for-loops asserting that a is correctly copied into the new array b.

The detailed, fully annotated PVL version of this example can be found in the
online Git repository [Sup].
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given seq(int) zs;
context Perm(l, £) x Perm(r, 3);
context Represents(zs);
void left ()
if (I #0) then

unfold Represents(xs);

l:=101-1,;

ri=r—1,;

alr] = a[l];

fold Represents(zs);
end

end

given seq(int) zs;
context Perm(l, %),
requires Represents(zs);
ensures 0 = \old(l) =
Represents(zs);
ensures 0 < \old(l) =
Represents(zs[.. 1] + zs[l + 1..]);
void delete()
if (I #0) then
unfold Represents(zs);
l:=1-1;
fold Represents(
zs[. 1]+ as[l +1.]
);

end

end

30
31
32
33
34
35
36
37
38
39
40

given seq(int) zs;
context Perm(l, 1) x Perm(r, §);
context K > 0;
context Represents(zs);
ensures [ < 1;
void grow(int K)
‘ omitted for brevity
end

given seq(int) zs;

context Perm(l, 1) * Perm(r, £);

41 context K > 0;

42 requires Represents(xzs);

43 ensures Represents(

a4 xs[l—1]+{c}+as[l—1.]
5 );

46 void insert(int ¢, int K)

a7 | if (I =r) then

48 grow(K) with {xs := s };
49 unfold Represents(xs);

50 | end

51 | else

52 | unfold Represents(zs);

53 | end

54 | afl] :=¢

55 |l:=1+1;

56 | fold Represents(

57 ws[.l =1+ {c} +as[l —1.]
58 ;

59 end

Figure 2.5: The annotated operations of the gap buffer. The contract for right is
the same as for left and is therefore omitted.

2.4 Conclusion

This chapter gives a brief background on Hoare logic, and explains how concurrent
separation logic (CSL) extends on Hoare logic, to allow reasoning deductively
about concurrent heap manipulating programs. All subsequent chapters in this
thesis heavily build on, or extend, the CSL program logic.
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resource Represents(seq(int) xs) :=
Perm(l, 2) * Perm(r, 2) x Perm(a, 2) * a # null *
0<Il<r<a.length x |zs| = a.length — (r — 1) x
(Wxi.(0 <i < a.length) = Perm(ali],1))
(Vi.(0<i<l) = ali] = asi]) *
(Vi.(r <i<alength) = ali] = as[i — (r —1)]);

o A W N -

Figure 2.6: The definition of the Represents predicate, which relates an abstract
representation of the gap buffer, zs, to the gap buffer implementation, a.

One of the central challenges of deductive concurrency verification is reasoning
about thread interference, that is, reasoning about how different threads interact
with each other and influence each others behaviour. CSL builds on two key mech-
anisms for specifying thread interference, namely: ownership and disjointness.

CSL’s ownership mechanism is implemented via accessibility predicates, which are
of the form ¢ <& — or Perm(/, ), that express that the current thread has access
permission 7 to the shared heap location ¢. Access permissions m are rational
numbers in the range (0, 1] that either express write access m = 1 or read access
(0 < m < 1). CSL only permits concurrent programs to access a shared heap
location, if the program’s specification expresses the required ownership to do so.

The mechanism of disjointness is implemented via CSL’s separating conjunction
connective, P * Q, which states that the ownerships expressed by the CSL asser-
tions P and Q do not overlap (i.e., they cannot both express write ownership to
the same heap location). CSL uses * to enable thread-local reasoning, by enforcing
that the specifications of concurrent programs are disjoint (i.e., interference-free).
This implies that different threads work on disjoint parts of the heap, and are thus
data-race free. Moreover, for scenarios that require thread synchronisation, e.g.,
two threads that access a common heap location, CSL supports basic atomics.

Furthermore, we introduced the deductive verifier VerCors, and explained how
it builds on the principles of CSL to reason automatically about various sorts
of concurrent programs. In particular, we illustrate how VerCors handles the
principles of ownership and disjointness on various small examples, as well as a
case study concerning the verification of a (sequential) gap buffer data structure.

In Chapter 3, we use VerCors in a bigger verification case study, concerning the
formal verification of intricate parallel graph algorithms that are used in the con-
text of multi-core model checking. Then, in Chapters 4-6 we extend CSL with a
novel shared-memory abstraction technique, that allows specifying and verifying
how the heap evolves over time. This is done by abstracting the concurrent inter-
actions of threads with the heap as abstract actions, and to reason about sequences
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of these actions, to reason indirectly about how the contents of the heap evolve
over time. The motivation of this abstraction approach is that heap evolvement
cannot so easily be specified or verified using the standard constructs of CSL, e.g.,
resource invariants. Finally, in Chapter 7, we investigate how this abstraction tech-
nique can be adapted for a distributed setting, by specifying the communication
(send/receive) behaviour of distributed agents, instead of heap evolvement.
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CHAPTER 3

Automated Verification of
Parallel Nested DFS

Abstract

Model checking algorithms are typically complex graph algorithms, whose correctness
is crucial for the usability of a model checker. However, establishing the correctness of
such algorithms can be challenging, and is often done manually. Mechanisation of the
verification process is crucially important, because model checking algorithms are often
parallelised for efficiency reasons, which makes them even more error-prone.

This chapter shows how the VerCors verifier is used to mechanically verify the parallel
nested depth-first search (NDFS) algorithm of Laarman et al. [LLPT11]. We also show
how having a mechanised proof supports the easy verification of various optimisations of
the algorithm. As far as we are aware, this is the first automated deductive verification
of a multi-core model checking algorithm.

3.1 Introduction

In Chapter 2 we introduced the VerCors concurrency verifier and demonstrated it
on various verification examples. In this chapter, we use VerCors to mechanically
verify parallel graph algorithms that are used in the context of model checking.

Model checking is an automated procedure to verify behavioural properties of re-
active systems. To avoid a false sense of safety, it is essential that model checkers
are correct themselves. However, to combat the large state space of critical indus-
trial systems, model checkers use ever more ingenious algorithms [Shal8] and even
parallel implementations [BBDLT18].

In this chapter, we focus on the mechanical verification of a multi-core algorithm
to detect accepting cycles, called nested depth-first search (NDF'S). This procedure

99
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solves the model checking problem for Linear-time Temporal Logic (LTL), a widely
used logic for specifying reactive systems. Developed by Laarman et al. [LLPT11]
in 2011, multi-core NDFS is currently deployed in the high-performance model
checker LTSMIN [KLM*15]. This mechanical verification of the parallel algorithm
is carried out in VerCors [BDHO17], a tool for the verification of concurrent and
parallel programs based on separation logic. The verification extends a previous
mechanical verification of sequential NDFS in Dafny [Leil0, Pol15].

This chapter shows the feasibility of mechanical program verification of parallel
graph algorithms, like multi-core NDFS. The formalisation provides reusable com-
ponents which can be used to verify variations of the parallel NDFS algorithm, as
well as other parallel model checking algorithms.

3.1.1 Background on Model Checking

Amir Pnueli introduced the Linear-time Temporal Logic (LTL) [Pnu77| to spec-
ify properties of reactive systems. The model checking problem [Shal8| decides
whether a transition system satisfies a given LTL property. The automata-based
approach [VW86] reduces the model checking problem to the graph-theoretic prob-
lem of checking the reachability of an accepting cycle. Reachability of accepting
cycles in a directed graph can be checked in linear-time, with the nested depth-first
search algorithm (NDFS) [CVWY92, HPY96, SE05|, which forms the basis of the
Spin model checker.

Another line of research uses distributed and parallel computing to allocate more
memory and processors to the problem [BBDLT18|. Several distributed and par-
allel model checking algorithms have been proposed, to allocate more memory
and processors to the problem [BBDL'18]. Since linear-time algorithms for both
SCC decomposition and NDFS is based on depth-first search, which is considered
hard (impossible) to parallelise efficiently [Rei85]. For distributed approaches, the
best strategy is to turn to Breadth-First Search algorithms [BCO06], which are
straightforward to parallelise, at the cost of increasing the amount of work beyond
linear-time in a shared-memory setting, Swarm verification was proposed [HJG11],
where each worker runs its own NDFS. However, for LTL liveness properties it was
originally bounded to at most 2 processors (to handle the two nested searches).
Various DFS-based multi-core algorithms for full LTL model checking have been
devised [ELPP12, EPY11, LLP*11]. In this chapter, we consider the version
by Laarman et al. [LLPT11], which is a parallel version of improved sequential
NDFS [SE05].

Multi-core NDFS is quite subtle and hard to implement efficiently and correctly. In
particular, parallel DFS does not fully respect a global depth-first ordering, since
every worker maintains its own search stack, yet the correctness of NDFS depends
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on the search order. Also, to realise practical speedups, the implementation avoids
locking shared data structures by using atomic instructions. Finally, since graph
algorithms tend to access memory in an irregular way, cache- and NUMA-aware
hash-tables are required to store the set of visited states. This raises the ques-
tion whether the implementation of a parallel model checker, meant to verify the
correctness of safety-critical systems, is itself correct. For this reason the origi-
nal paper [LLPT11] contains a detailed correctness proof, based on a number of
invariants.

3.1.2 Related Work

To raise the level of confidence in model checkers, one approach is to certify each of
its individual runs. Obviously, the counter-example returned by a model checker
is itself a certificate, which can be easily verified independently. However, double-
checking the absence of errors is harder. Namjoshi [NamO01]| proposed to instru-
ment a p-calculus model checker, to generate a deductive proof. This proof can
be checked independently, also in case the property holds. Recently, an IC3-style
symbolic LTL model checker was extended with deductive proofs as well [GRT18].
However, these approaches do not prove correctness of the model checking algo-
rithm, but only validate its outcome for each specific use.

Alternatively, one can formalise the model checking algorithm and its correctness
proof in an interactive theorem prover. An early example of this approach was
the verification of a model checker for the modal p-calculus in Coq [Spr98]. A
framework for verifying sequential depth-first search algorithms was developed in
Isabelle [LN15, LW19], and applied to the verification of NDFS with partial-order
reduction [BL18], and to a model checker for Timed Automata [WL18]. The
recent formalisations of Tarjan’s SCC algorithm [CCL* 18| fit in the same line
of research. These approaches require to model and verify the algorithm in an
interactive theorem prover. The advantage is that the full power of the theorem
prover can be used.

If one wishes to verify the code of the algorithm directly, yet another approach is
to model the algorithm and its specification in an automated program verification
tool, where the code is enriched with sufficient annotations to prove its correct-
ness. This approach was followed for several standard sequential graph algorithms
in Why3 [Why], and for sequential NDFS in Dafny [Pol15]. Wang et al. [WCMH19]
verified several sequential graph manipulating (CompCert) C programs in the con-
text of the Verified Software Toolchain [Appllal, including a garbage collector for
the CertiCoq project [AAMT17]. However, there is hardly any work on automated
verification of parallel graph algorithms. Raad et al. [RHVG16] verified four con-
current graph algorithms in the context of CoLoSL, but the proofs have not been
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automated. Sergey et al. [SNB15a| verified a concurrent spanning tree algorithm,
but interactively, via a Coq embedding. Ter-Gabrielyan et al. [TGSM19] propose
a separation logic-based verification technique for modularly verifying heap reach-
ability properties, but restricts input graphs to be either DAGs or 0—1-path graphs
(graphs with at most one path between every pair of nodes, modulo cycles).

To support the verification of shared-memory parallel software, program verifiers
typically use concurrent separation logic. VeriFast [JSP*11] aims at sequential
and multi-threaded C and Java programs. VerCors [BDHO17| verifies concurrent
programs in Java and OpenCL. It applies a correctness-preserving translation
into a sequential imperative language, delegating the generation of the verifica-
tion conditions to Viper [MSS16] and their verification ultimately to Z3 [MBO0S].
Iris [BGKB19] formalises higher-order concurrent separation logic in Coq.

3.1.3 Chapter Outline

In this chapter!, we mechanically verify the parallel NDFS algorithm [LLP*11]
with the VerCors verifier [BDHO17|. This extends the verification of sequential
NDFS in Dafny [Poll5]. To the best of our knowledge, we provide the first me-
chanical verification of a parallel graph algorithm. Section 3.2 introduces the
preliminaries on the accepting cycle problem, the sequential NDFS algorithm, and
the parallelised version of NDFS that we verify. The NDFS algorithm (§3.2.2) is
based on various colour markings on the graph, administrating the status of the
nested searches. Some of these colours are local to a single worker, while other
colours are globally shared among the workers.

Section 3.3.1 presents the informal correctness proof of parallel NDFS, based on
a number of global invariants on the possible colour configurations. Since workers
can delegate the detection of accepting cycles to other workers, it is difficult to
prove completeness of the algorithm. We contribute a new invariant (Invariant 2),
which guarantees the preservation of a so-called special path. This allows us to
circumvent using the complicated inductive argument from [LLPT11].

In Section 3.3.2, we detail how the algorithm is specified in VerCors. In particular,
this requires the specification of permissions, to verify data race-free access to
shared data structures. We encode the transition relation and colour maps as
matrices, which greatly contributed to the feasibility of proof checking. We explain
how atomic updates are specified, which was left implicit in the high-level pseudo-
code. Similarly, we implement asymmetric termination detection: if one worker
finds a counter-example, all workers can terminate immediately; if, on the other
hand, all workers have completely finished their computation, one may conclude
that the model is correct.

1This chapter is based on the article [OHJP19].
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Section 3.3.3 explains the techniques to formalise the full functional correctness
proof in VerCors. In particular, this requires the distribution of permissions and
invariants over threads and locks, and the introduction of auxiliary ghost state, to
track the precise progress of the various search phases.

Finally, Section 3.4 demonstrates how the verification can be reused to verify
optimisations to the algorithm. In particular, we check the optimisation “early
cycle detection” that, for weak LTL properties, detects all cycles in the blue search.
We also propose and verify a repair to the “all-red extension”, inserting an extra
check that was missing in [LLP*11]. This extension improves the speedup of the
algorithm, by sharing more global information.

Section 3.5 concludes with a perspective on reusing our techniques for the verifi-
cation of other parallel graph algorithms.

3.2 Preliminaries

Section 3.2.1 recalls the standard NDF'S algorithm for finding reachable accepting
cycles in automata. We verified a parallelised version of this algorithm, which is
introduced in Section 3.2.2.

Before discussing the NDFS algorithms, we first recall the basic definitions of
automata and accepting cycles. An automaton G is a quadruple (S, sy, succ, A)
consisting of a finite set S of states, an initial state s; € S, a next-state relation
succ : S — 25, and a set of accepting states A C S. A path in G is a sequence
P = sg,...,8,41 of S-states so that s;11 € succ(s;) for every 0 < ¢ < n. The
notation |P| = n + 2 denotes the length of P, the indexing notation P[i] = s; the
ith state on P, and PJi..| the subpath s;,...,sp+1. Any state s is defined to be
reachable (from the initial state) if there exists an (sy, s)-path. A path P is a cycle
whenever P[0] = P[|P| — 1] and 1 < |P|. Finally, a cycle P is an accepting cycle
if P[i] € A for some 0 < i < |P|.

3.2.1 Nested Depth-First Search

Figure 3.1 presents a standard, sequential implementation of NDFS, consisting
of two nested DFS searches: dfsblue and dfsred. We sometimes refer to the
execution of dfsblue as a blue search or an outer search, and an execution of
dfsred as a red search or an inner search. The blue search processes successors
recursively in DFS order, marking them blue when done (on line 11). The colour
cyan (e.g., line 2) indicates a partially explored state, i.e., not all successors have
been visited yet by the blue search. Just before backtracking from an accepting
state, dfsblue calls the red search (on line 9) to report any accepting cycle. This
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1 void dfsblue(s) 13 void dfsred(s)
2 | s.colorl := cyan; 14 | s.color2 := pink;
3 | for ¢ € succ(s) do 15 | for t € succ(s) do
4 if t.color! = white then 16 if t.color! = cyan then
5 | dfsblue(t); 17 | report cycle; exit;
6 end 18 end
7 | end 19 if t.color2 = white then
8 | if s.acc then 20 | dfsred();
9 ‘ dfsred(s); 21 end

10 | end 22 | end

11 | s.colorl := blue; 23 | s.color? := red;

12 end 24 end

Figure 3.1: A standard sequential implementation of nested DFS.

colours a state red after processing its successors recursively on line 23. The pink
color denotes states that are only partially explored by dfsred. In the sequential
algorithm, pink and red do not need to be distinguished, but having the distinction
here makes the parallel version easier to explain.

Example 3.2.1 (An example run on NDFS). Figure 3.2 shows an example run
of sequential NDFS on an automaton consisting of siz states. The goal is to find
the accepting cycle s1, s2, s5 that is reachable from the initial state sg.

1.

The NDFS procedure starts by invoking dfsblue(sq), which colours sg cyan
(Figure 3.2a) to indicate that the outer search has partially explored sg. From
this point dfsblue has the mon-deterministic choice to explore either sy or
s3. Suppose that s3 is chosen.

Then dfsblue fully explores s3 and s4 in DFS order and colours them blue
(Figure 3.2b) during backtracking to administer their full exploration.

The next step is to explore s1, sy and ss5 and marking them cyan while doing
so, and then to colour ss blue (Figure 3.2c) as all its neighbours are already
either cyan or blue.

. During the backtrack dfsblue finds the accepting state ss, and thus starts an

inner search by invoking dfsred(s3), to search for a cycle that includes so.
The inner search starts by marking so pink to indicate its partial exploration
by dfsred. So at this moment sy has two different colours, as shown in
Figure 3.2d: one used by the outer search (blue) and the other (pink) by the
inner search.

The inner search may proceed to explore s5, s4 and sz, making them pink
while doing so, and then mark s3 and s4 red to indicate their full exploration
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(a) The initial colouring: the outer search
starts exploring from sy and marks it cyan.

(c) The outer search partially explored s;
and sz, and fully explored ss.

@

™

t

@ @

(e) The inner search partially explored ss
and fully explored s3 and s4.

®

(b) s3 and s4 have been fully explored by

the outer search.
() ®

(d) An inner search is started from s, that
attempts to close the accepting cycle.

)
- s

(f) A reachable accepting cycle has been
found and reported by the executing
thread, as it encountered a cyan state, si,
during its inner search.

™

Figure 3.2: An example run of sequential NDFS. The pointer ¢ refers to the state
that the thread is currently considering in its execution of NDFS.
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by dfsred (Figure 3.2¢). Finally, the inner search explores s1 from s5, which
1S a cyan state.

6. It is a property of DFS that every cyan state has a path to so—the node
from which the inner search was started (such a path resides on the recursive
call stack of dfsblue). This means that by exploring s1 the inner search
has found a cycle that includes so (Figure 3.2f), allowing the algorithm to
terminate and yield a positive result.

It is straightforward to see that NDF'S is sound, i.e., it only reports true accepting
cycles. To elaborate, whenever df sred(s) executes, there is some accepting cyan
state a on which it was originally invoked. Therefore, there exists an (a, s)-path.
Moreover, from every cyan state there is a path to a (a standard property of
dfsblue), thus there exists a cycle that includes a whenever one is reported on
line 17. To see that NDFS is also complete, i.e., it will find an accepting cycle
if one exists, note that dfsred(a) will indeed be started from every accepting
state a. This in itself is not enough: the red search ignores states marked red in
a previous call. It is essential that dfsred explores accepting states in the right
order, to conclude that cycles will be found. The crucial insight is that dfsred
only visits cyan and blue states, and that accepting states coloured blue cannot be
part of any accepting cycle.

The correctness of NDFS has been verified with Dafny [Poll5]. We ported the
correctness proof to VerCors as the basis for the verification of parallel NDF'S.

3.2.2 Parallel Nested Depth-First Search

A naive strategy to parallelise NDFS is swarming [HJG11]: running several in-
stances of NDFS in parallel, each working on a private set of colours. Swarmed
NDFS relies on the non-determinism of succ for obtaining a potential speed-up,
hoping that different workers explore different parts of the input graph. Swarmed
NDFS tends to find accepting cycles faster, since its workers are expected to explore
different parts of the input graph. However, swarming does not increase perfor-
mance in the absence of accepting cycles. The correctness of swarmed NDFS with
respect to sequential NDFS is almost immediate, except for termination handling:
workers only share information about the exit condition. We also verified swarmed
NDFS in VerCors, as a stepping stone to the verification of parallel NDFS.

Laarman et al. [LLP*11] improve on the swarming algorithm by sharing informa-
tion in the backtrack phase of the red search. Figure 3.3 presents the improved
algorithm. Here every line of code is supposed to be executed atomically. The en-
try point is pndfs (sy,n), which spawns n parallel instances of dfsblue(sy, tid) in
the fashion of swarming, so that each thread tid uses its own colour set. However,
the red colourings are shared now, by which workers can guarantee that certain
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1 void dfsblue(s, tid) 20 void dfsred(s, tid)

2 | s.color|tid] := cyan; 21 | s.pink[tid] := true;

3 | for ¢ € succ(s) do 22 | for ¢t € succ(s) do

4 if t.color[tid] = white A —t.red 23 if t.color[tid] = cyan then

then 24 | report cycle; exit all;

5 ‘ dfsblue(t, tid); 25 end

6 end 26 if —t.pink[tid] A —t.red then
7 | end 27 | dfsred(t, tid);

8 | if s.acc A —s.red then 28 end

9 s.count := s.count + 1; 29 end
10 dfsred (s, tid); 30 | if s.acc then
11 | end 31 s.count := s.count — 1;
12 | s.color[tid] := blue; 32 await s.count = 0;
13 end 33 | end
14 void pndfs (s, nthreads) 34 | s.pink[tid] := false, s.red := true;
15 | par tid = 0 to nthreads do 35 end
16 ‘ dfsblue(s, tid);
17 | end

18 | report no cycle;
19 end

Figure 3.3: An implementation of parallel NDFS, where the red colours are shared.

states are, or will be, sufficiently explored. So the red states can now be skipped in
both the red search (line 26) and the blue search (line 4). PNDFS thus improves
performance, since workers prune each other’s search space. At the same time this
significantly complicates the correctness argument, because workers might now
prevent each other from finding accepting cycles. Moreover, if multiple workers
initiated dfsred from the same accepting state, they must now finish simultane-
ously for the algorithm to be correct. This is ensured by the await s synchroniser
on line 32, blocking thread execution until s.count, the number of workers in
dfsred(s,-), reaches 0. The fields s.count maintain the number of workers that
are doing a red search from s.

The following example illustrates the difficulties that may arise during a run of
PNDFS.

Example 3.2.2 (Difficulties of PNDFS). Figure 3.4 shows an example run of
parallel NDFS performed by two threads, referred to as t1 and ty in the figure.
This example run shows that different workers can get in each others way, but
preventing each other to find accepting cycles. This makes it significantly harder
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(a) Threads t; and t2 both start an outer  (b) Thread t; explored so, s3, s4, 5 while
search from si. thread ¢2 remained idle/unscheduled.

(c) Thread ¢, started an inner search from  (d) Thread t¢2 gets scheduled. These are
so and explored so, 3, S4, S5 while thread  the colours that are now visible to ts.
to still has not been scheduled yet.
to
1

OBos ) CI @
(e) Thread t2 explores s2 while ¢; is idle. (f) Thread ¢t starts and completes a red
search from ss.

Figure 3.4: An example run of parallel NDFS with two threads, ¢; and ¢, that
shows the difficulties that may arise compared to sequential NDFS.
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to establish correctness of PNDFS compared to the sequential version.

1. The algorithm starts by spawning two threads, t1 and to, that both start
exploring from the initial state s (see Figure 3.4a).

2. Suppose that t1 gets scheduled first and chooses to explore sy. Then the outer
search of t1 could explore sg, s3, s4 and s5 while thread to remains idle—the
situation of Figure 3.4b.

3. From this situation, t1 may backtrack further and start an inner search from
So, since Sg s an accepting state. By doing so, t1’s inner search may explore
S0, S3, S4 and S5 (still with ty inactive throughout), resulting in the situation
of Figure 3.4c.

4. Now assume that thread to finally gets scheduled. Figure 3.4d shows the
colourings from ty’s perspective; it can only see its own initial cyan colouring
of s1 and the (now shared) red colouring of ss.

5. Thread to may choose to explore sy as sketched in Figure 3.4e. However,
since ss is red, an inner search is invoked from so, which also immediately
finishes without finding any cycle.

Two interesting points can be highlighted in the resulting configuration of colours,
as shown in Figure 3.4f. First, it shows that workers can indeed prune each others
search spaces, allowing the parallel algorithm to gain potential speedup. Thread to
stopped exploring from so because thread t1 marked s5 as red. Second, this pruning
makes it significantly harder to see and establish that the algorithm is still correct:
the accepting cycle s1828584 is now missed and will never be found. However, we
can show that if workers obstruct each other in such a way, there must always be
another accepting cycle that can (and will) still be found. If the algorithm would
continue from Figure 3.4f it would find the accepting cycle s1508354.

The correctness argument of [LLP*11] relies on a complicated inductive invariant
stating that not all accepting cycles can be missed due to pruning. However, this
invariant is not suitable for use in an automated verifier. Section 3.3 discusses the
verification of pndfs and provides a new invariant on the red colours that allows
its correctness to be proven mechanically. We also discuss how concurrency and
thread synchronisation is handled in the verification.

3.3 Automated Verification of Parallel NDFS

This section elaborates on the verification of pndfs in VerCors. As mentioned
earlier, we actually verified three versions, viz. the sequential version from Fig-
ure 3.1, a naive parallel swarming version of it, and the full parallel algorithm
from Figure 3.3 that shares the red colour. Section 3.3.1 gives a formal correct-
ness argument for pndfs, that includes the new invariant on the red colours and a
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proof of its correctness. Sections 3.3.2 and 3.3.3 discuss the mechanisation of this
correctness proof in VerCors. The verified versions are available at [Sup].

3.3.1 Correctness of pndfs

The soundness proof of pndfs is not very different from the soundness proof of
sequential NDFS: every time report cycle is executed, a witness cycle can be
found. The main challenge lies in proving completeness: workers can obstruct
each other’s red searches and thereby prevent the detection of accepting cycles. We
propose a new key invariant and completeness proof that is suitable for deductive
verification. All proof steps have been mechanised in VerCors.

We start by introducing a number of low-level invariants on the local configurations
of colours that can arise during a run of pndfs. Let Cyan,, be the set of cyan-
coloured states {s € S | s.color[tid] = cyan} private to worker tid, and likewise for
Whitey;q, Bluey,q and Pinky;q. Moreover, let Red be the set of globally red states,
and succ(X) £ U,exsucc(s) the successor set of a given set X C S.

Invariant 1. pndfs maintains the following global invariants during execution:

Vtid . succ(Blueyq U Pinkyq) C Blueyq U Cyany,, U Red
succ(Red) C Red U U yq(Pinkyiq \ Cyan,,,)

Vtid . AN Blueq C Red

Vtid . AN Pinkq C Cyan,,,

Vtid . Pinkyq C Blueyq U Cyangy

Vtid . | AN Pinkyq| < 1

AR R

Proof. The proof basically checks that these invariants are preserved by each line
of the program. O

Invariants 1.1-1.5 are reused from [LLP*11]. Invariant 1.6 is new and needed for
the new completeness proof. Proving completeness amounts to proving that not
all reachable accepting cycles can be missed due to obstruction. To help show this,
we first identify a new class of paths, which we call tid-special paths.

Definition 3.3.1 (Special path). A path P = sg,...,s,+1 is defined to be tid-
special if sg € Pinkiia, sSnt1 € Cyan,,, and none of the states on P are red, i.e.,
sk & Red for every k such that 0 < k <n+ 1.

Any path P is defined to be special if P is tid-special for some worker tid.

Intuitively, the existence of a tid-special path during execution of pndfs means
that (i) worker tid is doing a red search, since it has pink states, and (ii) this worker



3.3. Automated Verification of Parallel NDFS 71

will eventually find an accepting cycle, unless other workers obstruct this path.
Thus the above definition enables us to formally define obstruction: a worker tid
is obstructed (will miss an accepting cycle) if some state on a tid-special path is
coloured red.

Example 3.3.1 (Special paths). Figure 3.4c shows multiple t1-special paths, in-
cluding s4,s1 and sg, S3,S4,81. The existence of a special path means that an
accepting cycle will be found (for example so, s3, S4, 81, So) unless another thread
interferes.

Our main strategy for proving completeness involves showing that every time a
worker gets obstructed, a new special path can be found. A direct consequence
of this is that not all accepting cycles can be missed. To help prove this, we use
the following property (taken from [LLP*11], but rephrased to handle our special
paths), that allows finding special paths by using the low-level colouring invariants
of Invariant 1.

Lemma 3.3.1. If Invariant 1 is satisfied, then every path P = sq,...,Sp41 with
so € Red and sp+1 € A\ Red contains a special subpath.

Proof. The original handwritten proof in [LLP*11] shows that this lemma follows
from Invariants 1.1-1.5 by using induction on P. O

The original completeness proof of [LLP*11] performs induction on the number
of obstructed accepting cycles, to show that such a cycle cannot exist as result of
Theorem 3.3.1. However, such an argument cannot be encoded in an automated
verifier. Instead, our new insight for a mechanised completeness proof is that,
under certain colouring conditions, new special paths can always be found when
workers get obstructed, as is shown by Lemma 3.3.2. In particular, pndfs guar-
antees that if there exists a special path before executing line 34, then there also
exists a special path after executing it.

Lemma 3.3.2. For any non-red state r € S\ Red that is on a tid-special path, if:

1. r € A = succ(r) C Red, and
2. r € AN Pinkyq = Pinkyg = {r},

then there still exists a special path after adding r to Red.

Proof. Let P = sq...S,41 be a tid-special path and assume that r is on P, so that
r = 54, for some £ for which 0 < ¢ < n + 1 holds. Since Pink;q # 0, worker tid is
performing dfsred that was started from some accepting state a € AN Pinkyq.
Then a # r, as otherwise so = r = a due to (2.), which by (1.) would contradict
that P is special. Moreover, since sp41 € Cyan,,, there exists a (s,41,a)-path Q
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€ (AN Pinkygq) \ {r} € (AN Pinkyq) \ {r}

€ Pinkyiq ¢ Red € Cyan,y, € Pinkyiq € RedU {r} € Cyan,g

(a) Sketch of the graph that is described in  (b) Lemma 3.3.1 applies on the thick path
the proof, with P =507+ snq1. when considering Red U {r} as the new set
of red states.

Figure 3.5: Sketch of the shape of the graph that is described in the proof of
Lemma 3.3.2. Any edge - denotes a path of length > 0.

(this is a standard property of dfsblue; the path () must be on the recursive call
stack of dfsblue). Figure 3.5a gives a sketch of the graph described so far. Then
Lemma 3.3.1 applies on the path sy, ..., s,+1,Q[1..] and gives a new special path
when considering Red U {r} as the new set of red states (see Figure 3.5b). O

Lemma 3.3.2 implies that every time an accepting cycle is missed due to pruning,
there is always another accepting cycle that will eventually be reported. This is
enough to establish completeness of pndfs, via the following key invariant.

Invariant 2. The pndfs algorithm maintains the global invariant that either:

1. All reachable accepting cycles contain an accepting state that is not red; or
2. There exists a special path.

Proof. The interesting case is showing that this invariant remains preserved after
making a non-red state s € Pinkyq \ Red red (on line 34 of Figure 3.3) by some
worker tid, which is doing a red search from some accepting state a € AN Pinkyq.

e Suppose s € A. If s is on a special path, then Invariant 2.2 is reestablished
due to Lemma 3.3.2, and otherwise the key invariant remains preserved.

e Suppose s € A. Then s = a by Invariant 1.6. Since worker tid is about to
finish its red exploration, we have that (i.) Pinkq = {s} (i.e., all other pink
states have been fully explored), and consequently that (ii.) succ(s) C Red.
Furthermore, due to the await s instruction on line 32 we have that (i.) and
(iéi.) hold for all workers that are doing a red exploration that involves s. If s
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@ ()

€ Bluetia ¢ A\ Red

Figure 3.6: Sketch of the graph described in the proof of Theorem 3.3.3.

is on a special path, then Invariant 2.2 is reestablished due to Lemma 3.3.2.
So now suppose that s is on an accepting cycle P. Without loss of generality,
assume that P[0] = s. Then () implies that 1 < |P| and P[1] € Red. Thus
Lemma 3.3.2 applies on the path P[1..] to establish Invariant 2.2. O

The next theorem shows how completeness can be derived from Invariant 2. In
particular, it shows that no accepting cycles can exist when all threads have ter-
minated, in which case all the premises of the theorem are fulfilled.

Theorem 3.3.3. If, for every worker tid, we have:

1. Pinkyg =0, and
2. Cyanyy =0, and
3. s; € Blueyq,

then there does not exist a reachable accepting cycle.

Proof. Towards a contradiction, suppose that there exists an accepting cycle P
that is reachable via an (sy, P[0])-path . Due to the theorem’s premises no
special paths can exist, and therefore by Invariant 2 there is an accepting state
on P that is not red. Without loss of generality, assume that (1) P[0] € A\ Red
(since otherwise () can always be extended to meet this assumption). A sketch of
the automaton structure described so far is given in Figure 3.6.

The proof proceeds by induction on @ to show that (1) all states on @ are in
Bluetiq U Red. The base case holds by assumption (3.), as Q[0] = s; € Blueyq.
The induction step amounts to showing that (i) holds for the subpath Q[.. £ + 1],
under the assumption that (1) holds for QJ..¢]. By the induction hypothesis we
have that Q.. ¢] € Blueyq U Red. This gives the following two cases:

e Suppose Q[..¢] € Blueyq. Then by Invariant 1.1 we have that Q[.. £+ 1] €
Bluetiq U Red, since Cyan,y = () by assumption (2.).

e Suppose Q[..¢] € Red. Then by Invariant 1.2 we have that Q[.. £+ 1] € Red,
since Pinkq = 0 and Cyan,,, = 0 for any tid by assumptions (1.) and (2.).
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Thus by the above induction argument it holds that P[0] € Bluey;qURed. However,
since P[0] is accepting, it holds that P[0] € Red as result of Invariant 1.3. This
contradicts (). O

We encoded and proved all the above definitions, invariants and proof steps in
VerCors, which was highly non-trivial. While mechanising the proofs, many im-
plicit proof steps had to be made explicit. Section 3.3.3 gives more details on the
proof mechanisation and encoding.

3.3.2 Encoding of pndfs in VerCors

Graph structures are notoriously difficult to handle in separation logics, as they
usually rely on pointer aliasing, which complicates ownership handling and pre-
vents easy use of the frame rule [RHVG16|. However, since automata have a
fixed and finite set of states, we can overcome this limitation by representing the
input automata as an adjacency matriz of size |S| x |S|. This does not impose
serious restrictions: other automata encodings can be transformed at the speci-
fication level to an adjacency matrix, e.g., by using model fields in the style of
JML [CLSEO05, Lei98]. The suitability of adjacency matrices for deductive verifi-
cation is confirmed by [Kiib18|.

Figure 3.7 shows the encoding of the input automaton G in VerCors, on lines 2-10.
The thread-local colour sets are represented as matrices of dimension nthreads x
|S], so that each thread tid uses color(tid][-] (line 7) and pink[tid][-] (line 8)
to administrate their status of exploration. The sets of red and accepting states
(lines 9 and 5, respectively) are shared between threads and thus encoded as |S|-
sized Boolean arrays (instead of matrices). The function succ can now be defined
such that ¢ € succ(s) whenever G[s][t] is true, for every 0 < s,t < N.

Lines 16-33 show the predicates that encode the definition of (special) paths. In
particular, Path(s, ¢, P) encodes whether P is an (s, t)-path in P, i.e., a sequence
of integers all within the range [0, N)y, such that P[0] = s, P[|P| — 1] = ¢, and
there is an edge in G for every pair of adjacent elements in P. The predicate
ExPath(s,t,n) encodes the existence of an (s,t)-path in G of length at least n.
The latter argument, n, is used to establish the existence of cycles: given any
state s, the predicate ExPath(s, s,2) holds if there exists a cycle that includes s.
The predicate SpecialPath(P, tid) on line 28 expresses the conditions needed for
P to be a tid-special path: it must be a path free of red states such that P[0] is
pink and P[|P| — 1] is cyan. Finally, ExSpecialPath(tid) encodes the existence of a
tid-special path (on line 32). This predicate is needed to encode Invariant 2.2.

This encoding of automata, together with the encoding of the definition of paths
is sufficient to express the main correctness property that is proven by VerCors.
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1 /* Representation of the input automaton. */
2 int N; // the number of automata states (equal to |S]).
3 int nthreads; // the total number of participating workers.
4 boolean[N][N] G; // adjacency matrix representation of the input automaton.
5 boolean[N] acc; // encoding of the set of accepting states.
6 enum Color {white, cyan, blue}; // different types of colours for the outer search.
7 Color[nthreads][N] color; // the colour sets for dfsblue; one for each thread.
8 boolean[nthreads|[N] pink; // the pink colour sets for dfsred; one per thread.
9 boolean|[N] red; // the global set of red colourings.

10 boolean abort; // the global termination flag.

11

12 /* The resource invariant, which describes all ownerships protected by the lock. */
13 resource invariant :=---; // further discussed in §3.3.3.1, on page 77.

14

15 /* The encoding of (s, t)-paths in G. %/

16 boolean Path(int s, int ¢, seq(int) P) :=

17 0<s,t<NAO<|PIAP0]=sAP[|P|—-1]=tA

18 (Vi.0<i<|P| = 0< P[] <N)A(Vi.0<i<|P|—1 =
19 GIPENPl+ 1]);

21 /* A predicate that encodes whether P is a path in G. %/
22 boolean Path(seq(int) P) := 0 < |P| A Path(P[0], P[|P| — 1], P);

24 /% A predicate that encodes the existence of an (s, ¢)-path of length at least n. %/
25 boolean ExPath(int s, int ¢, int n) := 3P .n < P A Path(s, t, P);

27 /* The encoding of tid-special paths in G. */
28 boolean SpecialPath(seq(int) P, int tid) := Path(P) A pink[tid][P[0]] A
29  color[tid][P[|P| — 1]] = cyan A (Vi.0 < i < |P| = —red[P]i]]);

31 /+ A predicate that encodes the existence of tid-special paths. */
32 boolean ExSpecialPath(int tid) :=
33 3JP.(1 < |P| A Path(P)) = SpecialPath(P, tid);

35 /* An excerpt of the top-level contract of pndfs. */

36 context ---; // further discussed in §3.3.3.3, on page 81.

37 ensures \result —

38 (Ja.0 < a < N A accla] A ExPath(ss,a,1) A ExPath(a, a,2)); // soundness.
39 ensures (Ja.0 < a < N A accla] A ExPath(ss,a,1) A ExPath(a, a,2)) =
40 \result; // completeness.

41 boolean pndfs(int s;)

42 ‘ --- // further discussed in §3.3.3.3, on page 81.

43 end

Figure 3.7: Automata representation and an excerpt of pndfs’s top-level contract.
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Notably, lines 37-38 expresses soundness: if pndfs returns true, then there exists
an accepting cycle. Completeness is expressed on lines 39—40: if there exists an
accepting cycle, then pndfs yields a positive result.

3.3.2.1 Atomic Operations

The handwritten correctness argument of [LLPT11] for Figure 3.3 assumes that
all program lines are executed atomically. This is reflected in the VerCors en-
coding: all updates to shared memory are made within atomic operations, which
specification-wise all give access to the same shared resources. For example, the as-
signment s.pink[tid] := true on line 21 (Figure 3.3) is implemented as the following
atomic set operation:

atomic { pink[tid][s] := true; }.

Note that this implementation of atomic operations can easily be lifted to an actual
fine-grained atomic instruction in, for example, Java and C [ABH14].

On the specification level, the atomic sub-program receives all the missing access
rights required for the assignment, which are otherwise protected by the resource
invariant declared on line 13 (Figure 3.7). The exact definition of this resource
invariant is deferred to Section 3.3.3.1. Furthermore, the await instruction on
line 32 (Figure 3.3) is implemented as a busy while-loop that only stops when
s.count = 0, which is checked atomically in every iteration.

3.3.2.2 Termination Handling

The pseudocode in Figure 3.3 uses an exit all command to terminate all threads
when an accepting cycle has been found, but the mechanism was left implicit. Our
formalisation in VerCors makes the termination mechanism explicit: it consists
primarily of a global abort flag (that is declared on line 10, Figure 3.7). All workers
regularly poll this flag to determine whether they continue or not. The abort flag
is set to true by the main thread (the one that started pndfs and spawned all
worker threads on line 15 of Figure 3.3) as soon as one of the workers returns with
an accepting cycle.

3.3.3 Verification of pndfs in VerCors

One of the major challenges of concurrency verification is finding a proper dis-
tribution of shared-memory ownership that allows proving data-race freedom and
verifying any functional properties of interest. This section starts by discussing
how we distribute the ownership of the input automaton over the different threads
and the resource invariant, in such a way that Invariant 1 and Invariant 2 can be
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encoded. To prove the preservation of these invariants after every computation
step, auxiliary bookkeeping is needed on the specification level. For example, to
mechanise the proof of Invariant 2 (and also of Lemma 3.3.2) we need to make ex-
plicit that all workers tid with Pinkyy # () are doing a red search that was started
from some root state a € A N Pink;;y. This auxiliary bookkeeping is maintained
in the resource invariant, via auziliary ghost state, which is explained later. Fi-
nally, we give the fully annotated version of pndfs and explain how completeness
is proven from Invariant 2, by applying the VerCors encoding of Theorem 3.3.3.

3.3.3.1 Distribution of Ownership

We start by explaining how the ownership of the automaton encoding (lines 2-10
in Figure 3.7) is distributed among the workers and the resource invariant. First
recall that Invariants 1 and 2 both express global properties that span over (i) the
shared red colourings, as well as over (ii) the local configurations color[tid] and
pink[tid] of every worker tid. To define the ownership distribution for (i), observe
that the only way to distribute the access rights to red to enable all threads to
regain write access when needed, is to let the resource invariant have full ownership
of red. This means that the resource invariant fully captures the properties about
red states expressed in Invariants 1 and 2. However, to be able to specify that, the
resource invariant also requires partial ownership of the thread-local colourings.

Figure 3.8 presents the full resource invariant, that includes: access rights to
both global and thread-local colourings on lines 3-5; the encoding of Invariant 1
on lines 1422 and 28; as well as the encoding of Invariant 2 on lines 38-40. In
addition, the resource invariant holds partial ownership of the abort flag on line 11,
to ensure that global termination can only be announced when an accepting cycle
is found (by the condition on line 10).

The dfsred_status() resource on lines 25-35 is used by the resource invariant
to maintain auziliary ghost state (displayed in blue) on the progress of the inner
search (dfsred) of all workers. More specifically, it maintains ghost fields to admin-
ister which workers are currently performing an inner search (using exploringred);
from which node the inner search was started (using redroot); and whether the
worker is currently waiting by executing an await instruction (using waiting).
This auxiliary information is needed for proving and using Lemma 3.3.2 as well as
Invariant 2. This use of auxiliary ghost state is further explained in §3.3.3.2.

Observe that the resource invariant holds a lot of quantified information. As a
result, we experienced that proving the reestablishment of the resource invariant
after finishing atomics is expensive performance-wise. To make verification more
efficient, we extracted all atomic operations (e.g., colour updates) into separate
methods and prove their contracts in a function-modular way. This improves
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1 /* Full definition of the resource invariant (declared earlier, in Fig.3.7; line 13). /
2 resource_invariant :=
3 | Perm(V) x Perm(nthreads) x Perm(G) * Perm(acc) *

4 | (Vtid,s.Perm(color|[tid][s], 3) * Perm(pink|[tid][s], 3)) *

5 | (Vs.Perm(red[s],1)) =

6 | termination() * colourings() % dfsred_status() * keyinvariant();
7

8 /* Resources for termination handling, for proving soundness of pndfs. */
9 resource termination() :=

10 | Perm(abort, §) *

11 | (abort = Fs. acc[s] A ExPath(sr, s,1) A ExPath(s, s,2));

12

13 /* The encoding of the low-level colouring invariants 1.1-1.5 (page 70). */

14 resource colourings() :=

15 | (Vtid, s. (color[tid][s] = blue V pink[tid][s]) = Vs’ € succ(s).

16 color[tid][ '] = blue V color[tid][s'] = cyan V red[s]) = // Inv. 1.1.

17 | (Vs.red[s] = Vs’ € succ(s).

18 red[s ] \/ thd pink[tid][s] A color[tid][s] # cyan) = // Inv. 1.2.

19 | (Vtid, s . (acc[s] A color|tid][s] = blue) = red|[s]) * // Inv. 1.3.

20 | (Vtid,s. (acc[s] A pink[tid][s]) = color[tid][s] = cyan) % // Inv. 1.4.

21 | (Vtid, s. pink[tid][s] =

22 (color[tid][s] = cyan V color|tid][s] = blue)); // Inv. 1.5.

23

24 /x Auxiliary state for proving Lemma 3.3.2 and the preservation of Inv. 2. %/

25 resource dfsred_status() :=

26 | Vtid . (Perm(eaploringred[tid], 1) « Perm(redroot[tid], 1) x Perm(waiting|tid], §) *

27 | Vs. (pink[tid][s] =

28 (exploringred[tid] A (acc[s] = s = redroot[tid])) * // Inv. 1.6.

29 exploringred(tid] = (acc[redroot[tid]] A

30 (Vs . pink[tid][s] = ExPath(redroot[tid],s,1)) A

31 (Vs . color[tid][s] = cyan = ExPath(s, redroot[tid],1)) A

32 (—waiting[tid] = —red[redroot[tid]]) A

33 (waiting[tid] = Vs. pink[tid][s] <= s = redroot[tid])

34 )

35 | ));

36

37 / The encoding of Invariant 2 (page 72), from which completeness follows. */

38 resource keyinvariant() :=

39 | (Vs. (acc[s] A ExPath(sy, s, 1) A ExPath(s, s,2)) = —red[s]) V // Inv. 2.1.

40 | (3tid . ExSpecialPath(tid)); // Tnv. 2.2.

Figure 3.8: The global resource invariant. For brevity we omitted several bound
checks.
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1 context Perm(N) x Perm(nthreads) x Perm(G) * Perm(acc);

2 context 0 < s < N;

3 context 0 < tid < nthreads;

4 context Vt.(0 <t < N) = Perm(color|tid][t], 1) * Perm(pink[tid][t], 1 );

5 requires color[tid][s] = white;

6 requires Vt. (0 <t < N A color[tid][t] = cyan) = ExPath(t, s, 1);

7 ensures \result = Ja.0 < a < N A acc[a] A ExPath(sy, a, 1) A ExPath(a, a, 2);
8 ensures —\result = Vt. (color[tid][t] = cyan <= \old(color[tid][t]) = cyan);
9 ensures —\result = (pink[tid] = \old(pink[tid]) A color|tid][s] = blue);
10 boolean dfsblue(int s, int tid)
11 ‘ “ee
12 end

Figure 3.9: The ownership specification in the contract dfsblue for thread tid.

performance, as it cuts the problem of verifying df sred and dfsblue into smaller
bits that are individually more manageable for the underlying SMT solver.

High-level contract of pndfs. Figure 3.9 presents an excerpt of the contract
of dfsblue, showing the ownership pattern of all threads. Annotations of the form
context P abbreviate requires P; ensures P, and are used to reduce duplication.

Notably, every thread tid receives the remaining ownership of color(tid] and pink[tid]
on line 4. With remaining ownership we mean the access rights to color and pink
that are not held by the resource invariant. The implication of this distribution of
access rights, is that threads can always read from their thread-local colour fields,
and may write to them while doing so atomically. This distribution of ownership
matches with the encoding of atomic operations discussed earlier.

Line 7 expresses soundness of dfsblue, captured in the resource invariant (line 10
of Figure 3.8) when global termination has been announced. This allows sound-
ness of pndfs to be deduced from the resource invariant, after all threads have
terminated as result of the detection of an accepting cycle.

3.3.3.2 Auxiliary Ghost State

As mentioned earlier, to prove that pndfs also preserves the (encodings of) In-
variants 1 and 2 after every computation step, additional ghost state needs to
be maintained. In particular, we need to make explicit that every worker tid
with Pinkygq # 0 is doing a dfsred search that was started from some root state
a € AN Pinky. In addition, the proof of Lemma 3.3.2 needs that there exists
an (s,a)-path for every s € Cyan,,,;. To prove the preservation of Invariant 2 we
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additionally need that, if worker tid is not yet executing the await instruction it
holds that a € Red, or otherwise it holds that Pink:q = {a}.

This extra information is encoded in the resource invariant on lines 25-35 (Fig-
ure 3.8 on page 78), via three ghost arrays, named exploringred, redroot, and
waiting. Firstly, the exploringred ghost array is used to administer which workers
are doing a red search. For verification purposes we also added ghost code to the
program, to set exploringred[tid] to true whenever dfsred(a,tid) is invoked by
worker tid from a blue search, and back to false whenever dfsred(a, tid) returns.
Secondly, redroot stores the root state on which dfsred was invoked. Finally,
waiting administrates which workers are executing an await instruction.

These three ghost arrays together are closely related to the s.count fields in the
program of Figure 3.3, via the following invariant:

Vs.s.count = |{ tid | exploringred[tid] A redroot[tid] = s A ~waiting[tid] }|

Establishing that pndfs adheres to Invariants 1 and 2 was highly non-trivial and
required multiple complex auxiliary lemmas to be encoded and proven. These are
encoded in VerCors as ghost methods: side-effect-free helper methods on which
the lemma is encoded in the method’s contract. Induction proofs, for example,
are encoded using either resource invariants or recursion. The following example
illustrates such an induction proof, and is one of the auxiliary lemmas needed by
VerCors to prove correctness of pndfs.

Example 3.3.2 (Encoding induction proofs as functions in VerCors). The follow-
ing function encodes a simple auziliary lemma stating that, if P is an (s,t)-path
such that s is blue, and if all successors of blue states are also blue, then it must
be that all states on P are blue. This is proven by induction on the length of P.

requires Path(s,t, P);

requires color[tid][s] = blue;

requires Yv. color[tid][v] = blue = Vv’ € succ(v) . color[tid][v'] = blue;

ensures \result AVi.(0 <1i < |P| = color[tid][P]i]] = blue);

pure boolean lemma_reachblue(int tid, int s, int ¢, seq(int) P) :=
1 < |P| = lemma_reachblue(tid, P[1],t, P[1..]);

S Ak W N -

The VerCors encoding of this lemma actually includes bounds checks as well as
Perm annotations for the shared arrays. These are omitted for ease of presentation.

VerCors can automatically prove this lemma: the base case of the induction proof
amounts to 1 > |P|, in which case 1 = |P| due to the Path predicate on line 1, and
so it triwially follows that s =t and thus that P is entirely blue.
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The induction case is encoded via the recursive call to lemma_reachblue on line 6,
by which the contract of lemma_reachblue is used as the induction hypothesis, with
respect to the subpath P[1..]. In particular, since s = P[0] is blue (line 2), by line 3
it must be that P[1] is also blue, and therewith all preconditions for the recursive
call to 1lemma_reachblue are satisfied. Moreover, due to the induction hypothesis
(i.e., the function contract), the path P[1..] is entirely blue. VerCors can therefore
automatically conclude that P must also be entirely blue.

Application of a lemma in VerCors then amounts to a function call on the speci-
fication level. For example, the function invocation lemma_reachblue(tid, s,t, P)
gives the proof that P is entirely blue, via its postcondition, provided that all
preconditions of lemma_reachblue can be proven at the point of invocation.

The proofs in Section 3.3.1 are all encoded and applied in this way.

3.3.3.3 Correctness of pndfs

Figure 3.10 gives the annotated version of pndfs? that extends the excerpt given
earlier, in Figure 3.7 (on page 75). The main thread requires partial ownership of
all thread-local colour fields on line 2, and distributes these over the appropriate
threads on line 12. The contract associated to the parallel block (lines 11-17) is
called an iteration contract and assigns pre- and postconditions to every parallel
instance. For more details on iteration contracts we refer to [BDH15]. Most
importantly, the iteration contract of each thread holds enough resources to satisfy
all preconditions for the invocation of dfsblue, on line 19.

Now suppose that all threads have terminated and abort has been set to true. In
that case, the resource invariant states that an accepting cycle has been found.
This information can be retrieved by briefly obtaining the resource invariant in
ghost code on line 24, which directly allows deducing soundness (see line 7). This
retrieval could also have been implemented on the level of program code, e.g., by
using an atomic set operation, as explained in [ABH14|. Note that the retrieved
information is not lost upon releasing the resource invariant, as it is a pure Boolean
property and thus duplicable.

Conversely, when abort is still false when all workers have terminated, it holds that
Pinkyiq = 0 and Cyan,, = 0 for every worker tid (line 16). Furthermore, since
all workers started their blue exploration from s;, we also have that s; € Blueyq
(line 17). By briefly obtaining the resource invariant on line 24, the main thread
gets access to the encoding of Invariant 2. As a result, the executing thread is

2Note that every thread reads abort in their contract on lines 16-17, even though they do not
have the required access rights to do so. This is resolved by adding some auxiliary ghost state,
but this is omitted for presentational clarity.
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1 context Perm(N) « Perm(nthreads) * Perm(G) x Perm(acc) * Perm(abort, 3);
2 context Viid, s. Perm(color|tid][s], 3) * Perm(pink|tid][s], 3);

3 context Vtid . Perm(exploringred[tid], 1)  Perm(redroot[tid], % );

4 context Vitid . Perm(waiting[tid], 5 );

5 context 0 < sy < N;

6 requires Viid, s. mexploringred|tid] A color[tid][s] = white A —pink[tid][s];
7 ensures \result = (Ja. acc[a] A ExPath(s;,a,1) A ExPath(a, a,2));

8 ensures (Ja. accla] A ExPath(ss,a, 1) A ExPath(a,a,2)) = \result;

9 boolean pndfs(sy)

10 | par tid = 0 to nthreads

11 context Perm(N) x Perm(nthreads) * Perm(G) x Perm(acc);

12 context Vs . Perm(color[tid][s], 3) * Perm(pink[tid][s], 3 );

13 context Perm(exploringred[tid], 3);

14 context Perm(redroot[tid], §) * Perm(waiting|[tid], 1 );

15 requires —ezploringred|[tid] A Vs. color|[tid][s] = white A —pink[tid][s];

16 ensures —abort = Vs. color[tid][s] # cyan A —pink[tid][s];

17 ensures —abort = color[tid][s;] = blue;

18 do

19 boolean found := dfsblue(sy, tid);

20 if found then

21 | atomic { abort := true; } // initiate global termination.

22 end

23 apply the encoding of Theorem 3.3.3 as an atomic ghost function call.

24 | atomic { if —abort then theorem_completeness() }

25 | return abort;

26 end

Figure 3.10: The annotated version of parallel NDFS, that extends the excerpt
given in Figure 3.7.

able to prove all the premises of Theorem 3.3.3. Thus the ghost method encoding
of Theorem 3.3.3 can be applied on line 24, from which completeness of pndfs
(line 8) is derived.

The encoding of parallel NDFS in VerCors comprises roughly 2500 lines of code,
which includes the mechanisation of all proof steps described in Section 3.3.1. The
verification time is about 140 seconds, measured on a Macbook with an Intel Core
i5 CPU with 2,9 GHz, and 8Gb internal memory.

3.4 Optimisations

One major benefit of mechanically verified code is that optimisations can be ap-
plied with full confidence. Without verification, changes to critical code are often
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1 void dfsblue (s, tid) 1 void dfsblue (s, tid)

2 | s.color[tid] := cyan; 2 | allred := true;

3 | for ¢ € succ(s) do 3 | s.color|tid] := cyan;

4 if t.color|tid] = cyan then 4 |for t € succ(s) do

5 if s.acc V t.acc then 5 if t.color[tid] = white then

6 | report cycle; exit all; 6 if —t.red then

7 end 7 | dfsblue (¢, tid);

8 end 8 end

9 if t.color|tid] = white then 9 end

10 if —t.red then 10 if —t.red then

11 | dfsblue (¢, tid); 11 | allred := false;

12 end 12 end

13 end 13 | end

14 | end 14 | if allred then

15 | if s.acc A —s.red then 15 await s.count = 0;

16 s.count := s.count + 1; 16 s.red := true;

17 dfsred(s, tid); 17 |end

18 | end 18 | else if s.acc A —s.red then

19 | s.color|tid] := blue; 19 s.count := s.count + 1;

20 end 20 dfsred (s, tid);
21 |end
22 | s.color[tid] := blue;
23 end

(a) The “early cycle detection” extension. (b) The “all-red” extension.

Figure 3.11: Two extensions to dfsblue that improve work sharing, and thereby
performance of the algorithm. The code extensions are highlighted grey.

avoided, to ensure that no errors are introduced. A verified algorithm allows
optimisations to be applied easily, as these often do not change the outer con-
tract, at most requiring only minor adaptions to the invariants. We illustrate
this with two optimisations, for which [LLP* 11| experimentally demonstrated im-
proved speedup.

The “early cycle detection” extension checks already in the blue search if an ac-
cepting cycle is closed, cf. lines 46 in Figure 3.11a. It is known that for weak
LTL properties, all accepting cycles will now be found in the blue search. When
checking weak LTL properties, the automata are always such that t is accepting
if there is any accepting node on the path from s to t, so this special case is not
uncommon. If all nodes in a strongly connected component are accepting (which
can be achieved for the large class of weak LTL properties), this optimisation will
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detect all accepting cycles in the blue search. To show that this optimisation
indeed preserves the invariant, we simply inserted these 3 lines in the VerCors
specification. The proof introduces a case distinction on whether s or t is accept-
ing and constructs a witness path. This adds another 10 lines: two for the case
distinction and four in each branch to show that a witness accepting cycle exists.
Collectively, these extra 13 lines constitute indeed very little effort to prove this
particular optimisation correct.

The second optimisation, named “all-red”, checks if all successors of s became
red (lines 2 and 7 in Figure 3.11b). If so, we can mark s.red (lines 8-10). This
optimisation is important, since it allows spreading the global red colour even
in portions of the graph that are not under an accepting state, thereby allowing
more pruning. However, this optimisation only preserves the invariants if we wait
until s.count = 0 (on line 9). This test was erroneously omitted in [LLP*11].3
Fortunately, the version in Figure 3.11b is correct, which has now been checked in
VerCors in a straightforward manner.

3.5 Conclusion

This chapter presents the first automated deductive verification of a parallel graph
algorithm, nested depth-first search, which is a major contribution to the field
of computer-aided verification. We verified both soundness and completeness of
parallel NDFS using the automated verifier VerCors. The correctness proof is
inspired by an earlier handwritten proof |[LLP*11], but the completeness argu-
ment has been rephrased in order to mechanise the proof. In addition, many
details that were left implicit in the handwritten proof are made explicit. Further-
more, we show that this mechanisation is helpful in quickly discovering whether
optimisations of the algorithm preserve its correctness. Many of the presented
verification techniques, e.g., the use of separate contracts for single statements,
the way we handle termination of the algorithm, and the construction of explicit
witnesses through ghost-variables, will be useful for the verification of other sim-
ilar algorithms. Moreover, our encoding of parallel NDFS closely resembles the
implementation of such an algorithm in main-stream programming languages like
C++ and Java. The way we handle graphs provides a first step towards a library
for the verification of graph-based model checking algorithms.

We noticed that, since VerCors is not interactive like, e.g., Coq or Isabelle, there
is less control on how quantifiers are instantiated, which makes mechanising the
proof steps described in Section 3.3.1 more work-intensive. An interactive mode

3In 2012, Wan Fokkink and his students already found that the all-red extension in [LLP¥11]
required an extra check “await s.count = 07, and wondered whether “await s.count < 1”7 would
be sufficient. Independently, Akos Hajdu reported this omission in 2015.
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would be a useful addition to VerCors for doing proofs that are not immediately
related to program execution. On the other hand, the automation that VerCors
provides, together with its ability to directly analyse program code, were crucial
in tackling a concurrency verification problem of this scale.

Finally, notice that, for this pndfs verification case study, we managed to encode
all the properties required for proving correctness into a single global invariant
(presented in Figure 3.8 on page 78). However, it is in general not always pos-
sible nor convenient during verification to encode the property of interest into a
global, static invariant. For example, protocol-like properties of control-flow (e.g.,
a lock always first needs to be unlocked before it can be acquired) are not con-
veniently expressed into a static, first-order logic invariant. Chapter 4 introduces
an abstraction technique that allows specifying such protocol-like properties about
heap evolvement conveniently, in a shared-memory CSL setting. This abstraction
approach is demonstrated on various verification examples, before Chapter 5 gives
a full machine-checked formalisation and soundness proof of the approach.

3.5.1 Future Work

There are many possibilities to extend the line of research on the verification of
parallel model checking algorithms initiated in this thesis. First, one may con-
sider to extend the scope of this verification closer towards the actual efficient
C-implementation in LTSMIN. This would involve the verification of the underly-
ing concurrent hash-table to store visited states (a simplified version of which has
been verified before with VerCors [ABH14]), the encoding of the colours as “bits”
in the hash table buckets, and the use of CAS to manipulate these bits.

One might consider alternative parallel NDFS versions, notably [EPY11], which
shares the blue colour, invoking a repair procedure when the depth-first order is
violated. Both algorithms have been reconciled in [ELPP12|, sharing both blue
and red. This work could be extended to a wealth of other optimisations (like
partial-order reduction) or other parallel model checking algorithms, e.g., based on
parallel SCC algorithms [RDKP17, BLP16]. Another challenge would be to verify
the extension of parallel NDFS with subsumption for timed automata [LOD'13].

As mentioned, our work can be considered as a first step towards a library for
the verification of graph-based (multi-core) model checking algorithms. It will be
an interesting line of future work to continue this, and to develop a full-fledged
verification library for common subtasks, like graph manipulations, generic DFS
procedures, and termination detection.
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CHAPTER 4

An Abstraction Technique
for Describing Concurrent
Program Behaviour

Abstract

This chapter presents a technique to reason about functional properties of shared-memory
concurrent software by means of abstraction. The abstract behaviour of the program is
described using process algebras. In the program we indicate which concrete atomic steps
correspond to the actions that are used in the process algebra term. Each action comes
with a specification that describes its effect on the shared state. Program logics are used
to show that the concrete program steps adhere to this specification. Separately, we also
use program logics to prove that the program behaves as described by the process alge-
bra term. Finally, via process algebraic reasoning we derive properties that hold for the
program from its abstraction. This technique allows reasoning about the behaviour of
highly concurrent, non-deterministic and possibly non-terminating programs. This chap-
ter discusses various verification examples to illustrate our approach. The verification
technique is implemented as part of the VerCors concurrency verifier. We demonstrate
that our technique is capable of verifying data- and control-flow properties that are hard
to verify with alternative approaches, especially with mechanised tool support.

4.1 Introduction

In Chapters 2 and 3 we exclusively considered and verified global behavioural prop-
erties that could be specified as global, first-order logic invariants. Nevertheless, in
practice not all properties can conveniently be expressed in this way. For example,
properties of control-flow, or properties relying on intricate thread interaction, are
difficult to specify as a global invariant, but are instead more easily specified as
a transition system, or a state machine. This chapter introduces an abstraction

89
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technique for specifying such properties as a process algebra, and verifying them
in a sound manner using the VerCors concurrency verifier.

The major challenge when reasoning about concurrent or distributed software is to
come up with an appropriate abstraction that provides sufficient detail to capture
the intended properties, while at the same time making verification manageable.
This chapter presents a new powerful abstraction approach that enables reason-
ing about the intended properties of the program in a purely non-deterministic
setting, and can abstract code at different levels of granularity. The presentation
of the abstraction technique in this chapter focuses on shared-memory concurrent
programs and safety properties, but many extensions may be explored. For exam-
ple for distributed programs (see Chapter 7), or progress properties, as sketched
in the paragraph on future work (in §4.8.1). This chapter illustrates our approach
by discussing multiple verification examples in which we verify various data- and
control-flow properties. We demonstrate that the proposed technique can be used
to verify program properties that are hard to verify with alternative approaches,
especially in a practical manner via mechanised tools.

To motivate our approach, consider the program shown in Figure 4.1. The figure
shows a parallel version of the classical Euclidean algorithm for finding a greatest
common divisor, gcd(x,y), of two given positive integers « and y. This is done by
forking two concurrent threads: one thread to decrement the value of x whenever
possible, and one thread to decrement the value of y.

We are interested in verifying deductively that this program indeed computes the
greatest common divisor of z and y. To accomplish this in a scalable fashion re-
quires that our technique be modular, or more precisely procedure-modular and
thread-modular, to allow the individual functions and threads to be analysed in-
dependently of one another. The main challenge in achieving this lies in finding
a suitable way of capturing the effect of function calls and threads on the shared
memory in a way that is independent of the other functions and threads. Our
proposal is to capture these effects as sequences of exclusive accesses (in this ex-
ample increments and decrements) to shared memory (in this example the heap
locations ¢, and ¢,). We abstract such accesses into so-called actions, and their
sequences into process algebraic terms.

In our example above we abstract the assignments [¢,] := [¢;] — [{,] and [¢,] :=
[ly] — [¢z] needed to decrease the values at heap locations ¢, and /, into actions
decrx and decry, respectively. Action behaviour is specified by means of contracts
consisting of a guard and an effect. The explanation of the details of this are
deferred to Section 4.3. Using these actions, we can specify the effects of the two
threads by means of the process algebra terms Tx and Ty, respectively, which are
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1 /* Two references to integers stored on the heap. x/

2 int ref /,, (y;

3

4 /x Startup procedure for the concurrent GCD algorithm. */
5 int startgcd(int z, int y)

6 | [ly] := x; // writing 2 to the heap at location /.

7 | [€y] :=y; // writing y to the heap at location £,,.

8 | ref t; := fork thread_xQ);

9 | ref ty := fork thread_y();

10 | join tq;

11 | join to;

12 | return [{,]; // returning the value at heap location /,.

13 end

(a) The starting procedure for the concurrent GCD algorithm, which spawns two
two threads that each do a part of the computation.

10 void thread_x() 21 void thread_y()

11 | boolean stop := false; 22 | boolean stop := false;
12 | while (—stop) do 23 | while (—stop) do

13 atomic lock do 24 atomic lock do

14 if ([¢z] > [¢,]) then 25 if ([¢y] > [¢;]) then
15 ‘ [la] := [la] — [4y]; 26 ‘ [£y] == [6y] — [La];
16 end 27 end

17 stop = [lg] = [4y]; 28 stop == [{y] = [ls];
18 end 29 end

19 | end 30 | end

20 end 31 end

(b) The (symmetric) implementations of thread_a and thread_b, where the [-]
notation denotes heap dereferencing, used to read from, or write to, the heap.

Figure 4.1: A parallel implementation of the Euclidean algorithm for finding the
greatest common divisor of two (positive) integers = and y.
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defined as follows:

process Tx £ decrx - Tx + done; process Ty = decry - Ty + done;

Here the action done indicates termination of a process. The functional behaviour
of the program can then be specified by the process GCD defined as the term Tx ||
Ty. Standard process algebraic reasoning can be applied to show that executing
GCD results in calculating the correct gcd.

Therefore, by proving that the implementation executes as prescribed by GCD, we
simultaneously establish its functional property of producing the correct result.
The GCD process thus describes the program behaviour.

Once the program has been specified, the access exclusiveness of the actions
is verified by a suitable extension of separation logic with permission account-
ing [0O’HO7, BCOPO05]. On top of it, we develop rules that allow to prove, in a
thread-local fashion, that the program indeed follows its prescribed process. The
details of our technique applied to the above program are presented in Section 4.3.

In previous work [BHZS15, ZS15| we developed an approach that records the
actions of a concurrent program as the program executes. Reasoning with this
approach is only suitable for terminating programs, and occurs at the end of its
execution, requiring the identification of repeating patterns. In contrast, the cur-
rent approach requires a process algebra term upfront that describes the patterns
of atomic concurrent actions, which allows specifying of functional behaviour of
reactive, non-terminating programs. For instance, we can verify properties such as
“the values of the shared locations a and b will be equal infinitely often”, expressed
in LTL by the formula O0([¢;] = [¢,]), of a program that forks separate threads
to modify ¢, and ¢, similarly to the above parallel GCD program.

Compared to many of the other modern separation logics to reason about concur-
rent programs, such as CAP [DYDG™'10|, CaReSL [TDB13|, Iris [JSST15], and
TaDA [RPDYG14], our approach does the abstraction at a different level. Our
abstraction connects program code with individual actions, while these other ap-
proaches essentially encode an abstract state machine, describing how program
steps evolve from one abstract program state to the next abstract program state,
and explicitly consider the changes that could be made by the thread environment.
As a result, in our approach the global properties are specified in a way that is
independent of the program implementation. This makes it easier for non-experts
to understand the program specification.
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4.1.1 Contributions

The main contributions of this chapter are’:

e An abstraction technique to specify and verify the behaviour of possibly non-
terminating, shared-memory concurrent programs, where the abstractions
are implementation-independent and may be non-deterministic;

e A number of verification examples that illustrate our approach and can me-
chanically be verified via the VerCors verifier; and thus

e Tool support for our model-based reasoning approach.

4.1.2 Chapter Outline

The remainder of this chapter is organised as follows. Section 4.2 gives a brief
background on process algebras, and introduces the process algebra language that
is used throughout the remainder of this chapter. Section 4.3 then illustrates
in more detail how our abstraction technique is used in the verification of the
parallel GCD example (Figure 4.1). Section 4.4 elaborates on the proof rules
of the approach, after which Section 4.5 revisits the parallel GCD example once
more, to explain how the proof rules are used and to show all the intermediate
proof steps. After that, Section 4.6 discusses three more verification examples
to demonstrate our approach: (i) verifying a concurrent counter, (ii) verifying a
locking protocol, and (iii) verifying a classical leader election protocol. Finally,
Section 4.7 discusses related work, after which Section 4.8 concludes.

4.2 Background on Process Algebra

The abstract models we use to reason about shared-memory program behaviour
are represented as process algebra terms. We use a subset of the yCRL [GP95,
GM14] language for this, as a suitably expressive process algebra with data. The
basic primitives of the language are actions, which represent basic, indivisible
process behaviours. These actions can be composed in different ways to construct
processes. Actions and processes may both may be parameterised by data.

Our process algebra language has the following structure:

P,Q == c|d|a(E)|pE)|P-Q|P+Q|P|Q]|if B then P else P

In the above definition, F is an arithmetic expression, B a Boolean expression, a
an action label, and p a process label. With E we mean a sequence of expressions.

1This chapter is based on the article [OBG117].
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The empty process is denoted € and the deadlock process by d. The process a(F)
is an action call and p(E) a recursive process invocation, with E the argument
sequence. Two process terms P and ) may compose either sequentially P - @ or
alternatively P+ Q. The parallel composition P || @ allows the actions of P and @
to be interleaved during execution. The conditional construct if B then P else @)
resembles the classical “if-then-else”; it yields either P or ), depending on the
result of evaluating the expression B. The else branch is sometimes omitted, in
which case the abbreviation if B then P £ if B then P else § is used.

4.3 Motivating Example

This section demonstrates our approach by verifying functional correctness of the
parallel GCD verification example that was discussed in the introduction. With
functional correctness we mean verifying that the correct value has been calcu-
lated after termination of the program. In this example, the correct value is the
mathematical GCD of the two (positive) values given as input to the algorithm.

Our approach consists of the following steps:

1. Actions and their associated guards and effects are defined that describe in
what ways the program is allowed to make updates to shared memory.

2. The actions are composed into processes by using the process algebraic con-
nectives discussed in Section 4.2. These processes determine the desired
behaviour of (parts of) the concrete program. Notably, processes that are
composed in parallel correspond to forked threads in the program.

3. All defined processes that have a contract (pre- and postconditions) are ver-
ified. Concretely, we automatically verify with VerCors whether the post-
conditions of processes can be ensured by all traces that start from a state
in which the precondition is satisfied.

4. Finally we verify that every thread forked by the program behaves as specified
by the process algebraic specification. If this is the case, the verification
results that are established from the previous step can be obtained and used
in the program logic.

Tool support for model-based reasoning is provided as part of the VerCors de-
ductive verifier [BH14c, BDHO17|. Preliminaries on the use of VerCors can be
found in Chapter 2. The VerCors verifier aims to verify programs under various
concurrency models, notably heterogeneous and homogeneous concurrency, writ-
ten in high-level programming languages such as Java and C. Although most of
the examples presented in this chapter have been worked out and verified in PVL,
the Prototypal Verification Language that we use to prototype new verification
features, tool support is also provided for both Java and C.
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All verification examples presented in this chapter have been verified with the
VerCors verifier, and are furthermore accessible via the online Git repository that
comes with this thesis [Sup].

4.3.1 Parallel GCD

We demonstrate our model-based reasoning approach by capturing the functional
behaviour of a parallel GCD algorithm. The parallel GCD verification problem
is taken from the VerifyThis verification competition held at ETAPS 20152 and
considers a parallel version of the classical Euclidean algorithm.

Definition 4.3.1 (Euclidean algorithm). The classical Euclidean algorithm is de-
fined as a function gcd : Z>g — Z>o0 — Z>o in the following way.

ged(z —y,y) ifz >y
ged(z,y —x) ify>x
T ife=y

A

ged(z,y)

The parallel version of this algorithm uses two concurrent threads: the first thread
continuously decrements the value of x when = > y, while the second thread
continuously decrements the value of y whenever y > z, and this process continues
until z and y converge to the gcd of the two original input values. Model-based
reasoning is used here to describe the interleaving of the concurrent threads and
to prove functional correctness of the parallel algorithm in an elegant way.

Figure 4.2 presents the setup of the GCD process, which models the behaviour of a
parallel GCD algorithm with respect to the two global variables « and y. The GCD
process uses three different actions, named: decrx, decry, and done. Performing
the action decry captures the effect of decreasing x by an amount y, provided that
x > y before the action is performed. Likewise, performing decry captures the
effect of decreasing y. Finally, the done action may be performed when x = y and
is used to indicate termination of the algorithm.

The GCD process is defined as the parallel composition of two processes; the process
Tx describes the behaviour of the thread that decreases x, and Ty describes the
behaviour of the thread that decreases y. The GCD process requires that the shared
variables x and y are both positive, and ensures that both = and y contain the gcd
of the original values of x and y. Proving that GCD satisfies its contract is done
via standard process algebraic reasoning: first GCD is converted to a linear process
(i.e., a process without parallel constructs), which is then analysed (e.g., via model
checking) to show that every thread interleaving leads to a correct answer, in this
case gcd(\old(z), \old(y)).

2see also http://etaps2015.verifythis.org.
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/* Process-algebraic state */
shared int x,y;

1
2

3

4 /% Abstract description of the decrement of x */
5 guard x > 0 Ay > x;

6 effect © = \old(z);

7 effect y = \old(y) — \old(z);

8 action decrx;

9

10 /* Abstract description of the decrement of y x/

11 guard y > 0Az > y;

12 effect = \old(z) — \old(y);

13 effect y = \old(y);

14 action decry;

15

16 /+ Abstract description of the termination condition */

17 guard x = y;

18 action done;

19

20 /* Process-algebraic behavioural specification of the two threads x/
21 process Ix := decrx - Tx + done;

22 process Ty := decry - Ty + done;

23

24 /* Process-algebraic specification of the parallel GCD algorithm x/
25 requires x > 0 Ay > 0;

26 ensures ¢ = y = ged(\old(x), \old(y));

27 process GCD := Tx || Ty;

Figure 4.2: The processes used for the parallel GCD verification example. Three
actions are used: decrx, decry, and done. The first two actions capture modifica-
tions made to the (shared) variables x and y, and done indicates termination of
the algorithm.

4.3.2 Verifying the Correctness of Parallel GCD

Figure 4.3 shows the startgcd function, which is the entry point of the implemen-
tation of the parallel GCD algorithm?®. This implementation spawns two threads

31t should be noted that the presentation is slightly different from the version that is verified
by VerCors, to better connect to the theory discussed in the earlier sections to the case study.
Notably, as discussed earlier, VerCors uses Implicit Dynamic Frames [LMS09| as the underlying
logical framework, which is equivalent to Separation Logic [PS11] but handles ownership slightly
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/* Two references to integers stored on the heap. */
int ref /., {y;

/* The resources (ownerships) and knowledge protected by the lock. */

1
2
3
4
s s R VAR 1 / 1 / / / .
5 lock invariant lock := v, vy, - Ll proc Vi * Ly —proc vy, KUy > 0* vy > 0;
6
7 /* Startup procedure for the concurrent GCD algorithm. */
8 given v, vy;
. 1 1

9 requires {, = vy ¥ £y = vy x vy > 0 vy > 0;

o 1. 1 Y A .
10 ensures v, vy . Ly < vy * Ly = vy kv = vy = ged(vg, vy );

11 void startgcd()

12 | ref m := process GCD over (x — l,, y — £y);
13 | invariant lock do

14 ref ¢, := fork thread_x(m);

15 ref to := fork thread_y(m);

16 join tq;

17 join to;

18 | end

19 | finish m;

20 end

Figure 4.3: The entry point of the parallel GCD algorithm. Two threads are
forked and continuously decrement the values at heap locations ¢, and £, until
these become equal, which is when the threads converge. The functional property
of actually producing a ged is proven by analysing the process (externally).

to compute the GCD concurrently, and uses shared-memory as the communication
model between these threads. More specifically, the threads communicate via two
shared locations on the heap, named /¢, and ¢, in the figure, which are globally
declared on line 2. Moreover, we use the notation [¢;] to denote heap dereferenc-
ing, i.e., obtaining the value at location ¢, from the heap, and [¢,] := v to denote
heap writing, i.e., writing the value v to the heap at location £,,.

The startgcd method has been annotated with code annotations, displayed in
blue. These annotations are specified manually, by the user of VerCors.

According to startged’s contract (lines 8-10), the references ¢, and ¢, must indeed
be allocated on the heap, and must point to some given positive integer values v,
and vy, respectively. This is expressed by the precondition on line 9.

differently. The details of this are deferred to [BDHO17, JOSH18].
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On line 12 a new process-algebraic model is initialised, which is given the ref-
erence m. This model describes that all further updates to the shared-memory
locations ¢, and ¢, must behave as specified by the GCD process. Here the process-
algebraic variable z is linked/connected to the heap location ¢, (i.e., protecting
its modifications), while y is linked to heap location ¢,. This means that, after
the initialisation of GCD, the program can no longer “freely” write to locations /¢,
or {,: modifications to the heap at these locations must happen in the context of
a process-algebraic action, for example decrx or decry.

Since GCD is defined as the parallel composition of the processes Tx and Ty, its
definition may be matched in the program code by forking two concurrent threads
and giving each thread one of the components of Tx || Ty. In this case, the
thread that executes thread_x continues from the process Tx, whereas the thread
executing thread_y continues from Ty. By later joining the two threads and
finishing the model by using the ghost statement finish (which is only possible
if GCD has been fully executed), we may establish that startgcd satisfies its
contract. However, we still have to show that the threads executing thread_x and
thread_y behave as described by the model m.

Moreover, lines 14-17 are executed in the context of an invariant, which enables
locking and unlocking. In particular, when one of the threads obtains a lock, it gets
access to the resources that are protected by the lock invariant, which is named
lock and specified on line 5. In this case, the lock invariant lock protects write
access to the heap at locations ¢, and /,, and states that these locations point to
positive integer values. These write accesses are transferred from the thread to
the lock at line 13, and are transferred back to the thread on line 18.

Thread implementation. Figure 4.4 shows the implementation of thread_x.
The implementation of thread_y is symmetric to thread_x and therefore omitted.
The precondition of thread_x states that a predicate of the form Procs (m, Tx) is
required. This predicate is used to indicate that there exists an initialised program
abstraction named m, that is able to execute the Tx (sub)process. Moreover, the
fractional permission % indicates that this predicate describes only a fraction of
the entire process-algebraic model: in this case, thread_y will have the other half,
and will execute according to Ty. We will later see that these Proc predicates can

be split and merged, and be distributed over different threads.

The connection between the process and program code is made via the action
specification statements. To illustrate, in the function thread_x the decrement
of [£;] on line 13 is performed in the context of an action block, thereby forcing
the Tx process in the Proc 1 predicate to perform the decrx action. The guard of
decrx specifies the condition under which decrx can be executed, and the effect
clause describes the effect on the (shared) state as result of executing decrx. More
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1 /* Specification and implementation for the thread decrementing at £,. */
2 requires Proc%(m,Tx);

3 ensures Proc%(m,a);

4 void thread_x(ref m)

5 | boolean stop := false;

6

7 | loop_invariant —stop = Procy(m, Tx);
8 | loop invariant stop =— Proc%(m,s);
9 | while (—stop) do

10 atomic lock do

11 if ([¢z] > [¢,]) then

12 action m.decrx do

13 ‘ [la] = [la] = [4];

14 end

15 end

16 else if ([¢;] = [{,]) then

17 action m.done do

18 | stop := true;

19 end

20 end

21 end

22 | end

23 end

Figure 4.4: The implementation of the procedure used by thread_x for calculating
the GCD, by decrementing [¢,]. The implementation of thread_y is symmetric.

specifically, the proof system will ensure that the modification of [¢,] on line 13
complies with the guard and effect of the decrx action, where the process-algebraic
variable z is linked to £,, while y is linked to ¢,. Eventually, both threads execute
the done action to indicate their termination.

The VerCors verifier can automatically verify the parallel GCD verification exam-
ple discussed above, including the analysis of the GCD process. Moreover, observe
that the contract of thread_x does not express any functional properties on the
behaviour of its implementation, other than the new Proc predicates. The func-
tional postcondition of calculating the correct result is established entirely on the
process-algebraic level.

The next section gives more details on the assertion language, notably the new
Proc, and <o assertions, as well as the proof system. After that, we come back
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to the GCD example in Section 4.5, and also discuss all intermediate verification
steps, before Section 4.6 discusses some more applications of our approach.

4.4 Program Logic

This section shortly elaborates on the assertion language and the proof rules of the
verification approach, as used internally by VerCors to reason about abstractions.
We do not present a full formalisation just yet, for full details we refer to Chapter 5.
We now only sketch and discuss the proof rules related to model-based reasoning.

4.4.1 Assertions

The program logic builds on standard CSL with permission accounting [Boy03].
The following grammar defines its assertion language:

P,Q u=B|Vx.P|IxP|PxQ| (standard CSL connectives)
{5, E | Proc,(z,p, P,TI) (heap ownership, abstraction ownership)

t == std | proc | act (heap ownership types)

II == (o Eo,..., 0, — E,) (abstraction binders)

where F are arithmetic expressions, B are Boolean expressions, x are variables,
m are fractional permissions, ¢ are references to heap locations, and p are process
labels. Note that the specification language implemented in VerCors supports more
assertion constructs; we only highlight a subset to elaborate on our approach.

Heap ownership. Instead of using a single points-to ownership predicate, like
in standard CSL, our extensions require three different points-to predicates:

e The ¢ 5y E predicate is the standard points-to predicate from CSL. It
gives write permission to the heap location expressed by ¢ in case m = 1,
and gives read access in case m € (0,1]. This predicate also represents the
knowledge that the heap contains the value expressed by F at location /.

e The process points-to predicate { < poc E is similar to <eq, but indicates
that the heap location at ¢ is bound by an abstract model. Since all changes
to this heap location must be captured by the model, the <%, predicate
only gives read permission to ¢, even when m = 1.

e The action points-to predicate { <>,; E gives read- or write access to the
heap location £ in the context of an action block. As a precondition, action
blocks require < poc predicates for all heap locations that are accessed in
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<5-SPLIT-MERGE
t € {std, proc, act}

E‘m)tE <~ E&)tE*é‘ﬂnE

PROC-SPLIT-MERGE

Procs, 4y (E,p, P1 || P2,II) < Proc,, (E,p, P;,1I) % Proc,,(E, p, P»,II)

Figure 4.5: Simplified proof rules for splitting and merging ownerships.

their body. These predicates are then converted to <%, predicates, which
give reading permission if 7 € (0, 1], and writing permission if 7 = 1.

The notation £ << E £ ¢ Sy F (without the std subscript) is sometimes used
to abbreviate standard heap ownership predicates.

All three points-to ownership predicates can be split and merged along the associ-
ated fractional permission, to be distributed among concurrent threads, as shown
by the <—-SPLIT-MERGE proof rule in Figure 4.5.

Essentially, three different predicates are needed to ensure soundness of the verifi-
cation approach. When a heap location £ becomes bound by an abstract model, its
¢ Tgq F predicate is converted to an £ <5 p,0c E predicate in the program logic.
As an effect, the value at £ cannot just be changed, since the < poc predicate does
not permit writing to ¢ (even when 7 = 1). However, the value at ¢ can be changed
in the context of an action block, as the rule for action blocks in our program logic
converts all affected <5 proc predicates to <, predicates, and ¢ <, again allows
writing to £. The intuition is that, by converting ¢ < poc F predicates to £ <,y E
predicates, all changes to ¢ are forced to occur in the context of action blocks, and
this allows describing all changes to ¢ as processes. Consequently, by reasoning
over these process algebra terms, we may reason about all possible changes to ¢,
and our verification approach allows the result of this reasoning to be used in the
proof system.

Process ownership. The second main extension our program logic makes to
standard CSL is the Proc,(z,p, P,II) predicate, which represents the knowledge
of the existence of an abstract process-algebraic model that:

1. Is identified by the variable/reference x;

2. Was initialised by invoking the process labelled as p;
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3. Is described by the process term P; and

4. Connects process-algebraic state (variables) to shared program state (heap
locations) via the II = (z¢ — &, ...,z — £,) mappings, which we refer to
as binders.

For brevity we omit the p and II components from the annotations in all example
programs, and simply write Proc, (z, P) instead. This is because these two com-
ponents are constant, and can never be changed in the proof system. The third
component P is the remaining process that is to be “executed” by the program
(i.e., “reduced” in its proof derivation).

The Proc, predicates may be split and merged along the fractional permission and
parallel compositions in its process component, likewise to the heap ownership
predicates, as shown by the PROC-SPLIT-MERGE rule in Figure 4.5.

4.4.2 Proof System

Before discussing the proof rules of our model-based verification approach, let us
first define the following auxiliary operation, II|x, for removing all mappings in
IT with a variable that is not in the set X of process-algebraic variables.

Definition 4.4.1 (Binder restriction). Let II be a binder and X be a set of process-
algebraic variables. The restriction of II to X, written I1 | x, gives a new binder
containing only the elements from II that have a process-algebraic variable in X :

x> E((as)lyx) ifzeX

nillx £ nil (v B (zs))lx = {(zsﬂx ifod X

To give some intuition on how the underlying proof system works, Figure 4.6
shows the simplified proof rules. The actual proof rules are more involved, and
are discussed in detail in Chapter 5, together with their soundness proof.

The HT-READ rule allows reading from the heap, which can be done with any heap
ownership predicate (that is, <+; for any permission type t). Writing to shared
memory is only allowed by HT-WRITE with a full heap ownership predicate that
is mot of type proc; if the targeted heap location is bound by an abstract model,
then all changes must be done in an action block (see the HT-ACTION rule). HT-
PROC-INIT handles the initialisation of a model, which on the specification level
converts all affected <—1>std predicates to <—1>proc, and produces a full Procy predicate.
HT-PROC-FINISH handles model finalisation: it requires a fully executed Proc;
predicate (holding the process ) and converts all affected ‘—1>proc predicates back to

N Finally, HT-ACTION handles action blocks. If a proof can be derived for the
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HT-READ HT-WRITE
x & fv(E) t # proc
- {P[z/E] xS, E}x := [(]{P x{ <>, E} F{tL, - [ = E{t <, E}

HT-PROC-INIT
I = <l‘0l—)£0,...7$nl—>fn>
{ Ckicqo,...n1li et E;) * precondition(p) [zi/Eilvieto,...n} }
H ref m := process p over Il
{ (kicqo,...n) i <—1>proc E;) = Procy (m, def(p), P, II) }

HT-PROC-FINISH

II= <$0’—)£0,...7$n'—)£n>
{ (*iE{O,‘..,n}éi ‘_1>proc Ei) * Procl(m,p,e,ﬂ) }
+ finish m

{ Ckicqo,....npli Lsta Ei) * postcondition(p) [%i/Eilvieo,...n} }

HT-ACTION

FV = fv(guard(a)) U fv(effect(a)) IMpy=(xo— loy...,2n > Ly)
Bguara = guard(a)[xi/ Eilvic(o,....n} Befrect = effect(a)[zi/Ejlvieqo,....n}
F { (*iE{O,...,n}gi i>act E’L) * Bgua?“d } S{ (*iE{O,...,n}gi (l>act E:) * Beﬁ'ect }

{ (*iG{O ..... n}fz {l>proc Ez) * Procﬂ(@p,a(E) P+ Q, H) * Bguard }
F action m.a(F) do S
{ (*iE{O,...,n}gi (l>proc EZ/) * Procrr(m7p7 Pa H) * Beﬁect }

Figure 4.6: Selected simplified proof rules that deal with handling heaps and
process-algebraic models. The semantic details and soundness of these proof rules
are deferred to Chapter 5.

body S of the action block that (i) respects the guard and effect of the action, and
(ii) has the <—1>pmc predicates of all heap locations accessed in .S converted to <—1>act;
then a similar proof can be established for the entire action block. Observe that
HT-ACTION requires and consumes the matching action call a(E) in the process

component a(£) - P + @Q of the Proc, predicate, so that Proc, is left with P and

Q is discarded, as by performing a(FE) the choice is made not to follow execution
as prescribed by Q.

4.5 Parallel GCD—Intermediate Proof Steps

Let us now come back to the parallel GCD example that we annotated in Sec-
tion 4.3, and discuss the intermediate proof steps. Figure 4.7 shows the algorithm’s
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int ref ¢, {y;

. . 1 1
lock _invariant lock := Jv,, v; Ay Sproc Ul % Ly proc v; x v, > 0xv, > 0;
given v, vy;

. 1 1
requires {; <= vy * £y = vy * vy > 0% vy > 05

/
x?

1 1
y Lo = vl by = vy kvl = vy, = ged(vg, vy);
void startged()

{l, L v, * l, N vy kv > 0% v, > 0}

ref m := process GCD over (z — {y, y — {,);
{Procy(m,GCD) x ¢, <i>proc Vg * 0y f#moc vy kv > 0% vy >0}

1 1
12 | {Proci(m, GCD) * v, vy, . £z proc Vi * Ly “proc Uy * vy, > 0% vy, > 0}

) Yy

ensures v/, v

© 00 N o 0k W N

[
= O

13 | invariant lock do

14 {Procy(m,GCD)}

15 {Procy(m, Tx || Ty)}

16 {Proc, (m, Tx) = Procy (m, Ty)}
17 ref t; := fork thread_x(m);
18 {Procs (m, Ty)}

19 ref t5 := fork thread_y(m);
20 {}

21 join ty;

22 {Procy(m,e)}

23 join to;

24 {Proc% (m, €) * Procy (m, e)}
25 {Proci(m,e || )}

26 {Proci(m,e)}

27 | end

1 1
28 | {Proci(m, ) * v}, vy, Lo proc Vi * £y Fproc ¥
29 | finish m;
o 1o 1 / / / / ,
30 | {3vy, vy My = vk Ly = vp x v > 0% vy > 0%, = vy, = ged(vg, vy) }
31 end

y * Uy > 0% vy, > 0}

Figure 4.7: The entry point of the parallel GCD algorithm. All assertions {P} that
are displayed in purple are intermediate verification steps that are automatically
generated and proven by VerCors.
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1 requires Procy (m, Tx);
2 ensures Proc, (m, ¢);
3 void thread_x(ref m)

4 |boolean stop := false;
5
6 |loop invariant —stop = Proc%(m,Tx);
7 |loop invariant stop = Proc% (m,e);
8 |while (—stop) do
o | | {Proci(m,Tx)}
10 atomic lock do
11 {Procy (m, Tx) = Jv, v, . Ly <i>pmc vl x4, <—1>proc vy * v, > 0% vy >0}
12 int w,, wy = [lg], [6y];
13 {Proc% (m, decrx - Tx + done) * £, éproc Wy * Ly <—1>pmc Wy k)
14 if (wy > wy) then
15 {Prom5 (m, decrx - Tx + done) * £, <—1>proc Wy * £y <—1>proc Wy * Wy > Wy * -+ -}
16 action m.decrx do
17 {l, <—1>act Wy * Ly ;1>act Wy * -}
18 [z] = wy — wy;
19 {l, ‘—1>act Wy — Wy * Uy ‘—1>act Wy * -+ -}
20 end
21 {Proc% (m, Tx) * £, f—1>pmC Wy — Wy * b <—1>proc Wy * -}
22 end
23 else if (w, = w,) then
24 {Proc% (m, decrx - Tx + done) x* £, i>proc Wy * Ly i>proc Wy * -}
25 action m.done do
26 ‘ stop = true;
27 end
28 {Proc% (m,e) x4l <i>proc Wy * Ly i>proc Wy * -}
29 end
30 end
81 | |{—stop A Proci(m, Tx) V stop A Procy (m, )}
32 |end
33 end

Figure 4.8: The implementation of the procedures used by the two threads for
calculating the GCD: thread_x decrements [/,], while thread_y decrements [{,].
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entry point, startgced, but with all intermediate proof steps displayed in purple.

On line 10, the process-algebraic model GCD is initialised, which by HT-PROC-INIT
produces a Proci(m,GCD) predicate in the logic (see line 11), and converts the
ly f—1>5td and £, ‘—1>5td predicates to process points-to predicates, £, ‘—1>proc and
4y (—1>p,oc, respectively. This conversion ensures that £, and ¢, can only be written
to in the context of action blocks, since the f—1>pmc predicates never provide write
access, unless they are first upgraded to ~'—1>act.

On line 13, the executing thread is required to hand-in all ownerships that are
to be protected by the lock, as specified by the lock invariant on line 3, named
lock. From that point on these resources can only be obtained in the context of
an atomic program, until after the invariant stops protecting them on line 27.

Line 15 shows that the GCD process can be replaced by its definition, Tx || Ty,
after which it can be split along || using PROC-SPLIT-MERGE; see line 16. The two
resulting predicates, Proc% (m, Tx) and Proc% (m, Ty), can then be distributed over
thread_x (line 17) and thread_y (line 19). When both these threads have been
joined (on line 23), the two resulting Proc, (m, ¢) predicates can be merged back
into a single Procy(m,e || €) predicate using PROC-SPLIT-MERGE (see line 25),
which is (bisimulation) equivalent to Proci(m,e) (see line 26). We now have a
full Proc; predicate (i.e., with a fractional permission of 1), with a fully executed
process component (i.e., £). This means that the HT-PROC-FINISH proof rule can be
applied to finalise the abstraction, on line 29, to obtain the desired postcondition.

Figure 4.8 shows the intermediate steps of the proof of thread_x (the steps of
thread_y are similar). As a precondition (on line 1), an abstract model of the
form Tx is required, with a fractional permission of % This model is maintained
throughout execution of thread_x until the Boolean flag stop is set to false.

Inside the while loop, on line 13, the process Tx is unfolded into decrx - Tx + done.
This allows the program to do the decrx action in case [{;] > [¢,] (on line 16), by
using the HT-ACTION rule, so that afterwards, on line 20, the program can continue
to execute as prescribed by Tx, and enter another loop iteration. However, in
case [{;] = [{,], the program can perform the done action on line 25, to indicate
termination of the algorithm, and thereby reduce the process-algebraic model to €.
This causes the loop to terminate, and by line 7 allows ensuring the postcondition
of having Proc%(m, g); see line 2.
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4.6 Applications

In this section we apply our approach on three more verification challenges, namely:

(i) Verifying a concurrent program in which multiple threads increase a shared
counter by one, in the style of the classical Owicki-Gries example (§4.6.1);

(ii) Verifying whether a fine-grained, non-reentrant lock implementation follows
the intended locking protocol (§4.6.4); and

(iii) Verifying functional correctness of a classical leader election protocol, that
is implemented on shared memory (§4.6.6)

In addition to these examples, some interesting variants on them are also discussed.

For (i) we verify the functional property that, after termination, the program has
calculated the correct value. For (ii) we verify that clients of the lock adhere to
the intended locking protocol, and thereby avoid misusing the lock. Finally, for
(iii) we verify that, after termination of the leader election algorithm, the rightful
leader had been announced, which is the participant with the highest initial value.

4.6.1 Concurrent Counting

Our second example considers a concurrent counter: a program where two threads
concurrently increment a common shared integer stored on the heap. The basic
algorithm is given in Figure 4.9. The goal is to verify that program increments
the value at heap location £ ,ynter by two. However, providing a specification for
worker can be difficult, since no guarantees to the value of £.,ynter can be given
after termination of worker, as it is used in a concurrent environment.

Existing verification approaches for this particular example [RPDYG15] mostly
require auxiliary ghost state, some form of rely /guarantee reasoning, or, more re-
cently, concurrent abstract predicates, which may blow-up the amount of required
specifications and are not always easy to use. We show how to verify the program
of Figure 4.9 via our model-based abstraction approach. Later, we show how our
techniques may be used on the same program but generalised to n threads.

Our approach is to protect all changes to the heap at location £ yynier by a process
that we name parincr, using a process-algebraic variable named counter. The
parincr process is defined as the parallel composition incr || incr of two processes that
both execute the incr action once. Performing incr has the effect of incrementing
counter by one. From a process algebraic point of view it is easy to see that
parincr satisfies its contract: every possible trace of parincr indeed has the effect of
increasing counter by two, and this can automatically be verified.
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/* The location to the heap entry that stores the counter. x/
int ref Ecounter;

/* Implementation of workers, which atomically increment the counter. x/
void worker ()
atomic lock do
‘ Mcounte'r] = [Zcounter] + 1a
end

© O N o ok W N =

end

e
= o

/* Startup procedure of the concurrent counting example program. /
void program(int n)

[Zcounte'r] =N

ref t; := fork worker();

ref t, := fork worker ();

join tq;

join to;
end

[ -
®w N 00 A W N

Figure 4.9: The concurrent counting example program, where two threads forked
by program increment the shared integer counter.

We use this result in the verification of program by using model-based reasoning.
In particular, we may instantiate parincr as a model m, split along its parallel
composition, and give each forked thread a fraction of the splitted Proc predicate.
The interface specification of the worker procedure thus becomes (for any 7):

{ Proc,(m,incr) } worker (m) { Proc,(m,¢) }

An annotated version of the concurrent counting program is presented in Fig-
ure 4.10. Lines 2-7 define the process-algebraic model parincr, and line 12 defines
the lock invariant that is needed by the atomic block on lines 17-21, for obtaining
the right to be able to write to £ ounter in the context of an action block.

Indeed, by deductively showing that both threads execute the incr action, the
established result of incrementing £.,unter by 2 can be concluded, on line 25.

4.6.2 Generalised Concurrent Counting

The interface specification of worker is generic enough to allow a generalisation to
n threads. Instead of the parincr process as presented in Figure 4.10, one could
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/* Action that models the atomic increment of the counter. */
effect counter = \old(counter) + 1;
action incr;

[V R SR

/* Abstract behavioural specification of the concurrent counter. */
ensures counter = \old(counter) + 2;
process parincr := incr || incr;

© 0 N o W

/* Location to the heap entry that stores the counter. %/
10 int ref £ ounier;
11

12 lock invariant lock := {.ounter <—1>proc —;
13

14 requires Proc,(m,incr);

15 ensures Proc,(m,¢);

16 void worker (ref m)

17 | atomic lock do

18 action m.incr do

19 ‘ [ counter] = [Lcounter] + 15
20 end

21 | end

22 end

23

. 1
24 requires gcounter — =3

25 ensures f.ounter Ln+ 2;

26 void program(int n)

27 Mcounte'r] =N

28 | ref m := process parincr over (counter — L ounter);
29 | invariant lock do

30 ref ¢, := fork worker(m) with = = %;
31 ref ¢ := fork worker(m) with © = %;
32 join tq;

33 join to;

34 | end

35 | finish m;
36 end

Figure 4.10: Definition of the parincr process that models two concurrent threads
performing an incr action, and the required annotations for worker and program.
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consider the following process, which essentially encodes the process “incr || --- ||
incr’ (n times) via recursion:

1 requires n > 0;
2 ensures counter = \old(counter) + n;
3 process parincr(int n) := if n > 0 then incr || parincr(n — 1) else ¢;

Figure 4.11 shows the generalised version of the concurrent counting program,
including all intermediate proof steps, in which we reuse the incr action and the
worker procedure from Figure 4.10. Here program takes an extra parameter n
that determines the number of threads to be spawned. The spawn procedure
has been added to spawn the n threads This procedure is recursive to match the
recursive definition of the parincr(n) process. Again, each thread executes the
worker procedure. We verify that after running program the value of counter has
increased by n.

On the level of processes we may automatically verify that each trace of the process
parincr(n) is a sequence of n consecutive incr actions. As a consequence, from the
effects of incr we can verify that parincr(n) increases counter by n. On the program
level we may verify that spawn(m,n) fully executes according to the parincr(n)
process. To clarify, before the fork on line 10 the definition of parincr(n) can be
unfolded to incr || parincr(n — 1) (see line 8) and can then be split along its parallel
composition (see line 9). Then the forked thread receives incr and the recursive
call to spawn receives parincr(n — 1). After calling join on line 14, both the call to
worker and the recursive call to spawn have ensured completing the process they
received (see line 15), thereby leaving the process € || € (see line 16), which can
be rewritten to ¢ (see line 17) to satisfy spawn’s postcondition. As a result, after
calling finish on line 33 we can successfully verify that the value stored on the
heap at location £ pynier has indeed been increased by n.

4.6.3 Unequal Concurrent Counting

One could consider an interesting variant on the two-threaded concurrent counting
problem: one thread performing the assignment “[£counter] = [Lcounter] + v for
some integer value v, and the other thread concurrently performing “[¢ ounter] =
[£counter] * ¥”. Starting from a state where £ ounter <X ¢ holds for some integer c,
the challenge is to verify whether £.,unter N (c+v)*vV (c*v)+ v holds after
termination of the program, in a thread-modular manner.

This program can be verified using our model-based approach (without requiring
for example auxiliary state) by defining corresponding actions for the two different
assignments. Figure 4.12 shows how the global model is described. The action
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34
35

requires n > 0;

requires Proc, (m, parincr(n));

ensures Proc,(m,¢);

void spawn (ref m, int n)

if (n > 0) then

{Proc,(m, parincr(n))}

{Proc,(m,if n > 0 then incr || parincr(n — 1) else ¢)}
{Proc, (m,incr || parincr(n — 1))}

{Procz (m, incr) x Procz (m, parincr(n — 1))}

ref ¢ := fork worker (m) with 7 = Z;
{Procz (m, parincr(n — 1))}

spawn(m,n — 1) with 7 = 3;
{Procz (m,e)}

join t;

{Procz (m, ) * Procz (m,e)}
{Procx(m,e || €)}
{Proc,(m,e)}
end

end

requires { oynter LN > 0;
ensures . unter e +n;
void program(int ¢, int n)
[gcounter] =0
ref m := process parincr(n) over (counter — £ ounter);
. 1

{Procy (m, parincr(n)) * € counter “Fproc €}
invariant lock do

{Proc; (m, parincr(n))}

spawn(m,n) with 7 = 1;

{Procy(m,e)}
end

1
{PI’OCl(TTL,ZE) * Ecountcr (_>proc *}
finish m;
1

{‘gcounter — Cc+ TL}
end

Figure 4.11: Generalisation of the concurrent counting verification problem, where
program forks n threads using the recursive spawn procedure. Each thread exe-
cutes the worker procedure, therewith incrementing the value at £ ,ynter by one.
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/* Action that represents the increment of £.yypnter in the program. */
effect counter = \old(counter) + n;
action incr(int n);

1
2
3
4
5 /* Action that represents the multiplication of £ ,unter in the program. x/
6 effect counter = \old(counter) x n;

7 action mult(int n);

8

9 /x Abstract behavioural description of unequal concurrent counting. */
10 ensures counter = \old(counter) xn+n VvV

11 counter = (\old(counter) + n) * n;

12 process count(int n) := plus(n) || mult(n);

Figure 4.12: The abstract model for the unequal concurrent counting problem.

plus(n) has the effect of incrementing counter by n, while mult(n) has the effect
of multiplying counter by n. The required program annotations are then similar
to the ones used in Figure 4.11.

All three variants on the concurrent counting problem have mechanically been
verified using VerCors.

4.6.4 Lock Specification

The third example demonstrates how our approach can be used to verify control-
flow properties of programs, in this case the compare-and-swap lock implementation
that is presented in the Concurrent Abstract Predicates (CAP) paper [DYDG™10].
The implementation is given in Figure 4.13. The cas(¥,c,v) operation is the
compare-and-swap instruction, which atomically updates the value at location /¢
on the heap by v if the old value at £ is equal to ¢, otherwise [¢] is not changed. A
Boolean result is returned that indicates whether the update to £ was successful.

In particular, model-based reasoning is used to verify that the clients of this lock
adhere to the intended locking protocol: clients may only successfully acquire the
lock when the lock was unlocked and vice versa. Stated differently, we verify that
clients may not acquire (nor release) the same lock successively.

The process algebraic description of the locking protocol is a composition of two
actions, named acq and rel, that model the process of acquiring and releasing the
lock, respectively. A third action named done is used to indicate that the lock
is no longer used and can thus be destroyed. We use this process as a model to
protect changes to a shared Boolean flag that is stored on the heap, at location
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/* Reference to a Boolean flag on the heap */
boolean ref (g,,;

/* Simple implementation of lock acquiring */
void acquire()
boolean b := false;
while (—b) do
| b:= cas(lfay, false, true);
end

© 00 N O ks W N =

end

=
o= O

/# Simple implementation of lock releasing x/
void release()
atomic lock do
| [lfiag) = false;
end

[ S
[ L B N

end

=
~

Figure 4.13: Implementation of a simple locking system.

Lfag, so that all changes to £g,, must either happen as an acq or as a rel action.
The acq action may be performed only if [¢g44] is currently false and has the effect
of setting the flag to true. The rel action simply has the effect of setting [¢aq4] to
false, whatever the current value at £g,q (therefore rel does not need a guard).

The locking protocol is given in Figure 4.14, and is defined by the processes
Locked := rel - Unlocked and Unlocked := acq - Locked + done. This allows using the
following interface specifications for the acquire and release procedures (with
any 7, and with m a global identifier of an initialised model):

{ Proc,(m, Unlocked) } acquire(m) { Proc, (m, Locked) }
{ Proc,(m, Locked) } release(m) { Proc.(m, Unlocked) }

Specification-wise, clients of the lock may only perform acquire when they have a
corresponding process predicate that is in an “Unlocked” state (and the same holds
for release and “Locked”), thereby enforcing the locking protocol (i.e., the pro-
cess only allows traces of the form: acq,rel,acq,rel,---). The acquire procedure
performs the acq action via the cas operation: one may define cas to update {74,
as an acq action. Moreover, since cas is an atomic operation, it can get all nec-
essary ownership predicates from the resource invariant inv. Furthermore, calling
destroy() corresponds to performing the done action on the process algebra level,
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/* Process-algebraic state */
shared int flag;

/* Action that models lock acquiring. */
guard —flag;

effect flag;

action acq;

© 00 N o s W N =

/* Action that models lock releasing. */

10 effect —flag;

11 action rel;

12

13 /* Action that indicates termination of the locking protocol. */
14 action done;

15

16 /* Processes that model the locking protocol. x/

17 process Unlocked := acq - Locked + done;

18 process Locked := rel - Unlocked;

Figure 4.14: Process-algebraic specification of the locking protocol.

which may only be done in the “Unlocked” state.

The full annotated lock implementation is presented in Figure 4.15 and Figure 4.16.
The init and destroy procedures have been added to initialise and finalise the
lock and thereby to create and destroy the corresponding model. The init con-
sumes write permission to £s44 (line 38), initialises the model (line 44), and trans-
fers the converted write permission into the resource invariant lock (on line 46).
Both the atomic block (lines 25-34) and the cas operation (on line 15) make use
of lock to get permission to change the value at £g,4 in an action block. The cas
operation on line 15 performs the acq action internally, depending on the success
of the compare-and-swap (indicated by its return value). This is reflected upon
in the loop invariant. The destroy procedure has the opposite effect of init: it
consumes the (full) Proc predicate (in state “Unlocked”), destroys the model and
the resource invariant, and gives back the converted write permission to £gqg.

In the current presentation, init returns a single Proc predicate in state Unlocked,
thereby allowing only a single client. This is however not a limitation: to support
two clients, init could alternatively initialise and ensure the Unlocked || Unlocked
process. Furthermore, to support n clients (or a dynamic number of clients), init
could apply a construction similar to the one used in the generalised concurrent
counting example (see Section 4.6.2).
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ref boolean /fq,4;
lock invariant lock := g,y éproc -

/x Simple (annotated) implementation of lock acquiring. */
requires Proc,(m, Unlocked);

ensures Proc,(m, Locked);

void acquire(ref m)

boolean b := false;

loop invariant -b = Proc,(m,acq - Locked);
loop invariant b = Proc,(m, Locked);
while (-b) do
{Proc,(m,acq - Locked)}
b := casacq({fiag, false, true);
{(b A Proc(m, Locked)) V (=b A Proc,(m, acq - Locked))}
end

end

/* Simple (annotated) implementation of lock releasing. */
requires Proc, (m, Locked);
ensures Proc,(m, Unlocked);
void release(ref m)
{Proc,(m, Locked)}
atomic lock do
{Proc,(m, Locked) % {744 éproc -}
{Proc, (m, rel - Unlocked) * £f10y “>proc —}
action m.rel do
{Lfiag c_1>act -}

[Cag] = false;
{lfiag - false}
end

{Proc,(m, Unlocked) * £70; “proc false}
end
{Proc,(m, Unlocked)}

end

Figure 4.15: Annotated implementations of the acquire and release procedures.
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37 /% Simple (annotated) implementation for lock initialisation. x/
. 1

38 requires (g5 — —;

39 ensures Proc; (\result, Unlocked);

40 ref init()

0| {fag S )

42 [¢fqaq) := false;

43 {lfiag Ly false}

44 ref m := process Unlocked over (flag — {fa4);
45 {lfag fl>pmc false * Procy (m, Unlocked) }

46 init lock lock;

a7 {Procy(m, Unlocked)}

48 return m;

49 end

50

51 /* Simple (annotated) implementation for lock finalisation. x/
52 requires Proc;(m, Unlocked);

53 ensures (g4, N —;

54 void destroy(ref m)

55 {Procy (m, Unlocked)}

56 {Procy(m,acq - Locked + done)}

57 action do m.done end

58 {Procy(m,e)}

59 destroy lock lock;

60 {laag i>proc — % Procy(m, )}
61 finish m;

62 {E/lag "—1> 7}

63 end

Figure 4.16: Procedures for initialising (init) and finalising (destroy) the lock.

4.6.5 Reentrant Locking

The process algebraic description of the locking protocol can be upgraded to de-
scribe a reentrant lock: a locking system where clients may acquire and release
multiple times in succession. A reentrant lock that is acquired n times by a client
must also be released n times before it is available to other clients. Instead of using
the Locked and Unlocked processes, the reentrant locking protocol is described by
the following process (with n > 0):

process Lock(int n) := acq - Lock(n + 1) 4+ if n > 0 then rel - Lock(n — 1)
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Rather than describing the lock state as a Boolean flag, like we have done in the
single-entrant locking example, the state of the reentrant lock can be described as
a multiset (bag) containing thread identifiers. In that case, acq and rel protect all
changes made to the multiset in order to enforce the locking protocol described by
Lock. The interface specifications of acquire and release then become:

{ Proc,(m, Lock(n)) } acquire(m) { Proc,(m,Lock(n + 1)) }
{0 < nxProc;(m,Lock(n)) } release(m) { 0 < n x Proc,(m,Lock(n — 1)) }

Moreover, the Lock(n) process could be extended with a done action to allow the
reentrant lock to be destroyed, like shown in the previous example. The done action
should then only be allowed when n = 0. Both the simple locking implementation
and the reentrant locking implementation have been automatically verified using
the VerCors verifier.

4.6.6 Verifying a Leader Election Protocol

This section demonstrates our verification approach on a bigger case, that involves
verifying the correctness of a classical distributed algorithm, namely a leader elec-
tion protocol [OBH16]. The algorithm is performed by N distributed workers that
are organised in a ring, so that worker ¢ only sends to worker ¢ + 1 and only re-
ceives from worker ¢ — 1, modulo N. The goal is to determine a leader among
those workers. To find a leader, the election procedure assumes that each worker
i receives a unique integer value v; to start with, i.e., v; = v; implies ¢ = j, and
then operates in N rounds. In every round, each worker sends the highest value it
encountered so far to its right neighbour and in turn receives a value from its left
neighbour, and remembers the highest of the two. The result after N rounds is
that all workers know the highest unique value max{vg,...,vy} in the network,
allowing its original owner to announce itself as leader.

The case study has been verified with VerCors. Since VerCors does not yet have na-
tive support for message passing we first implemented basic asynchronous message
passing functionality. This implementation consists of two non-blocking operations
for standard communication: mp_send(r,msg) for sending a message msg to the
worker with rank 74, and msg := mp_recv(r) for receiving a message msg from
worker . The election protocol is implemented on top of this message passing
system.

The main challenge of this case study is to define a system of message passing on
the abstraction level that matches the implementation, using the techniques that
have been presented so far. To design such a system we follow the ideas of [OBH16].

4The identifiers of workers are typically called ranks in message passing terminology.
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First we define two process-algebraic actions, send(r, msg) and recv(r, msg), that
abstractly describe the behaviour of the concrete implementations in mp_send
and mp_recv, respectively. Secondly, to properly handle message receival on the
abstraction level we also need to define process-algebraic summation. A summation
operator X,¢ p P allows quantifying over a (finite) set of data D = {do, . ..,d,} and
has the behaviour of Pz /dg]+ - - -+ P[z/d,]. We use process-algebraic summation
to quantify over the possible messages that mp_recv might receive.

The following two rules illustrate how the abstract send and recv actions are con-
nected to mp_send and mp_recv.

{Procs(m,send(r, msg)- P+Q) }mp_send (m,r, msg) { Proc,/(m, P)}
{Procy(m, Sye psgrecv(r, z)- P+Q) } msg := mp_recv (m, r) {Proc, (m, Plz/msg]) }

And last, we use send and recv to construct a process-algebraic model of the leader
election protocol and verify that the implementation adheres to this model. This
model has been analysed with mCRL2 to establish the global property that the
correct leader is announced—the one with the highest initial value. From this it
follows that the implementation determines the correct leader.

4.6.6.1 Behavioural Specification

Our main goal is proving that the implementation determines the correct leader
upon termination. To prove this, we first define a behavioural specification of
the election protocol that hides all irrelevant implementation details, and prove
the correctness property on this specification. Process algebra provides the right
abstraction level, as the behaviour of leader election can concisely be specified in
terms of sequences of sends and receives. Figure 4.17 presents the process-algebraic
specification. In particular, ParElect specifies the global behaviour of the protocol,
whereas Elect specifies the thread-local behaviour. Ideally the send and recv actions
would be part of a native message passing library. This is planned as future work.

The ParElect process encodes the parallel composition of the eligible participants.
ParElect takes a sequence wvs of initial values as argument, whose length equals the
total number of workers due to its precondition. ParElect’s postcondition states
that lead must be a valid rank after termination and that vs[lead] be the highest
initial worker value. It follows that worker lead is the correctly chosen leader.
We used mCRL2 to verify that ParElect is a correct abstract specification of the
election protocol, with respect to its contract. The mCRL2 encoding can be found
in the online Git repository that comes with this thesis.

The Elect process takes four arguments, namely:

1. The rank rank of the worker;
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/* Process-algebraic state. */
shared seq(seq(Msg)) chan; // communication channels between workers
shared int lead; // rank of the worker that is announced as leader

/* Action for message sending. */

guard 0 < rank < |chanl;

effect chan[rank] = \old(chan[rank]) + {msg};

effect Vr' : int . (0 < v/ < |chan| A7’ # rank) =
chanlr'] = \old(chan[r']);

action send(int rank, Msg msg);

/* Action for message receival. x/

guard 0 < rank < |chanl;

effect {msg} + chan[rank] = \old(chan[rank]);

effect Vi’ :int. (0 < ' <|chan|Ar' # rank) =
chan[r'] = \old(chan[r']);

action recv(int rank, Msg msg);

/* Action for announcing a leader. x/
guard 0 < rank < |chanl|;

effect lead = rank;

action announce(int rank);

/#* Local behavioural specification of the election protocol. */
requires 0 < n < |chan|;
requires 0 < rank < |chan|;
process Elect(int rank, Msg vo, Msg v, int n) :=
if 0 < n then send((rank + 1) % |chan|,v) -
YureMsg recv(rank, v') - Elect(rank, vy, max(v,v"),n — 1)
else (if v = vy then announce(rank) else ¢);

/* Global behavioural specification of the election protocol. */
requires |vs| = |chan];
requires Vi, j : int. (0 <i < |us| A0 < j < |vs| Aws[i] = vs[j]) = i=7;
ensures |vs| = |chan| A0 < lead < |vs];
ensures Vi : int. (0 <i < |vs]) = ws[i] < vs[lead];
process ParElect(seq(Msg) vs) :=
Elect(0, vs[0], vs[0], |vs|) || - - - || Elect(|vs|—1, vs[|vs| —1], vs[|vs| —1], |vs]|);

Figure 4.17: Behavioural specification of the leader election protocol.
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2. The initial unique value vy of that worker;
3. The current highest value v encountered by that worker; and finally

4. The number n of remaining rounds.

The rounds are implemented via general recursion. In each round all workers send
their current highest value v to their right neighbour (line 28), receive a value v’
in return from their left neighbour (line 29), and continue with the highest of the
two. The extra announce action is declared and used to announce the leader after
n rounds. The postcondition of announce is that lead stores the leader’s rank.

The contracts of send and recv describe the behaviour of standard non-blocking
message passing. Communication on the specification level is implemented via
message queues. Message queues are defined as sequences of messages, where mes-
sages are taken from a finite domain Msg. Since workers are organised in a ring
in this case, every worker can do with only a single queue and the global com-
munication channel architecture can be defined as a sequence of message queues:
chan in the figure. The action contract of send(r, msg) expresses enqueuing the
message msg onto the message queue chan|r| of the worker with rank r. In more
detail, the precondition of send(r, msg) expresses that r must be a valid rank in
the network. Note that, since every worker receives one message queue we have
that |chan| is equal to the total number of workers. The postcondition of send is
that msg has been enqueued onto chan[r] and that the other queues, chan[r’] for
any ' # r, have not been altered. Likewise, the contract of recv(r, msg) expresses
dequeuing msg from chan[r]. Recall that the expression \old(e) indicates that e
is to be evaluated with respect to the pre-state of computation.

4.6.6.2 Protocol Implementation

Figure 4.18 presents the annotated implementation of the election protocol The
elect method contains the code that is executed by every worker. The con-
tract of elect (m, rank,vg,v,n) states that the method body adheres to the be-
havioural description Elect(rank,vg,v,n) of the election protocol. The annota-
tion context P is shorthand for requires P; ensures P. Each worker perform-
ing elect enters a for-loop that iterates m times, whose loop invariant states
that, at iteration ¢, the remaining program behaves as prescribed by the process
Elect(rank, vy, v,n—1). The invocations to mp_send and mp_recv on lines 19 and 23
are annotated with with clauses that instantiate the free variables that occur in
the contracts of mp_send and mp_recv. After n rounds, all workers with v = vg
announce themselves as leader. However, since the initial values are chosen to
be unique there can only be one such worker. Finally, we can verify that at the
post-state of elect the abstract model has been fully executed (reduced to ¢).
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/#* Shared state of the program (as references to the heap). x/
seq(seq(Msg)) ref lopan; // implementation of communication channels
int ref £, ,orkers; // total number of workers

int ref /;.,q4; // rank of the leader to be announced

/* The information and ownership that is protected by the global lock. */
lock invariant lock := {jcqq <—1>p,0c — %
1 1
Jzs : seq(seq(Msg)) . Lohan —proc TS * Lnworkers proc |2S];

/* Implementation of the election protocol, for worker rank. x/

context £, orkers <l>proc nx*x 0 < rank < n;
requires Proc,(m, Elect(rank,vg,v,n));
ensures Proc,/(m,e);
void elect (ref m, int rank, Msg vy, Msg v, int n)
loop _invariant {,uorkers —proc 1;
loop invariant 0 <i < n;
loop _invariant Proc, (m, Elect(rank, v, v,n — 1));
for (int i := 0 to n) do
mp_send (m, (rank + 1) %n, v) with {
P := ¥, cmsq recv(rank, x) - Elect(rank, vy, max(v, z),n — i — 1),
Qi =c¢c,m:=m, 7 =7
5
Msg v’ := mp_recv(m, rank) with {
P := Elect(rank,vp,max(v,v'),n—i—1), Q:=¢, 7 :=m, 7' :=7'
h
v :=max(v,v');
end
f (v=wp) then
action m.announce(rank) do
‘ [Cicad] := rank;
end

[

end

end

Figure 4.18: Annotated implementation of the leader election protocol.

Figure 4.19 presents bootstrapping code for the message passing implementa-
tion. The main function initialises the communication channels whereas parelect
spawns all worker threads. main(ws) additionally initialises and finalises the ab-
straction ParElect(wvs) on the specification level (line 24 and 28, respectively), whose
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1 /* Spawns and joins |vs| parallel workers that all execute elect. */
context {yyorkers “proc || % 0 < |vs|;

requires Procy (m, ParElect(vs));

ensures Procy (m,¢);

void parelect (ref m, seq(Msg) vs)

context 0 < rank < |vs;

requires Proc_ 1 (m, Elect(rank, vs[rank], vs[rank], |vs|));

Tos]

8 | ensures Proc L (m,e);

Tos

i B =R B VU V)

9 | par (int rank := 0 to |vs|) do

10 elect (m, vs[rank], vs[rank], |vs|) with {
11 m:=1/(4|vs]), ©’ := 1/ |vs]|

12 h

13 | end

14 end

15

16 /* Startup procedure for the leader election protocol. */

17 context fnworkers <_1> — X Zchan (—1> - X Elead {_1> )

18 requires Vi, j :int. (0 <1i < |vs| A0 < j < |vs| A ws[i] = vs[j]) = i=7j;
19 ensures 0 < \result < |vs|;

20 ensures Vi :int. (0 <i < |vs]) = ws[i] < vs[\result];

21 int main(seq(Msg) vs)

22 [gnworke'rs] = |’US|;

23 | [lchan] := initialiseChannels(|vs|);

24 | ref m := process ParElect(vs) over (chan — lopan, lead — Lpporkers);
25 | invariant lock do

26 ‘ parelect(m, vs);

27 | end

28 | finish m;

29 | return [{;.q);

30 end

Figure 4.19: Bootstrap procedures of the leader election protocol.

analysis allows establishing the postconditions of main. The function parelect (m, vs)

implements the abstract model ParElect(vs) by spawning |vs| workers that all exe-
cute the elect program. The contract associated to the parallel block (lines 6-8)
is called an iteration contract and assigns pre- and postconditions to every paral-
lel instance. For more details on iteration contracts we refer to [BDH15]. Most
importantly, the iteration contract of each parallel worker states (on line 7) that
the worker behaves as specified by Elect. Thus, we deductively verify in a com-
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positional and thread-modular way that the program implements its behavioural
specification. Lastly, all the required ownership for the global fields and the Procy
predicate is split and distributed among the individual workers via the iteration
contract and the with clause on lines 10-11.

4.6.6.3 Communication Primitives

Finally, Figure 4.20 presents the implementation of the message passing system.
The mp_send (m, rank, msg) method implements the operation of enqueuing msg
onto the message queue of worker rank. The contract of mp_send expresses that the
enqueuing operation is encapsulated as a send(rank, msg) action that is prescribed
by an abstract model identified by m. The program performs the send action by
means of an action block that updates £.44, by enqueuing msg. The result is that
send has been performed in the post-state of mp_send (see line 4). In order for m
to be able to perform the send action, all send’s preconditions have to be satisfied.
For this purpose line 2 requires that £,,,orkers 1S @ reference to some integer n that
represents the total number of workers, and that rank is between 0 and n.

The mp_recv(m, rank) function implements the operation of dequeuing and re-
turns the first message in the message queue of worker rank. The receive is pre-
scribed as the recv action on the abstraction level, where the potential received
message is ranged over by the summation on line 15.

The implementation of mp_recv(m, rank) simply checks in a busy-loop whether
Lehan|[rank] contains a message, and if so, pops the first available message of
Lenan|rank] as a recv action. This message will eventually be returned on line 34.
The resulting abstraction after termination of mp_recv, as by line 4 is the trailing
process P with the quantified variable x substituted for the returned message.

4.6.7 Other Verification Examples

This section demonstrated the use of process algebraic models in multiple dif-
ferent verification examples, as well as some interesting variants on them. We
showed how model-based reasoning can be used as a practical tool to verify differ-
ent types of properties that would otherwise be hard to verify, especially with an
automated tool. We considered data properties in the parallel GCD and the con-
current counting examples, and considered control-flow properties in the locking
examples. Moreover, we showed how to use the model-based reasoning approach
in environments with a dynamic number of concurrent threads.

Our approach can also be used to reason about non-terminating programs. No-
tably, a no-send-after-read verification example is available that addresses a com-
monly used security property: if confidential data is received by a secure device, it
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1 /* Operation for sending a message msg to worker rank. */

2 context In . Lpyorkers —Fproc 1 * 0 < rank < n;
3 requires Proc, (m,send(rank, msg) - P + Q);
4 ensures Proc,(m, P);

5 void mp_send(ref m, int rank, Msg msg)

6 | atomic lock do

7 action m.send(rank, msg) do

8 ‘ Lepan[rank] := €epan|rank] + {msg};

9 end

10 | end

11 end

12

13 /* Operation for receiving a message from worker rank. =/

14 context In . Lpyorkers —Fproc 1 * 0 < rank < n;
15 requires Proc, (m, e msqrecv(rank, ) - P+ Q);
16 ensures Proc,(m, Plz/\result]);

17 Msg mp_recv(ref m, int rank)

18 | boolean stop := false;

19 | Msg msg;

20
21 | loop invariant —stop = Proc (m, X, cnsgrecv(rank,z) - P+ Q);
22 | loop invariant stop = Proc./(m, P[z/msg]);

23 | while (—stop) do

24 atomic lock do

25 if (0 < |lchan[rank]]) then

26 msg := head(?cpan [rank]);

27 action m.recv(rank, msg) do

28 Lenan [rank] := tail (€ pan [rank]);
29 stop = true;

30 end

31 end

32 end

33 |end

34 | return msg;
35 end

Figure 4.20: A basic implementation of message passing, whose behaviour is spec-
ified in terms of the send and recv actions that were defined on page 118.
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will not be passed on. The concrete send- and receive behaviour of the device can
be abstracted by send and recv actions, respectively. Receiving confidential infor-
mation is modelled as the clear action. Essentially, we show that after performing
a clear action the device can no longer perform send’s.

4.7 Related Work

The abstraction technique proposed in this chapter allows reasoning about func-
tional behaviour of concurrent, possibly non-terminating programs. A related
approach is (impredicative) Concurrent Abstract Predicates (CAP) [DYDG™10,
SB14], which also builds on CSL with permissions. In the program logic of CAP,
regions of memory can be specified as being shared. Threads must have a con-
sistent view of all shared regions: all changes must be specified as actions and
all shared regions are equipped with a set of possible actions over their memory.
Our approach uses process algebraic abstractions over shared memory in contrast
to the shared regions of CAP, so that all changes to the shared memory must be
captured as process algebraic actions. We mainly distinguish in the use of process
algebraic reasoning to verify properties that could otherwise be hard to verify, and
in the capability of doing this mechanically by providing tool support.

Other related approaches include TaDA [RPDYG14], a program logic that builds
on CAP by adding a notion of abstract atomicity via Hoare triples for atomic
operations. CaReSL [TDB13] uses a notion of shared regions similar to CAP, but
uses tokens to denote ownership. These tokens are used to transfer ownership
over resources between threads. Iris [JSS*15, KJBT17] is a reasoning framework
that aims to provide a comprehensive and simplified solution for recent (higher-
order) concurrency logics. Sergey et al. [SNB15b| propose time-stamped histories
to capture modifications to the shared state. Our approach may both capture and
model program behaviour and benefits from extensive research on process algebraic
reasoning [GM14]. Moreover, the authors provide a mechanised approach to in-
teractively verify full functional correctness of concurrent programs by building on
CSL [SNB15a]. Popeea and Rybalchenko [PR12] combine abstraction refinement
with rely-guarantee reasoning to verify termination of multi-threaded programs.

In the context of verifying distributed systems, Session Types [HYCO08|] describe
communication protocols between processes [HMM'12]. However, our approach
is more general as it allows describing any kind of behaviour, including communi-
cation behaviour between different system components.



126 Chapter 4. Abstracting Shared-Memory Concurrency

4.8 Conclusion

This chapter addresses thread-modular verification of possibly non-terminating
concurrent programs by proposing a technique to abstract program behaviour
using process algebras. A key characteristic of our approach is that properties
about programs can be proven by analysing process algebraic abstractions and by
verifying that programs do not deviate from these abstractions. The verification is
done in a thread-modular way, using an abstraction-aware extension of CSL. This
chapter demonstrates how the proposed technique provides an elegant solution to
various verification problems that may be challenging for alternative verification
approaches. In addition, we contribute tool support and thereby allow mechanised
verification of the presented examples.

In Chapter 5, we present and discuss a full formalisation and soundness proof of
the abstraction approach introduced in this chapter, which have been encoded in
the Coq proof assistant, and mechanically been proven.

Later, in Chapter 7, we extend our abstraction approach for the distributed case,
by having the actions abstract message passing behaviour, instead of shared-
memory behaviour via action contracts.

4.8.1 Future Directions

At the moment, verification at the process algebra level is non-modular: in order
to analyse process-algebraic abstractions, they first have to be linearised before
they can be analysed by, for example, VerCors or mCRL2. It would, however,
be desirable to be able to analyse the parallel components in process-algebraic
models in isolation, and combine their analyses into a analysis of the global pro-
cess. We plan to achieve this by investigating how our approach combines with
rely-guarantee reasoning [Jon83] and deny-guarantee reasoning [DFPV09|. We
might, for example, be able to extend the contracts of processes and actions with
rely and guarantee clauses, that express the assumptions and contributions of the
process/action to the global property of interest, respectively.

Moreover, currently the proof system allows the results of process-algebraic anal-
ysis to be used only when the process has been fully executed, using the finish
command. We plan to investigate how (partial) results can be obtained and used
at intermediate points of program execution. This would, for example, be benefi-
cial for non-terminating programs, e.g., programs that execute an event/message
loop. (We have already implemented this for message passing programs and ab-
stractions, in Chapter 7, but not yet for shared-memory abstractions.)

Finally, we plan to investigate how and to what extent process-algebraic models
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can be extracted from annotated source code. The current approach requires to
annotate program code with action annotations, to indicate the relation between
abstract actions and concrete program instructions. However, these annotations
may give an opportunity to extract models from program code, and thereby to
perform some automated analysis of the program’s control-flow.
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CHAPTER 5

Soundness of Shared-Memory
Program Abstractions

Abstract

This chapter presents and discusses a full formalisation of the abstraction-based verifica-
tion approach introduced in Chapter 4. The formalisation consists primarily of a program
logic that extends CSL, as used in Chapter 4, and a soundness proof for this logic. More-
over, the formalisation and soundness proof have been fully encoded in the Coq proof
assistant, and are machine-checked, to increase the confidence of their correctness.

5.1 Introduction

In the previous chapter, we introduced an abstraction technique for verifying be-
havioural properties of concurrent programs in a practical manner, and demon-
strated it on various examples. The key idea of this approach is that program
behaviour is abstractly specified as a process-algebraic model. It is known that pro-
cess algebra provides a language for modelling and reasoning about the behaviour
of concurrent programs at a suitable level of abstraction [ABC10]. Process algebra
offers an abstract, mathematically elegant way of expressing program behaviour.
In contrast, the behaviour of a real concurrent programming language with shared
memory, threads and locks, has far less algebraic behaviour. This makes process
algebra a suitable language for specifying program behaviour. Such a specification
can be seen as a model, the properties of which can additionally be checked (say,
by model checking against temporal logic formulas, which can be seen as even
more abstract behavioural specifications). The main difficulty is presented by
the typical abstraction gap between program implementations and their models.
The unique contribution of the approach is that it bridges this gap by providing
a deductive technique for formally linking programs with their process-algebraic

129
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models. These formal links preserve safety properties; we leave the preservation
of liveness properties for future work.

The uniqueness of the approach rests in the use of concurrent separation logic
(CSL) to reason not only about data races and memory safety, which is standard,
but also about process-algebraic models (i.e., specified program behaviours), view-
ing the latter as resources that can be split and consumed. This results in a mod-
ular and compositional approach to establish that a program behaves as specified
by its abstract model.

In this chapter, we give a formal justification of the abstraction approach in-
troduced in Chapter 4. In particular, we define the program logic sketched in
Section 4.4 in more detail, and prove soundness of this logic, with respect to an
operational semantics of programs and process-algebraic models. In addition, this
formalisation has fully been encoded in the Coq proof assistant. This Coq encod-
ing includes a machine-checked soundness proof of the program logic, stating that
any verified program adheres to its behavioural specification—its abstract model.

5.1.1 Contributions

This chapter makes the following two main contributions!:

1. Theoretical justification of the verification approach that we introduced in
Chapter 4, presented as a program logic that extends CSL [Vafll]. This
chapter complements the previous one (i.e., [OBG"17|), which essentially
contributes tool support and gives a more practical overview of the verifica-
tion technique.

2. A Coq formalisation of the theory, containing machine-checked proofs of all
theorems presented in this chapter, including soundness of the program logic.

5.1.2 Chapter Outline

The remainder of this chapter is organised as follows. First, Section 5.2 defines
the syntax and semantics of the process algebra language for program abstrac-
tions, after which Section 5.3 defines the syntax and semantics of programs. Then
Section 5.4 defines the assertion language and its semantics. Section 5.5 discusses
the proof rules of the program logic and Section 5.6 discusses their soundness.
Then, Section 5.7 elaborates on the implementation of the verification approach
in VerCors and on the Coq development of the meta-theory. Finally, Section 5.8
gives related work and Section 5.9 concludes, and gives directions for future work.

1This chapter is based on the article [OGH20].
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5.2 Process-Algebraic Models

This section defines the syntax and semantics of process-algebraic abstractions of
program behaviour.

5.2.1 Syntax

In this work, program abstractions are defined using the following ACP-style [BK84]
process-algebraic specification language, where a, b, --- € Act are actions.

Definition 5.2.1 (Processes).

P,Q,---€Proc i= e|d|a|P-Q[P+Q|P[Q|PLQ[P

Clarifying the different connectives and constructs; € is the empty process, which
has no behaviour and terminates successfully. The § process, on the other hand, is
the deadlocked process, which neither progresses nor terminates. Processes of the
form a are actions, which model the basic, observable (shared-memory) system
behaviours. The process P - @ is the sequential composition of P and @), whereas
P + @ is their non-deterministic choice. The parallel composition of processes P
and @ is written P || Q. The process P || Q is the left-merge of P and @, which
is similar in spirit to parallel composition, however | insists that the left-most
process P proceeds first. The left-merge is an auxiliary connective commonly used
to axiomatise parallel composition [Mol90], by having P || @ = P|| Q + Q| P.
Finally, P* is the repetition, or iteration, of P, and denotes a sequence of zero or
more P’s.

Action contracts. Our verification approach uses processes in the presence of
data, which is implemented via action contracts. Action contracts consist of pre-
and postconditions that logically describe the state changes that are imposed
by the corresponding action. These action contracts are defined by the follow-
ing expression language, where x,y,z,--- € ProcVar are process variables, and
m,n,--- € Lit are literal constants.

Definition 5.2.2 (Process expressions, Process conditions).

e € ProcExpr ::
b € ProcCond ::

m|xz|ete|le—e]| -
true | false | =b | bAb|e=c|le<e]| ---

In the remainder of this chapter, each action is assumed to have an associated
action contract assigned to it. We use the functions pre, post : Act — ProcCond
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for obtaining the precondition and postcondition of an action, respectively, that to-
gether constitute the action’s contract. Both these conditions are of type ProcCond,
which is the domain of Boolean expressions over process-algebraic variables.

Free variables and substitution. We write fv(e) and fv(b) to denote the set
of process-algebraic variables that occur freely in the expression e or condition b,
respectively. Moreover, e[z/e’] denotes the substitution of = for ¢’ inside e; and
likewise for b[z/e]. The definitions of fv(-) and substitution are standard, and
therefore deferred to Appendix A.

5.2.2 Operational Semantics

The denotational semantics of process expressions [e]o and conditions [b]o is de-
fined in the standard way: as total functions that evaluate to Val. Furthermore,
process stores, 0 € ProcStore £ ProcVar — Val, are used to give an interpre-
tation to all process-algebraic variables. The exact definition of the denotational

semantics is deferred to Appendix A.

The operational semantics of the process algebra language is expressed as a labelled
binary small-step reduction relation — C ProcConf x Act x ProcConf over process
configurations, defined as ProcConf £ Proc x ProcStore, i.e., pairs of processes
and process stores. Any process configuration of the form (g, o) is said to be final,
whereas configurations of the form (4, 0) are defined to be deadlocked. Moreover,
the transition labels are defined to be actions.

Before giving the transition rules, we first define a notion of successful termination.

Definition 5.2.3 (Successful termination).

. . 1-SEQ J-ALT-L J-ALT-R
~-EPSILON —iTER Pl o) Pl 01
T e PQl PrQi  PrqQl
l-PAR J-MERGE
Pl Ql P Q1
PlQJ PlLQI

Intuitively, any process P can terminate successfully if P has the choice to have
no further behaviour. This means that € can always successfully terminate, while
6 can never successfully terminate. Iteration P* can successfully terminate, as it
may choose not to start iterating and thereby to behave as .



5.2. Process-Algebraic Models 133

We now define the transition rules of the operational semantics of processes.

Definition 5.2.4 (Operational semantic of processes).

——-ACT —-SEQ-L
[pre(a)]o [post(a)]o’ (Po) = (P, o)
(a,0) = (¢,0") (P-Q),0 = (P'-Q,0")
—-SEQ-R —-ALT-L
Pl (Qo)—(Q,d) (P,o) = (P',d")
(P-Q,0) = (Q',0") (P+Q,0) = (P',d")
—-ALT-R —-PAR-L
(Q,0) = (@', 0") (P,o) = (P',d")
(P+Q.0) — (Q,9) (P Q,0) = (P"]| Qo)
—-PAR-R —>-MERGE
(Q?J) = (Qlagl) (Pa J) = (P/vgl)
(P Q,0) = (P Q0" (PLQ.0) == (P'[| Q.0
—-ITER

(P,o) % (P',0")
(P*,0) %5 (P’ - P*,0")

Most of the reduction rules are standard in spirit [FZ94|. However, the handling
of actions and their contracts make this process algebra language non-standard.
More specifically, the non-standard —-ACT rule for action handling permits the
state o to change in any way, as long as these changes comply with the action
contract. We will later use this transition rule to connect shared-memory updates
in programs, to action contract-complying state changes on the process level.

Moreover, we use the notion of successful termination to define the transition rule
for sequential composition, —-SEQ-R. This is standard in process algebra with
¢ [Bae00]. An example of sequential composition and termination is given below.

Example 5.2.1 (Termination and sequential composition). Consider the process
P = (a+b*) - ¢ that is composed out of three actions, a,b,c € Act. From any
given state o that satisfies ¢’s precondition, P may be reduced to € as shown by
the following proof tree, assuming that c’s postcondition is satisfiable (in this case
with respect to o’ ).
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pr g VTR [pre(c)le [post(c)]o’
¢—ALT—R z —-ACT

a+b"] (c,0) — (g,0")
((a+0b*)-¢c,0) == (g,0")

——-SEQ-R

5.2.3 Bisimulation

Our model-based verification approach allows process-algebraic models to be han-
dled up to bisimulation. Bisimulation is defined in the following way.

Definition 5.2.5 (Bisimulation). Any binary relation % C Proc x Proc over
processes is defined to be a bisimulation relation if, whenever P % Q, then:

(1) Pl if and only if Q |.

(2) For any o, P', o, a, if (P,0) = (P',0"), then there exists a Q' such that
(Q,0) -5 (Q,0") and P' B (.

(3) For any o, Q', o', a, if (Q,0) = (Q',0"), then there exists a P' such that
(P,o) % (P',0") and P' Z Q'.

Two processes P and ) are defined to be bisimilar, or bisimulation equivalent,
which is written P = @, if and only if there exists a bisimulation relation %
such that PZ (). Bisimilarity expresses that both processes exhibit the same
behaviour, in the sense that their action sequences describe the same state changes.
Bisimilarity therefore also preserves successful termination.

Any bisimulation relation constitutes an equivalence relation (that is, a relation
that is reflexive, symmetric and transitive). Furthermore, bisimilarity is a congru-
ence for all process algebraic connectives.

Successful termination P | can intuitively be understood as P being bisimilar to
the process € + P, i.e., by having the choice to have no further behaviour.

Proposition 5.2.1. If P | then P = ¢+ P.

Axiomatisation. Figure 5.1 presents several standard axioms of our process
algebra language, which is based on [GM14], but extended with axioms for ¢ and
iteration, as proposed in [Mil84]. The axioms have been proven sound with respect

~

to bisimilarity and are therefore presented as =-equalities.

Theorem 5.2.1. All =Z-equivalences presented in Figure 5.1 hold.



5.2. Process-Algebraic Models 135

Equivalences for the sequential connectives

Al A2 A3
P+Q=Q+P P+(Q@+R) 2 (P+Q)+R P+pPx=Pp
A4 A5 A6
(P+Q)-R=P-R+Q R P-(Q-R~(P-Q)-R P+sxp
AT A8 A9
6-P=§ P.e=xPpP e-P=2P

Equivalences for the parallel connectives

P1 P2 P3
Ple=Qlr  PlQRIR=F[Q) IR PllQ=PlQ+QLP

P4 P5 LM1 LM2 LM3
e|P=P P|5=P-§ S| P=5 |25 e|(a-P)=s

LM4 LM5 LM6
(@-P)lQ=a-(P|Q) elle=e el(P+Q)=elP+ell@Q

LM7 LM8& LM9
(P+Q)LR=P|R+QIR (PLQILR=P|(QIR  P|é=P-s

Equivalences for iteration

KL1 KL2 KL3 KL4 KL5
P*=P.P"+¢ e ¥ ¢ P~ p* p*.p*~ p*
KL6

(P+Q =P (Q- P

Figure 5.1: Standard bisimulation equivalences of process algebra.
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We will later see that the program logic allows rewriting processes up to bisimi-
larity, for example by using these axioms. They therefore give a good indication
of how process-algebraic models can be used in our approach.

5.3 Programs

This section defines the syntax and semantics of programs.

5.3.1 Syntax

Our verification approach is formalised on the following simple concurrent pointer
language, where XY, --- € Var are (program) variables.

Definition 5.3.1 (Expressions, Conditions, Abstraction binders, Commands).

EcFEwpr:=n|X|E+E|E-FE| -
B e Cond :=true | false | - B| BAB|E=E|E<E]| ---
IT € AbstrBinder ::= {xg — Ey,...,zn — E,}

CeCmd:=skip| X:=FE|X:=[E]|[E]=E|C;C|
X :=alloc F | dispose F | if B then C else C |
while B do C | atomic C | inatom C | C || C' |
X := process p over II | action X.a do C | inact C |
finish X

This language is a variation of the language proposed by O’Hearn [O’H07| and
Brookes [Bro07]. In particular, we extend their language with specification-only
commands, (code annotations) for handling process-algebraic models. These com-
mands are coloured blue. Note that the blue colourings do not have any seman-
tic meaning; they only indicate which language constructs are specification-only.
Moreover, we interchangeably refer to commands also as programs.

We assume that process-algebraic models are externally declared, so that any (top-
level) program C is used in a context let pg := Fy,...,p, := P, in C of process
declarations, where all p; € ProcLabel are process names/labels. However, for ease
of presentation, instead of explicitly using such declaration contexts, we simply
use the notation body(p) to refer to the process declared under the name p.

Standard language constructs. The notation [E] stands for heap dereferenc-
ing, where E is an expression whose evaluation determines the heap location to
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dereference. The commands X := [E] and [E] := E’ denote heap reading and
writing: they read from, and write to, the heap at location F, respectively. More-
over, X := alloc E allocates a free heap location and writes the value represented
by E to it, whereas dispose E deallocates the heap location at F.

Regarding concurrency, the command Cy || Cy is the statically-scoped parallel
composition of C7 and Cs, and expresses their concurrent execution. In the se-
quel, we sometimes refer to commands that are put in parallel as different threads;
for example, C7 and C5 in the above. Moreover, atomic C expresses a statically-
scoped lock: it represents the atomic execution of C, that is, without interference
of other threads. The command inatom C' represents partially executed atomic
programs: ones that are currently being executed, where C' is the remaining pro-
gram that still has to be executed atomically. Such commands are sometimes
referred to as “runtime syntax”, as they are not written by users of the language,
but are instead an artefact of program execution.

Specification-only constructs. The instructions that are displayed in blue are
the specification-only language constructs, for handling process-algebraic models
in the logic. These instructions are ignored during regular program execution and
are essentially handled as if they were code comments.

Specification-wise, X := process p over Il initialises a new program model in
the proof system, represented by the process body(p) that is declared under the
name p for the program. The II component is an abstraction binder, which is
defined in Definition 5.3.1, and is used to connect process-algebraic variables to
heap locations in the program. In particular, the abstraction binders make the
connections/links between process-algebraic state and shared-memory state (heap
locations) in the program. In the sequel, we often use abstraction binders as if they
were finite partial mappings, i.e., Il : ProcVar —g, Ezpr, from process-algebraic
variables to the expressions whose evaluation determine the corresponding heap
location. Finally, the variable X is used as an identifier for the freshly initialised
process-algebraic model.

The command finish X is used to finalise the process-algebraic model that is
identified by X. Finalisation in this respect means that the model has fully been
executed (i.e., can successfully terminate), and that the program logic can ob-
tain the model’s postcondition. Finalisation is later explained in more detail, in
Section 5.5.

The action X.a do C specification command is used to link the execution of pro-
grams with the execution of process-algebraic models. More specifically, it executes
the program C in the context of a model identified by X, as the process-algebraic
action a. The soundness argument of the program logic establishes a refinement
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relation between programs and their models, and this relation is established by
synchronising program execution with process execution, with help of these action
blocks.

And last, the specification command inact C denotes a partially executed ac-
tion program, namely one that still has to execute C. Likewise to inatom, this
command can only occur during runtime, and cannot be written by users of the
language.

Free variables and substitution. We use the standard notations fv(E), fv(B),
fv(II) and fv(C) to refer to the set of free program variables in the given (Boolean)
expression F and B, abstraction binder II, and command C|, respectively. More-
over, the notation E[X/E’] denotes the substitution of the program variable X
for the expression E’ inside E; and likewise for Boolean expressions, abstraction
binders, and commands. The full definitions of fv(-) and - [X/E] are mostly stan-
dard, and therefore deferred to Appendix A.

User programs. As just discussed, our simple programming language contains
runtime syntax: instructions that are not written by users but are only introduced
during runtime. Commands that are free of such runtime constructs are called
user commands.

Definition 5.3.2 (User commands). Any command C is defined to be a user
command, denoted C : user, if C' does not contain sub-commands of the forms
inatom C’ and inact C’, for any command C’.

Well-formedness. Moreover, our approach only applies to commands that are
well-formed. Notably, our technique requires that, for any program of the form
action _ do C and inact C, the inner action program C only contains a subcate-
gory of commands, excluding atomic commands and specification-only constructs,
in particular nested action blocks. The latter is needed since actions must be
atomically observable by environmental threads. This restriction is captured by
the following definitions.

Definition 5.3.3 (Basic programs). Any command C is defined to be basic, de-
noted C : basic, if C' does not contain any atomic sub-programs, i.e., atomic
or inatom, nor specification-specific language constructs, i.e., process, action,
inact, or finish.

Definition 5.3.4 (Well-formed programs). A command C is defined to be well-
formed, denoted C : wf, if, for any command action  do C’ or inact C’ that
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occurs in C, the sub-program C' is basic.

Lemma 5.3.1. For any command C, if C : basic, then C : wf.

More precise definitions and additional properties of user programs, basic programs
and wellformedness can be found in Appendix A.

5.3.2 Operational Semantics

The denotational semantics of expressions [E]s and conditions [B]s are again
defined in the standard way, and evaluate to Val and Prop, respectively, where s €
Store & Var — Val is a store that gives an interpretation to all program variables.
More details regarding denotational semantics are deferred to Appendix A.

The operational semantics of programs is defined in terms of a binary small-step
reduction relation ~ C Conf x Conf between program configurations. A program
configuration € = (C,h,s) € Conf = Cmd x Heap x Store is a triple, consisting
of a command C'; as well as a heap h that models shared memory, and finally a
store s € Store that models thread-local memory. Any configuration of the form
(skip, h, s) is defined to be final, or terminated. Heaps h € Heap = Val —, Val
are defined to be finite partial mappings from values to values. Notably, we assume
that heap locations are simply values, that can be assigned to, and read from, local
variables. We moreover use the function dom : Heap — 2V to denote the mapped
domain of a specified heap, that is, dom(h) = {v | h(v) # undefined}.

Definition 5.3.5 (Small-step operational semantics of programs).

~~-ASSIGN
(X :=E, h,s) ~ (skip, h, s[X — [E]s])

~~»-READ

(X :=[E], h,s) ~ (skip, h, s[X — h([E]s)])

~»-WRITE

[E1]s € dom(h)
([E1] := Ea,h, s) ~ (skip, h[[E1]s — [F2]s], s)

~~»-WHILE

(while B do C,h,s) ~ (if B then (C;while B do C) else skip, h, s)

~~-SEQ-L
(Clv ha S) ~ (Cia h/7 8/) W_S.EQ_R
kip;C, h,s) ~ (C, h,
(C1;C2,h,5) ~ (C{;Cg,h’,s’) (skip ) ( )
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~~»-ALLOC

v & dom(h)
(X :=alloc E, h,s) ~ (skip, h[v — [E]s], s|X — v])

~~»-DISPOSE ~»-ATOM

(dispose E, h, s) ~ (skip, h \ [E]s, s) (atomic C, h, s) ~ (inatom C, h, s)

~~+-INATOM-SKIP ~+-PAR-SKIP
(inatom skip, h, s) ~ (skip, h, s) (skip || skip, h, s) ~ (skip, h, s)
~+-PROC ~~-FINISH

(X := process p over 11, h, s) ~ (skip, h, s) (finish X h,s) ~» (skip, h, s)

~~-ACT ~~-INACT-SKIP
(action X.a do C,h,s) ~ (inact C, h, s) (inact skip, b, s) ~» (skip, h, s)

~+-INACT-STEP ~»-IF-TRUE

(Cyh,s) ~ (C',K,s") [B]s
(inact C,h,s) ~ (inact C', 1/, s") (if B then C; else Co, h,s) ~ (C1,h, s)

~>-IF-FALSE

-[B]s
(if B then Cl else Cg,h,s) ~ (CQ,h,S)
~5-PAR-L
~>-INATOM-STEP —locked(C>)
(C,h,s) ~ (C' R, s (Cy,h,8) ~ (C1,h,8)

(inatom C, h,s) ~ (inatom C’, ', s") (C1 || Ca,hys) ~ (C] || Cay b/, s")

~~-PAR-R
—locked(Ch)
(Co, h,8) ~ (C’é7 K, 5’)
@11 Carus) = (€ O 7, 5)

Most of the transition rules are standard; see for example [Vafll]. The update
notation s[X — v] denotes a store that is equal to s, except that X is now mapped
to v € Val. We use a similar notation for heaps, namely h[v; — vs]. Moreover,
the notation h \ v denotes the remowval of the entry at v in h.

Definition 5.3.6 (Store update, Heap removal).

s[va]éAY.{” yx=Y h\véma{h@’) fvt o

s(Y) otherwise undefined  otherwise
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An interesting aspect of the operational semantics is that atomic programs are exe-
cuted using a small-step reduction strategy (via ~»-INATOM-STEP and ~»-INATOM-
SKIP), rather than a big-step execution, which is more customary. This is done
for technical reasons: it simplifies the establishment of a simulation/refinement
between programs and their models. Consequently, we use a notion of a locked
program to define the transition rules for atomic programs. Any command C' is
said to be (globally) locked if C' executes an atomic program, that is, if C has
inatom C’ as a subprogram for some C’.

The following definition formally captures this notion of locking.

Definition 5.3.7 (Locked programs). Any command C is locked if locked(C)
holds, where locked : Cmd — Prop is defined by structural recursion on C, as
follows:

true if C = inatom C’
locked(C1) if C=0C1;C,

locked(C') £ { locked(Cy) V locked(Co) if C =Cy || Cy
locked(C") if C =inact C’
false otherwise

Moreover, any command C' is defined to be unlocked, if —locked(C).

The rules ~»-PAR-L and ~»-PAR-R for parallel composition allow a thread to make
an execution step only if the other thread is not locked, i.e., not executing an
atomic program, thereby preventing thread interference while executing atomic
programs. One might ask whether this handling of locks could not potentially lead
to deadlock scenarios, for example by encountering configurations (C; || Ca, h, s)
during runtime, in which both locked(C7) and locked(Cy). However, we will later
see and prove that no such deadlocks can be reached, given that one starts with
an initial configuration that contains a user program.

Furthermore, the specification-only language constructs do not affect the state of
the program (i.e., the heap or the store), and are essentially handled as if they
were comments. Notice however, that commands of the form action doC are
first reduced to inact C, before C' is being executed. This is also done for technical
reasons, as this makes it more convenient to later establish a simulation relation
between execution steps of programs and processes.

The semantics of programs has the following preservation properties.
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Lemma 5.3.2. Program execution preserves basicality and well-formedness:

1. If C : basic and (C,h,s) ~ (C',h',s"), then C" : basic.
2. If C :wf and (C,h,s) ~ (C',h,s"), then C' : wf.

5.3.3 Fault Semantics

Apart from an operational semantics, we also define a fault semantics [Rey02],
that classifies runtime errors that may occur during program execution. Before
giving its definition, let us first introduce two auxiliary functions, acc(C,s) and
writes(C, s), for obtaining the set of heap locations that can be accessed or written-
to in the next execution step of C', respectively.

Definition 5.3.8 (Shared-memory accesses). The function acc : Cmd — Store —
2Vel collects all heap locations that are accessed by a given command in the next
computation step, and is defined by structural recursion as follows.

)
)
)
)
acc(Cq; Ch, 9)
acc(X := alloc E, s)
acc(dispose FE, s)
acc(if B then C] else Cs, s)

acc(while B do C,s) =

acc(Cy || Ca,s)

)

)

)

)

)

)

acc(atomic C, s

acc(X := process p over {zg— Ey, - ,x, = Ep}, s
acc(action X.a do C, s
acc(inact C, s

acc(finish X, s

Notice that in the case of heap allocation X := alloc E, no heap location is being
collected, as these can only be accessed after being allocated. Moreover, also
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notice that the initialisation of a new program model using process causes all
heap locations that are protected by that model to be accessed. Even though the
operational semantics of programs does not actually access these heap locations,
inside the program logic they are affected. We therefore include them in acc for

later convenience, thus making acc an over-approximation of the accessed memory
locations.

Definition 5.3.9 (Shared-memory writes). The set of heap locations that are
written to by a given command in the next computation step is determined by the
function writes : Cmd — Store — 2V which is defined as follows.

writes(skip, s

writes(X := E, s

writes(X := [E], s

writes([E1] := Ea, s
writes(C1; Ca, s

writes(X := alloc E, s
writes(dispose F, s

writes(if B then C else C, s
writes(while B do C, s
writes(C || Ca, s rites(C1, s) U writes(Cy, s)
writes(atomic C, s
writes(inatom C, s

writes(X := process p over Il s
writes(action X.a do C, s

writes(inact C, s

0

0

w

0

writes(C, s)
0

0

writes(C, s)
0

M O Y N T N Y Y N N N Y~ ~—
(>

writes(finish X, s

It is not difficult to show that all shared-memory writes, according to the above
definition, as also shared-memory accesses.

Lemma 5.3.3. For every C and s it holds that writes(C, s) C acc(C, s).

We are now ready to define the fault semantics for our programming language.
The fault semantics is expressed as a set 4 C Conf of ‘faulting’ program configu-
rations, that is inductively defined in the following way, where 4 (€) is written as
a shorthand notation for € € 4.
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Definition 5.3.10 (Fault semantics).

4-READ 4-WRITE 4-DISPOSE
[E]s & dom(h) [E1]s & dom(h) [E]s & dom(h)
$(X :=[E],h,s) 4 ([E1] == Ea,h, s) 4 (dispose E, h,s)
4-SEQ 4 -PAR-L 4-PAR-R
4(Cy,h,s) 4(Cy,h,s) —locked(Cy2) 4(Cayh,s) —locked(Ch)
é(01;027h3 8) é(cl || 027h’3) é(Cl || 02717"3)
4-RACE-1
4-DEADLOCK —locked(Ch) —locked(Cs)
locked(CY) locked(C5) acc(Cy, s) Nwrites(Ca, s) # 0
é(cl H CQahvs) é(cl H CQahvs)
4-RACE-2
—locked(C1) —locked(Cy) 4-ATOMIC 4-ACTION
acc(Cy, s) Nwrites(Cy, s) # 0 4(C,h,s) 4(C,h,s)
4(Ch || Cayhys) 4 (inatom C, h, s) 4 (inact C, h,s)

Intuitively, a program configuration exhibits a fault if it: accesses unallocated
memory, or is deadlocked, or allows performing a data-race.

More specifically, 4-READ expresses that heap reading X := [E] faults if the heap
location at E' is unoccupied. For the same reason, also heap writing (4-WRITE)
and heap deallocation (4-DISPOSE) may fault. The 7-PAR-L rule expresses that
any parallel program C || Cy can fault if Cy can fault, given that Cs is not locked
(the rule 4-PAR-R covers the other direction). The locking requirement is needed
here, since otherwise C; would not be able to perform any execution step according
to the reduction rules of the operational semantics. Program configurations that
hold multiple global locks are also considered to be faulting, via /-DEADLOCK.
Finally, the fault semantics encodes the definition of a data-race, via 4-RACE-1
and 4-RACE-2. To clarify, any configuration (C, h, s) exhibits a data-race, if C' has
(at least) two threads that can both access a common location in h in the next
computation step, where at least one of these accesses is a write. Both 4-RACE-1
and 7-RACE-2 have extra premises to ensure that the two threads are unlocked,
to allow both of them to perform a computation step, and therewith to access the
shared heap location.

We will later see that the soundness argument of our program logic covers that
verified programs are free of faults. More specifically, we will prove that, for any
program C' for which a proof can be derived, we have that C is fault-free with
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respect to a heap h and a store s that satisfy C’s precondition, and moreover, that
every configuration that is reachable from (C, h, s) is also fault-free.

Finally, to show that the operational semantics of programs is coherent with re-
spect to the fault semantics, we prove that the operational semantics is progressive
for all non-faulting program configurations.

Theorem 5.3.4 (Progress of ~). For any program configuration € & 4, either €
is final, or there exists a configuration € such that € ~ €',

5.4 Assertions

This section discusses the syntax and interpretation of the assertion language. We
first define and discuss the assertion language in Section 5.4.1. Then, Section 5.4.2
introduces permission heaps (§5.4.2.2) and process maps (§5.4.2.3), which are the
composable structures that form the foundation of the models of the program
logic. Finally, Section 5.4.3 defines the semantic interpretation of assertions.

5.4.1 Assertion Language

The assertion language of our approach is defined by the following grammar.
Definition 5.4.1 (Assertion language).

P,Q,R€ Assn =B |VX.P|IXP|PVQ|PxQ|P Q]|
*iGIPi | Ei)t E | PI’OCﬂ—(X,p,P,H)

where t is a heap ownership type, which is defined to be:

t € PointsToType ::= std | proc | act

The definitions of free variables fv(P) of assertions P, and substitution P[X/E] in
‘P, are the standard ones, and are therefore deferred to Appendix A.

Assertions can be built from plain Boolean expressions B, and may contain several
standard connectives from predicate logic: universal quantifiers (VX), existential
quantifiers (3X), and disjunction (V). Even though negation (=) is not included,
recall that plain Boolean expressions can be negated. Moreover, logical conjunction
(A) is replaced by the separating conjunction x from CSL. The *,cP; connective is
the iterated separating conjunction, with I a finite set, that represents Py *- - -xP,,,
given that I = {0,...,n}. The — connective is known as the magic wand, also
commonly called the separating implication, and is used to describe hypothetical
judgments, much like the logical implication from predicate logic.
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Apart from these standard CSL connectives, the assertion language contains three
different heap ownership predicates <=, with 7 € Q a rational number that repre-
sents a fractional permission, and t the heap ownership type, as well as an ownership
predicate Proc, for program abstractions.

Assertions that do not contain such heap/process ownership predicates are called
pure, while any assertion that is not pure is defined to be spatial.

Heap ownership. The assertion F; <; F5 is the heap ownership assertion,
and expresses that the heap contains the value represented by the expression Fs,
at heap location F;. Moreover, m and t together determine the access rights to
this heap location. In more detail, depending on the ownership type ¢, the <=,
ownership predicates express different access rights to the associated heap location:

e Standard heap ownership. E; g4 E» is the standard heap owner-
ship predicate from (intuitionistic) separation logic that provides read-access
whenever 0 < 7 < 1, and write-access in case m = 1. Moreover, the sub-
script std indicates that the associated heap location Fj is not bound to any
process-algebraic model. We say that a heap location v € Val is bound by, or
subject to, a program abstraction, if there is an active program abstraction
with a binder IT that contains a mapping to v, i.e., v € dom(II).

e Process heap ownership. E <5, E’ is the process heap ownership
predicate, which indicates that the heap location at E is bound by an ac-
tive process-algebraic abstraction, but in a purely read-only manner. More
precisely, < proc assertions exclusively grant read-access, even in case 7 = 1.

e Action heap ownership. E <%, E' is the action heap ownership predi-
cate, which indicates that the heap location F is bound by an active process-
algebraic model, and is used in the context of an action block, in a read/write
manner.

Observe that action points-to assertions <, essentially give the same access
rights as g assertions. Nevertheless, they are both needed, to be able to dis-
tinguish between bound and unbound heap locations in the logic. For example,
the program logic must not allow to deallocate memory is currently bound to
(protected by) an active process-algebraic model, as this would be unsound.

Moreover, even though <, predicates never grant write access, we will later
see that the proof system allows ‘Lproc predicates to be upgraded to <% ,c, inside
action blocks, and <%,.; again provides write access when m = 1. More precisely,
E <—1>proc E’ predicates grant the capability to regain write access to E, in the
context of an action program. This system of upgrading enforces that all modifi-
cations to E happen in the context of action X.a do C' commands, so that the
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modifications are protected and can be recorded by the program abstraction X,
as the action a.

In addition to these three heap ownership predicates, we derive a fourth such
predicate, called the process—action heap ownership predicate. which is equivalent
to <%, only if m denotes write access, and otherwise is equivalent to fl>proc.

Definition 5.4.2 (Process—action heap ownership predicate).

™ A El (l>act E2 Zfﬂ- =1
El c_>procact E2 = T .
Ey —proc B2 otherwise

This derived predicate is for later use, in the proof system of our program logic.

We use the notation £ <&, — is used as shorthand for 3X.E <%, X, where
X ¢ fv(E). Furthermore, we sometimes simply write < instead of <.

Process ownership. Finally, the Proc, (X, p, P,II) assertion expresses owner-
ship of a program abstraction that is identified by X, where the abstraction is
represented by the process P. Ownership in this sense means that the thread has
knowledge of the existence of this process-algebraic model, as well as the right to
execute as prescribed by this model. The label p identifies the declaration of the
process-algebraic abstraction, as specified in the X := process p over Il ghost
command that was used to initialise the abstract model in the program logic. Fur-
thermore, II connects the abstract model to the concrete program by mapping the
process-algebraic variables in the abstraction to heap locations in the program, as
discussed before. And last, the fractional permission 7 is needed to implement the
ownership system of program models. Fractional permissions are only used here
to be able to reconstruct the full Proc; predicate. We shall later see that Proc,
predicates can be split and merged along 7 and parallel compositions inside P,
and consumed in the proof system by action programs.

5.4.2 Models of the Program Logic

Before Section 5.4.3 discusses the semantics of our assertion language, this sec-
tion first introduces permission heaps and process maps, that form the basis for
the models of our concurrent separation logic. Permission heaps extend ordinary
program heaps (i.e., Heap) to capture the three different types ¢ of heap owner-
ship, whereas process maps capture the state and ownership of process-algebraic
abstractions.

Let us start by introducing fractional permissions, which are used in the definitions
of both permission heaps and process maps.
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5.4.2.1 Fractional Permissions

In the assertion language, all heap/process ownership predicates have an associated
rational number 7 € Q. There are used to express the “amount” of ownership that
is available to the corresponding heap location or program model.

We define a rational number 7 to be a (Boyland) fractional permission in case
m € (0,1]g [Boy03]. The original work of Boyland uses fractional permissions to
distinguish between write access (m = 1) and read access (0 < m < 1) to some
shared resource. However, in our work this is slightly different, since the fractional
access permissions 7 annotated to <l>proc predicates never provide write access.

To conveniently handle fractional permissions, we define basic notions of validity
(validg) and disjointness (Lg) of rational numbers, as follows.

Definition 5.4.3 (Permission validity, Permission disjointness).
vaIidQﬂ'é0<7r§1 WlLQﬂ2é0<m/\O<ﬂ'2/\7T1+7T2§1
The predicate validg : Q — Prop determines whether the given rational number is

within the range (0, 1]g, that is, is a valid Boyland fractional permission.

The binary relation Lg: Q — Q — Prop determines disjointness of two rationals.
Disjoint rational numbers do not overlap, in the sense that both operands are
fractional permissions, as well as their addition.

Lemma 5.4.1. validg and Lg satisfy the following properties.
1. If my Lg ma, then mo Lg 71, validg 71, and validg (w1 + m2).

2. If m Lo w2 and (m1 + m2) Lo 73, then mo Lo s and m Lg (72 + 73).

5.4.2.2 Permission Heaps

The models of our program logic use permission heaps to give a semantic meaning
to heap ownership. Permission heaps and their heap cells are defined as follows,
and are slightly richer than ordinary program heaps (Heap), to be able to admin-
ister the access permissions and the different ownership types.

Definition 5.4.4 (Permission heap cells, Permission heaps).

hc € PermHeapCell ::= free | (v)iq | (V)proc | (V1,V2) 3¢ | inV

ph € PermHeap £ Val —gn, PermHeapCell
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Permission heaps ph are defined to be total finite functions from values (repre-
senting heap locations) to permission heap cells, he, which in turn are inductively
defined to be one of the following five elements:

e free, which is an unoccupied heap cell.

(v)Z4, which is a standard heap cell, that stores the value v € Val. Standard
heap cells are the models of the standard heap ownership predicates, <% eq.

(V) Frocs Which is a process heap cell, that stores the value v. These are used

as models of the fl>proc ownership predicates.

(v1,v2)7, which is an action heap cell, that stores the value vy. Action heap
cells are used as the models for the <%, predicates. Moreover, action heap
cells store a second value, vo. This extra value is maintained for technical
reasons, to help in establishing soundness of the program logic. The value
vg is a snapshot value: a copy of the original value stored by the heap cell,
that is made when an action block was entered.

e inv, which is an invalid, or corrupted, permission heap cell.

Definition 5.4.5 (Unit permission heap). The unit permission heap is defined to
be 1o £ \v € Val . free, containing free at every entry.

Note that, unlike program heaps, permission heaps are defined to be total func-
tions, where the heap cells have an explicit notion of being free (i.e., free). This is
done to give permission heaps and their cells nicer algebraic properties.

Furthermore, permission heap cells also have an explicit notion of being invalid.
i.e., inv. Invalid heap cells represent the erroneous result of composing two incom-
patible heap cells. We now define several operations on permission heaps.

Validity. Any permission heap ph is defined to be wvalid if the permissions of all
ph’s heap cells are valid, where free is always valid and inv is never valid.

Definition 5.4.6 (Validity of permission heaps). A permission heap ph is defined
to be valid, written validon ph, if Vv € Val . validye ph(v), where:

validyc free £ true validhe (v1, v2) T, = validg
validye (0)2q £ validg 7 validyc inv £ false

validhe (V) proc = Validg

Fact 5.4.1. validph 1pn holds.
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Disjointness. Two permission heaps ph, and ph, are disjoint if all their heap
cells are pairwise compatible and their underlying permissions are disjoint.

Definition 5.4.7 (Disjointness of permission heaps). Two permission heaps, phy
and ph,y, are disjoint, denoted phy Lpn pho, if Vv € Val. phy(v) Lhe phy(v), where:

free Lpe he 2 validpe he () proc L-he (V) poe £ lgm
he L free 2 validhe he (v1,v2) T Lhe (v1,v2)72 2 T Lo 7o
(V)5 Lhe (V)3 £ Lo m hei Lhe heo £ false, otherwise

To elaborate, two permission heap cells are said to be compatible, if they have
matching ownership types, where free matches with any ownership type other than
inv. The intuitive meaning of disjointness, is that any two disjoint permission heaps
can safely be composed, that is, without causing any heap cells to be corrupted.

Lemma 5.4.2. Validity and disjointness of permission heaps satisfy the following
basic properties (permission heap cells satisfy the same properties):

1. If validph ph, then ph Lon Lph.
2. If phy Lon phy, then also phy Lon phy and validgy ph; .
Law 1 is the identity law for 1L,u: any valid permission heap is disjoint with the

unit permission heap. Law 2 states that Lpn (resp. Lnc) is symmetric and implies
validity of its operands.

Disjoint union. The following operation defines the disjoint union (i.e., the
composition) of two permission heaps.

Definition 5.4.8 (Disjoint union of permission heaps). The disjoint union of
any two permission heaps ph, and ph,, written phy Wen phy, is defined to be the
permission heap Av € Val . phy(v) Whe pho(v), where Wi is defined as:

free Whe he £ he <U>grloc Whe <U>‘gr20c £ <v>grlotﬂ2
he Whe free £ he (v1,09) T2 Whe (v1,02)72 2 (g, v9)TLT™
(V)T Whe (V)72 £ (v)TLFT hey Whe hea £ inv, otherwise

Note that Wy only gives a non-corrupted entry when applied to two compatible
heap cells. Furthermore, free is neutral with respect to Wy, while inv is absorbing.
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Lemma 5.4.3. Disjoint union of permission heaps satisfy the following properties
(permission heap cells have the same properties):

1. phy Won (phy Wpn phs) = (phy Won phy) Won phs.

phy Woh phy = phy Won phy.

If ph Woh ]lph = ph.

If phy Lon phy, then validpn (phy Won phsy).

If phy Lph phy and (phy Wpn phy) Lpn Dhs, then also

CUds Lo o

(a) phy Lon phs and
(b) phy Lon (phy Won phy).

Laws 1-3 describe associativity, commutativity and identity of Wyn (resp. Whe).
Law 4 states that validp is closed under disjoint union, showing that the disjoint
union of two disjoint permission heaps is valid, i.e., have valid underlying fractional
permissions and do not contain any corrupted heap cells. Law 5 relates disjointness
with disjoint union in terms of two distribution laws.

Subheaps. We now define a subheap relation, <ph, on permission heaps. Intu-
itively, any permission heap ph, is said to be a subheap of pho, if phy stores at
least as much information (i.e., values) as ph,, with at least as much ownership.

Definition 5.4.9 (Permission subheaps). Any permission heap phy is defined to
be a subheap of phy, written phy <ph phy, if Yv. phy(v) Zhc phy(v), where:

A
free <he hc = true (v1,v2) 5% =he (V1,02)0% = m <g T2
A . . A
(V) 2oy =he (V)5 = m1 <q T2 inv <pc inv = true
(V)Fhe Zhe (V)2 £ m <g ™ hey =ne heg = false, otherwise

Here <q is just the standard < ordering on rational numbers. Moreover, one
might consider to define hcy =pe heo simply as Fhc. hey Lne he A hep Whe he = hes.
However, this would not allow inv <. inv to be true, which is a desirable property.

Lemma 5.4.4. The permission subheap relation =pn satisfies the following prop-
erties (the same properties are satisfied by <nc):

ph =pn ph.
If phy =pn PRy and phy =ph Phy, then ph; = phs.

If phy =oh Phy and phy =pn phs, then phy =pn phs.
If phy Lon phy, then either phy =on phy or phy <ph phy.

CURs fo o~

If phy =pn phy and phy Lph phs, then also
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(a) phy Zph (phy Won phs), and

(b) (phy Won phs) Zpn (Phy Won phs).
Laws 1-3 shows that < is a partial order, by being reflexive, antisymmetric and
transitive. In fact, =<pn is a total order with respect to disjoint permission heaps,

as shown by Law 4, which states connexity. Law 5 expresses monotonicity, and
shows that disjoint union preserves the subheap ordering.

Entirety. Finally, we define a notion of entirety of permission heaps and their
cells. A permission heap ph is said to be entire, or full, if all ph’s permission heap
cells are full. In turn, any permission heap cell hc is full, if hc is occupied and has
an associated fractional permission 7 that is 1.

Definition 5.4.10 (Permission heap entirety). Any permission heap ph is defined
to be entire, or full, written fulloy ph, if Yo € Val.fullhc ph(v), where the fullp
predicate is inductively defined as follows:

fullpe <v>sltd fullpe (v)éroc fullpe (v1, v2>;ct

Lemma 5.4.5. Permission heap cell entirety satisfies the following properties:

1. If fullpc he, then validne hey (and likewise of permission heaps).
2. If fullhc hey and hey Lne hes, then heo = free.
8. If fullyc hey and validye heo and hey <ne hea, then hey = hes.

Law 1 in the above lemma states that any full permission heap (cell) must also be
valid. Moreover, Law 2 states that full permission heap cells can only be disjoint
with unoccupied heap cells, whereas Law 3 expresses that full heap cells cannot
be extended without losing their validity.

5.4.2.3 Process Maps

Apart from permission heaps, the models of our logic also use process maps, to
give a semantic meaning to process ownership predicates in the logic, i.e., Proc;.

Process maps and their entries are defined as follows.

Definition 5.4.11 (Process map entries, Process maps).

mc € ProcMapEntry ::= free | (p, P,A)™ | inv

lI>

pm € ProcMap = Val —¢, ProcMapEntry
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where A € Binder £ ProcVar —g, Val is a finite partial mapping from process
variables to values (which are intended to be heap locations).

Process maps pm are defined to be total mappings from values (representing iden-
tifiers of program abstractions) to process map entries, me, which are, in turn,
inductively defined to one of the following three elements:

e free, which models an unoccupied, or free, entry in pm.

e (p, P, A)™, which is an occupied process map entry, that is used as a model for
the Proc, (X, p, P,II) predicates in the logic (where the variable X is meant
to identify this entry, inside pm). Furthermore, the A inside the entry is a
binder, which is a model for the IT component of the Proc, predicate.

e inv, which denotes an wnwvalid, or corrupted, process map entry.

Definition 5.4.12 (Unit process map). The unit process map is defined to be
Lpm = v € Val . free, containing free at every entry.

Likewise to permission heaps, process maps are defined as total finite functions,
with entries that can explicitly be unoccupied (free) or invalid (inv), as this provides
desirable algebraic properties. Corrupted entries represent the erroneous result of
taking the disjoint union of two incompatible, non-disjoint entries.

We now define several operations and relations on process maps, most of which
are similar in spirit to the operations we defined earlier, for permission heaps.

Bisimilarity. Two process maps are said to be bisimilar, if all their entries are
pairwise equal, or contain occupied entries with process components that are pair-
wise bisimilar. This is formally captured by the following definition.

Definition 5.4.13 (Process map bisimilarity). Bisimilarity of two process maps
. ~ AN ~
pmy and pmgy is defined to be pmy Zpm pmg = Yv.pmy(v) Zme pmy(v), where
bisimilarity of process map entries, Zme, s inductively defined as follows.
P =P

free =, free inv . inv
" <p7P17A>7r gmc <p7P2,A>7\' m

We will later see that the program logic always allows replacing processes P inside
Proc, (X, p, P,1I) predicates by bisimilar ones. To handle such replacements at the
semantic level, we allow process maps and their entries to be handled up to =,m
and X, respectively, with help of the following result.

Lemma 5.4.6. Both =, and = are equivalence relations.
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Validity. Any process map pm is valid, if none of pm’s entries are corrupt, and
moreover, all occupied entries of pm have a valid associated fractional permission.

Definition 5.4.14 (Process map validity). Validity of process maps pm is defined
as validpm pm £ Vv . validme pm(v), where validme, in turn, is defined as follows.

valid,c free £ true validme (p, P,A)™ & validg 7 validc inv £ false
It is not difficult to deduce from the above definition that 1, is a valid process
map, and moreover, that bisimilarity is validity-preserving.

Fact 5.4.2. validym L1pm holds.

Lemma 5.4.7. The relations =,y and =y both preserve validity:

1. If validpm pmy and pm; =pm pm,y, then validym pms,.
2. If validye mey and mey e mes, then validme mes.

Disjointness. Intuitively, two process maps are said to be disjoint if none of
their entries are corrupt, and all fractional permissions of their entries are pairwise
disjoint. This notion of disjointness is formally captured by the following definition.

Definition 5.4.15 (Disjointness of process maps). Disjointness of two process
maps pmy and pmy is defined as pm; Lpm pmy = Vv . pmq(v) Lme pmy(v), where
disjointness Lmc of process map entries is defined as follows.

free Lme mec £ validme me (p, Pr,A)™ Linc (p, P, A)™ £ 71 L ma

A . A .
mc Lme free = validyme mc mer Lme meo = false, otherwise

The intuitive meaning of disjointness L ,m, is that disjoint process maps can safely
be composed without causing any of the resulting entries to be corrupted.

Before giving the definition of composition (disjoint union), let us first discuss
some properties of disjointness of process maps and their entries.

Lemma 5.4.8. Process map disjointness satisfies the following properties (these
properties also hold for process map entries):

1. If validpm pm, then pm Lpm Lom.
2. If pmy Lom pmy, then also pmy Lom pmy and validym pm.
3. If pmy Lpm pmy and pmy Zpm pmY and pmy Zpm pmb, then pmy Lom pms.

Laws 1 and 2 are very similar to the properties of permission heap disjointness
that we gave earlier. Law 3 states that bisimilarity preserves disjointness.
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Disjoint union. The following operation defines the disjoint union (composi-
tion) of two process map (entries).

Definition 5.4.16 (Disjoint union of process maps). The disjoint union of two
process maps pm, and pmy is defined as pm; Wom pmy 2 Yo . pmy(v) Wme pmy(v),
with Wme defined as follows.

free Wme me £ me

mc Wme free

(P, Pr, A)™ Wine (p, Pa, A)™ £ (p, Py || Po, )72

mc

meq Wme meo = inv, otherwise

Likewise to disjoint union of permission heaps, the composition of incompatible
process map entries produces a corrupted entry (inv). The entry free is again
neutral, whereas inv is absorbing (i.e., composing a corrupted entry with any entry
again yields a corrupted entry).

Lemma 5.4.9. Disjoint union of process maps Wpm and their entries Wme satisfy
the following properties (we only show them for Wom however):

If pmy =pm pmy and pm} =pm pmb, then pm; Wom pmi Zpm pmy Wom pms.
Py Wom (Pmg Wom pmg) = (pmy Wom pmy) Wom pmg.

Py Wpm pmy = Py Wpm pmy .

pm Wom Lpm = pm.

If pmy Lpm pmy, then validom (pmy Wem pmy).

S G e o =

If pmy Lom pmy and (pmy Wpm pmy) Lpm pms, then also
(a) pmy J-pm pms, and
(b) pmy Lom (pmy Wom pms).

Law 1 states that =, is a congruence with respect to Wpm (and likewise for =
and Wme). Laws 2-3 express that =, and &, are associative and commutative,
respectively. Law 4 shows that 1,m (resp. free) is indeed a unit element with
respect t0 Wpm (resp. Wme). Law 5 ensures that the disjoint union of two disjoint
process maps is indeed valid (i.e, uncorrupted) Finally, Law 6 relates process map
(entry) disjointness with disjoint union in terms of two distribution properties.

Submaps. We now define a submap ordering on process maps and their entries,
likewise to the subheap relation of permission heaps.
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Definition 5.4.17 (Process submaps). Any process map pmy is defined to be a
submap of pms, denotes pmq =pm PMqy, if Yv. pmq (V) Smec pMy(v), such that:

m <g T2 P,=P | P

inv <inc inv
<pa PlaA>7T1 jmc <p7 P27 A>7T2 c

free <mc mc

Observe that in the case of occupied entries, i.e., (p, P1, A)™ <mc (p, P2, A)™2, the
process P, is required to have at least all the behaviours that P, has. This is
expressed by the premise P, 2 P; || P{, where P is existentially quantified.

Likewise to the subheap ordering, <,m and =<, are partial orders, as well as total
orders with respect to disjoint process map (entries). Furthermore, bisimilarity
and disjoint union are order preserving, as shown by the following lemma.

Lemma 5.4.10. The relations =pm and <mc satisfy the following properties (for
ease of presentation, only the ones for <,m are given):

pmM Zpm pm.

If pmy =pm pPmy and pmy <pm pMq, then pm; = pm,.

If pmy =pm Pmy and pmy <pm PMsg, then pm; =pm pms.

If pmy Lom pmy, then either pm, <pm pMy 0T Py Xpm PMy.

If pmq Zpm pmY and pmy Zpm pmb and pmq =pm PMy, then pmi <pm pmb.

S S o v o~

If pm; =pm pmy and pmy Lpm pms, then also

(G,) pmy jpm (pm2 L'i'me pmg), as well as

(b) (pm4 Ypm pms) =pm (pmy Wpm PM3)-
5.4.2.4 Worlds

Finally, we introduce worlds, which are the models of our program logic. Worlds
M are defined to be quadruples (ph, pm, s, g) consisting of a permission heap ph,
a process map pm, and two stores, s and g, that give an interpretation to program
variables and “ghost” variables, respectively. With ghost variables we mean any
variable that is used to represent a program abstraction. For example, the variable
X in any X := process p over II command is considered to be a ghost variable.
The extra store, g, is therefore referred to as the ghost store.

Definition 5.4.18 (Worlds). The domain of worlds is defined to be:

M € World = PermHeap x ProcMap x Store x Store



5.4. Assertions 157

Definition 5.4.19 (Unit world). The unit world 1w € World is defined to be
1y 2 (Lph, Lpm, AX. Lyg, AX. Lvy), where Ly, is assumed to be the unit element
in the domain Val of values.

Moreover, we simply lift the notions of bisimilarity, validity, disjointness, disjoint
union, and subheaps/maps, to worlds, in the following ways.

Definition 5.4.20. Let 20; = (ph;, pm;, si, g;) fori € {1,2}. Then:

W1 =w Wa = phy = pha Apmy Zpm pma A st =s2 Ag1 = go
valid w20 £ validyh ph A validpm pm
Wy Ly Wa £ phy Lpn pha Apmi Lom pmo

W1 Wy Wa 2 (phy Wph pha, pmi Wom pma, s1, g1)
Wi 2w Wa = phy =ph pho Apmi =pm Pz A s1 =52 A g1 = go

These operations have the same properties as the ones of permission heaps and
process maps as defined in §5.4.2.2 and §5.4.2.3. We do not repeat them here.

5.4.3 Semantics of Assertions

Let us now define the interpretation of assertions. The semantics of assertions
is defined in terms of a satisfaction relation 9t = P, stating that the assertion
P is satisfied by the model 9. However, its definition depends on the following
operation, [II]s, for evaluating abstraction binders II.

Definition 5.4.21 (Abstraction binder evaluation). The evaluation of abstraction
binders is defined in terms of the function [-] : AbstrBinder — Store — Binder,
in the following way:

Hzo = E > B )]s 2 Az [E:]s ifx =x; for some0<i<n
0 Orereosin " " | undefined otherwise

Definition 5.4.22 (Semantics of assertions). The modelling relation MM = P is
defined by structural recursion on P, in the following way, with M = (ph, pm, s, g):

ME=B iff [B]s
MEVXP iff Yv.(ph,pm,s[X — v],g[X —v]) EP
MEIXP  off Jv.(ph,pm,s|X —v],g[X —»v]) EP
MEPVQ iff MEPVMEQ
f)ﬁ':P*Q off A, Mo My Ly Mo A Wy Mo Zpy MA
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My =P AM, O
MEP +Q  iff V.M Ly AN =P) — My M = Q
ME *ierPi iff MpEPix-- %Py, for I ={ig,...,in}
ME By Sga Bo iff  ([E2]8)%g =nc PR([EA]s)
ME E1 Spoc B2 iff  ([E2]8) 50 Zhe PR([E1]s)
ME=E S B2 iff  Fv.{([E2]s,v)2 Zhe ph([F1]s)
M k= Proc, (X, p, P,TI) iff (p, P, [[]5)™ <me pm(g(X))

Clarifying the semantic meaning of assertions, the separating conjunction Py % Ps
is satisfied by a world 9, if 9t can be partitioned into two disjoint worlds, 2y
and My, using Wy, such that M, satisfies P, and Moy satisfies Po. Magic wands
P1 = Py are satisfied by a world 9, if, for any disjoint extension 9 of 9 that
satisfies Pp, the extended world I Wy I’ satisfies Po. Moreover, the semantic
meaning of iterated separating conjunctions, *;c;P;, can be expressed simply in
terms of the interpretation of the binary separating conjunction, .

Moving to the non-standard connectives; heap ownership assertions F <=, E’ are
satisfied if the permission heap holds an entry at location F that matches with
the ownership type ¢, with an associated fractional permission that is at least
m. Process ownership assertions Proc, (X, p, P,II) are satisfied if the process map
holds a matching entry at position g(X) with a fractional permission at least m,
and a process that at least includes all the behaviours of the process P.

Lemma 5.4.11. The |= modelling relation satisfies the following properties:

1. If 9 2w My and validw Wa, then My = P implies My = P.
2. If My =y My, then My =P implies My = P.

Property 1 in the above lemma expresses monotonicity, and states that adding
resources does not invalidate the satisfiability of an assertion (i.e., adding more
resources only makes the assertion “more true”). This is a key property of intu-
itionistic separation logic. Moreover, Property 2 is essential for allowing process-
algebraic abstractions to be replaced by bisimilar ones inside the program logic.

5.4.3.1 Semantic Entailment

Let the denotation [P] £ {20 | 20 =P} C World be the set of all models that
are satisfied the assertion P. As one would expect, we have that [true] = World,
[false] = 0, and [PV Q] = [P]U[Q]. Given any two assertions P and Q, the
assertion P is defined to semantically entail Q, denoted as P = Q, if every model
of P is also a model of Q. This can now concisely be expressed via set inclusion.
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PLAIN-DUPL *-PLAIN *-WEAK
B4 Bx B By x By 14+ B1 A\ By PxOQFP
*-ASSOC *-COMM *-TRUE
Px(Q+xR)4-(P+xQ)xR PxQ - QxP P * true 4+ P
*-MONO —*-INTRO —*-ELIM
P P or o true-INTRO false-ELIM P+OFR PrQ =0
— P | true false - P ;
PxQFP*Q PO xR PxQFQ
V-INTRO V-ELIM J-INTRO J-ELIM
Vn.(PF Q[X/n]) PEVX.0Q PE Q[X/n] PrE3IX.0
PEVX.0O P Q[X/n] PrH3IX.Q In. (P+ Q[X/n])
V-ELIM-L V-ELIM-R
7) '_ Ql P |_ QQ ITER-SPLIT-MERGE

*i 1 QPi _”_ *’L 1P’i *Z zpi
PFQivQ,  Pro v chel (kienPo) » (Hien, Pi)

Figure 5.2: The primitive entailment rules of our program logic.

Definition 5.4.23 (Semantic entailment). P = Q 2 [P] C [Q].

Consequently, semantic entailment |= is a preorder (i.e., reflexive and transitive),
as well as a congruence for all connectives of the assertion language.

5.5 Proof System

This section introduces the proof system of our model-based verification technique,
which consists of structural proof rules (§5.5.1) as well as Hoare proof rules (§5.5.2).
This proof system essentially extends the CSL of [Vafl1], by adding permission ac-
counting [Boy03, BCOP05] and machinery for handling process-algebraic program
abstractions.

5.5.1 Entailment Rules

Figure 5.2 shows the standard structural rules of the program logic. The notation
P -+ Q is a shorthand notation for both P + O and Q + P, and indicates that
the rule can be used in both directions.

Clarifying the rules, PLAIN-DUPL expresses that plain expressions can freely be
duplicated, whereas *-PLAIN shows that * has the same meaning as A in the case
of plain assertions. The rule *-WEAK shows that our concurrent separation logic
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—-SPLIT-MERGE —-INCOMPATIBLE
1 J_Q Uy tl 75 tg
By T2 By - By <, By k By <22, By E <%, E'«E <%, E'Ifalse

*-PROCACT-SPLIT-MERGE
Vielb. m; <1 Viel,. m;=1

) * (*iEIQEi ﬂ)act EZ/)

U / i /
*ie[lwlgEi (—>procact E7 -+ (*ie]lEi c—>proc L

K2

Proc-2

P=Q
Proc, (X, p, P,II) 4 Proc, (X, p, Q,II)

Proc-sPLIT-MERGE
1 J_@ T

Proc,, +my (X, p, P || P2, 1) 4 Proc,, (X, p, P1,1I) * Proc,, (X, p, Ps, 1)

Figure 5.3: The extended entailment rules for heap and process ownership.

is affine (i.e., intuitionistic), by allowing to throw away (forget about) resources.
The rules *-ASSOC and *-COMM express that the separating conjunction is asso-
ciative and commutative, respectively, whereas *-TRUE allows any resource to be
composed with true. The rule true-INTRO is the introduction rule for true, while
false-ELIM is the elimination rule for false, stating that anything can be derived
from falsehood. The —«-INTRO and —-ELIM rules show that magic wands can
be used similarly to the modus ponens inference rule of propositional logic, with
respect to *. The rules V-INTRO, V-ELIM, 3-INTRO and 3-ELIM are the standard
introduction and elimination rules for universal and existential quantifiers. Rules
V-ELIM-L and V-ELIM-R allow to eliminate one of the operands of a disjunction
V. Finally, ITER-SPLIT-MERGE allows iterated separating conjunctions to be split
and merged.

Figure 5.2 shows our new entailment rules, that deal with heap ownership and
ownership of process-algebraic models.

The rule <-SPLIT-MERGE expresses that heap ownership predicates - <, - of any
type t may be split (in the left-to-right direction) as well as be merged (right-to-
left direction) along . Note however, that multiple points-to predicates for the
same heap location may only co-exist if they have the same ownership type, as
indicated by the <—»-INCOMPATIBLE rule. Moreover, the *-PROCACT-SPLIT-MERGE
inference rule states that iterated procact heap ownership predicates can be split
into disjoint iterated proc and act predicates, or be merged into one such iteration.
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The Proc-= rule allows process-algebraic abstractions to be replaced by bisimi-
lar ones. Finally, Proc-SPLIT-MERGE allows splitting and merging process own-
ership predicates in the same style as <, to distribute parallel processes over
parallel threads. Notably, by splitting a predicate Proc,, 4+, (X, p, P || P2,II) into
two, both parts can be distributed over different concurrent threads in the pro-
gram logic, so that thread 7 can establish that it executes as prescribed by its
part Proc,,(X,p, P;,II) of the abstract model. Afterwards, when the threads
join again, the remaining partial abstractions can be merged back into a single
Proc,, 1, predicate. This system of splitting and merging provides a compo-
sitional, thread-modular way of verifying that programs meet their abstraction.
The logical machinery of this is further discussed in the next section.

All the entailment rules presented in Figure 5.2 and Figure 5.3 are sound in the
standard sense.

Theorem 5.5.1 (Soundness of the entailment rules). P F Q implies P |= Q.

5.5.2 Program Judgments

We now define program judgments, and give the Hoare proof rules of the program
logic. Judgments of programs are sequents (quintuples) I'; R F {P}C {Q}. The
right-hand side is a traditional Hoare triple, whereas R is a resource invariant that
is used to handle atomic programs, and I' an environment in the style of interface
specifications of [OYRO04]. Such process environments are defined as follows.

Definition 5.5.1 (Process environments).

' € ProcEnv == 0| T,{b}p{b}

Process environments describe assumptions as Hoare-triples {b; } p {b2} for process-
algebraic models, where p identifies the process declaration. These Hoare triples
constitute the contracts of the process-algebraic abstractions that are defined for
the program that is to be verified. In particular, they allow for assume-guarantee
style reasoning: these process Hoare triples may be assumed in the proof system
while dealing with (finalising) process-algebraic models, and must be guaranteed
externally, for example via model checking, e.g., using mCRL2.

Standard rules. Figure 5.4 gives the standard proof rules of our logic. These
are essentially the same as the proof rules of classical CSL [Vafll]. One minor
difference is that the HT-ATOMIC leaves true instead of emp?, while using a resource

2The assertion language of the classical version of CSL contains an extra emp construct, for
explicitly denoting that the heap is empty. In our intuitionistic version of the logic, resources
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Standard structural rules

HT-FRAME
fv(F)Nmod(C) =0 HT-CONSEQ
;R F {P}C{Q} PEP  TL;RE{PIC{Q} Q'F+Q

REA{P«xF}C{Q*F} IRE{PIC{Q}

HT-DISJ
HT-SHARE LREAPL}C{Qu}
I;R+«R F{P}C{Q} DiREA{P2} C{Qa}
F,R}—{'P*R/}C{Q*R/} F;R"{Pl\/PQ}C{Ql\/QQ}

HT-EX

I'RE{PIC{Q} X &N(C)
I;RF{3X.P}C{3X.Q}

Standard proof rules

HT-SEQ
HT-SKIP . I'RE{PYC, {P I:'REA{PYC, {Q
;R + {P} skip {P} { }F-;%{%{}P}Cl-cz{g{} }C2{Q}

HT-ITE

IR E {P}if B then C; else C; {Q}

HT-WHILE HT-ASSIGN
I;RE{P«B}YC{P} X € f(R)
;R F {P}while B do C {P * ~B} I;RF {P[X/E|} X := E{P}
HT-PAR

F;Rl— {731}01 {Ql} fv(R,Pl,Cl)ﬁmod(Cg) :(Z)
F; R {PQ} CQ {QQ} fV(R, PQ, 02) N mod(C’l) @
F;R [ {771 *PQ}Cl H 02 {Ql * Qz}

HT-ATOMIC

[itrue {P*R}C{Q*R}
IR E {P}atomic C {Q}

Figure 5.4: Standard proof rules of the program logic.
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HT-READ

X ¢N(R,E,E)
ITREA{PX/E |+ E S, E'} X := [E]{P+E <, E'}

HT-WRITE
t # proc

T:R b {E <5 —}[E1] = By {E1 < Es)}

HT-ALLOC

X ¢fv(R,E)
[; R F {true} X := alloc E{X <5y E}

HT-DISPOSE

IR b {E <5gq —} dispose E {true}

Figure 5.5: The non-standard proof rules related to heap handling.

invariant, since our logic is intuitionistic. Moreover, our assertion language does
not contain the logical conjunction A connective, but uses * instead.

Handling heaps. Figure 5.5 gives the proof rules that we extend with respect
to classical CSL, related to heap ownership.

The rule HT-READ states that reading from the heap is allowed with any type
t of heap ownership <;, whereas heap writing (HT-WRITE) is only allowed with
points-to predicates of type std or act. The HT-WRITE rule thus restricts < poc
assertions to exclusively grant read-access to the association location. We will in
a moment see that the proof rule for action programs can upgrade £ <Spoc E’
predicates to E <%, E' predicates, to regain write access to the heap location at
FE. This system of upgrading enforces that all modifications to E are captured by
the program abstraction the heap location is subject to, inside an action block.

The rule HT-ALLOC for heap allocation generates a new points-to predicate of
type std, indicating that the allocated heap location is not (yet) subject to any
program abstraction. Heap deallocation (HT-DISPOSE) requires a full standard
ownership predicate for the associated heap location, thereby making sure that
the deallocation does not break any bindings of active program abstractions.

are allowed to be thrown away, using the *-WEAK entailment rule. As a consequence, assertions
cannot express “precise” properties about the content of the heap, including emptiness of heaps.
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HT-PROC-INIT
fv(by) C dom(IT) = {xo,...,Tn} I1=10,...,n}
X %fv(R,EO,...,En) B = bl[xi/Ei]ViEI

{ *;crM(z;) <> E; B }
L, {b1}p{bo}; R+ X := processpoverll
*1611_[(‘7:1) ‘_1>proc EZ * B % }

Procy (X, p, body(p), IT)

HT-PROC-UPDATE
fv(a) = {xo,...,xn} C dom(II) I=H0,...,n}
By = pre(a)[r;/Ei]vier By = post(a)[z;/Eilvier
IR E {*zGIH(xz) &procact E; x By * P} C{*zeln(xz) &procact EZ/ * Bg x Q}
*iEIH(xi) &proc E; % By *
Proc.(X,p,a- P+ Q,II) « P
IRE action X.a do C

*iEIH(xi) &proc Ez/ * By *
PFOC.,T(X’p, P7 H) * Q

HT-PROC-FINISH

fV(b) gdom(H):{xo,,mn} 12{0,7?’7,} B:bg[xl/Ez]vzej P\L
{ *zGIH(ZEz) (_1>proc El * }

Procy (X, p, P, II)
Lo {b1}p{b2}; R finish X

{*i€[H<{Ei> ;1) Ei * B}
Figure 5.6: The extended proof rules related to handling process-algebraic models.

Handling process-algebraic abstractions. Figure 5.6 gives the extended proof
rules for introducing, eliminating, and updating process-algebraic abstractions.

The HT-PROC-INIT rule handles initialisation of an abstract model P over a set of
heap locations as specified by the IT mapping. This rule requires standard points-
to predicates with write-permission for any heap location that is to be bound by
P, and these are converted to <—1>proc. Moreover, HT-PROC-INIT requires that the
precondition B of P holds, which is constructed from b; by replacing all process
variables by the values at the corresponding heap locations as specified by II3.

3Here we slightly abuse notation however, for ease of presentation. In the proof rule, we
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A Proc; predicate with full permission is ensured, containing the label p of the
declared process, so that the postcondition by can later be retrieved from TI'.

The HT-PROC-UPDATE rule handles updates to program abstractions, by perform-
ing an action a in the context of an action X.a do C program. This rule imposes
four preconditions on handling action programs. First, a predicate of the form
Proc,(X,p,a- P+ @Q,1I) is required for some 7. In particular, the process compo-
nent must be of the form a - P + @ and therewith allow to perform the a action.
After performing a, the process will be reduced to P, and @ will be discarded, as
the choice is made not to follow execution as prescribed by Q. To get processes in
the required format, one may apply Proc-22 (page 160), together with the standard
axioms of process algebras given earlier. For example, processes of the form a - P
can always be rewritten to a - P 4+ § to obtain the required choice. Second, fl>proc
predicates are required for any heap location that is bound by II. These points-to
predicates are needed to resolve the precondition and postcondition of a. Third,
the guard of @ must hold as a precondition. And last, the remaining resource P
should hold.

Among the premises of HT-PROC-UPDATE is a proof derivation for the sub-program
C, in which all required &p,oc predicates are essentially upgraded to <%, and
thereby regain write access when m; = 1. However, in case m; < 1 the upgrade does
not give any additional privileges, since <% ,c provides read-access just the same.
We found that these unnecessary conversions complicate the soundness proof. To
avoid unnecessary upgrades, we convert all affected (ﬂ>p,oc predicates to &p,ocact
instead, which simplifies the correctness proof.

The HT-PROC-UPDATE rule ensures a process ownership predicate that holds the
resulting process P after execution of a. In addition, updates to the heap are
ensured that comply with the postconditions of the proof derivation of C.

Finally, the HT-PROC-FINISH rule handles finalisation of abstractions that have
fully been executed (i.e., can successfully terminate). A predicate Procy (X, p, P,II)
with full permission is required (thereby implying that no other thread can have
a fragment of the abstraction), where P must be able to successfully terminate.
Successful termination in this sense means that P is bisimilar to € + @ for some
process @@, and thus has the choice to have no further behaviour. The Proc; predi-
cate is exchanged for the postcondition B of the abstraction, again constructed by
replacing all process variables in by by concrete values obtained via points-to asser-
tions. The postcondition B can be established at this point, since (i) the contracts
of processes in I' are assumed, as their validity is checked externally, and by is a
postcondition of one of these contracts; (ii) the abstraction has been initialised in

write b[z; /E;]vic for converting a process condition b to a condition over program variables, by
substituting all free variables x; occurring in b by an program expression E;. However, in our
Coq formalisation, we have a special operation for such conversions.
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a state satisfying the precondition of that contract; and (iii) the process has been
reduced to a point of successful termination. Hence all the classical assumptions
of Hoare-triple reasoning are fulfilled.

Lastly, all ‘—1>proc predicates are converted back to ;l>std to indicate that the asso-
ciated heap locations are no longer subject to the abstraction.

5.6 Soundness

In this section we define the semantic meaning of program judgments, and discuss
the soundness proof of the program logic.

The soundness proof has been mechanised using Coq. Proving soundness was non-
trivial and required substantial auxiliary definitions. This section discusses these
auxiliary definitions and explains how they are used. For further proof details we
refer to the Coq development.

The soundness theorem relates program judgments with the operational semantics
of programs and boils down to the following: if

1. a proof I'; R F {P} C {Q} can be derived for a program C; and
2. the contracts in I" of all abstract models of C' are satisfied (proven externally),

then C' executes safely for any number of computation steps. Execution safety in
this sense also includes that C' does not fault for any number of execution steps,
with respect to the fault semantics 4 that we defined in Section 5.3.3.

Our definition of execution safety extends the well-known inductive definition of
configuration safety of Vafeiadis [Vafll] by adding machinery to handle process-
algebraic abstractions. The most important extension is a simulation argument
between concrete program executions (with respect to ~) and abstract program
executions of all active models (with respect to ——). However, as the reduction
steps of these two semantics do not directly correspond one-to-one, this simulation
is established via an intermediate, instrumented semantics referred to as the ghost
operational semantics. This intermediate semantics is defined in Section 5.6.1, in
terms of ghost transitions ~~ghost that essentially define the lock-step execution
of program transitions ~ and the transitions — of their abstractions. Our def-
inition of “executing safely for n execution steps” includes that all ~» steps can
be simulated by ~ghost steps, and vice versa, for n execution steps. Thus, the
end-result is a refinement between programs and their abstractions.

In addition to establishing such refinements, our definition of execution safety
must also allow the postconditions of abstractions to be used inside the program
logic, particularly in the context of the HT-PROC-FINISH proof rule. To account for



5.6. Soundness 167

these, the definition of execution safety uses two extra ingredients, both of which
are defined in Section 5.6.2. The first ingredient is the notion of process execution
safety, from which the semantic meaning of process Hoare triples and of process
environments I' are defined. Informally, execution safety of a process Hoare triple
{b1} p{b2} states that all finite traces of body(p) starting from a state satisfying
b1, terminate in a state that satisfies b;. The second ingredient is an invariant,
stating that all active program abstractions preserve their execution safety for n
execution steps, with respect to the current state of the program. Maintaining
this invariant allows the postconditions of fully reduced process-algebraic models
to be obtained and used, when executing a finish _ ghost command.

Finally, Section 5.6.3 formally defines process execution safety—the semantic mean-
ing of program judgments—and presents the soundness statement.

5.6.1 Ghost Operational Semantics

To establish the refinements between programs and their abstractions, an interme-
diate semantics is used that administers the states of all active program abstrac-
tions. This intermediate semantics is referred to in the sequel as the ghost opera-
tional semantics. The ghost semantics is expressed as a transition relation ~=ghost C
GhostConf between ghost configurations & = (C, h, pm, s, g) € GhostConf, which
extend program configurations by two extra components, namely:

e A process map pm € ProcMap that is used to administer the state of all
active (initialised, but not yet finalised) process-algebraic abstractions; and

e An extra store g € Store, referred to as a ghost store, as it is used to map
variable names to process identifiers in the context of “ghost” instructions.

The ghost operational semantics uses two stores instead of one, to keep the admin-
istration of program data and specification-only (ghost) data strictly separated.
By doing so, it is easier to establish that the variables referred to in ghost code do
not interfere with regular program execution, and vice versa.

Ghost transitions essentially describe the lock-step execution of concrete programs
(~ steps) and their program abstractions (—— steps). An excerpt of the transition
rules of the ghost semantics is presented in Figure 5.7. This excerpt only contains
the transition rules related to program abstraction; all other transition rules are
essentially the same as those of ~+, with the two extra configuration components
simply carried over and left unchanged. Recall that the blue colourings are merely
visual cues, do not have any special semantical meaning.

To clarify the ghost transition rules, ghost-PROC-INIT instantiates a new program
abstraction and stores it in a free entry in pm. Finalisation of program abstractions
is handled by ghost-PROC-FINISH, under the condition that the process-algebraic
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ghost-PROC-INIT
pm(v) = free

(X := process p over I, h, pm, s, g) ~>ghost
(skip, h, pm[v — (p, body(p), [1]s)"], s, 9)

ghost-PROC-FINISH
pm(g(X)) Zme (0, PLA)T P
(ﬁl’liSh X7 ha pm7 57 g) “’“’ghost (57 h’ pm \ g(X)7 Sa g)

ghost-ACT-INIT
(action X.a do C,h,pm, s, g) ~ghost (inact (a, g(X),h) C,h,pm,s,q)

ghost-ACT-STEP
(Cv ha pm,s, g) ~?ghost (Cla hla Pm/, Sla gl)

(inactm C, h, pm, 8, g) ~>ghost (inactm C' W', pm’,s’, g')

ghost-ACT-END
pm(v) Zme (p, P,A)T P [A(hot) = P [A](h)
(inact(a, U7 hold) Skip7 h’a pma 87 g) Wghost (Skipa h7 pm[v — <pa Pl) A>7T]a 37 g)

Figure 5.7: An excerpt of the transition rules of the ghost operational semantics.

model is able to terminate successfully. The remaining three ghost transition rules
handle the execution of action blocks. Before discussing these, first observe that
the ghost semantics maintains an extra component m in inact m C commands.
This component contains (ghost) metadata: extra runtime information regarding
the process-algebraic model in whose context the program C' is being executed.
Concretely, ghost metadata m is defined as a triple m = (a,v,h) € Act x Val x
Heap, consisting of:

1. The label a of the action that is being executed;

2. The identifier v of the corresponding process-algebraic model in the process
map, in which the action a is being executed; and

3. A copy h of the heap, made when the program started to execute the action
block; that is, when the action program was reduced to inact by ~.

The ghost-ACT-INIT transition rule starts to execute an action block by reducing
it to an inact program, thereby assembling and attaching the required ghost
metadata. In particular, a copy of the heap is made at this point, so that the
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ghost-ACT-END transition rule for finalising inact programs is able to access the
old, original contents of the heap. This is needed to allow the abstraction to make
a matching — step; in particular to calculate the pre-state of such a step. To see
how this works, first recall that the process-algebraic state of program abstractions
are linked to concrete program state—entries in the heap—via the A binders that
are maintained in process maps. Therefore, to be able to make an —s step, the
ghost-ACT-END rule first needs to construct process-algebraic state out of the state
of the program. This is done using the auxiliary function |- | : Binder — Heap —
ProcStore that is referred to as the abstract state reification function, which has
the following definition.

Definition 5.6.1 (Abstract state reification).

h(A ' dom(A) and A dom(h
|A|<h>émepmcvm.{l< (@) if v € dom(A) and A(z) € dom()
Val otherwise

Finally, the ghost-ACT-STEP transition rule allows making a computation step in
the context of an action (inact) program

5.6.1.1 Faulting Ghost Configurations

Likewise to the fault semantics that we defined for program configurations, we
now also define a fault semantics of ghost configurations, which we call the ghost
fault semantics. The ghost fault semantics is expressed in terms of a set f ghost C
GhostConf of ghost configurations that are defined to “fault”. Figure 5.8 gives
an excerpt of the faulting ghost configurations. Only the faulting configurations
related to ghost code are shown; the other cases are similar to the ones presented
in Section 5.3.3. The notation 4 ghost(®) is used to abbreviate & € 4 ghost-

Clarifying the ghost fault semantics; the initialisation of a process-algebraic model
faults if there is no free entry available in pm (4 ghost-PROC-FULL). The finalisa-
tion of program abstractions can fault if the corresponding entry in the process
map is: (i) either unoccupied or invalid (4 ghost-PROC-FINISH-1), or (ii) contains a
process-algebraic abstraction that is unable to successfully terminate (by the rule
4 ghost-PROC-FINISH-2). Finally, computation within action blocks inact m C' may
fault if: (i) m does not refer to an abstraction (4 ghost-ACT-SKIP-1), or (ii) the
abstraction relies on process variables that have an incorrect binding (by the
rule 4 ghost-ACT-SKIP-2), or (iil) the process is not able to make a matching step
(4 ghost-ACT-SKIP-3), or (iv) C is able to fault (by 4 ghost-ACT-STEP).

The ghost semantics enjoys the same progress property as the standard operational
semantics, as stated by Theorem 5.3.4.
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4 ghost~-PROC-FULL 4 ghost-PROC-FINISH-1
Vv . pm(v) # free pm(g(X)) € {free,inv}
4 ghost(X := process p over II, h,pm, s, g) 4 ghost(finish X, h, pm, s, g)
4 ghost—-PROC-FINISH-2 4 ghost—-ACT-STEP
pm(g(X)) Zme (p, P,A)T  PY fghost(C, h, pm; s, g)
4 ghost (finish X, h, pm, s, g) 4 ghost (inact m C, h, pm, s, g)

4 ghost-ACT-SKIP-1
pm(v) € {free,inv}

éghost(inact (av v, hold) Skip7 h’a pm,s, g)

4 ghost-ACT-SKIP-2
pm(v) Zpe (p, P,A)"  image(A) Z dom(h) N dom (1)
\éghost(inact ((l, v, hold) skip, h, pm, s, g)

4 ghost-ACT-SKIP-3
pm(v) e (p, ,A)T =3P P, [A](how) = P',|A(R)
éghost(inaCt (av v, hold) Skipa h’a pm,s, g)

Figure 5.8: An excerpt of the fault semantics of ghost configurations.

Theorem 5.6.1 (Progress of ~»gnost). For any ghost configuration & & §ghost,
either & is final, or there exists a & such that & ~=ghost &'.

Moreover, it is quite straightforward to establish a forward simulation between ~~
and ~ghost. A matching backward simulation is ensured by the soundness argu-
ment of the program logic, as is customary for establishing refinements [REB98].

Lemma 5.6.2 (Forward simulation). The standard operational semantics and the
fault semantics of programs are embedded in the ghost operational semantics and
ghost fault semantics, respectively:

1. If (07 h7pm7 879) WghOSt (C/a h/upm/7 S/ag/)7 then (07 h7 S) ~ (0/7 hl? SI)'
2. If $(C, h,s), then also 4 ghost(C, h,pm, s, g), for any pm and g.

The above theorem also shows that the ghost fault semantics extends 4. The
soundness argument of the program logic establishes that verified programs do
not fault with respect to ~~ghost, and therefore also do not fault with respect to

o,
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5.6.2 Process Execution Safety

In addition to establishing refinements between programs and their abstract mod-
els, our notion of program execution safety (defined later, in Section 5.6.3) also
needs logical mechanisms that allow the postconditions of finalised models to be
used inside the program logic. These mechanisms are essential for establishing
soundness of the HT-PROC-FINISH Hoare proof rule. We now discusses these mech-
anisms, consisting of the following two components:

1. A notion of process execution safety, from which a semantical notion of cor-
rectness of process Hoare triples and of process environments can be defined.

2. Machinery for expressing and maintaining an invariant, stating that all ac-
tive program abstractions preserve their execution safety (that they estab-
lished from the previous point, when they were initialised) throughout pro-
gram execution, with respect to (reification of) the current program state.

To better discuss the use of such an invariant, let us first define process execution
safety, and the semantic meaning of process Hoare triples.

5.6.2.1 Semantics of Process Hoare Triples

Process execution safety is defined as follows.

Definition 5.6.2 (Process execution safety). Execution safety of a process P with
respect to a process store and a (post)condition, is defined in terms of a predicate
v (y+,+) : Proc = ProcStore — ProcCond — Prop. This predicate is coinductively
defined such that, if v’ (P,o,b) holds, then:

1. If P |, then [b]o, and
2. For any a, P’ and o', if P,o = P',o’, then v (P',o’,b).

Thus, any process configuration (P, o) executes safely with respect to a postcondi-
tion b if, for any successfully terminating process configuration (P’,¢’) with P’ |
that can be reached from (P, o), it holds that satisfies [b]o’. It follows that the v/
predicate is closed under bisimilarity.

Lemma 5.6.3. If v(P,0,b) and P = Q, then v (Q,0,b).

This notion of process execution safety is used to define partial correctness of
process Hoare triples and of process environments, in the following way.

Definition 5.6.3 (Semantics of process Hoare triples). The semantics of process
Hoare triples {b1} p{ba2} is expressed as a modelling relation |=proc {b1} p{b2}, that
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1s defined as follows:

Foroc {01} P{b2} £ Fproc {b1} body(p) {b2}, where
Eproc {01} P {b2} £ Yo € ProcStore. [bi]lo = v (P,0,bs)

Here we overload the notation |=proc {b1}-{b2} for both processes and process
labels. Observe that the above definition indeed states partial correctness. For
example, we have that =proc {01} 0 {b2} for any by and bs.

Definition 5.6.4 (Semantics of process environments). The semantics of process
environments I' is expressed as a satisfaction relation Feny T', which is defined by
structural induction on T', in the following way:

':env r ':proc {bl}p{b2}
‘:env F7 {bl}p{bQ}

):env (Z)

A process Hoare triple {b1}p{b2} is defined to be semantically valid if F=proc
{b1} p{b2}. Likewise, a process environment I is defined to be semantically valid
if all process Hoare triples in I" are semantically valid, i.e., Fenv I

5.6.2.2 Preservation of Process Execution Safety

The invariant mentioned in the preamble will express that all active program
abstractions retain their execution safety throughout program execution, with re-
spect to v'. Since active program abstractions are administered in process maps,
we lift the notion of program execution safety to process map safety, expressed as
judgments of the form I'; A |=pm pm. Intuitively, a process map pm is safe if all
process-algebraic abstractions stored in pm execute safely with respect to v/, to-
gether with their postconditions in I'. The heap h represents the current program
state, and is reified into process-algebraic state using | - |(h).

Definition 5.6.5 (Process map safety).
L;h Epm pm 2 Yo € Val . T;h Eme pm(v)
where I's h |=me me is defined by case distinction on mc, so that
[;h Eme free 2 true
Dih Eme (0, PAY 2 Bor,by . (b1} p b2} € T A v (P, IAI(R), )
I;h Emeinv £ false

Free process cells are always safe, whereas corrupted entries inv are never safe.
Moreover, the judgments =pm and |=mc are both closed under bisimilarity.
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Lemma 5.6.4.

1. If T; h =pm pm and pm =pm pm/, then T'; h f=pm pm/.
2. If T;h Eme me and me Zpme mc’, then Ty h Eme mc’.

In a moment (in Section 5.6.3) we will also define a notion of execution safety for
commands. This notion of program execution safety maintains the aforementioned
invariant that I'; h |=pm pm always holds throughout program execution, where
h and pm are constructed from the current state, at every execution step. This
invariant is needed to establish soundness of the HT-PROC-FINISH proof rule, as it
requires the concerned process to be able to successfully terminate, and thus by
Definition 5.6.2 must satisfy the postcondition of the abstraction.

However, one has to be careful on how to exactly state this invariant, to allow it
to be re-established after every computation step. In most cases re-establishing
the invariant is straightforward. For example, I'; h |=pm pm can be re-established
after initialising a new program abstraction using the HT-PROC-INIT proof rule,
by Definition 5.6.3 and by the structure of that proof rule. The invariant can also
trivially be re-established after finalising an abstraction using HT-PROC-FINISH, as
the abstraction is then no longer active and thereby removed from pm. However,
computation steps that involve heap writing (i.e., handling of [E] := E’ programs)
may be problematic, as illustrated by the following example.

Technicality 5.6.1 (Potential problems due to heap writing). To see the potential
problem, consider the following code snippet.

1 requires z > 0; 4 {Proc,(X,p,reset- P, {x — E})*---}

2 ensures = = 0; action X.reset do {

3 action reset; [E] := —2; // the problem is here
[E] = 0;

/
{Proc.(X,p, P,{x — E})*---}

© w0 N O w«

Suppose that T';h f=pm pm holds on line 5. After computing line 6, the heap
h holds the value —2 at location [E]s. Moreover, the process map pm has not
been changed, because the action program (lines 5-8) has not fully been executed
yet. Nevertheless, T'; h[[E]s — —2] Epm pm may now be violated, as the reset
action can mno longer be performed, since x = —2 after reification, while reset’s
precondition requires x to be positive.

The root of the problem is that the invariant should not necessarily have to hold
during intermediate steps while executing action programs, but only at the pre-
and poststate of the action program. Program execution safety will solve this
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by making a snapshot of the heap every time an action program is being started
on (likewise to ghost-ACT-INIT), and expressing the invariant over these snapshot
heaps. Snapshots are recorded at the level of permission heaps, which already
have the required structure to do this: action heap cells (v, v2)7, allow to store
snapshot values vy alongside “concrete” values vy. These snapshot values are used
to construct snapshot heaps, with help of the following operation.

Definition 5.6.6 (Snapshot heap). The snapshot of a permission heap is defined
in terms of a total function | - |snapshot : PermHeap — Heap, so that

Lphanapshot £ € Val. Lph(v)anapshot
where | he]snapshot @5 defined by case distinction on he, so that

L<v>grocJ snapshot é v

|_<'U17’U2>:ctjsnapshot = V2
A

>

| hc|snapshot = undefined, in all other cases

The snapshot | ph]snapshot Of & permission heap ph only contains heap cells bound
by process-algebraic models, and is constructed by taking the snapshot values of
all ph’s action heap cells. As we shall see in Section 5.6.3, the final invariant
maintained by program execution safety will be I'; | ph | snapshot Fpm P, where ph
and pm are taken from the models of the program logic and represent the current
state of the program. This invariant, combined with establishing a refinement
between the program and its abstract models, provide sufficient means for proving
soundness of the program logic.

5.6.3 Adequacy

This section defines program execution safety and uses it to define the semantic
meaning of program judgments, from which the soundness theorem (i.e., adequacy
of the logic) can be formulated. Program execution safety extends on the well-
known notion of configuration safety of [Vafl1], by adding permission accounting,
process-algebraic state, and the machinery introduced earlier, in §5.6.1 and §5.6.2.

First, in order to help connect the models of the program logic to concrete program
state, we define a concretisation function for permission heaps.

Definition 5.6.7 (Concretisation). Concretisation of permission heaps is defined
as a total function | - |coner : PermHeap — Heap, so that

LphJconcr £ Av e Val. Lph(v)Jconcr
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where | he|coner 18 defined by case distinction on he, so that

| (V) etd | coner =K
L<v>groc concr = U

]
|_<'U1> 'U2>;rctJ concr U1
]

> >

(1>

| he]coner = undefined, in all other cases

The heap concretisation operator constructs concrete program heaps out of permis-
sion heaps, by simply discarding all internal structure regarding process-algebraic
models. Only the information relevant for regular program execution is retained.
| - Jsnapshot €ssentially does the same, but only retains heap cells bound to program
abstractions and prefers to take snapshot values whenever possible.

We now have all the required ingredients for defining adequacy. Program execution
safety is defined in terms of a predicate safe:(C, ph, pm, s, g, R, Q), stating that the
program C'is safe for n computation steps with respect to a permission heap ph,
a process map pm, two stores s and g, a resource invariant R, and a postcondition

Q.

Definition 5.6.8 (Program execution safety). The safe%(C, ph,pm,s,g9,R, Q)
predicate always holds, whereas safeI’fH(C, ph,pm, s, g, R, Q) holds if and only if
the following five conditions hold.

1. If C = skip, then ph,pm,s,g | Q.

2. For every phyp and pmp such that ph Lnc phy and pm Lyne pmp, it holds
that (Cv |_ph Wph phFJconcn pm Wom pmp, 879) 4 éghost-

3. For any v € acc(C, s) it holds that ph(v) & {free,inv}.

. For any v € writes(C, s) it holds that fullnc ph(v).

5. For any ph;, php, pmy, pmp, pme, B, s', and C' such that, if:

N

5a. ph Lon ph; and (ph Won ph ;) Lon phy, and

5b. pm Lpm pmy and (pm Wem pm ;) Lom pmp, and

5c. —locked(C) implies phy,pm;,s,9 =R, and

5d. (pm Wom pm; Wom pMp) Zpm pPMme, and

Se. T [ph Wph phy Woh php |snapshot Fpm PMc, and

5f. C, | ph Won ph; Wph Php | coners s ~» C' R, 8;

then there exists ph’, ph';, pm’, pm/;, pml., and g, such that

5g. ph' Lon ph'; and (ph' Won ph';) Lon phy, and
Sh. pm' Lom pm/; and (pm/ Wom pm’y) Lom pmyp, and
5i. | ph’ Woh ph'; Woh Php | coner = B/, and
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5j. (pm’ Wom pm’; Wom pmp) Zpm pme, and

5k. T; | ph/ Wph ph'; Wph PR |snapshot Fpm P, and

51. —locked(C") implies ph';,pm/;, ', g’ E R, and
5m. (C, | ph Weh ph; Wph DR E]coners P, S, §) ~ghost (C', 1, pmg, s',g'), and
5n. safel(C',ph/,pm’ s, ¢, R, Q).

To clarify, any configuration is safe for n+ 1 steps if: the postcondition is satisfied
if the program C' has terminated (1); the program C' does not fault (2); C only
accesses heap entries that are allocated (8); C only writes to heap locations for
which full permission is available (4); and finally, after making a computation
step the program remains safe for another n steps (§). Condition 2 implies race
freedom, while conditions & and 4 account for memory safety.

Condition 5 is particularly involved. In particular, it encodes the backward sim-
ulation: if the program can do a ~ step (5f), then it must be able to make a
matching ~gnost ghost step (&m). Moreover, the resource invariant R must re-
main satisfied (due to 5¢ and 51) after making a computation step, whenever the
program is not locked. In addition, the process maps invariably remain safe with
respect to I' and the snapshot heap due to §e and 5k, as discussed in the previous
section. All the other (sub-)conditions are for the most part standard.

Let 9 = (ph,pm,s,g) € World be a world. We sometimes use the shorthand
notation safeft(C, 9, R, P) to abbreviate safel:(C, ph, pm, s, g, R, Q).

Lemma 5.6.5. Program execution safety satisfies the following properties:

1. If safel:(C, M, R, Q) and m < n, then safel’ (C, M, R, Q).
2. If safel(C, M1, R, Q) and My =\ My, then safel(C, M2, R, Q).
3. If safer.(C,9M, R, Q) and Q = Q', then safel(C,M, R, Q).

Property 1 in the above lemma states monotonicity of program execution safety:
if a program C' is safe for n computation steps, then C is also safe for less than n
computation steps. Property 2 shows that program execution safety is closed under
bisimilarity: process maps can always be replaced by bisimilar ones. Property 3
states that postconditions may always be weakened.

Semantics of program judgments. The semantics of program judgments is
defined in terms of a quintuple I'; R |= {P} C {Q}, expressing that C is safe for
any number of execution steps, starting from any state (world) satisfying P.

Definition 5.6.9 (Semantics of program judgments). I'; R = {P} C {Q} holds if
and only if the following two conditions hold:
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(1) C : user, and
(2) If Eenv T and C' : wf, then:

VO . validy 9 = M =P = Vn.safel(C,M, R, Q).

The underlying idea of the above definition, i.e., having a continuation-passing
style definition for program judgments, has first been applied in [ABO7] and
has further been generalised in [Hob08| and [HANO8]. Moreover, the idea of
defining (program) execution safety in terms of an inductive predicate originates
from [AMRVO7]. These two concepts have been reconciled in [Vafll] into a for-
malisation for the classical CSL of Brookes [Bro07], that has been encoded and
mechanically been proven in both Isabelle and Coq. Our definition builds on the
latter, by having a refinement between programs and abstractions encoded in safe.

Observe that only judgments of user programs (i.e., commands free of runtime
constructs like inatom and inact) have a semantic meaning. Also observe that the
semantics of program judgments is conditional on the safety of I': it states that, if
I is safe, only then the program C' executes safely for any number n of computation
steps, with respect to any valid world 9t that satisfies C’s precondition P.

From the above definition, it trivially follows that I'; R |= {false} C {P}, for any
I', R, P and user program C. Notice however, that it does not follow that always
IR = {P} C {true}, since C' might be able to fault in the general case.

Soundness. The following main soundness theorem states that verified programs
(i.e., program for which a proof can be derived according to the proof rules given
earlier) are semantically valid (i.e., are fault-free, memory-safe, and refine their
process-algebraic models).

Theorem 5.6.6 (Soundness).
I'RE{PIC{Q} = IsRE{P}C{Q}

The soundness proofs of all proof rules have been mechanised using the Coq proof
assistant and can be found on the Git repository accompanying this thesis.

The HT-PROC-UPDATE proof rule was the most difficult to prove sound, as it in-
cludes, among other things, (1) showing that the abstract model can always match
the program with a simulating execution step, as well as (2) handling the invari-
ant that was discussed in §5.6.2. On top of that, the combination of (1) and (2)
requires some extra bookkeeping to ensure that the snapshot heaps stored in ghost
metadata (discussed in §5.6.1) agree with the snapshot values stored in permis-
sion heaps. This additional bookkeeping has been left out of the formalisation
presented so far, but the details of this can be studied in the Coq formalisation.
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5.7 Implementation

The presented verification approach has been implemented in the VerCors verifier,
which specialises in automated verification of parallel and concurrent programs
written in high-level languages like (subsets of) Java and C [BDHO17]. VerCors
can reason about programs using both heterogeneous concurrency (as in Java) and
homogeneous concurrency (e.g., OpenCL), as well as compiler directives (as in
OpenMP). VerCors allows (concurrent) programs to be specified with permission-
based separation logic annotations. VerCors supports reasoning about data-race
freedom, memory safety and functional program behaviour.

5.7.1 Tool Support

Tool support for our technique has been implemented in VerCors for languages
with fork/join concurrency and statically-scoped parallel constructs [OBGT17].
Our technique has been implemented by defining an axiomatic domain for process
types in Viper, consisting of constructors for the process-algebraic connectives and
standard process-algebraic axioms to support these. The three different ownership
types <, are encoded in Viper by defining extra fields that maintain the ownership
status ¢ for each global reference. The Proc, assertions are encoded as predicates
over process types.

VerCors is able to reason about process-algebraic abstractions, by first linearising
process terms and then encoding the linear processes and their contracts into Viper
input. A process term is linear if it does not use the || and || connectives. The lin-
earisation algorithm is based on a rewrite system that uses a subset of the standard
process-algebraic axioms as rewrite rules [Use02| to eliminate parallel connectives.
For example, a process term (a; -az) || as can be linearised to the bisimilar process
a1 -ag-az+ai-as-as+as-ai-as. Alternatively, process-algebraic abstractions
may also algorithmically be analysed; we are currently investigating the use of the
mCRL2 [GM14] toolset and the Ivy verifier [PMPT16].

Moreover, the VerCors implementation of the abstraction technique is much richer
than the simple language of Section 5.3 that is used to formalise the approach on.
Notably, the abstraction language in VerCors supports general recursion instead of
Kleene iteration, and allows process and action declarations to be parameterised
by data. VerCors also has support for several axiomatic data types that enrich
the expressivity of reasoning with program abstractions, like (multi)sets, bags,
sequences, and option types.
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5.7.2 Coq Formalisation

The formalisation and soundness proof (Sections 5.2-5.6) of the program logic have
been fully mechanised using Coq, as a deep embedding that is inspired by [Vafll].
The overall implementation comprises roughly 15.000 lines of code. The Coq
development and its documentation can be found online [Sup].

5.8 Related Work

Significant progress has been made on the theory of concurrent software verifica-
tion over the last years [FFS07, DYDG™10, SB14, SBP13, TDB13, NLWSD14,
Fen09, RPDYG14]. This line of research proposes advanced program logics that
all provide some notion of expressing and restricting thread interference of various
complexity, via protocols [JSST15]: formal descriptions of how shared-memory is
allowed to evolve over time. In our approach protocols have the form of process-
algebraic abstractions.

The original work on CSL [O’HO07| allows specifying simple thread interference
in shared-memory programs via resource invariants and critical regions. Later,
RGSep [VP07] merges CSL with rely-guarantee (RG) reasoning to enable describ-
ing more fine-grained inter-thread interference by identifying atomic concurrent
actions. Many modern program logics build on these principles and propose even
more advanced and elaborate ways of verifying shared-memory concurrency. For
example, TaDa [RPDYG14] and CaReSL [TDB13] express thread interference pro-
tocols through state-transition systems. iCAP [SB14| and Iris [KJB117] propose
a more unified approach by accepting user-defined monoids to express protocols
on shared state, together with invariants restricting these protocols. The Iris logic
therefore goes by the slogan “Monoids and invariants are all you need”|JSST15].
In our technique the invariants take the form of process- and action contracts.
Iris provides reasoning support for proving language properties in Coq, where our
focus is on proving programs correct.

In the distributed setting, Disel [SWT17] allows specifying protocols for distributed
systems. Disel builds dependent type theory and is implemented as a shallow em-
bedding in Coq. Even though this approach is more expressive than ours, it can
only semi-automatically be applied in the context of Coq. Villard et al. [VLCO09]
present a program logic for message passing concurrency, where threads may com-
municate over channels using native send/receive primitives. This program logic
allows protocols to be specified via contracts, which are state-machines in the
style of Session Types [HVKO98]|, to describe channel behaviour. Our technique
is more general, as the approach of Villard et al. is tailored specifically to basic
shared-memory message passing. Actor Services [SM16] is a program logic with
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assertions to express the consequences of asynchronous message transfers between
actors. However, the meta-theory of Actor Services has not been proven sound.

Most of the related work given so far is essentially theoretical and mainly focuses on
expressiveness rather than usability. Our approach is a balanced trade-off between
expressivity and usability. It allows specifying process-algebraic protocols over a
general class of concurrent systems, while also allowing the approach to be imple-
mented in automated verification toolsets for concurrency, like VerCors. Related
verification toolsets for concurrency are SmallfootRG [CPV07], VeriFast [JSP*11],
CIVL [SZL*15] and Viper [JKM'14, MSS16]; the latter tool is used as the main
back-end of VerCors. SmallfootRG is a memory-safety verifier based on RGSep.
VeriFast is a rich toolset for formal verification of (multi-threaded) Java and C pro-
grams using separation logic. Notably, Penninckx et al. [PJP15]| extend VeriFast
with Petri-net extensions to reason about the I/O behaviour of programs. This
Petri-net approach is similar to ours, however our technique supports reasoning
about abstract models and allows reasoning about more than just I/O behaviour.
The CIVL framework can reason about race-freedom and functional correctness of
MPI programs written in C [ZRL*15, LZS17|. The reasoning is done via bounded
model checking and symbolic execution.

Apart from the proposed technique, VerCors also allows process-algebraic abstrac-
tions to be used as histories [BHZS15, ZS15]. This is more or less dual to our
approach: instead of reducing abstract models, the history approach records all
actions a encountered in action X.a do C' programs during computation, and
thereby builds-up a history process. This process can be analysed to reason about
the history of changes in the corresponding concrete shared-memory locations in
the program. Our work subsumes this approach, as history recording is only suit-
able for terminating programs. Our approach performs the reasoning up-front
and allows specifying behavioural patterns of the functional behaviour of non-
terminating programs. A locking protocol is a classical example of this, consisting
of two states, “locked” and “unlocked”, and expressing that clients of the protocol
may only transition to “locked” while being in an “unlocked” state, and vice versa.
Also related in this respect are the time-stamped histories of Sergey et al. [SNB15b]
and the more general work on proving linearisability [HW90, Vafl0a, KSW17].
These approaches allow to reason about fine-grained concurrency by using sequen-
tial verification techniques. Our technique, as well as the history-based technique
use process-algebraic linearisation to do so.

Other type theoretical approaches to reason about concurrency and distribution
are Session Types [HVK98, HYC08, HMM*12|. These approaches typically use
process calculi (e.g., the m-calculus) to describe the type of the communication
protocol. Behavioural safety of programs is then checked through type check-
ing. Our technique integrates with separation logic and supports reasoning about
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communication behaviour, as shown by the case study.

5.9 Conclusion

To reason effectively about realistic concurrent and distributed software, we have
presented a verification technique in the current and previous chapter that:

1. Performs the reasoning at a suitable level of abstraction that hides irrelevant
implementation details;

2. Is scalable to realistic programs by being modular and compositional; and

3. Is practical by being supported by automated tools.

The approach is a trade-off between expressivity and usability: it is expressive
enough to allow reasoning about realistic software, as is demonstrated by the case
studies in Chapter 4 (Section 4.6), and at the same time usable enough to be im-
plemented as part of a deductive program verifier, viz. VerCors. In contrast, many
related program logics mainly aim for expressiveness, while their usage requires
substantial manual labour (either because the proof is hand-written, which is also
error-prone, or because all steps need to be done interactively within a theorem
prover) and therefore hardly scale to realistic programs.

For 1. we use process algebra with data, which offers a mathematically elegant
way of expressing program behaviour at a suitable abstraction level. Such process-
algebraic specifications can be seen as models, over which we can check safety
properties, for example via model checking against temporal logic formulas.

For 2. we use a concurrent separation logic that handles process-algebraic models
as resources that can be split and consumed. This allows verifying in a thread-
modular way that programs behave as specified by their abstract models, and
allows process-algebraic reasoning to be projected onto program behaviour.

For 3. the approach has been implemented in VerCors [OBG'17] and has been
illustrated on various case studies. The proof system underlying our technique has
mechanically been proven sound using Coq. Our technique is therefore supported
by a strong combination of theoretical justification (this chapter) and practical
usability (Chapter 4) for reasoning about realistic software.

In the upcoming chapter, we apply our abstraction approach on an industrial case
study: the formal verification of a safety-critical traffic tunnel control system.
More specifically, we model the state-machine specification of this tunnel control
system in mCRL2, and use VerCors with the presented technique to verify that
the implementation correctly follows its specification.



182 Chapter 5. Soundness of Shared-Memory Program Abstractions

5.9.1 Future Directions

We consider the presented technique as just the beginning of a comprehensive veri-
fication framework that aims to capture many different concurrent and distributed
programming paradigms, covering for example shared-memory concurrency (this
chapter) and message passing concurrency (Chapter 7).

We are currently investigating the use of mCRL2 and Ivy to reason algorithmically
about process-algebraic abstractions. It would also be interesting to investigate to
what extent this reasoning can be done compositionally, e.g., by using techniques
like [CK99, CGP03|. Moreover, the approach currently only preserves safety prop-
erties when connecting programs to their abstract models. We are planning to
investigate the preservation of liveness properties as well.



CHAPTER 6

Formal Verification of an
Industrial Safety-Critical
Traffic Tunnel Control System

Abstract

Over the last decades, significant progress has been made on formal techniques for soft-
ware verification. However, despite this progress, these techniques are not yet structurally
applied in industry. To reduce the well-known industry—academia gap, industrial case
studies are much-needed, to demonstrate that formal methods are now mature enough
to help increase the reliability of industrial software. Moreover, case studies also help
researchers to get better insight into industrial needs.

This chapter contributes such a case study, concerning the formal verification of an
industrial, safety-critical traffic tunnel control system that is currently employed in Dutch
traffic. We made a formal, process-algebraic model of the informal design of the tunnel
system, and analysed it using mCRL2. Additionally, we deductively verified that the
implementation adheres to its intended behaviour, by proving that the code refines our
mCRL2 model, using VerCors. By doing so, we detected undesired behaviour: an internal
deadlock due to an intricate, unlucky combination of timing and events. Even though the
developers were already aware of this, and deliberately provided us with an older version
of their code, we demonstrate that formal methods can indeed help to detect undesired
behaviours within reasonable time, that would otherwise be hard to find.

6.1 Introduction

Despite tremendous progress over the last decades on both the theory and practice
of formal techniques for software verification [HJ18], these techniques are not yet
structurally applied in industrial practice, not even in the case of safety-critical
software. Even though formal methods have shown to be able to increase software
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reliability [Cla08, Filll, GRBT 15|, their application is often time consuming and
may additionally require expert knowledge. Nevertheless, especially in the case
of safety-critical software where reliability demands are high, industry can benefit
greatly from the current state-of-the-art in formal verification research.

To make this apparent, industrial case studies are needed that show industry and
society that formal methods are now ready to help increase software dependability
in practice. In turn, such industrial case studies also help researchers and de-
velopers of verification tools to get insight into the needs of industry. By doing
so, researchers can improve and adapt their techniques to industrial needs, and
thereby reduce the well-known gap between academia and industry.

This chapter discusses such an industrial case study. It elaborates on our expe-
riences and results of the formal verification of a safety-critical component of a
control system for a traffic tunnel that is currently in use in the Netherlands. This
particular software component is responsible for handling emergencies. When a
fire breaks out inside the tunnel, or a traffic accident occurs, it should start an
emergency procedure that evacuates the tunnel, starts the fans to blow away any
smoke, turns on the emergency lights to guide people out, and so on. Naturally,
the Dutch government imposes very high reliability demands on the traffic tun-
nel control software, and in particular on this emergency component, which are
specified in a document of requirements that is over 500 pages in length [NTS].

The tunnel control software is developed by Technolution [Tec|, a Dutch software
and hardware development company located in Gouda. Technolution has hands-
on experience in developing safety-critical, industrial software!. The development
process of the traffic tunnel control system came together with a very elaborate
process of quality assurance/control, to satisfy the high demands on reliability.
Significant time and energy has been spent on software design and specification,
code inspection, peer reviewing, unit and integration testing, etc.

In particular, during the design phase, the intended behaviour of the tunnel control
software has been worked out in great detail: all system behaviours have been
specified in pseudo code beforehand. Moreover, these pseudo code descriptions
together have been structured further into a finite state machine, whose transitions
describe how the different software behaviours change the internal state of the
system. Nevertheless, both the pseudo code and this finite state machine have
been specified informally, and do not have a precise, checkable formal semantics.
Throughout the software development process, no formal methods or techniques
have been used to assist in the major effort of quality control.

In this case study, we investigate how formal methods can help Technolution to find
potential problems in their specification and (Java) implementation, with realistic

1To illustrate, Technolution also delivers commercial software written in Rust.
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effort, and preferably at an early stage of development. Technolution is above all
interested in establishing whether (1) the specification is itself consistent, by not
being able to reach problematic states, e.g., deadlocks in the finite state machine;
and (2) whether the Java code implementation is written correctly with respect
to the pseudo code specification of the intended behaviour.

To address both these properties, we use a combination of existing verification
techniques, to deal with their different nature. More specifically, for (1) we con-
struct a formal model of the pseudo code specification and the underlying finite
state machine. This model is specified as a process algebra with data, using the
mCRL2 modelling language. After that, we use the mCRL2 model checker to
verify whether the model adheres to certain requirements (e.g., deadlock freedom
and strong connectivity), which we formalise in the modal u-calculus.

For (2), we use VerCors [BDHO17] to deductively verify whether the control system
is correctly implemented with respect to the pseudo code specification, using the
techniques from Chapter 4 and Chapter 5 |[OBH16, OBG*17|. This is done by
proving that the implementation is a refinement of our mCRL2 model.

Our verification effort actually led to the detection of undesired behaviour: the
system can potentially reach an internal state in which the calamity procedure
is not invoked when an emergency has occurred, due to an intricate, unlucky
combination of timing and events. Even though Technolution was well-aware of
this—they deliberately provided us with an older version of their specification and
implementation—we demonstrate that formal methods can indeed help to find
such undesired behaviours at an early stage of development?. We also demonstrate
that formal techniques are able to provide results within reasonable time, that are
otherwise hard to find manually. To illustrate, this undesired behaviour was found
within approximately 7 working days.

6.1.1 Contributions

This chapter contributes a successful industrial verification case study that con-
cerns real-world, safety-critical code, and discusses our verification effort and re-
sults®. The contributions of the case study itself are:

e A formal process-algebraic model of the informal pseudo code description of
the tunnel control software, that is defined using mCRL2.

2Prior to our formalisation work, we were unaware of any details of this undesired behaviour,
but we were aware that there was a problem somewhere in the specification that Technolution
had already found.

3This chapter is based on the article [OH19b].



186 Chapter 6. Verifying a Traffic Tunnel Control System

e An analysis of this mCRL2 model, via state-space exploration, and by check-
ing desired p-calculus properties on the model, like deadlock-freedom.

e A machine-checked proof that the (Java) implementation adheres to the
pseudo code specification, by proving that the program refines our mCRL2
model. This refinement proof is done using the automated verifier VerCors.

Here we should note that the actual Java implementation of the tunnel control
system is confidential, as well as the documents from the design phase, and there-
with also the mCRL2 model and VerCors files that we produced. We therefore
sometimes slightly simplify their presentation for the purpose of this chapter, for
example by using different variable/method/transition names. Nevertheless, the
presentation of the case study does not deviate very much from the original, so
this chapter still gives an accurate overview of our approach and results.

6.1.2 Chapter Outline

The remainder of this chapter is organised as follows. Section 6.2 gives prelimi-
naries on the use of mCRL2. Preliminaries on the use of VerCors can be found in
Chapter 2. Then, Section 6.3 gives more detail on how the tunnel control system
is informally specified by Technolution, by discussing the structure of the pseudo
code and the finite state machine. Section 6.4 explains how we modelled this
informal specification in mCRL2, after which Section 6.5 discusses its analysis.
Section 6.6 explains how VerCors is used to deductively prove that the tunnel con-
trol system correctly implements our mCRL2 model (the preliminaries for this can
be found in Chapters 4 and 5). Section 6.7 relates our work to existing approaches
and industrial case studies, before Section 6.8 concludes.

6.2 Preliminaries on mCRL2

During the case study, we modelled the (informal) tunnel control software spec-
ification as a process algebra with support for data. This was done using the
specification language of mCRL2 [GM14]. mCRIL2 is a toolset that comes with
an ACP-style process-algebraic modelling language, and contains more than sixty
tools to support visualisation, simulation, minimisation, state-space generation
and model checking of these mCRL2 processes [BGK119]. The back-end for model
checking takes as input an mCRL2 model, together a temporal property specified
in the modal p-calculus, and determines whether the model satisfies this property.
By default this is done via exhaustive (symbolic) state space analysis.

We further illustrate how this modelling and analysis works by means of a small
example, that is presented in Figure 6.1. This example demonstrates how a simple
read—write (RW) lock can be specified and verified with mCRL2. A RW lock can
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1 sort AccessType = read | write;
2 S3
3 act lock, unlock : AccessType; Tock(write) ( \)unlock(write)
a
5 proc — 51
6 g1 & lock(read) . 82(1) + lock(read)ﬁ Sunlock(read)
lock(write) ~ASB; s2(1)
7 S2(TL : N>0) =
8 n < N — lock(read) - S2(n+1) + lock(read) g junlock(read)
9 1 < n — unlock(read) -82(n — 1) +
10 n =1 — unlock(read) - S1; 1ock(read)£ ’Bunlock(read)
11 S3 £ unlock(write) - S1;
12 S2(N)
13 init S1;
(a) The mCRL2 model of a RW lock. (b) The underlying state machine.

Figure 6.1: An mCRL2 specification of a RW lock, and the underlying state space.

be acquired multiple times for read-only purposes, for example to allow multiple
clients to read from a shared segment of memory, but can also provide exclusive
write access for a single client: a multiple-reader/single writer lock.

Figure 6.1b shows the corresponding state machine. Initially the RW lock is un-
locked (S1). From here the lock can be acquired once for the purpose of writ-
ing (83), via a lock(write) action, and can subsequently be released again via
unlock(write). Similarly, from S1, the lock can be acquired/released multiple
times for reading purposes. The state S2(n) represents a read lock that has been
acquired n times, where n is bounded to some constant threshold V.

Figure 6.1a presents the mCRL2 encoding of this locking protocol. The specifi-
cation language of mCRL2 has various built-in data types (like positive numbers;
see line 7), but also allows defining custom abstract data types, as sort’s. Line 1
defines a sort that enumerates the different kinds of accesses that can be granted
by the RW lock: read-only (read) access, and read/write (write) access.

Line 3 defines the actions for the locking protocol, which represent the basic,
observable behaviours of the system. In this example, there are only two observable
events, namely locking and unlocking. In mCRIL2, actions can be parameterised
by data. In this case, both actions are parameterised by AccessType.

These two actions can be composed into processes (lines 5-11). This example
defines three processes, corresponding to the three locking states: S1 (unlocked),
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S2 (locked for reading purposes), and S3 (locked for read/write purposes).

Processes are of the following form, where e is an expression:

PQ :=c|dla@)|7|P-Q|P+Q|b— P| X(e) (processes)

Of course, the mCRL2 modelling language is actually much richer than the above
language [GM14], e.g., by supporting parallelism and communication. Yet this is
the fraction of the mCRL2 language that we will use throughout the chapter.

Clarifying the constructs: ¢ is the empty process, without behaviour, whereas §
is the deadlocked process, which neither progresses nor terminates. The process
a(€) is an action invocation, with € a sequence of arguments, while 7 is a special,
reserved action that models internal, unobservable system events. P - @ is the
sequential composition of P and (), whereas P + @ is their non-deterministic
choice, The process b — P is the conditional process, that behaves as P only if
b is a Boolean expression that evaluates to true, and otherwise it behaves as 9.
Finally, X (€) is the invocation of a process named X, with input arguments e.

Moving back to the example, the S1 process can either perform a lock(read) action,
followed by the process invocation 82(1), or can do a lock(write), after which S3
is invoked (see line 6). Here the - connective has the highest precedence, followed
by —, and then +. Process S3 (line 11) is only able to release the write lock and
therewith to continue as S1. Finally, S2(n) allows (re)acquiring/releasing read
locks, given that n is small/large enough, respectively, on lines 8-10.

For the actual case study, we modelled the tunnel control system in a similar way:
by studying the state machine specification, and encoding it into mCRL2.

Modal p-calculus. After having constructed a model, mCRL2 allows analysing
it, by checking whether it satisfies a given temporal specification. These spec-
ifications are written in the modal p-calculus, a powerful formalism that allows
specifying properties about sequences of actions, i.e., traces of the input model.

Properties in the modal p-calculus are defined by the following language.

a,B = true | a(e) | ma|a-Bla+p]a” (action formulae)

G n=b || oAY | ()b ]| [a]p | px.d | va.g (state formulae)

The actual specification language of mCRL2 is again much richer; we refer to [GM14]
for a complete overview and a more detailed description.

Properties in the modal p-calculus are defined in terms of action and state formu-
lae. Action formulae « describe sequences of actions a(€), where true stands for
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any action. Such descriptions are negatable: —« expresses any sequence except for
. Action formulae can also sequentially be composed, «ay - «a, or alternatively
be composed, a1 + ag, and o is the repetition (Kleene iteration) of .

State formulae ¢, ¢ express properties that should hold in the current state. These
properties may for example be built from pure Boolean expressions b, but may also
contain modalities, (a)¢ and [a]@, to express that ¢ must hold after a certain se-
quence of actions « has been observed. More specifically, («)¢ is the may modality,
which expresses that, from the current state, the model is able to perform a se-
quence of actions complying with «, after which ¢ directly holds. Its dual is
the must modality, [a]¢, which expresses that, from the current state, after the
performance of any action sequence «, the property ¢ directly holds.

State formulae may also contain fizpoint operators, p and v, to specify infinite
system behaviour. Here pz.¢ is the least fixpoint of ¢, i.e., the smallest reachable
set of states satisfying ¢, where x is the fixpoint variable. These are used to express
liveness properties. Its dual is the greatest fizpoint, vx.¢, used to express safety
properties, representing the largest reachable set of states satisfying ¢.

Below three example properties are given that hold for our RW lock model:

[unlock(read)]false (6.1)
va.( (true* - Lock(write))true A [true*|z) .
ve.([(—unlock(write))” - Lock(read)|false A [true™ - Lock(write)]x ) (6.3)

Property (6.1) states that read locks cannot be released from the initial state, as
initially no locks have been acquired. Furthermore, (6.2) expresses that it always
remains possible to acquire the write lock. Finally, (6.3) states that, when holding
the write lock, no read lock can be obtained until the write lock is released.

For our case study we specified and verified properties similar to these three.

6.3 Informal Tunnel Software Specification

Before detailing how mCRL2 and VerCors are applied on the actual case study,
let us first discuss the informal specification of the traffic tunnel control system.

Technolution invested significantly in an extensive design phase, to ensure the
quality of the control system and to cope with the high reliability demands. Dur-
ing this phase, the intended behaviour of the control software was written-out
in pseudo code, together with domain experts. These pseudo code specifications
were further structured into a finite state machine (FSM). The states of this FSM
are the operational states of the tunnel system (e.g., operating normally, under
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T

Figure 6.2: A simplified visual representation of the FSM. The two transitions
that are later written-out as pseudo code in Figure 6.3 are labelled A and B.

repair, evacuating, etc.), while the transitions are the pseudo code descriptions of
the system behaviour. The FSM thus illustrates how the different behaviours of
the tunnel system should change its operational state.

Moreover, during the development phase, significant time and effort were invested
in ensuring that the code was correctly implemented with respect to this specifi-
cation. This was done primarily via unit testing and code reviewing.

This section gives more detail on how the tunnel control software was (informally)
specified. §6.3.1 discusses the structure of the FSM, after which §6.3.2 elaborates
on the pseudo code specification, i.e., the transitions of the FSM.

6.3.1 Structure of the FSM

Figure 6.2 illustrates how the FSM specification of the tunnel control system is
structured. This illustration is simplified for confidentiality reasons: the actual
FSM contains many more states and transitions. Nevertheless, the overall struc-
ture and the described behaviour are close to the original FSM specification.

The operational states are organised in a 2-layer hierarchy. For example, the com-
posite state Operational contains two sub-states: Normal and StandBy. Transitions
come in two flavours. Solid transitions (=) represent manual interactions, made
by human operators through control panels. Dashed transitions (-$) are automatic
events that are taken autonomously by the control system itself, for example to
react to time-outs or sensor output. Any transition whose source is a compos-
ite state can also be taken by any of the underlying substates. Moreover, the
composite PossibleCalamity state (displayed in grey) is a ghost state. Ghost states
are special, in the sense that the system can be in a ghost state while also being
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in a non-ghost state (e.g., to specify that a GUI dialog is being displayed). For
example, the tunnel system can be in Alert and Normal simultaneously.

The functional meaning of the specification is roughly as follows. Being in Normal
means that the system is in the normal operating state. From Normal the system
may autonomously go in StandBy state, as result of, e.g., smoke or heat in the traffic
tunnel that is detected via sensor reading. If the system finds enough reason to
suspect a real calamity, it may autonomously decide to go from Operational to the
Alert state. The Alert state can also manually be entered, when a human operator
presses the emergency button on a control panel. The PossibleCalamity composite
ghost state starts a timer upon entering. While in this state, if a human operator
does not intervene in time by manually cancelling the alert status (thereby going
back to the Operational state), the system will automatically launch the Calamity
programme, for example to evacuate the traffic tunnel. Such calamities can be
recovered from via Maintenance: manually repairing or resolving the calamity’s
cause. By doing so, the system can manually be brought back to the Normal
operating state. However, it may also re-enter Alert in case new potential calamities
are detected during maintenance.

6.3.2 Pseudo Code Specification

Figure 6.3 gives an idea of the structure of the pseudo code specification of the
tunnel system. These pseudo code descriptions were provided by the Dutch Min-
istry of Infrastructure and Water Management, as part of a national standard on
traffic tunnels [NTS]. The figure highlights two transitions of Figure 6.2, labelled
as A and B, that describe interesting, important key system behaviours. Transi-
tion A specifies how the control system should autonomously request a calamity
status when it suspects the traffic tunnel to be in an emergency situation. This
will cause the system to go into the Alert ghost state, and therewith start the
timer. Transition B specifies what should happen when this timer expires.

Elaborating on the textual format, all autonomous/manual system behaviours
are specified in pseudo code style. Any such system behaviour corresponds to a
transition in the FSM (denoted by transition) and is given a unique identifier
(name). The internal state of the system is determined by the values of a set of
pseudo-variables, which are prefixed with a # in the figure. The effect clauses
exactly describe how the transition changes the internal state. The condition
clauses specify under which conditions these state changes are allowed.

Transition A is able to request the calamity procedure to be initiated, by setting #
request_calamity to true, given that #possible_calamity_detected has been
set to true by some other system behaviour, e.g., as result of sensor reading. Such
a request will also configure a timer, named #calamity_timeout, for cancelling



192 Chapter 6. Verifying a Traffic Tunnel Control System

1 transition: A (autonomous)

> name: ‘ProceedToAlertStatus ¢

3 condition:

4 #possible_calamity_detected = true &&
5 #request_calamity = false &&

6 #state = Operational;

7 effect:

8 #request_calamity := true;

° #calamity_timeout := now() +

__calamity_timeout_frame;
10
u transition: B (autonomous)
12 name: ‘StartCalamityProgrammeAfterTimeout °
13 condition:

14 #state !'= Calamity &&

15 #request_calamity = true &&
16 now () > #calamity_timeout;
17 effect:

18 #request_calamity := false;
19 #state := Calamity::Full;

20 invoke CalamityProgramme () ;

Figure 6.3: The format of the textual specification of the tunnel system.

the request. Transition B specifies what should happen when this timer expires:
in that case the system should enter the operational state Calamity (if not already
in there) and start the CalamityProgramme ().

The control software of every Dutch traffic tunnel is required to comply with these
specifications. This is checked by an external code review committee.

6.4 Modelling the Control System using mCRL2

Even though the tunnel control software has been specified extensively, prior to
our work there had been no formal, structural effort to establish whether the spec-
ification itself obeys the desired properties. For Technolution, the main properties
of interest concern reliability and recoverability: does the system always go into the
Calamity state in real emergency situations? And is it always possible to recover
from calamities, and thereby go back to the Normal operational state?
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proc

State = struct Normal | StandBy | Alert | Full | ---;
Var £ struct possibleCalamityDetected | requestCalamity | - - -;
Val = struct true | false | unknown | ---;
act enter : State;
%, Encoding of transition A (autonomous)

ProceedToAlertStatus (state : State, o : Var — Val, phase : Nat) =

o(possibleCalamityDetected) N\ —o(requestCalamity) N
isInOperational (state) —
enter (Alert) - System(state, o[requestCalamity := true], phase);

%, Encoding of transition B (autonomous)

StartCalamityProgrammeAfterTimeout (state, o, phase) =

—isInCalamity (state) A o(requestCalamity) —
enter (Full) - System(Full, o[requestCalamity := false], phase);

% Encoding of the top-level specification
System(state : State, o : Var — Val, phase : Nat)

4L

%, First phase: handling GUI input
(phase =1) —
(CancelPossibleCalamity (state, o, phase) +
+ 7 - System(state, o, 2)) +
#, Second phase: handling internal/external controls and function calls
(phase = 2) — ([OMMLRN + 7 - System(state, o, 3)) +
% Third phase: processing autonomous system behaviour
(phase = 3) —
(ProceedToAlertStatus (state, o, phase) +
StartCalamityProgrammeAfterTimeout (state, o, phase) +
+ 7 - System(state, o, 4)) +
% Fourth phase: processing sensor data and update all variables
(phase = 4) — (7 - System(state, updateVars (o), 1));

36 init System(Maintenance, o, 1);

Figure 6.4: The main structure of the mCRL2 formalisation of the specification.
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To automatically check for such desired properties, we modelled the pseudo code
specifications and the underlying FSM as a process algebra, using mCRL2. Fig-
ure 6.4 shows the main structure of our mCRL2 model. This is again a simplified
representation; the actual model consists of roughly 700 lines of code.

mCRL2 allows new data types to be defined using the sort keyword. We use data
sorts to explicitly model the different operational states that the tunnel system
might be in, as the structured sort State, defined on line 2. Also explicitly modelled
are the various “pseudo-variables” that are used in the textual specification (defined
on line 3), together with a domain of values for these variables (on line 4). These
three data types are used to model the internal state of the tunnel control system.

Line 6 covers the definition of actions, which model the basic, observable units of
computation. One of the main challenges was to determine which observable be-
haviours of the tunnel system to model explicitly. We experienced that modelling
too many behaviours leads to search space explosions, while modelling too few
hampers analysis. As the main properties of interest are properties of operational
state reachability, the most important observable events to model are the tran-
sitions between the operational states. These are modelled as enter(s) actions,
where s € State is the operational state that is being entered.

The traffic tunnel control system is modelled as the System(state, o, phase) process
(lines 21-34), whose arguments determine the internal state of the tunnel. In
particular, state determines its operational state, whereas o provides a valuation
for all pseudo-variables. The third argument, phase, is maintained for technical
reasons. This is because the overall system is specified and implemented as a (busy)
working loop, that continuously cycles through four different phases, to (1) handle
GUI input, (2) process internal requests, (3) autonomously make decisions, and
(4) read from sensors and update all variables accordingly. These phases have been
made explicit in our model, using phase. Every phase has the non-deterministic
choice to advance to the next phase, as an internal 7 action.

The earlier highlighted transitions A and B both describe autonomous behaviour,
and thus are both handled in phase 3 (lines 30-31). Their behaviours are modelled
on lines 9-18, and closely follow the pseudo code specification.

Finally, line 36 specifies the initial state of the control system. The system ini-
tialises in Maintenance state, and starts by handling phase 1 events. The mapping
Oingt 18 a constant that holds the initial valuation of pseudo-variables.

6.5 Analysing the Control System with mCRL2

Now that we have a formal model of the tunnel system specification in mCRL2,
we can study its state space, and determine whether it satisfies desired properties,
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formulated in the modal p-calculus, with relatively little effort. Technolution was
primarily interested in verifying these properties: (i) Deadlock freedom and strong
connectivity: are all operational states reachable at any point during execution?
(ii) Reliability: does the system automatically go to Full after an emergency has
been detected, unless this is manually cancelled? (iii) Recoverability: can calami-
ties always be recovered from, by getting the system back to Normal?

A major challenge during analysis was to keep the model’s state space small enough
to be able to analyse it in a reasonable time. In particular, we needed to improve
our mCRL2 model various times, as earlier versions suffered from state space
explosions resulting from the explicit modelling of time. Recall that the informal
specification includes software behaviours that depend on time, for example the
timers that are maintained by the PossibleCalamity ghost state. In earlier versions
of our model, these timers were modelled explicitly, as discrete values: natural
numbers that were bounded by some threshold. However, their analysis was only
feasible with thresholds no larger than three time units, which is insufficient. We
later solved this scalability issue by modelling time implicitly, by constructing
the model in such a way that certain actions must happen before others. More
specifically, instead of having certain actions depend on timers or timeouts to
happen before others, we let them happen non-deterministically, but in such a
way that the original order of action occurrences is preserved.

Our latest model has an underlying state space of roughly 4.200 states and 25.400
transitions, which takes about 4 minutes to generate*. This clearly shows that
the tunnel system specification comprises far too many behaviours for software
designers/developers to comprehend, without the help of automated tooling. In
fact, mCRL2 helped us further, by allowing to minimise this state space modulo
branching bisimilarity [GW16], leaving only 27 states and 98 transitions. This
reduction gave us better insight into the system’s behaviour.

Together with Technolution we formulated several dozens of desired properties as
p-calculus formulae, and checked these on the reduced mCRL2 model. An example
of such a formula is given below, expressing that the StandBy state can only ever
be reached via the Normal state of operation.

va.( [(—enter (Normal))* - enter (StandBy)]false A (6.4a)
[true* - enter (StandBy)]z ) (6.4b)

More precisely, this greatest fixed-point formula expresses that StandBy cannot
be reached via any path of non-“enter (Normal)’ actions (by 6.4a), and that this
reachability property remains preserved each time StandBy is entered (6.4b).

40n a Macbook with an Intel Core i5 CPU with 2.9 GHz, and 8Gb internal memory.
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In addition to checking these properties, we also inspected the state space of the
minimised model and discussed its structure with Technolution. Ultimately, our
verification exposed an intricate violation of the requirement of reliability. We
found that the control system can reach a potentially dangerous situation, in
which the Calamity state cannot automatically be entered after having detected
a potential emergency (unless a human operator manually interferes), due to an
intricate, unlucky combination of timing and events. The following reliability
property exposes this behaviour, by stating that, while being in the Alert ghost
state, it must always be possible to directly enter Full, unless the alert status is
manually cancelled. This property does not hold for our mCRL2 model.

[true” - enter (Alert) ] va. (6.5a)
[-(cancel + enter (Full) )*](enter (Full) )true A (6.5b)
[true* - enter (Alert)]z ) (6.5¢)

Note that this is precisely the violating behaviour that Technolution hoped we
would find. This is because they already found it, by chance, and deliberately
provided us with an older version of their specification and implementation. Our
case study therefore shows that formal techniques can indeed help to find such
problematic behaviours in a more reliable and structural manner, and at an early
stage of development, within reasonable time: we found it within 7 working days.

6.6 Specification Refinement using VerCors

As a next step, we use VerCors to deductively verify that the code implementation
adheres to the FSM and pseudo code specification. This is done by proving that
the code correctly implements (refines) our mCRL2 model, using the approach of
Chapters 4 and 5. Such a proof also adds value to the model, as it establishes that
the model is a sound abstraction of the program’s behaviour.

As explained in Chapters 4 and 5, the process algebra language that VerCors uses
is an extension of mCRL2, in which all process and action definitions are enriched
with pre/postcondition-style contracts. These contracts are used to connect/link
processes and actions to program code: they logically describe how the perfor-
mance of an action corresponds to an update to shared memory, very much like
the effect and condition clauses used in the pseudo code specification. With
these contracts we can mechanically prove with VerCors that every execution of
the program corresponds to an action trace (a run) in the mCRL2 model. These
links between programs and models preserve safety properties (i.e., vx.®).

For this project, we manually encoded our mCRL2 model into the process algebra
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shared bool possibleCalamityDetected, requestCalamity;
shared State state;

modifies state;
effect state = s;
action enter(State s);

The encoding of transition A, as a single action
accesses possible CalamityDetected, state;
modifies requestCalamity;
guard possible CalamityDetected N —requestCalamity;
guard isInOperational (state);
effect requestCalamity;
action ProceedToAlertStatus;
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accesses state;

modifies requestCalamity;

guard —isInCalamity (state) A requestCalamity;
effect —requestCalamity;

action flipCalamityRequest;

NONN e
N oH O © ® N

The encoding of transition B, as a sequential composition of two actions
process StartCalamityProgrammeAfterTimeout =
flipCalamityRequest - enter (Full);

N N
=W

Figure 6.5: The VerCors encoding of transitions A and B, as processes with con-
tracts.

language of VerCors®. Figure 6.5 shows an excerpt of this encoding, in which

transitions A and B are again highlighted. The VerCors encoding consists of a
large number of action declarations, corresponding to the FSM transitions, with
contracts that closely follow the pseudo code specifications. Moreover, this version
does not use a valuation o for the pseudo variables, like in §6.4, but rather connects
to the actual shared fields in the program code (e.g., lines 1-2). The variables state
and phase have been translated likewise. Our VerCors encoding is intended, but
not (yet) proven, to be equivalent to the mCRL2 version.

Line 6 defines the enter (s) action, whose performance has the effect of modifying
the shared variable state, by assigning s to it. Lines 9-14 give the specification

5Both these languages can be translated into one another, and we are actively working on
mechanising these translations.
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of transition A, as a single action, with a contract that closely follows the corre-
sponding textual specification. Transition B is defined to be composed out of two
actions: flipCalamityRequest for setting the requestCalamity flag to false, and
enter for changing the operating state of the tunnel to Full.

Program annotations. The next step is to deductively prove that the imple-
mentation adheres to the VerCors encoding of the specification. The actual tunnel
control system is implemented in Java. However, we converted this implementa-
tion to PVL—an object-oriented toy input language of VerCors—since our model-
based verification approach is currently best supported by the PVL front-end (we
are currently improving its support for Java).

Figure 6.6 shows and highlights the annotations of the PVL code implementations
of transitions A (lines 2-16) and B (lines 19-35). The yields bool branch anno-
tations on lines 2 and 19 indicate that branch is an extra (ghost) output parameter
that only exists for the sake of specification. In the figure, branch represents which
branch has been executed by the program, and is used in the postconditions to
ensure the matching, corresponding process-algebraic choice.

The contract of proceed ToAlertStatus states that it will execute as prescribed by the
process ProceedToAlertStatus- P+ @ for some P and @ (line 3), and depending
on the execution branch taken, is left with either P (line 4) or with @ (line 5)
upon termination. The contract of startCalamityProgrammeAfterTimeout follows
the same specification pattern, as well as most of the other methods. Since this
model-based verification approach is compositional, we could use it to verify that
the entire implementation complies with the process-algebraic specification.

Our deductive verification effort did not directly reveal any problems or violations
in the implementation: all methods comply with their specified behaviour. This is
expected, as the implementation has been unit tested and code reviewed very rig-
orously. Nevertheless, this compliance between specification and implementation
is now confirmed, by means of a machine-checked proof.

However, this verification did help us, as tool developers, to better understand the
needs from industry, and to identify weaknesses in our approach and tooling. To
give an example, for future use, Technolution finds it important that our model-
based verification technique is applicable on Java code, instead of PVL, and in a
more automated manner. We now actively work on improving this.
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The annotated code implementation of Transition A
yields bool branch;
requires Proc(ProceedToAlertStatus - P + Q);
ensures branch = Proc(P);
ensures —branch = Proc(Q);
void proceedToAlertStatus() {
branch := false;
if (possibleCalamityDetected N —requestCalamity N
state = Normal V state = StandBy) {
action ProceedToAlertStatus {
requestCalamity = true;

}
}

calamityTimeout := now() + __calamity_timeout_frame();
branch := true;

}

The annotated code implementation of Transition B
yields bool branch;
requires Proc(StartCalamityProgrammeAfterTimeout - P + Q);
ensures branch = Proc(P);
ensures —branch = Proc(Q);
void startCalamityProgrammeAfterTimeout() {
branch := false;
if (“state is in calamity” A requestCalamity) {
action flipCalamityRequest {
requestCalamity = false;
}
action enter (Full) {
state := Full;
calamityProgramme ();
}
branch := true;
}
}

Figure 6.6: Relating the tunnel specification to the implementation using VerCors.

6.7 Related Work

Various successes have been reported in the use of model checking in industrial
case studies. mCRL2, for example, maintains a gallery of industrial showcases on-
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line [MSC], which includes, among others, the modelling and analysis of firmware
for a pacemaker [Wig07], as well as control software used for experiments at the
Large Hadron Collider at CERN [HKK*13]. Glabbeek et al. formalised the AODV
wireless routing protocol in AWN (Algebra for Wireless Networks) [GHPT16]—
a process algebra for modelling mobile ad-hoc networks—and used it to reason
about safety-critical routing properties. Ruijters et al. [RGNS16| uses statisti-
cal model checking to study different maintenance strategies for railway joint,
in collaboration with ProRail—a Dutch national railway infrastructure manager.
Moreover, [Bee08| reports on the experiences of the use of TLA+ at Intel, for
formal verification.

In the context of deductive verification, in 2015, de Gouw et al. [GRB™15] success-
fully detected an intricate bug in the standard implementation of OpenJDK’s Tim-
Sort algorithm, which is used daily by billions of users worldwide. Another success-
ful application of deductive verification is the use of Infer at Facebook [CDD*15],
to detect potential regressions during continuous integration testing. In [BKLL15],
a formal verification of a cloud hypervisor is reported, using Frama-C. Also Open-
JML has been used successfully for the verification of industrial code; [Cok18] dis-
cusses several observations and experiences. Moreover, [PMPT14] discusses four
industrial case studies that have been performed with VeriFast: two Java Card
smart card applets, a Linux networking component, and a Linux device driver.

Regarding combinations of deductive verification and model checking, in [SOP12],
CBMC and Frama-C have been used to verify embedded software for satellite
launching. But apart from this work, we are not aware of any other industrial
applications of model checking combined with deductive verification.

6.8 Conclusion

During our case study, we found that, even though the specification of the tunnel
control system is informal, it is well-structured, and therefore has the potential to
be formalised within reasonable time. In roughly 7 working days, we constructed
a formal model of the informal specification, analysed it using mCRL2, and used
VerCors to deductively prove that the code implementation adheres to it. This
resulted in the detection of undesired behaviour, preventing the control system
from automatically starting the calamity procedure after an emergency has been
detected. Even though Technolution was already aware of this behaviour, they
found it coincidentally. We demonstrate that formal methods can indeed help to
find such undesired behaviours more structurally, and within realistic time.

This case study also helped us to learn about the needs from industry, and the
shortcomings of our tooling, which we will work on before starting the follow-up
project. More specifically, we will improve VerCors’s support for Java, and work
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on automated translations between mCRL2 and the process algebra language of
VerCors. We will also investigate if the pseudo code specification language can be
formalised into a DSL, that is automatically translatable to mCRL2.

In the next chapter, we adapt our model-based verification approach for the dis-
tributed case, and use process algebra to abstract message passing communication,
instead of shared-memory behaviour and evolvement.



202 Chapter 6. Verifying a Traffic Tunnel Control System




Part 111

Advances 1n Distributed
Program Verification

203






CHAPTER 7

Practical Abstractions for Automated Verification
of Message Passing Concurrency

Abstract

Distributed systems are notoriously difficult to develop correctly, due to the concurrency
in their communicating subsystems. Several techniques are available to help developers
to improve the reliability of message passing software, including deductive verification
and model checking. Both these techniques have advantages as well as limitations, which
are complementary in nature.

This chapter contributes a novel verification technique that combines the strengths of
deductive- and algorithmic verification to reason elegantly about message passing con-
current programs, thereby reducing their limitations. Our approach allows verifying data-
centric properties of message passing programs using concurrent separation logic (CSL),
and allows specifying their communication behaviour as a process-algebraic model. The
key novelty of the approach is that it formally bridges the typical abstraction gap be-
tween programs and their models, by extending CSL with logical primitives for proving
deductively that a program refines its process-algebraic model. These models can then
be analysed via model checking, using mCRL2, to reason indirectly about the program’s
communication behaviour. Our verification approach is compositional, comes with a
mechanised correctness proof in Coq, and is implemented as an encoding in Viper.

7.1 Introduction

Distributed software is notoriously difficult to develop correctly. This is be-
cause distributed systems typically consist of multiple communicating components,
which together have too many concurrent behaviours for a programmer to compre-
hend. Software developers therefore need formal techniques and tools to help them
understand the full system behaviour, with the goal to guarantee the reliability of
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safety-critical distributed software. Two such formal techniques are deductive ver-
ification and model checking, both well-established in research |[BK08, ABB*16,
BO16, CHVB18|] and proven successful in practice [Cla08, GRB*15]. Neverthe-
less, both these techniques have their limitations. Deductive verification is often
labour-intensive as it requires the system behaviour to be specified manually, via
non-trivial code annotations, which is especially difficult for concurrent and dis-
tributed systems. Model checking, on the other hand, suffers from the typical
abstraction gap [PGS01] (i.e., discrepancies between the program and the corre-
sponding model), as well as the well-known state-space explosion problem.

This chapter contributes a scalable and practical technique for automated verifi-
cation of message passing concurrency that reduces these limitations, via a sound
combination of deductive verification and model checking, based on the ideas of
Chapters 4-6. Our verification technique builds on the insight that deductive
and algorithmic verification are complementary [MN95, Uri00, ACPS15, ACPS17,
Shal8]: the former specialises in verifying data-oriented properties (e.g., the func-
tion sort(zs) returns a sorted permutation of xs), while the latter targets tempo-
ral properties of control-flow (e.g., any send must be preceded by a recv). Since
realistic distributed software deals with both computation (data) and communica-
tion (control-flow), such a combination of complementary verification techniques
is needed to handle both data-centric and temporal program aspects.

More specifically, our verification approach uses concurrent separation logic (CSL)
to reason about data properties of message passing concurrent programs, and
allows specifying their communication behaviour as a process-algebraic model. The
key innovation is that CSL is used not only to specify data-oriented properties,
but also to formally link the programs’ communication behaviour to the process-
algebraic specification of its behaviour, thereby bridging the typical abstraction
gap between programs and their models. These process-algebraic models can then
be analysed algorithmically, e.g., using the mCRL2 toolset |[GM14, BGK'19],
to reason indirectly about the communication behaviour of the program. These
formal links preserve safety properties; the preservation of liveness properties is
left as future work. This approach has been proven sound using the Coq theorem
prover, and has been implemented as a manual encoding in the Viper concurrency
verifier [MSS16].

7.1.1 Running Example

To further motivate the approach, consider the example program in Figure 7.1,
consisting of three threads that exchange integer sequences via synchronous (block-
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1 send ((4,7,5),1); 5 while (true) { 11 while (true) {
2 Is :=recv 2; 6 (ys,t) :=recv; 12 (zs,t) :=recv;
3 assert zs = 7 if (¢t =1) then 13 zs' := ParSort(zs);
4 (4,5,6,7,8); 8 send (ys + (8,6),3);||14 send (zs',t);
9 else send (ys,2); 15 }
10 }
(a) Thread 1 (b) Thread 2 (c) Thread 3

Figure 7.1: Our example message passing program, consisting of three threads
that communicate via synchronous (blocking) message passing.

ing) message passing!. The goal is to verify whether the asserted property in
Thread 1’s program holds. This program is a simplified version of a typical sce-
nario in message passing concurrency: it involves computation as well as commu-
nication and has a complicated communication pattern, which makes it difficult
to see and prove that the asserted property indeed holds.

Clarifying the program, Thread 1 first sends the sequence (4,7,5) to the envi-
ronmental threads as a message with tag 1, and then receives any outstanding
integer sequence tagged 2. Thread 2 continuously listens for incoming messages
of any tag with a wildcard receive, and redirects these messages (as a network
router), possibly with slightly modified content depending on the message tag.
Thread 3 is a computing service: it sorts all incoming requests and sends back
the result with the original tag. ParSort is assumed to be the implementation of
an intricate, heavily optimised parallel sorting algorithm. Note that the asserted
property on line 4 holds because the send on line 8 is always executed, no matter
the interleaving of threads.

Two standard potential approaches for verifying this property are deductive ver-
ification and model checking. However, neither of these approaches provides a
satisfying solution. Techniques for deductive verification, e.g., concurrent sep-
aration logic, have their power in modularity and compositionality: they require
modular independent proofs for the three threads, and allow to compose these into
a single proof for the entire program. This would not work in our example sce-
nario, as the asserted property is inherently global. One could attempt to impose
global invariants on the message exchanges [WL89|, but these are generally hard
to come by. Finding a global invariant for this example would already be difficult,
since there is no obvious relation between the contents of messages and their tags.
Other approaches use ideas from assume-guarantee reasoning [RHH'01, VP07| to

IThe approach is not limited to synchronous message passing; Section 7.5 discusses extensions
to asynchronous (non-blocking) message passing.
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somehow intertwine the independent proofs of the threads’ programs, but these
require extra non-trivial specifications of thread-interference and are difficult to
integrate into (semi-)automatic verifiers.

Alternatively, one may construct a model of this program and apply a model
checker, which fits more naturally with the temporal nature of the program’s
communication behaviour. However, this does not give a complete solution either.
In particular, certain assumptions have to be made while constructing the model,
for example that ParSort is correctly implemented. The correctness property of
ParSort is data-oriented (it relates the output of ParSort to its input) and thus in
turn fits more naturally with deductive verification. But even when one uses both
these approaches—deductive verification for verifying ParSort and model checking
for verifying communication behaviour—there still is no formal connection between
their results: perhaps the model incorrectly reflects the program’s communication
behaviour.

7.1.2 Contributions and Outline

This chapter contributes a novel approach that allows making such formal con-
nections?, by extending CSL with primitives for proving that a program refines
a process-algebraic model, with respect to send/receive behaviour. Section 7.2
introduces the syntax and semantics of programs and process-algebraic models.
Notably, our process algebra language is similar to mCRL2, but has a special as-
sertion primitive of the form ?b, that allows encoding Boolean properties b into
the process itself, as logical assertions. These properties can be verified via a
straightforward reduction to mCRL2, and can subsequently be used (relied upon)
inside the deductive proof of the program, via special program annotations of the
form query b (allowing to “query” for properties b proven on the process algebra
level). Section 7.3 illustrates in detail how this works on the example program of
Figure 7.1, before Section 7.4 discusses its underlying logical machinery and its
soundness proof. This soundness argument has been mechanised using Coq, and
the program logic has been encoded in the Viper concurrency verifier. Section 7.5
discusses various extensions of the verification approach. Finally, Section 7.6 re-
lates our work to existing approaches and Section 7.7 concludes.

7.2 Programs and Processes

This section introduces the syntax and semantics of the programming language
(§7.2.1) and the process algebra language of models (§7.2.2) that is used to for-
malise the approach.

2This chapter is based on the article [OH19c].
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7.2.1 Programs

The syntax of our simple concurrent pointer language, inspired by Brookes [Bro07]
and O’Hearn [O’HO7], is as follows, where z,y,z,--- € Var are variables and
v,w,- - € Val are values.

Definition 7.2.1 (Expressions, Conditions, Commands).

ec Expro=v|x|ete|le—e]| -
be Cond ::=true |false | b | bAb|e=e|e<e]| ---
CeCOmd:=skip | C;C|z:=c|x:=e]]|[e] :=e]

send (e,e) | (z,y) :=recv | z :=recv e |

query b | x := alloc e | dispose e | C || C' |
if b then C else C | while b do C | atomic C

This language has instructions to handle dynamically allocated memory, i.e., heaps,
as well as primitives for message passing, to allow reasoning about both shared-
memory and message passing concurrency models, and their combination.

The notation [e] is used for heap dereferencing, where e is an expression whose
evaluation determines the heap location to dereference. Memory can be dynami-
cally allocated on the heap using the alloc e instruction, where e will be the initial
value of the fresh heap cell, and be deallocated using dispose.

The command send (e1,e2) sends a message e; to the environmental threads,
where ey is a message tag that can be used for message identification. Messages
are received in two ways: x := recv e receives a message with a tag that matches
e, whereas (z,y) := recv receives any message and writes the message tag to the
extra variable y. Message passing is assumed to be synchronous for now. Note
that, although this language does not have a notion of communication channels,
directed communication can be achieved by using message tags.

The specification command query b is used to connect process-algebraic reasoning
to deductive reasoning: it allows the deductive proof of a program to rely on (or
assume) a Boolean property b, which is proven to hold (or guaranteed) via process-
algebraic analysis. This is a ghost command that does not interfere with regular
program execution.

The function fv : Ezpr — 2V is used to determine the set of free variables
of expressions as usual, and is overloaded for conditions. Substitution is written
e1[x/es] (and likewise for conditions) and has a standard definition: replacing each
occurrence of x by e in e;. Their definitions are deferred to Appendix B.
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7.2.1.1 Semantics of Programs

The denotational semantics of expressions [e]o and conditions [b]o is defined in
the standard way, with o € Store & Var — Val a store that gives an interpretation
to variables. Their definitions can be found in Appendix B as well. Sometimes [e]
is written instead of [e]o when e is closed, and likewise for [b].

The operational semantics of commands is defined as a labelled small-step re-
duction relation — C Conf x Label x Conf between configurations Conf =
Cmd x Heap x Store of programs. Heaps h € Heap £ Val —g, Val are used to
model shared memory and are defined as finite partial mappings, such that heap
locations are modelled simply as values from Val. The transition labels represent
the atomic (inter)actions of threads, and are defined as follows.

Definition 7.2.2 (Program transition label).

[ € Label ::= send(v,v) | recv(v,v) | comm(v,v) | cmp | qry

Transitions labelled send(v, v’) indicate that the program sends a value v from the
current configuration, together with a tag v’. These can be received by a thread,
as a transition labelled recv(v,v’). By doing so, the sending and receiving threads
communicate, represented by the comm label. Internal computations that are not
related to message passing are labelled cmp, e.g., heap reading or writing. The
only exception to this are the reductions of query commands, which are given the
label gry instead, for later convenience in proving soundness.

Figure 7.2 gives the reduction rules for message exchanging. All other reduction
rules are standard in spirit [Vafll, Mil89] and are therefore deferred to Appendix B.
For ease of presentation, a synchronous (blocking) message passing semantics is
used for now. However, our approach can easily be extended to asynchronous
(non-blocking) message passing, which is explained in Section 7.5.

7.2.2 Processes

In this work the communication behaviour of programs is specified as a process
algebra with data, whose language is based on mCRL2 and defined by the following
grammar.

Definition 7.2.3 (Processes).

P,Q € Proc =:=¢ |0 |send(e,e) | recv(e,e) | 20| b: P |
P.-P|P+P|P|P|S,P|P
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send([e1]o,[e2]o)
e

(send (e1,e3),h,0) (skip, h, o)

recv(v,v’)

((z,y) :==recv, h,o) (skip, h, o[z — v,y — '])

recv(v,[e] o)

(z :==recv e, h,0) (skip, h, o[z — v])

(query b, h, s) LN (skip, h, s)

send(v1,v2) recv(vy,v2)

(C1,h,0) (Ci,h,a) (Co, h,0) (Cé,h,a’)
(Cy || Cayhy o) S (| gy o)
(Cr, hyo) L) (o) (Coyhyo) SN (0 b o)

comm(v1,v2)

(Cl ” 027ha0) (C{ ” Cévhva/)

Figure 7.2: Selected reduction rules of the small-step semantics of programs.

Clarifying the standard connectives, ¢ is the empty process without behaviour, and
¢ is the deadlocked process that neither progresses nor terminates. The process
Y. P is the infinite summation P[z/vg] + P[xz/vi] + - -+ over all values vg, vy, ... €
Val. Sometimes ¥, . .. P is written to abbreviate X, ---3; P. The guarded
process b : P behaves as P if the guard b holds, and otherwise behaves as §. The
process P* is the Kleene iteration of P and denotes a sequence of zero or more
P’s. The infinite iteration of P is derived to be P* £ P*.§.

Since processes are used to reason about the send/receive behaviour of programs,
this process algebra language exclusively supports two actions, send(eq,es) and
recv(ep, ea), for sending and receiving data elements e; together with a message
tag es, respectively.

Finally, ?b is the assertive process, which is very similar to guarded processes:
?b is behaviourally equivalent to § in case b does not hold. However, assertive
processes have a special role in our approach: they are the main subject of process-
algebraic analysis, as they encode the properties b to verify, as logical assertions.
Moreover, they are a key component in connecting process-algebraic reasoning
with deductive reasoning, as their properties can be relied upon in the deductive
proofs of programs via the query b ghost command.

The function fv is overloaded to determine the set of unbound variables in process
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terms, notably fv(3, P) £ fv(P) \ {z}. As always, any process P is defined to be
closed if fv(P) = ().

7.2.2.1 Semantics of Processes

Figure 7.3 presents the operational semantics of processes, which is defined in terms
of a labelled binary reduction relation — C Proc x ProcLabel x Proc between
processes. The labels of the reduction rules are defined as follows.

Definition 7.2.4 (Process transition labels).

a € ProcLabel ::= send(v,v) | recv(v,v) | comm(v,v) | assn

The labels send, recv and comm are used in the same manner as those of program
transitions, whereas the label assn indicates reductions of assertional processes.

The reduction rules are mostly standard [FZ94, GM14]. Processes are assumed
to be closed as a wellformedness condition, which prevents the need to include
stores in the transition rules. Moreover, it is common to use an explicit notion of
successful termination in process algebra with e [Bae00]. More specifically, P |
intuitively means that P has the choice to have no further behaviour and thus to
behave as €:

Lemma 7.2.1. If P |, then P> P +¢.

The send and recv actions communicate in the sense that they synchronise as a
comm transition.

The property of interest for process-algebraic verification is to check for absence
of faults. Any closed process P exhibits a fault, denoted P — 4, if P is able to
violate an assertion.

Example 7.2.1 (Faulting summation). Below is a proof derivation showing that
the process ¥, 7(x < y) is faulting.

24 < 2]
724 < 2) — 4
Y,724<y) — 4
Yoy ez <y) — 4

Furthermore, any process P is defined to be safe, written P v/, if P can never reach
a state that exhibits a fault, while following the reduction rules of the operational
semantics.
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Successful termination

.. py PEQ 0 Q1 Pl Ql
PQl P+Ql P+QJ PQY
Ple/v] | Bl Py
Y. Pl b: P

Operational semantics

d([e1],[e v([e1],[e [[b]]
send(eg, e2) Me recv(er, ea) Me 2 20 -
PP Pl Q-5 qQ "y Q=5 qQ
P.Q-5%P.Q P.-Q-5Q P+Q -5 P P+Q -5 qQ
PP Q-5 Q Plz/v] = P/
PlQ-=P|Q PlQ =Pl Se P - P!
a , @ , send(v1,v2) , recv(vy,v2) ,
[o] P—P P—P P P Q Q
b: P i) P’ P* i) P . p* P ” Q comm(v1,v2) P H Q/
P recv(v1,v2) P, Q send(v1,v2) Q,
P || Q comm(v1,v2) P, || Q,
Fault semantics
—[0] P—y P Q—1 P—y Q—
7 — 4 P-Q— 4 P-Q— 4 P+Q — P+Q —
P— Q— 4 Plz/v] — 4 [0] P— P—
PllQ—¢ PllQ—1¢ Yo P — b: P— 4 P — 4

Figure 7.3: The small-step operational semantics of processes.
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Definition 7.2.5 (Process safety). The v predicate is coinductively defined such
that, if P v holds, then P +— 4, and P = P’ implies P' v’ for any o and P’.

Given any closed process P, determining whether P v* holds can straightforwardly
and mechanically be reduced to an mCRL2 model checking problem. This is done
by modelling an explicit fault state that is reachable whenever an assertive process
is violated, as a distinctive 4 action. Checking for fault absence is then reduced to
checking the p-calculus formula [true* - 4]false on the translated model, meaning
“no faulty transitions are ever reachable”.

Lemma 7.2.2. Process safety has the following properties.

LIf(P-Q)V oor (P+Q)v or (P||Q) Vv, then PV and Q V.

. If (b: P)v and [b], then P v .

. If PV and Q V', then also (P-Q)v and (P+ Q) v and (P | Q) V.
. (3 P) v if and only if Yv.Plx/v] V.

. If PV, then P* V.

N VRSN

Process bisimilarity is defined as usual, and preserves faults and termination.

Definition 7.2.6 (Bisimulation). A binary relation # C Proc x Proc is a bisim-
ulation relation over closed processes if, whenever PZQ, then

Pl if and only if Q |.

P— 4 if and only if Q — 4.

If P =5 P, then there exists a Q' such that Q — Q' and P'ZQ’ .
If Q =5 @', then there exists a P’ such that P —» P’ and P'ZQ’.

Two closed process P and @ are defined to be bisimilar or bisimulation equivalent,
denoted P = @, if there exists a bisimulation relation & such that PZQ. Any
bisimulation relation constitutes an equivalence relation. Appendix B gives an
overview of standard bisimulation equivalences that are sound for this language. As
usual, bisimilarity is a congruence for all process-algebraic connectives. Moreover,
process safety is closed under bisimilarity:

Lemma 7.2.3. If Pv and P =2 Q, then Qv .

7.3 Verification Example

Before discussing the logical details of our approach, let us first demonstrate it on
the example program of Section 7.1.1. Application of the technique consists of the
following three steps:
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1+ map sort: List(Nat) — List(Nat);

> var x: Nat, zs: List(Nat);

s eqn sort(()) = ();

s sort ({(x)) = (x);

5 sort(x :: zs) = merge({(z), sort(ws));

» map merge: List(Nat) x List(Nat) — List(Nat);
s var x: Nat, y: Nat, zs: List(Nat), ys: List(Nat);

o eqn merge((), {)) = ();

10 merge(zs, ()) = as;
1 merge((), xs) = zs;
12 r <y — merge(x ::xs, y :: ys) = x ::merge(xs, y :: ys);
13 x >y — merge(x ::xs, y :: ys) = y :: merge(x :: x5, ys);

Figure 7.4: An axiomatic description of a sorting algorithm, defined in mCRIL2.

1. Constructing a process-algebraic model that captures the program’s send /recv
behaviour;

2. Analysing the model to determine whether the value received by Thread 1 is
always the sorted sequence (4,5, 6,7,8), via a reduction to an mCRL2 model
checking problem; and

3. Deductively verifying that the program correctly implements the process-
algebraic model with respect to send/receive behaviour, by using concurrent
separation logic.

The remainder of this section discusses each of these three steps in detail.

Step 1: Constructing a process-algebraic model. The communication be-
haviour of the example program can straightforwardly be captured as a process
P =Py || P2 || P5 (assuming that the expression language is rich enough to handle
sequences), so that process P; captures Thread i’s send /receive behaviour, where

P1 = send((4,7,5),1) - X, recv(as, 2) - ?(zs = (4,5,6,7,8))
Py £ Py with Py £ %, recv(ys, t) -

(t =1:send(ys + (8,6),3) + ¢t # 1 : send(ys,2))
P3 £ Py with P; £ X, recv(zs,t) - send(sort(zs),t)

Observe that Py encodes the property of interest as the assertion ?(zs = (4,5,6,7,8)).
The validity of this assertion is checked by mCRL2 on the translated model, as
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described in the next paragraph. Moreover, sort is assumed to be the functional
description of a sorting algorithm. Such a description can axiomatically be de-
fined in mCRL2, as shown in Figure 7.4. The sort mapping can easily act as
a functional specification for the implementation of more intricate sorting algo-
rithms like ParSort. Deductive verifiers are generally well-suited to relate such
functional specifications to implementations via pre/postcondition reasoning:

1 ensures \result = sort(zs);
2 seq(nat) ParSort(seq(nat) zs) {
3 DEEEY

!

Step 2: Analysing the process-algebraic model. The composite process
P can straightforwardly be translated to mCRL2 input and be analysed. Our
translation can be found at the online Git repository. This translation has been
done manually, yet it would not be difficult to write a tool that does it mechanically
(we are actively working on this).

Notably, assertive processes ?b are translated into check(b) actions; the action
check(false) can be seen as the encoding of 4. Checking for process safety P v can
be reduced to checking the u-calculus formula ¢ = [true* - check(false)]false, stating
that no check(false) action can ever be performed, or equivalently that the process
is free of faults. mCRL2 can indeed confirm that P is fault-free by checking ¢,
and thus that the asserted property of interest holds. In Step 3 we formally prove
that the program adheres to the communication behaviour described by P, which
allows projecting these model checking results onto program behaviour.

Another question one might ask is: does Thread 1 always terminate? This can also
be checked, using the fixed-point formula v X.(—check) X, meaning “there exists an
infinite trace of non-check actions”. This formula holds for P, meaning that from
Step 3 it also follows that Thread 1 is not guaranteed to terminate. To see the
corresponding behaviour on the program level, observe that Threads 2 and 3 may
get entangled in a non-terminating communication loop (under unfair scheduling).

Step 3: Connecting processes to program behaviour. The final step is
to deductively prove that Figure 7.1’s program refines P, with respect to com-
munication behaviour, using CSL. To do this, we extend CSL with predicates
of the form Proc(P), which express that the remaining program will communi-
cate as prescribed by the process P—the program’s model. More specifically, the
proof system enforces that every send (e, e’) instruction must be prescribed by a



7.4. Formalisation 217

Proc(send(e, e’) - P) predicate in the logic, and likewise for recv, thereby enforc-
ing that the process-algebraic model can perform a matching send or recv action.
These actions are then consumed in the logic, while following the structure of the
program. Similarly, query b annotations must be prescribed by a Proc(?b- P)
predicate, and allow assuming b in the logic as result of Step 2, by which ?7b is
consumed from the Proc predicate.

Figure 7.5 illustrates this, by giving the intermediate steps of the proofs of Threads
1 and 3. An extra query annotation has been added in Thread 1’s program for
obtaining the asserted property from P;. Moreover, the annotated invariant in
Thread 3 is a loop invariant that states that Proc(P%”) prescribes the communica-
tion behaviour of every loop iteration.

Another feature of the logic is that Proc(P) predicates can be split and merged
along parallel compositions inside P, in the style of CSL. This is used in the top-
level proof of the example program, shown in Figure 7.6. The * connective is the
separating conjunction from separation logic, which now expresses that different
threads will use different parts of the model. This makes the approach both mod-
ular and compositional, by allowing the programs’ top-level proof to be composed
out of the individual independent proofs of its threads.

We encoded the program logic into the Viper concurrency verifier and used it
to fully mechanise the deductive proof of the example program. The Viper files
are available online at [Sup]. This encoding primarily consists of an axiomatic
domain for processes, containing constructors for the process-algebraic connectives,
supported by standard axioms of process algebra. The Proc assertions are then
encoded as unary predicates over these process types. Viper can verify correctness
of the example program in under 3 seconds.

We are investigating our verification technique on bigger case studies that in-
volve distributed consensus protocols [Fok13], e.g., classical leader election [LL77,
OBH16] and Paxos [Lam98].

7.4 Formalisation
This section discusses the assertion language and entailment rules of the program

logic (§7.4.1), the Hoare-triple rules for message passing and querying (§7.4.2),
and their soundness (§7.4.3).

7.4.1 Program Logic

The program logic extends intuitionistic concurrent separation logic [Vafl1l, HDV11],
where the assertion language is defined by the following grammar.
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1 {Proc(Py)}
2 {Proc(send((4,7,5),1) - 3, recv(z,2) - ?(z = (4,5,6,7,8)))}
3 send ({4,7,5),1);
4 {Proc(X, recv(z,2) - ?(x = (4,5,6,7,8)))}
5 IS :=Trecv 2;
6 {Proc(?(zs = (4,5,6,7,8)))}
7 {Proc(?(zs = (4,5,6,7,8)) - )}
8 query zs = (4,5,6,7,8);
9 {Proc(e) xxs = (4,5,6,7,8)}
10 assert xs = <4,5,67 ,8);
11 {Proc(e) *x zs = (4,5,6,7,8)}
(a) Proof of Thread 1’s program.
1 {Proc(P3)}
2 {Proc(P§')}
3 while (true) invariant Proc(P%") {
a4 {Proc(P§)}
5 {Proc(P;-P5)}
6 {Proc(X.,recv(zs,t)-send(sort(zs),t) - P5’)}
7 (zs,t) :=recv;
8  {Proc(send(sort(zs),t)-P5’)}
9 28’ :=ParSort(zs);
10 {Proc(send(sort(zs),t) - P3’) x zs’ = sort(zs)}
11 {Proc(send(zs’,t) - P5')}
12 send (zs t);
13 {Proc(P5")}
14 }

15 {Proc(P%’) * false} // i.e., this point of the code is never reached

(b) Proof of Thread 3’s program.

Figure 7.5: Proofs for Threads 1 and 3 of the example program. Thread 2 is
proven likewise. All the intermediate proof steps are coloured purple.
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{Proc(Py [| P2 [| P3)}
{Proc(Py) * Proc(P2) * Proc(P3)}

{Proc(P1)} {Proc(P2)} {Proc(P3)}
Thread 1’s program || Thread 2’s program || Thread 3’s program
{Proc(e)} {Proc(P5’)  false} {Proc(P%’) * false}
{Proc(e) * Proc(P5")  false * Proc(P%”) * false}
{false}

Figure 7.6: The top-level specification and ownership distribution of the example
program.

Definition 7.4.1 (Assertions).

P,Q,---€Assn u=b |V P | P|PVO|P*xQ|P Q|
e —re|Proc(P)| P~ Q

The assertion e; <> es is the heap ownership assertion and expresses the knowl-
edge that the heap holds the value ez at heap location e;. Moreover, 7 € (0,1]g is
a fractional permission in the style of Boyland [Boy03] and determines the type of
ownership: write access to e is provided in case m = 1, and read access is provided
incase 0 < < 1.

The * connective is the separating conjunction from separation logic. The assertion
P *x Q expresses that the ownerships captured by P and Q are disjoint, e.g., it is
disallowed that both express write access to the same heap location. The —x
connective is known as the magic wand and describes hypothetical modifications
of the current state.

The assertion Proc(P) expresses the ownership of the right to send and receive mes-
sages as prescribed by the process P. Here P may contain free variables and may
be replaced by any process bisimilar to P. To handle such replacements, the asser-
tion P = @ can be used, which expresses that P and @ are bisimilar in the current
context. To give an example, one might wish to deduce that Proc(0 < z : P)*z = 2
entails Proc(P). Even though 0 < x : P has free variables, it is used in a context
where x equals 2, and therefore 0 < x : P ~ P can be established. The next
paragraph discusses the entailment rules for these deductions.

7.4.1.1 Proof Rules

Figure 7.7 shows an excerpt of the proof rules, which are given as sequents of the
form P and P+ Q. A complete overview is given in Appendix B. The notation
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<-SPLIT-MERGE Proc-SPLIT-MERGE
€1y tmy €2 dF €1 iy, €2 k€1 g, €0 Proc(P || Q) 4 Proc(P) x Proc(Q)
AS-BISIM
Proc-~ P=Q ~-REFL X-SYMM
Proc(P) * P =~ Q F Proc(Q) _— FP=P P=QFQ=~=P
FP~Q
A-TRANS AS-COND-TRUE A-COND-FALSE
P~Q+Q~RFP~R bHb:P~P bE—b:P~6

Figure 7.7: An except of the entailment rules of the program logic.

P -+ QO is shorthand for P + Q and Q + P. All proof rules are sound in the
standard sense.

The <—-SPLIT-MERGE rule expresses that heap ownership predicates can be split
(in the left-to-right direction) and merged (right-to-left) along =, allowing heap
ownership to be distributed over different threads. Likewise, Proc-SPLIT-MERGE
allows process predicates to be split and merged along the parallel composition, to
allow different threads to communicate as prescribed by the different parts of the
process-algebraic model. Process terms inside Proc predicates may be replaced
by bisimilar ones via Proc-m. This rule can be used to rewrite process terms
to a canonical form used by some other proof rules. The = connective enjoys
properties similar to &: it is an equivalence relation with respect to *, as shown
by ~-REFL, ~-SYMM and /-TRANS, and is a congruence for all process-algebraic
connectives. Finally, ~ allows using contextual information to resolve guards, via
~-COND-TRUE and ~-COND-FALSE.

Example 7.4.1 (Using & to eliminate conditional processes).
bEb: P~ P (4)

3
Proc(b: P)xbt Proc(b: P)xb: P~ P (3) Proc(b: P)xb: P ~ P+ Proc(P)
Proc(b : P) x b+ Proc(P)

(2)
(1)

Rule application (1) is transitivity; (2) is an application of Proc-2; (8) is mono-
tonicity with respect to the left operand of the x; and (4) is exactly ~-COND-TRUE.

7.4.1.2 Semantics of Assertions

The semantics of assertions is given as a modelling relation ¢, 0, P = P, where
the models are abstractions of program states (these can also be seen as partial
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program states). These state abstractions consist of three components, the first
being a permission heap. Permission heaps ¢ € PermHeap = Val —n (0,1])g x Val
extend normal heaps by associating a fractional permission to each occupied heap
cell. The second component is an ordinary store o, and the last component is
a closed process P that determines the state of the process-algebraic model that
may be described by P.

The semantics of assertions relies on the notions of disjointness and disjoint union
of permission heaps. Two permission heaps, ¢; and to, are said to be disjoint,
written ¢1 L 19, if they agree on their contents and the pairwise addition of the
fractional permissions they store are again valid fractional permissions. Further-
more, the disjoint union of 11 and 1o, which is written ¢; Wi, is defined to be the
pairwise union of all their disjoint heap cells.

Definition 7.4.2 (Disjointness of permission heaps).

11 L1y 2V € dom(ey) N dom(iz) . 11(v) Leen to(v), where

(71,01) Leen (T2, v2) £ v1 = va Ay +ma € (0,1]g

Definition 7.4.3 (Disjoint union of permission heaps).

t1(v) if v € dom(eq) \ dom(s2)

t2(v) if v € dom(e2) \ dom(¢1)

(m + 72, v")  if 11(v) = (71,0") Aia(v) = (m2,v") A
m +m € (0,1]g

A
11 Wig = .

As one would expect, W is associative and commutative, and L is symmetric. Most
importantly, if ©; L o, then 11 Wy does not lose information with respect to ¢q
and to.

Lemma 7.4.1. The operations L and W satisfy the following properties:
1. L1H:|(L2H’JL3) = (LlL‘!'JLQ)H'JLg CLTLdLl Wig =toWey.
2. If 11 L 1o, then 1o L 1q.
8 If iy Lo and 11 Wig L g, then to L 13 and 11 L 1o Weg.

The semantics of assertions also relies on a closure operation for closing pro-
cess terms. Given any process P, the o-closure of P is defined to be Plo] =

P['r/o'(x)]Va:efv(P) .

Definition 7.4.4 (Semantics of assertions). The interpretation of assertions, writ-
ten v,0, P |E P, is defined by structural induction on P provided that P is closed,
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in the following way:

t,o,P=b iff  [b]o

t,o0,P =Vz. P iff Yo.,olx—vu],PETP

t,o0,P =3z P iff Jv.,olz—u,PEP

t,o,PEPVQ iff t,o,PEPVio,PEQ

Lo, PEP*Q if  Fu, P, Peoti LisAt=11 Wia AP P ||P A

t1,0,PL EP AL, 0, P EQ
t,o,PEP =% Q iff VL’ P (LN o, PPEP)=19/,0,P|P [ Q
Lo, PlEel — e iff ([e]o) = (7', [ex]o) A <7’
t,0, P = Proc(Q) iff HQ P~Qlo] || Q
Lo, PEQi~Qy iff Qo] = Qso]

All assertions are interpreted intuitionistically in the standard sense [Vafll], ex-
cept for the last two cases, which cover the process-algebraic extensions. Both
cases rely on o-closures to resolve any free variables that may have been intro-
duced by some other proof rules (e.g., the Hoare logic rule for recv instructions
may do this). Process ownership assertions Proc(Q) are satisfied if there exists a
(necessarily closed) process @', which is the “framed” process that is maintained
by the environmental threads, such that P is bisimilar to Q[o] || @'. The intuition
here is that P must have at least the behaviour that is abstractly described by Q.
Finally, Q1 ~ Q4 is satisfied if Q1 and Q2 are bisimilar with respect to the current
state.

Lemma 7.4.2. The interpretation of assertions has the following properties:

1. If t,0,P =P and P = Q, then 1,0,Q = P.
2. 1,0, P = Plz/e] if and only if v,0[x — [e]o], P = P.
3. If t1,0,PL EP and t1 L 1o, then vy Wia,0,P; || Po = P.

Law 1 states that the interpretation of assertions is insensitive to replacing the
process components by bisimilar ones, inside the models of the logic. Law 2 relates
substitution in assertions with the evaluation of expressions. Law 3 is known as
weakening (or monotonicity), and is a crucial property in intuitionistic separation
logic. Its intuitive meaning is that extending the heap or the process-algebraic
model only makes the property “more true”.

7.4.2 Program Judgments

Judgments of programs are of the usual form Z F {P}C {Q} and indicate par-
tial correctness of the program C, where Z € Assn is known as the resource
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HT-SEND

T + {Proc(send(ey, es) - P)} send (e1,e2) {Proc(P)}

HT-RECV

x & tv(Z)Ufv(P) y & fv(e)
Z+ {Proc(Z, recv(y,e) - P)} x :=recv e{Proc(P[y/z])}

HT-RECV-WILDCARD
r1,x2 & fv(Z) Ufv(P) {z1,y1} N{z2,y2} =10

T+ {Proc(Sy, s recv(ys, y2) - P)} (a1, a2) = recv {Proc(Ply: /z1][ys /as])}

HT-QUERY
T+ {Proc(?b- P)} query b{Proc(P) x b}

Figure 7.8: An excerpt of the proof rules for program judgments.

invariant [Bro07]. Their intuitive meaning is that, starting from an initial state
satisfying P xZ, the invariant Z is maintained throughout execution of C, and any
final state upon termination of C' will satisfy Q * 7.

Figure 7.8 gives an overview of the new proof rules that are specific to handling
processes. All other proof rules are standard in CSL and are therefore deferred
to Appendix B. The HT-SEND rule expresses that, as a precondition, any send
command in the program must be prescribed by a matching send action in the
process-algebraic model. Furthermore, it reduces the process term by ensuring a
Proc(P) predicate, with P the leftover process after the performance of send. The
HT-RECV rule is similar in the sense that any x := recv e instruction must be
matched by a recv(y, e) action, but now y can be any message. Process-algebraic
summation is used here to quantify over all possible messages to receive, and in
the post-state of HT-RECV this message is bound to z—the received message. For
wildcard receives (HT-RECV-WILDCARD) both the message and the tag are quan-
tified over using summation. Finally, HT-QUERY allows “query”-ing for properties
that are verified during process-algebraic analysis. Recall that the main objective
of process-algebraic analysis is to verify that every reachable assertive process 7b
is satisfied. If this is the case, then b can be used in the program logic, since the
send /receive behaviour of the program has been proven to adhere to the process-
algebraic specification of its communication behaviour, as a result of the proof
rules for send and recv.
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—»-SEND —»-RECV
P send(v1,v2) p P recv(vy,v2) P
(C, h, 0_) send(v1,v2) (0,7 h/, 0_,) (07 h, O‘) recv(vy,v2) (0,7 h/7 O‘/)

send(v1,v2) recv(v1,v2)

(C, P, h,o) (', P 1, o) (C,P,h,o) (C', P\, 0")
—#-COMM —-ASSN
p comm(v1,v2) p' p assn p'
(C.h, o) 2D, (11 o) (C.hyo) =5 (C', 1, 0)
comm(v1,v2) I plopl C,P,h,o ﬂ» ClaP/a h/’ o'
(C,P,h,0) ——"2 (C',P' W, o)
—»-CMP
(Ca h, 0) ﬂ) (Cl’ h/’ OJ)
cmp

(Ca P, hv U) e (Clv Pa h/a U/)

—»-STRUCT

P=P  (C,P.ho)—»(C.Q.No) Q=qQ
(C,P,h,o) - (C",Q, 1, o)

Figure 7.9: The instrumented operational semantics that executes programs in
lock-step with processes.

7.4.3 Soundness

The soundness statement of the logic relates axiomatic judgments of programs
(§7.4.2) to the operational meaning of programs (§7.2.1). This soundness argu-
ment guarantees freedom of data-races, memory safety, and compliance of pre-
and postconditions, for any program for which a proof can be derived. The proof
rules of Figure 7.8 ensure that every proof derivation encodes that the program
synchronises with its process-algebraic model. To formulate the soundness state-
ment, this axiomatic notion of synchronisation thus needs to have a matching
operational notion of synchronisation. This is defined in terms of an instrumented
semantics that executes programs in lock-step with their process-algebraic mod-
els. The transition rules are shown in Figure 7.9 and are expressed as a labelled

binary reduction relation - L% . between program configurations, extended with
a (closed) process component.

The semantics of program judgments is defined in terms of an auxiliary predicate
safe(C, 1,0, P,Z,Q), stating that C (i) executes safely for any number of execution



7.4. Formalisation 225

steps with respect to the abstract program state (¢, o0, P); (ii) will preserve the
invariant Z throughout its execution; and (iii) will satisfy the postcondition Q
upon termination. To elaborate on (i), a safe execution of C means that C is
data-race free, memory-safe, and synchronises with P with respect to ——.

To relate abstract program state to concrete program state, the following concreti-
sation operation is used.

Definition 7.4.5 (Permission heap concretisation). The concretisation operation
|- | : PermHeap — Heap is used, for permission heaps is defined as follows:

a v’ if o(v) = (m,v')
[e] = Av € Val. {undeﬁned if (v) is undefined

Definition 7.4.6 (Execution safety). The safe predicate is coinductively defined
so that, if safe(C, ¢, 0, P,Z, Q) holds, then

e If C = skip, then t,0,P = Q.

e C cannot perform a data-race or memory violation from the current state
(the exact formal meaning of these notions are likewise to the ones defined
in Chapter 5, for the program models in the shared-memory setting).

e For any vr,ip, Pr,C' 0,0’ and 1, if

1.t Ly and Wi Lup, and
2. —locked(C) implies 1,0, Pr = Z, and

3. (P|| PV and (C, [t Wi Wip],0) == (C', W, o),
then there exists ', t;, P', P} such that

.V Lidrand /W Lup and W = [V W W], and
ii. —locked(C") implies vy, 0, P} =T, and

iii. (P'|| Py)v and (C,P || Pr,|tWir Wep], o) —l» (C',P' || Pj,h o),
and

iv. safe(C’,/,0', P, T, Q).

The above definition is based on the similar well-known inductive notion of con-
figuration safety of Vafeiadis [Vafll]. Our definition however is coinductive rather
than inductive, as this matches more naturally with the coinductive definitions
of bisimilarity and process safety. Moreover, it encodes that the program refines
the process with respect to send/receive behaviour: any execution step of the pro-
gram (3.) must be matched by the process-algebraic model (#4.), and vice versa
by definition of —». The locked(C) predicate determines whether C' is locked.
Any program is defined to be locked if it executes an atomic (sub)program.
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Definition 7.4.7 (Semantics of program judgments).

IE={P}C{Q} & Vi,0,P.PV = 1,0,P P = safe(C,1,0,P,T, Q).

Theorem 7.4.3 (Sounduess). Z+H{P}C{Q} = I E {P}C{Q}.

The soundness proof has been fully mechanised using Coq. The Coq development
can be found on the online Git repository that comes with this thesis.

7.5 Extensions

So far the presented approach only deals with synchronous message passing. How-
ever, the principles of the approach as discussed in Section 7.4 allow for easy
extensions to also reason about asynchronous message passing, message loss, mes-
sage duplication, and collective operations like barriers and broadcasts in the style
of MPT [Mes].

The semantics of asynchronous message passing is that sends do not block while
waiting for a matching recv, but instead push the message onto a message queue
that is accessible by both threads. The specification language of mCRL2 is rich
enough to model such queues, for example as a separate process Queue(rn) with 5
some data-structure that stores messages in order (e.g., a mapping). Then, rather
than letting send and recv communicate directly, they should instead communicate
with Queue to push and pop messages into 1. So in order to lift the verification
approach to programs with an asynchronous communication semantics, one only
has to make minor changes to the mCRL2 translation of processes.

Message loss can be integrated in a similar way, by introducing an extra process
that “steals” pending messages. For example, one could analyse the process P ||
(X5, recv(z, t))® to reason about P’s behaviour with the possibility of message
loss. Message duplication can be modelled likewise as an extra process that sends
multiple copies of any message it receives. Collective operations like barriers and
broadcasts may be slightly more involved, as they require some extra bookkeeping,
e.g., to administer which threads have already received a broadcasted message.
However, all collective operations can be implemented using only (non-blocking)
sends and receives [LZS17], and thus for verification purposes can be handled as
such. This means that the approach also extends well to collective communication.

To reason about shared-memory concurrency in combination with message passing,
one has to include the state and behaviour of the heap into the process-algebraic
models. Consider for example the program z := [e]; send (x,1) that reads a value
from the heap at location e and sends it with tag 1. This program is difficult
to reason about in the current setting, as the heap may contain any value at
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e, which complicates modelling on the process algebra level. However, observe
that the heap can be seen as just another distributed system, where heap reading
x := [e] amounts to receiving data from the heap, and heap writing [e] := €
amounts to sending data to the heap. Thus on the level of process algebra these
can be modelled explicitly, e.g., in terms of read(x, e) and write(e, ¢’) actions that
communicate with a separate process Heap(-) that maintains the shared state. One
could then upgrade the proof rules for z := [e] and [e] := ¢’ to also require matching
Proc(X, read(x, e) - P) and Proc(write(e,e’) - P) predicates in their pre-state, like
in the proof rules of Figure 7.8.

Finally, the current biggest limitation of our approach is that mCRL2 is primar-
ily an explicit-state model checker, which limits its ability to reason symbolically
about send/receive behaviour. Nonetheless, mCRL2 also comes with a symbolic
back-end [NWG18]| that, at the time of writing, can handle specifications of lim-
ited complexity [lps]. We already have some preliminary results on reasoning
symbolically about process-algebraic models, and are actively collaborating with
the developers of mCRL2 to improve this.

7.6 Related Work

There are many modern concurrency logics [DYDG'10, SB14, SBP13, TDB13,
NLWSD14, Fen09, RPDY G14] that provide protocol-like specification mechanisms,
to formally describe how shared state is allowed to evolve over time. Notably,
Sergey et al. [SWT17] employ this notion in a distributed setting, by using state-
transition systems combined with invariants as abstractions for the communication
behaviour of distributed programs. All these program logics are however purely
theoretical, or can at best semi-automatically be applied via a shallow embedding
in Coq. Our approach distinguishes itself by focusing on usability rather than
expressivity and targets automated concurrency verifiers instead, like the combi-
nation of mCRL2 and Viper.

Francalanza et al. [FRS11| propose a separation logic for message passing pro-
grams, where the assertion language has primitives for expressing the contents of
communication channels. However, their approach circumvents the need to rea-
son about different thread interleavings by targeting deterministic code, thereby
sidestepping an important issue that we address: most problems in realistic dis-
tributed programs are the result of intricate thread interleavings. Lei et al. [LZ14]
propose a separation logic for modular verification of message passing programs.
They achieve modularity via assume-guarantee reasoning, but thereby require
users of the logic to manually specify thread interference, which is often non-trivial
and non-intuitive. Villard et al. [VLCO09] propose a similar approach also based
on separation logic, but here the main focus is on transferring heap ownership
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between threads, using message passing techniques.

Also the field of session types is related [HVK98, GVR03, HMM*12, HHN*14,
CDCPY15|, which are a well-studied type discipline for describing protocols of
message passing interaction between processes over communication channels (i.e.,
sessions). Likewise to our approach, these protocols are specifications of the com-
munication behaviour of processes, and are usually expressed using process alge-
bra, most often (variants of) the m-calculus. However, our approach has a slightly
different aim: it uses process algebra not only to structure the communication be-
haviour, but also to reason about it, and to combine this reasoning with well-known
deductive techniques for concurrency verification (viz. concurrent separation logic)
in a sound and practical manner.

This chapter builds upon our earlier work [OBG*17, OBH16, ZS15| (presented in
Chapters 4 and 5), in which process-algebraic abstractions are used to describe
how the heap evolves over time in shared-memory concurrent programs (befitting
the notion of protocols given earlier). However, in this chapter the abstractions
have a different purpose: they instead capture message passing behaviour in a
distributed setting. Our abstraction language is therefore different, for example
by supporting summation and primitives for communication. Furthermore, in
contrast to earlier work, this approach allows to use the result of process-algebraic
analysis at intermediate points in the proof derivation of a program, via the novel
query program annotation.

7.7 Conclusion

This chapter demonstrates how a combination of complementary verification tech-
niques can be used to reason effectively about distributed applications, by natu-
rally combining data-oriented reasoning via deductive verification, and temporal
reasoning using algorithmic techniques. The approach is illustrated on a small, but
intricate example. Our technique uses CSL to reason about data-centric properties
of message passing programs, which are allowed to have shared state, and combines
this with standard process-algebraic reasoning to verify properties of inter-thread
communication. This combination of approaches is proven sound using the Coq
theorem prover, and can easily be extended, e.g., to handle asynchronous- and
collective communication (like barriers and broadcasts), as well as message loss
and duplication.

7.7.1 Future Work

As future work, we plan to extend process-algebraic reasoning to deal with a
reasonable subset of MPI [Mes|, with the goal to develop a comprehensive verifi-



7.7. Conclusion 229

cation framework that targets real-world programming languages. This includes
handling replicated processes [PPE04]. Moreover, we are actively collaborating
with the mCRL2 developers to improve support for symbolic reasoning about
process-algebraic models. We also plan to investigate the possibility to automat-
ically extract models from program code. Finally, we will apply our approach on
bigger, industrial case studies.
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CHAPTER 8

Conclusions and Perspectives

Ensuring the behavioural correctness of parallel, concurrent and distributed soft-
ware is notoriously difficult. This is because the number of possible system be-
haviours of such software is typically exponential in the number of concurrent
sub-systems (e.g., threads, or distributed agents). It is therefore essential that
developers of such complex systems are aided by formal methods, supported by
mechanical tools, that are able to manage all these possible concurrent behaviours.

This thesis contributes towards such formal methods and tools, and in particular
towards deductive verification. Deductive verifiers consider a behavioural specifi-
cation of the software system, written in a program logic, and aim to prove that
the code implementation adheres to this specification. The work in this thesis
builds on a particular program logic that is specific for reasoning about concur-
rent heap-manipulating programs, named Concurrent Separation Logic (CSL).

In particular, this thesis addresses the challenge of verifying global behavioural
properties of concurrent software, in a reliable and practical manner, which is,
despite tremendous progress in recent years on both the theory and practice of
CSL-based concurrency verification, still an open and active challenge.

Part I of this thesis contributes the first machine-checked CSL proof of a real-world
parallel graph algorithm, called parallel nested depth-first search (NDFS); an algo-
rithm used for multi-core LTL model checking, for example by LTSMIN. Parallel
NDFEFS is a parallel algorithm for finding accepting cycles in automata: cycles that
contain at least one state that is marked as being “accepting”. We verified sound-
ness (only true accepting cycles are reported) and completeness (the algorithm
returns an accepting cycle if one exists) of parallel NDFS, using the VerCors con-
currency verifier, for any input automaton and with any number of threads. This
verification opens-up new possibilities for the mechanical verification of parallel
graph algorithms: the same approach may be reused to verify other algorithms,
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like partial-order reduction or algorithms for parallel SCC decomposition.

The global behavioural properties of parallel NDF'S could all be specified as global
invariants. However, in many practical scenarios the properties-of-interest take
the form of transition systems (locking protocols for example, or the message
flow through distributed agents), which are difficult to specify in terms of global,
first-order logic invariants. Part II of this thesis contributes an abstraction ap-
proach that allows specifying such properties more easily, in the context of shared-
memory concurrent programs. This approach allows specifying concurrent pro-
gram behaviour globally, as a process-algebraic model, and to thread-modularly
prove that the code implementation adheres to this global behavioural specifi-
cation. This shared-memory abstraction approach is (i) formalised and proven
sound using the Coq proof assistant, (ii) implemented as part of VerCors, and
is (iii) demonstrated on various verification examples, including a leader election
protocol, as well as a bigger case study from industry, concerning the formal veri-
fication of a safety-critical traffic tunnel control system that is currently in use in
Dutch traffic.

Process algebra have extensively been used over the last decades for the specifica-
tion and verification of communicating systems. Part I1I of this thesis therefore
investigates how our abstraction approach can be adapted to specify and verify
distributed software, instead of shared-memory concurrent software. Distributed
systems typically deal with computation (data) as well as communication (control-
flow). We contribute a verification technique that combines deductive verification
(of data properties) with model checking (of control-flow properties), which are,
by nature, complementary verification techniques. More specifically, the commu-
nication behaviours of distributed threads are specified as a process algebra, while
their computational behaviours are specified using CSL. Our approach allows com-
bining the results of deductive verification and model checking, and thereby makes
a step in bridging the program logic and model checking communities. The ap-
proach has been formalised and proven sound using the Coq proof assistant, and
has been demonstrated on a small, yet intricate, verification example.

8.1 Contributions

Altogether, this thesis makes a major step forward towards the practical and re-
liable verification of global behavioural properties of real-world concurrent and
distributed software. The techniques proposed in this thesis are: reliable, by hav-
ing mechanically proven correctness results in Coq; are expressive, as they are
modular, compositional, and build on mathematically elegant structures; and are
practical, by being implemented in automated concurrency verifiers.

The exact contributions are listed below, explicitly, and are connected to the three
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research questions given earlier, in the introduction.

8.1.1 Automated Verification of Parallel NDFS

Chapter 3 of this thesis answers RQ 1:

How can concurrent separation logic be used to specify and mechanically verify
parallel graph-based algorithms for model checking?

This question is answered in terms of the following contributions:

e We investigated the possibility to mechanically prove soundness and com-

pleteness of the parallel Nested Depth-First Search (NDFS) graph algorithm.
While doing this, we reformulated the original correctness proof of this al-
gorithm, to a format that can be encoded and proven with CSL.

We encoded the graph algorithm and its specification in VerCors—a con-
currency verifier that uses CSL as its logical foundation—and mechanically
proved correctness of the algorithm. To the best of our knowledge, this is
the first mechanically verified parallel graph algorithm.

We used this mechanised correctness proof to easily prove various optimisa-
tions of PNDFS, namely: the all-red and early cycle detection extensions.

8.1.2 Abstractions for Shared-Memory Concurrency

Chapters 4-6 of this thesis answer RQ 2:

How can global behavioural correctness properties of shared-memory concur-
rent programs be specified and mechanically verified, by means of abstraction?

This question is answered in terms of the following contributions:

e We developed an abstraction technique for specifying complex behaviours of

concurrent programs, at a global level (see Chapter 4). This technique builds
on CSL, and uses its separating conjunction to allow to thread-modularly
prove that a program refines its process-algebraic specification.

We have proven soundness of this abstraction approach, and presented the
formalisation in Chapter 5. This soundness argument has been fully mecha-
nised using the Coq proof assistant, to increase the confidence of its correct-
ness.
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e We have illustrated the practical applicability of our approach on various
verification examples and case studies. Chapter 4 demonstrates it, among
other examples, on (i) the classical Owicki-Gries example, (ii) a concurrent
locking protocol, (iii) a program that calculates the GCD of two positive
integers concurrently, and (iv) on a classical leader election protocol that
is implemented on a shared-memory system of message passing. Moreover,
Chapter 6 demonstrates the approach on an industrial, safety-critical case
study, concerning the formal verification of a traffic tunnel control system.

8.1.3 Abstractions for Message-Passing Concurrency

Chapter 7 of this thesis answers RQ 3:

How can the strengths of deductive and algorithmic verification soundly be
combined, to specify and mechanically verify global behavioural properties of
distributed message-passing software?

This question is answered in terms of the following contributions:

e We developed an abstraction technique for specifying message passing be-
haviour of distributed programs with send/recv primitives (see Chapter 7).
This abstraction technique extends CSL with logical constructs that allow
to deductively prove that a message passing program soundly refines its ab-
stract model. The models are specified as process algebra—a widely-used
language for specifying distributed program behaviour.

e We combined this abstraction approach with model checking, by allowing to
use a model checker, mCRL2 in this case, to analyse the models, to indi-
rectly reason globally about the communication behaviour of the modelled
program. The deductively established refinement relation between the pro-
gram and its model allows the results of this reasoning to be used in the
deductive proof of the program (see Chapter 7 for details).

e We have mechanically proven soundness of our abstraction technique, by
encoding all proof steps in the Coq proof assistant. See Chapter 7 for the
formalisation. We have, moreover, demonstrated the approach on a simple
but intricate verification example.

8.2 Discussion and Future Directions

We see several extensions and improvements of the current work for future research.
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8.2.1 Verifying Parallel Graph Algorithms

This thesis contributes the first automated deductive verification of a parallel
model checking algorithm. The verification has been done using VerCors, by en-
coding the algorithm in PVL, which is a Java-like object-oriented toy language de-
signed by the developers of VerCors. It would be interesting to investigate whether
the verification can be brought closer to an actual real-world programming lan-
guage, for example by verifying the efficient C implementation of parallel NDFS
that LTSMIN uses. Of course, this would require the automated concurrency ver-
ifier to be able to deal with all the intricacies of the semantics of (concurrent) C,
e.g., weak /relaxed memory models, which is relatively unexplored at the time of
writing. Exploring these would also be an interesting direction of research.

One could also explore the verification of other parallel algorithms for graph ex-
ploration or model checking. An interesting candidate may be the multi-core,
on-the-fly SCC algorithm of Bloemen et al. [BLP16, BBDL118, Blo19], based on
the classical sequential SCC algorithms of Tarjan [Tar71l] and Munro [Mun71].
Another candidate could be the extension of parallel NDFS with subsumption for
timed automata [LODT13]. Compared to the other suggestions of future work
in this section, this particular direction of research could be picked up relatively
easily by interested researchers, since it may benefit from the approach discussed
in Chapter 3 as well as reuse several of our verification components.

It may also be interesting to extend our parallel NDF'S verification to the verifica-
tion of a full-fledged (executable) parallel LTL model checker. Even though several
sequential model checkers have been verified, no full verification of a parallel model
checker currently exists. One possible way to realise this, is to do the actual code
verification with an automated verifier like VerCors or VeriFast, and prove the
underlying meta-theory in an interactive proof assistant like Coq or Isabelle.

Finally, in this direction of research, it would also be worthwhile to construct
a verification stack/library that contains common subtasks for verifying paral-
lel graph algorithms. Such a library could for example contain generic methods
for proving termination, for thread coordination and cooperation, for graph ma-
nipulations and representations, and for standard search methods over graphs,
like BFS and DFS. Most of these components are currently implemented using
auxiliary ghost state, as discussed in Chapter 3. To construct a more general
verification framework, one could for example automatically generate the required
ghost state. Wang et al. [WCMH19] already propose general techniques in Coq
for verifying sequential graph-manipulating programs in a separation logic setting.
Perhaps these techniques can be lifted to a concurrent setting, and be applied in
automated concurrency verifiers like VeriFast and VerCors.
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8.2.2 Program Abstractions

Parts IT and III of this thesis contribute abstraction techniques for specifying and
verifying shared-memory and message passing concurrent programs. This line of
work can be extended in various ways.

Firstly, the process-algebraic models currently have to be defined manually. It
would be a valuable contribution to this work, to be able to automatically extract
program models from the code, or at least partially. In order to achieve this,
it might be worthwhile to investigate the related line of work on Session Types.
Castro et al. [CHJ*19], for example, are able to automatically extract process-
algebraic communication protocol descriptions (i.e., sessions) out of distributed
Go programs. Session Types, on the other hand, currently do not allow to analyse
such protocol descriptions, to conclude data-oriented properties over the program,;
something that our work is able to do. The combination of our approach with
Session Types would therefore be an interesting combination to further explore.

Secondly, the presented abstraction approach only supports safety properties at
the moment. This is because the current approach uses process algebra as a spec-
ification language to give an over-approximation of the program behaviour. In
order to preserve liveness properties, one would have to establish that every trace
in the process-algebraic model has a corresponding behaviour in the modelled
program. This involves proving termination on the program level, which in com-
bination with concurrency is an interesting, but also a very challenging, field of
research [RPDYGS16].

Thirdly, the main contribution of our abstraction approach is its ability to con-
struct a refinement relation between a program and its model. These refinement
relations are proven thread-modularly, in a deductive manner, by using reasoning
techniques that extend CSL. Even though this approach allows analysing the mod-
els algorithmically, e.g., using a model checker, such analysis is currently not done
in a modular way. mCRL2 would, for example, still need to linearise these models
in order to be able to analyse them. Even though model checkers generally come
with state space minimisation techniques to combat state space explosions (e.g.,
confluence reduction, bisimulation minimisation, etc.), it would still be interesting
to investigate how our work combines with work on compositional /modular model
checking [CLM89, KV9g].

Fourthly, one may argue that our approach is a fairly “heavyweight” approach
to software verification, by requiring heavy machinery, like CSL, model checking
and process algebra, for specifying and analysing program behaviour. It would be
very interesting to investigate how such heavyweight verification approaches could
blend more naturally with lightweight approaches, like for example unit testing and
integration testing, which are used structurally, every day, by software engineers
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in industry. One example of research in this direction, is the generation of test
cases from JML specifications, as is done by JMLUnitNG [ZN11]. Following these
ideas, the work in this thesis could potentially be combined with model-based
testing, by using JTorX [Bell0] for example, to derive test cases from process-
algebraic models (JTorX already has an mCRL2 front-end). This would allow one
to use deductive verification wherever needed (say, to verify safety-critical software
components), and derive test cases for the less safety-critical parts of the system,
in a more lightweight manner. Compared to the other suggestions of future work
in this section, this direction of research could be picked up relatively easily.

Yet another possible direction of future research would be to investigate alter-
native modelling formalisms for the program abstractions. Penninckx et al., for
example, use petri-nets to model the input/output behaviour of sequential pro-
grams [PJP15], in the context of VeriFast (the theory of this approach has later
been lifted to the concurrent setting [PTJ19], via an encoding into the Iris frame-
work). Our abstraction approach may potentially extend well to petri-nets (e.g.,
because the mCRL2 language allows, in theory, a faithful translation of petri
nets [GMR™07]).

Finally, it would be interesting to investigate whether our refinement technique
can be used to derive/generate source code from program models [HJ18]|. Such
an extension would bring our verification approach closer to model-based design;
a software development discipline in which one starts with an abstract model of
the software system, that is slowly refined or synthesised into more concrete mod-
els, until eventually the actual code implementation is derived. Our verification
technique might fit well into such a discipline, which may make the overall ap-
proach more lightweight, as well as more accessible to actual industrial software
developers.

8.2.3 Recommendations for Software Engineers

Let us finish by giving recommendations for software engineers/operators for ap-
plying or incorporating the proposed techniques into their operational processes.

In practice it often happens that software is intended to follow certain patterns,
protocols or state machines, like in the traffic tunnel control system discussed
in Chapter 6. Such protocols or state machines are typically specified informally
during the software design phase, and are then hard-coded in the programs’ source
code during the software development phase. This raises two questions, which are
particularly important in the case of safety-critical software: (i) Is the underlying
protocol consistent? And (ii) does the software correctly implement the intended
protocol? The techniques proposed in this thesis allows one to address both.
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More specifically, the proposed techniques allow to make formal specifications of
protocols, for example by using process algebra, and allow to relate these to the
programs’ source code. For example, in Chapter 6 we formalise the state machine
description of a traffic tunnel control system in mCRL2, and relate this formal
mCRL2 model to the source code using the techniques of Chapters 2, 4 and 5.
This helped to identify intricate, problematic behaviour that would otherwise be
very hard to identify, due to the high complexity of the underlying protocol.

However, at the moment the proposed techniques cannot be applied without exper-
tise or prior knowledge in formal verification, process algebra and program logics.
Follow-up research is needed to make automated deductive verification accessible
to software engineers without such prior knowledge, for example in generating pro-
gram annotations, inference of contracts (pre/post-conditions), and automatically
deriving formal specifications out of documents of informal requirements (result-
ing from the requirement engineering phase). Nevertheless, in projects concerning
safety-critical software, it may be worthwhile to hire an engineer in formal soft-
ware verification, as formal techniques can help to precisely specify the software
systems’ behaviour, and to handle the large complexity of these specifications.

8.3 Outlook

Roughly twenty years ago, software verification was a pen-and-paper activity [Fill1],
that was only feasible for very simple, sequential programs. In contrast, nowadays

we have formal tools and techniques that are mature enough to be able to verify

complex concurrent programs and algorithms, as is demonstrated by this thesis.

Even though deductive verification is not yet a standard, integral part of industrial
software development, by still requiring expert knowledge in formal methods, such
techniques do come closer to real-world programming languages and are able to
reason about increasingly complex language features, like concurrency.

There are many promising opportunities to bring deductive verification techniques
closer to the industrial routine of software development, and thereby to increasing
the reliability of future software systems that we will use every day, either directly
or indirectly, sometimes consciously and more often unconsciously.
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APPENDIX A

Auxiliary Definitions for Chapter 5

A.1 Processes

This section provides auxiliary definitions and extra information regarding process-
algebraic models, accompanying Section 5.3 of Chapter 5.

A.1.1 Syntax

Definition A.1.1 (Free variables in process expressions). The set of free variables
in a process expression is defined in terms of a function fve(-) : ProcEzpr —
gProcVar “in the following way:

Definition A.1.2 (Free variables in process conditions). The set of free variables
in a process condition is defined in terms of a function fvp(-) : ProcCond —
gProcVar in the following way:

fvp(true)
fvp(false)

fup(—b) =
fup(b1 A b2)
)
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fup(er < ez) = fve(er) Ufve(es)

Definition A.1.3 (Free variables in processes). The set of free variables in a
process is defined in terms of the function fvy(-) : Proc — 2F7°¢Var “in the following
way:

)
)
) (
p(P - Q) (P)Utvp(Q)

fup(P + Q) = fup(P) Ufvp(Q)
) £ fup(P) U fvp(Q)
) (P)Utvp(Q)
) (P)

A.1.2 Semantics

Let [+],[-],[=],[<],- - - be the meaning of the operators +, —, =, <, ... that are
used in the expression language of processes, in the domain of values ( Val).

Definition A.1.4 (Denotational semantics of process expressions). The evalu-
ation function [-]e- : ProcExzpr — ProcStore — Val defines the denotational
semantics of expressions in the following way.

Definition A.1.5 (Denotational semantics of process conditions). The evalua-
tion function [-]p- : ProcCond — ProcStore — Prop defines the denotational
semantics of conditions in the following way.

[true]po = true

[false]po = false

[[ﬁb]] bO é —||Ib]] bO
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[[bl A\ bg]]bo £ [[bl]]bg N [[bz]]ba
[er = e2]b0 £ [=]([er]eo, [e2]b0)

[61 < GQHbO' £ [[<]]([[61]]60, [[GQHbO')

We often simply use the notations [e]o and [b]o instead of [e]eo or [b]po, respec-
tively. Moreover, the notation [e, ..., e,]o abbreviates [eg]o, ..., [es]o.

A.2 Programs

A.2.1 Syntax of Programs
A.2.1.1 Free Variables

Definition A.2.1 (Free variables of expressions). The set of free variables in
(program) expressions is defined in terms of the function fvg(-) : Expr — 2V as
follows.

Definition A.2.2 (Free variables in conditions). The set of free variables in (pro-
gram) conditions is defined in terms of the function fvg(-) : Cond — 2V as
follows.

We often use the notations fv(E) and fv(B) instead of fvg(E) or fvg(B), respec-
tively, thereby overloading the notation fv(-). Moreover, the set of free variables
fvag (IT) in abstraction binders II is defined in the following way.



244 Appendix A. Auxiliary Definitions for Chapter 5

Definition A.2.3 (Free variables in abstraction binders)

fvag(Il) £ U fve(E;) for MM={xzo+~ Eo, -+ ,xn— En}

Definition A.2.4 (Free variables in commands)

. The set of free variables of a
command is defined in terms of the function fvc(-) : Cmd — 2V, as follows.

fvc(skip) £

fve(X = F) &

fue(X == [E]) =
fve([E1] := B
fVc(Cl; Co

fve(X :=alloc £

X} Ufve(E)
X} Ufve(E)
ve(Er) U fve(E)
ve(Cy) Ufve(Co)
£ {X} U fve(E)

—h—h,—H,—MS

= fv C(C)
{X} U fVAB(H)
{X}ufve(C)

fvc(X := process p over II) £

fvc(action X.a do C) £

Definition A.2.5 (Modified variables in commands)

. The set of modified vari-
ables of a command is defined in terms of the function mod(-) : Cmd — 2V" | in
the following way.

mod(skip
mod(X := FE
mod(X

od(C7) Umod(Cs)
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mod(X := alloc F) = {X}

mod(dispose E) =
mod(if B then C1 else C;
mod(while B do C
mod(Cy || Cp) =

) =
) =
)
)
)
mod(atomic C) =
) =
) =
)
)
) £

[I>

>

od(C)
od(C1) Umod(Cs)
mod(C
mod(C
& (x}
mod(action X.a do C) £ mod(O)
mod(inact C) £ mod(C’)
mod(finish X

0
mod(C4) U mod(C?)
m
m

||>

||>

)
mod(inatom C )

mod(X := process p over II

Naturally, the set of modified variables in any command C' is a subset of the set
of free variables in C:

Lemma A.2.1. For every C € Cmd it holds that mod(C) C fvc(C).

A.2.1.2 Substitution

Definition A.2.6 (Substitution in expressions). Substitution E[X/E'] of a vari-
able X with E' within E is defined as follows, by structural recursion on E:

n[X/E] &£n
E ifX=Y

VIX/E] £ {Y fXAY

(E1+ E2)[X/E] £ E\[X/E] + E2[X/E]
(Ey — E»)[X/E] £ E\[X/E] — E3[X/E]

Definition A.2.7 (Substitution in conditions). Substitution B[X/E] of a variable
X with E within B is defined as follows, by structural recursion on B:
true[X/E] £ true
false[X/E] = false
(-B)[X/E] = ~(B[X/E))
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>

(Bl /\BQ)[X/E}
(E1 = E3)[X/E]
(El < EQ)I:X/E}

Bi[X/E] A B2 X/ E]
E\[X/E] = E5[X/E]
E\[X/E] < Eo[X/E]

1>

lI>

Definition A.2.8 (Substitution in abstraction binders).

H[X/E]) £ {xo — Eo[X/E], - ,xn — E,[X/E]}
for M={xg— Ep, - ,z, — E,}

Lemma A.2.2. The following basic properties hold for substitution:
1. For any X, E and F’, if X € fveg(E), then E[X/E'] = E.
2. For any X, E and B, if X & fvg(B), then B[X/E] = B.
3. For any X, E and 11, if X & fvag(Il), then II[X/E] =11.

A.2.1.3 User Programs and Well-Formed Programs

Any command C is a user command if C' does not contain subprograms of the
form inatom C’ or inact C’ (for any C”). Recall that these two commands are
runtime syntazr, and only exist for runtime purposes.

Definition A.2.9 (User command). Any command C is defined to be a user
command, if C : user, which is inductively defined as follows.

skip : user X :=FE : user X :=[E] : user [E1] := E5 : user
C1 : user Cs : user .
X :=alloc E : user dispose FE : user
C1;Cy : user
Cy : user Cy : user C : user Cy : user Cy : user
if B then C; else C5 : user while B do C : user Cy || Cy : user
C : user C : user
- X := process p over Il : user -
atomic C' : user action X.a do C : user

finish X : user

Any command C is defined to be basic, if C' does not contain atomic subpro-
grams, or specification-only constructs. This notion of basicality is captured by
the following definition.
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Definition A.2.10 (Basic command). Any command C' is defined to be a basic
command, if C : basic, which is inductively defined as follows.

skip : basic X := E : basic X = [E] : basic [E1] := E5 : basic
C : basic C5 : basic . . .
- X :=alloc F : basic dispose FE : basic
C1;Cy : basic
C1 : basic Cs : basic C : basic
if B then C; else O : basic while B do C : basic

C1 : basic C5 : basic
Cy || Cy : basic

Any command C' is defined to be well-formed, if all C’s action sub-programs (i.e.,
the C"’s in subprograms of the form action X.a do C’ and inact C’ inside C) are
basic.

Definition A.2.11 (Well-formed command). Any command C is defined to be a
well-formed command, if C' : wf, which is inductively defined as follows.

skip : wf X =E:wf X = [E]: wf [E1] := By = wf
Cq :wf Cy : wf
L 2 W X :=alloc E : wf dispose F : wf
C1;Cq - wf
Cy :wf Cy : wf C :wf Cy :wf Cy : wf
if B then C; else C5 : wf while B do C : wf Cy || Cy = wf
C :wf C :wf
- - X := process p over II : wf
atomic C : wf inatom C : wf
C' : basic C': basic
_— finish X : wf
action X.qa do C : wf inact C : wf

From the above definitions it follows that the set of basic programs is a subset of
the set of all well-formed programs:

Lemma A.2.3. For any command C, if C : basic, then C : wf.
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A.2.2 Semantics of Programs

A.2.2.1 Denotational Semantics

Definition A.2.12 (Denotational semantics of expressions). The denotational

semantics of expressions is defined as the function [-]g- : Expr — Store — Val,
as follows.

[n]es =n
[z]es = s(x)
[[El + EZ]]ES H+H([[E1HE57 HEQ]]ES)

[E1 — Ex]es = [-1([Enles, [Ea]es)

>
®

(>

Definition A.2.13 (Denotational semantics of conditions). The denotational se-

mantics of conditions is defined in terms of the function [-]g- : Cond — Store —
Val, as follows.

[true] gs = true

[false]gs = false

ﬂ—‘B]]BS ﬁ[[B]]BS
[[Bl AN Bg]]Bs £ [[31]]58 AN [[BQ]]BS
[E) = Ea]gs = [=]([E1]es, [Eales)
[[El < EQ]]BS £ [[<]] ([[Eﬂ][_:s, [[EQ]]ES)

1>

>

In this thesis we often use the notations [F]s and [B]s instead of [E]gs or [B]gs,
for denoting the evaluations of E and B, respectively.

The structural operational semantics of programs is fully defined on page 139, as
Definition 5.3.5, and is therefore not repeated here.

A.3 Assertions

Definition A.3.1 (Free variables in assertions). The set of free variables in as-
sertions is defined in terms of the function fva(-) : Assn — 2V by structural
recursion on the first argument, in the following way.

fua(B) 2 fug(B)
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fva(VX.P) £ fua(P) \ {X}
Fea(3XP) £ fua(P)\ {X)
fva(P Vv Q) 2 fua(P) Ufva(Q)
fva(P x Q) = fva(P) Ufva(Q)
fva(P =+ Q) £ fua(P) vaA( )
) £

UfVA

i€l
fVA(El ‘l>t EQ) é fVE(El) U fVE(EQ)
fua(Proc, (X, p, P,11)) 2 {X} Ufvag(Il)

fva(kicrP;

Definition A.3.2 (Substitution in assertions). The substitution of a variable X
for an expression E inside an assertion P is written P[X/E], and is defined by
structural recursion on P, as follows.

VY. P ifX=Y
(VY.P)[X/E] & { PIX/E)) Z,;X#Y
Jy.P ifX=Y
(3Y.P)[X/E] & { PIX/E)) Z;X#Y
(PV Q)X/E] 2P| X/E | v Q[X/E]
(P * Q)[X/E] 2 P|X/E] + Q[X/E]
(P = Q)[X/E] = P[X/E] « Q[X/E]
(kierPi)[X/E) £ *e1(Pilz/E))
(E1 <5 E2)[X/E] £ Ei[X/E] % E3[X/E]
Proc, (Y, p, P,II)[X/E] £ Proc, (Y, p, P, II[X/E])
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APPENDIX B

Auxiliary Definitions for Chapter 7

B.1 Programs

B.1.1 Syntax of Programs

Definition B.1.1 (Free variables of expressions). The functions fve(-) : Expr —
2V and fvp(-) : Cond — 2V" define the set of free variables of expressions and
Boolean conditions, respectively. These two functions are defined as follows.

fve(v) £ 0
fue(z) = {x}
fve(er +e2) 2 fve(er) Ufve(es)
fve(er — e2) 2 fueler) Ufve(ez)
fvp(true) 2 ()
fvp(false) = ()
fup(=b) 2 fun(0)
fvp(b1 A ba) = fvp(br) U fvp(ba)
fup(er = ) = fve(er) U fve(es)
fup(er < e2) = fue(er) Ufve(ea)

However, in the thesis we overload the notation fv(-), by simply writing fv(e) and
fv(b), instead of fve(e) and fvy(b), respectively. Moreover, we sometimes use the
notation fv(es,...,e,) to abbreviate Ul ,fv(e;). As usual, any expression e or
condition b is defined to be closed if fv(e) = 0 or fv(b) = 0, respectively.

251
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Definition B.1.2 (Substitution of expressions). Substitution of a variable = by
an expression e within an expression e’ or Boolean condition b, written e'[x/e] and
blx/e], respectively, is defined as follows.

v[z/e] £ v
s )e ifr=y
vhelel = {y ifr#y
(e1 +e)[z/e] = exfx/e] + eaz/e]
(e1 — e2)[z/e] = erlx/e] — eafz/e]
true[z/e] £ true
false[z/e] £ false
(mb)[z/e] = = (blz/e])
(by Abg)[w/e] & by[w/e] A balx/e]
(e1 = e2)[z/e] = er[w/e] = ealz/e]
(e1 < ea)[z/e] = er[z/e] < ealx/e]
The notation e[xy,...,2,/e1,...,e,] abbreviates e[z /e1] - - - [, /e,], and likewise

for (Boolean) conditions.

B.1.2 Denotational Semantics

Definition B.1.3 (Store update). Given any store o, the operation olx +— v
gives a new store that is equal to o, but with x mapping to v.

N v ife=vy
olz —v] £ Xy € Var. {o’(y) ifrty

The shorthand notation o[zy — v1,...x, — v,], i.e., a series of store updates, is
sometimes used to abbreviate the store o[z — v1] - [, — vp].

Definition B.1.4 (Denotational semantics). The denotation semantics [e]ec and
[blso, of expressions e and Boolean conditions b, respectively, is defined as follows.

[v]ec = v

[z]eo £ o(x)
[er + ea]eo = [+] ([e1]eo, [e2]e0)
[er — e2]eo & [ ]]([[61]]60 [e ]]ea)
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[true] o = true

£ false

[false] po
ﬂﬁb]]bO' é ﬁ[[b]]bO'
[[bl A\ bg]]bO’ £ [[bl]]bO’ A\ [[bg]]ba'

[er = e2]bo 2 [=]([e1] e, [e2]e0)
[er < ealbo = [<]([e1]eo, [e2]e0)
However, in the thesis, we simply write [e]Jo and [b]o instead of [e]ec and [b]po,

respectively, thereby overloading the [-]o notation. Moreover, we often simply
write [ -] instead of [-]o, if the expression/condition at the - is closed.

Lemma B.1.1. The following standard properties hold for substitution. The same
properties also hold for substitution within conditions.

1. For any x, e and €, if x & fv(e), then e[z /e'] = e.
2. For any z, ey, ex and o, it holds that [e1[z/es]]o = [e1]o|x — [e2]o].

B.1.3 Operational Semantics
Definition B.1.5 (Locked commands). Any command C is defined to be locked
if locked(C), where the locked predicate is defined as follows.

locked(CY) locked(CY) locked(C?)
locked(inatom C) locked(C1; Cs) locked(C1 || Ca) locked(C1 || C2)

Definition B.1.6 (Small-step operational semantics of programs).

(Ola h7 0')
(017 027 h> U)

(C1, 1, 0")
(Cia 027 hl70/)

. cmp —>l
(Sklp; Ca h, 0) E— (Cv h, U) 1
—

(2 := e, h,0) 5 (skip, h, o[z — [e]o])

(x :=[e], h,0) UL (skip, h, o[z — h([e]o)])

[ei]o € dom(h)

([e1] = e2, h, o) == (skip, h[[er]o = [e2]o], o)

[b]o
(if b then O else Cy, h,0) 2 (C1, h, o)
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—[b]e
(if b then Oy else Cy, h,0) —25 (Cy, h,0)

(while b do C,h,0) —2 (if b then (C;while b do C) else skip, h, o)
v 5{ dom(h)
(z := alloc e, h, o) —2 (skip, h[v — [e]o], ofz — v])
—locked(Cy)
(C1,h.0) = (CL, 1, o)
(dispose e, h, o) —25 (skip, h — [e]o, o) ;
(Cl ” C27hva) — (O{ H OQ’h/’OJ>

—locked(Ch)

(Ca,h,0) = (C4 1, 0")
(Cy || Cayhy0) =5 (Cy || Ch, 1, 5")

(skip || skip, h, o) —2s (skip, h, o)

cmp

(atomic C, h,0) — (inatom C, h, o)

(C,h,0)
(inatom C, h, o)

(C' 1 0"
(inatom C’, K, 0")

l
—
l
—

(inatom skip, h, o) LN (skip, h, o)

(send (e1,ez),h,0) (skip, h, o)

recv(v,v’)

((z,y) :==recv, h,o) (skip, h, o[z — v,y — V'])

recv(v,[e] o)
) — (

(r :=recv e, h,o skip, h, o[z — v])

—locked(Ch) —locked(C?>)
endC12), (of o) (Ca,h,o)
(Cy || Cay o) <2222 (0 || €y, b, o)

recv(vy,v2)

(Clahva) (Céah70/)
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—locked(Ch) —locked(C?>)
recv(v1,v2) (CL h, O’/) (027 h, O’)

(Cy || Cay hy o) <2212 ()| € o)

(C1,h,0) sendvrva), (¢4, b, o)

(query b, h, s) LA (skip, h, s)

B.2 Processes
B.2.1 Syntax of Processes

Definition B.2.1 (Free variables of processes). The function fv,(-) : Proc — 2Var
determines the set of free variables in a given process, and is defined as follows.

fvp(P - Q (
fVp(P + Q) 2 fv,(P) Ufv,e(Q)
fvp(P [ @ £ fvp(P (

We overload the fv notation and often simply write fv(P), instead of fv,(P). Again,
fv(Py, ..., P,) is written as shorthand for U?_,fv(F;).

Definition B.2.2 (Substitution in processes). The operation P[xz/e] gives the
process P, but with every occurrence of x substituted for e, and is defined as:

lI>

(1>

elx/e] = ¢
Slx/e] 26

send(ey, e2)[r/e] = send(e1[z/e], ea[z/€])
[z/e]

)
recv(er, ea)[z/e

recv(er[z/e], ea[x/€])
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(>

(?0)[x/e] = ?(blz/e])

(b: P)[z/e] = blw/e] : Pla/e]

(P-Q)[z/e] £ Plz/e] - Qz/e]

(P +Q)[z/e] £ Plz/e] + Q[z/e]

(P Q)lx/e] £ Plz/e] || Qz/e]

A )2y P ife=y

Q%P””d‘{zupuwb faty
P*[z/e] & Plx/e]*

x/e

We sometimes write Plzy,...,zn/e1,. .., %,] as ashorthand for Plxi/e1] - [z, /en].

B.2.2 Axiomatisation

The following theorem states soundness of standard axioms of our process algebra
language.

Theorem B.2.1. The following bisimulation equivalences hold.

e-P=P false: P>~ ¢
P.expP by :by: PXby Aby: P
§-Px§ Y, P2 Plx/v]+ 5, P
P-(Q-R)=(P-Q)-R Y2 (P+Q)=E, P+3%,Q
P+rQQ=Q+P 3. P)- Q=% (P-Q) ifx & Q)
+(Q+R = (P+Q) +R S, b:P2b:Y, Pifxéfu(b)
P+Px=P Y. P2 Pifx &fv(P)
P+6x=P e Xe
(P+Q)-R=(P-R)+(Q-R) =)
PlQ=Q|P prx pr
PlIR=F[Q)IR pPr=(P-P')+e
e|| PP pP*.p* = p*
Pl6=P.s (P+Q) =P -(Q- P

true: P P pY~p.pw
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B.3 Assertions

Definition B.3.1 (Free variables in assertions). The function fv,(-) : Assn — 2Var
determines the set of free variables in a given assertion, and is defined as:

fva(b) = fup(b)

fva(Va.P) £ fva(P) \ {z}

fv.(3z.P) £ fv,(P) \ {z}
fva(PV Q) 2 fv,(P) Ufv,(Q)
fva(P * Q) = fva(P) Ufva(Q)
fva(P —+ Q) £ fvs(P) Ufva(Q)
fva(er < e2) = fve(er) U fve(ea)

fva(Proc(P)) £ fv,(P)

fva(P ~ Q) = fv,(P) Ufv,y(Q)

As before, we overload the fv operation and often simply write fv(P) instead of

fva(P).

Definition B.3.2 (Substitution in assertions). The substitution operation P|x/e]
replaces every occurrence of x with e in the assertion P, and is defined as follows.

s VY P ifz=y
(Vy.P)[z/e] = {vy,(p[x/e]) fx#y
3y.P fz=y

Jy.(Plz/e]) ifx#vy

(P2
(e1 —x e2)[z/e] & 1 [as/e] . eafz/e]
Proc(P)[z/e] £ Proc(P[z/e])

B.4 Proof Rules

An overview of the proof rules of the program logic is given below. All proof rules
are of the standard form P + Q. Moreover, - P £ true - P is derived and states
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logical validity of P.

true-INTRO false-ELIM COND-DUPL V-INTRO V-ELIM
g g - (P + V.
P F true false - P bEbxD Y0P F Qlz/v]) P 2.9
P Vz.Q P+ Qlx/v]
J-INTRO J-ELIM VoASSOC
P Qlx/v] PE3z.0 y
—_— _— PV VR) - (PV VR
Pt 3x.Q Fu.(PF Qlz/v]) (QVR) = (PveQ)
econM V-ELIM-L V-ELIM-R WEAK
5 P O P Qq R
PVQFOVP PxQFP
PEOIVQ PEO1VQ
*-ASSOC *-COMM - MoNO
- . PEP QKL
Px(Q*R) I (PxQ)*R PxQFQxP PrOFP + O
iy —#-INTRO —%-ELIM
* PxQFR PO xR
VR) -+ \% VR _— —_—
P*(QVR) 4 (PVQ)*(PVR) PrQ R P+QFR

—-SPLIT-MERGE Proc-SPLIT-MERGE

€1y tmy €2 dF €1 iy, €2 k€1 g, €0 Proc(P || Q) 4 Proc(P) x Proc(Q)

FEQ M, ST8lger  FoGtowmrren
~ ~ ~ Y= ~
FP=Q
~-CONG-SEQ ~-CONG-ALT
PxP+Q~QFP - QrP  -Q Px~P+«Q~Q+FP+QrP +Q
Ao CONG-PAR ~-CONG-SUM
PQP/*Q%QIFPHQzP/HQ/ Z%fV(P’Q)

P~QFS,P~%,Q
~~-CONG-COND ~-CONG-ITER ~-COND-TRUE ~X-COND-FALSE

P~QFb:Px~b:Q Px~QFP'~Q* brb:P~P bF-b:P~§

Proc-~

Proc(P) * P =~ Q I Proc(Q)

In addition, all the axiom rules in Appendix B.4 are logically valid if one replaces
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all & equivalences by =, for example - ¢- P =~ P, F ¥, P ~ Plz/v] + 3, P, et
cetera.

Let Models = Heap x Store x Proc be the universe set of models of the logic and
let the denotation [P] £ {(¢,0, P) | t,0, P =P} C Models be the set of models of
the assertion P. Then all entailment rules shown above are sound in the standard
sense:

Theorem B.4.1 (Soundness of the entailment rules).

PFQ = [P] C[Q]

B.5 Program Logic

An overview of the Hoare-triple rules of the program logic is given below. These
rules are all sound as stated by Theorem 7.4.3 (on page 226). The notation e <, —
is shorthand for 3z .e —, x. Furthermore, mod(C) C fv(C) gives the set of free
variables that are written to by C.

HT-FRAME

HT-SKIP TH{P}C{Q}  f(R)Nmod(C) =10

HT-SEQ
IH{P}C:1{Q} HT-CONSEQ
IH{Q}C{R} PEP IH{P}C{Q"} Q'FQ
IH{P}C;C2{R} IH{P;C{Q}
HT-ITE
IHA{Px*b}C1{Q} HT-WHILE
IH{Px-b}Cy{Q} IZHA{P=«b}C{P}
I+ {P}if b then C; else C; {Q} Zt+ {P}while b do C {P = —-b}
HT-ASSIGN HT-READ
x & fv(T) x & fv(Zere)

I+ A{Plz/e]}x:=e{P} IHA{P[z/e]*e—=r e}z :=[e]{Pxe—, ¢}

HT-ALLOC
HT-WRITE T ¢ fV(I, e)

Th{e -} =¢{ee
e Hd=clemdl T Zalloc ez o1 o]




260 Appendix B. Auxiliary Definitions for Chapter 7

HT-DISPOSE
I+ {e 1 —}dispose e {true}

HT-PAR
IHA{P1}C1{Q1} fv(Z,P1,C1) Nmod(Cy) = 0 HT-ATOM
IH{P}C{Q2} fv(Z, P2, Co) Nmod(Cy) =0 true - {P*xZ} C{Q*T}

I A{P1xPa} Oy || Co{Q1 * Qa} I+ {P}atomic C {Q}

HT-SHARE HT_DISIJ F {7)1} C {Ql}
I+T +{P}C{Q} ZHA{P2}C{Q2}

TH{P+T'}C{QxT'} TH{PIVP}C{Q:V Oy}

HT-EX

ITH{P}C{Q} x & tv(C)
I+ {3z P}C{32.Q}

HT-SEND

T+ {Proc(send(ey, ez) - P)} send (e1, es) {Proc(P)}

HT-RECV

x & tv(Z)Ufv(P) y & fv(e)
I+ {Proc(Z, recv(y,e) - P)} x :=recv e {Proc(Ply/x])}

HT-RECV-WILDCARD

x1, w2 & fv(Z) Ufv(P) {z1, 1} N {z2, 92} =0
TF {Proc(S,, ,, recv(yr, ya) - P)} (21, 22) = recy {Proc(Ply /a1 lya/2])}

HT-QUERY
T+ {Proc(?b- P)} query b{Proc(P) = b}
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Samenvatting

Software is diep geintegreerd in de moderne samenleving, niet alleen voor alledaags
gemak en vermaak, maar ook voor taken waarbij veiligheid cruciaal is. Door de
toenemende athankelijkheid van software wordt het steeds belangrijker dat soft-
waresystemen zowel betrouwbaar als correct geimplementeerd zijn met betrekking
tot het beoogde gedrag. Het is echter zeer moeilijk om enige garanties te geven
op de betrouwbaarheid en correctheid van software, omdat softwaresystemen door
mensen worden ontwikkeld die inherent fouten maken. Het kunnen geven van
zulke garanties wordt nog moeilijker gemaakt door de toenemende noodzaak om
meerdere berekeningen tegelijk uit te kunnen voeren. Het tegelijk uitvoeren van
berekeningen wordt concurrency genoemd en zorgt voor veel potentiéle problemen.
Het aantal verschillende manieren en volgordes waarop complexe berekeningen uit-
gevoerd kunnen worden is namelijk meestal astronomisch. Software-ontwikkelaars
hebben daarom formele technieken en gereedschap nodig om te helpen in het be-
grijpen en bevatten van al het mogelijke systeemgedrag.

Dit proefschrift presenteert formele technieken die het mogelijk maken om concur-
rent systeemgedrag beter te begrijpen. We richten ons zich in het bijzonder op
deductieve verificatie, een formele softwareverificatietechniek gebaseerd op wiskun-
dige logica. In deductieve verificatie wordt het beoogde softwaregedrag gespecifi-
ceerd in een programmalogica. Deze specificaties worden vervolgens ingelezen door
verificatiesystemen, die automatisch kunnen bevestigen dat een softwaresysteem
inderdaad, in elk mogelijk scenario, het gespecificeerde gedrag toont.

In dit proefschrift richten we ons specifiek op concurrent separatielogica (CSL), een
gespecialiseerde programmalogica voor het beschrijven van, en redeneren over, con-
current programmagedrag. In de afgelopen jaren is er veel vooruitgang gemaakt
in zowel de theorie van CSL-gebaseerde verificatietechnieken als automatische ve-
rificatiesystemen die deze technieken ondersteunen. Desalniettemin zijn er nog
veel open uitdagingen. De open uitdaging die centraal staat in dit proefschrift is:
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Hoe kan het functionele programmagedrag van concurrent software worden gespe-
cificeerd en geverifieerd op een correcte, degelijke en praktische manier?

Dit proefschrift bestaat uit drie delen, die elk een ander aspect van de bovenge-
noemde uitdaging behandelen.

In Deel I (hoofdstukken 2-3) onderzoeken we hoe CSL gebruikt kan worden om
de correctheid van parallele model-checking algoritmes mechanisch te verifiéren.
Model-checking is een alternatieve softwareverificatietechniek die niet is gebaseerd
op wiskundige logica, maar op het grondig algoritmisch doorzoeken van alle mo-
gelijke systeemgedragingen op potentiéle fouten. Deze algoritmes maken veelal
gebruik van parallellisme om sneller door alle systeemgedragingen te kunnen zoe-
ken, waardoor ze foutgevoeliger worden. Het is echter essentieel dat deze parallelle
model-checking algoritmes zelf correct zijn om een bedrieglijk gevoel van veilig-
heid te voorkomen. Hoofdstuk 3 beschrijft de eerste mechanische verificatie van
een parallel model-checking algoritme, dat nested depth-first search (NDFS) heet.
Deze verificatie is uitgevoerd met behulp van VerCors: een automatisch verifica-
tieprogramma dat CSL gebruikt als onderliggende logische basis. We beschrijven
eveneens hoe dit mechanische bewijs gebruikt kan worden om eenvoudig de cor-
rectheid van verschillende optimalisaties van parallel NDFS te bevestigen.

Deel II (hoofdstukken 4-6) draagt een praktische abstractietechniek bij voor het
verifiéren van globale gedragseigenschappen van concurrent softwaresystemen waar-
bij de verschillende subsystemen communiceren via een gedeeld geheugen. Onze
abstractietechniek is ontwikkeld op basis van het inzicht dat concurrent program-
magedrag moeilijk gespecificeerd kan worden op het niveau van programmacode.
Dit is hoofdzakelijk omdat realistische programmeertalen weinig algebraische ei-
genschappen hebben, bijvoorbeeld vanwege geavanceerde taakconstructies om con-
currency te kunnen implementeren. Onze abstractietechniek maakt het echter
mogelijk om het programmagedrag te beschrijven als een wiskundig model met
een elegante algebraische structuur. We gebruiken hiervoor proces algebra als mo-
delleertaal, waarbij zogeheten acties gebruikt worden voor het abstraheren van
schrijfinstructies voor het aanpassen van gedeeld geheugen. Daarnaast breiden we
CSL uit met logische primitieven die het mogelijk maken te bewijzen dat een pro-
gramma een proces-algebraisch model verfijnd. Onze abstractietechniek is correct
bewezen met behulp van de bewijsassistent Coq en is geimplementeerd in Ver-
Cors. We demonstrereren onze abstractietechniek op verschillende verificatievoor-
beelden, waaronder een klassiek ’leader election’ protocol, alsmede een industriéle
case study betreffende de formele verificatie van een centraal besturingscomponent
van een Nederlandse verkeerstunnel.

Deel TIT (hoofdstukken 7-8) onderzoekt hoe onze abstractietechniek kan worden
aangepast voor het verifiéren van gedistribueerde systemen, waarbij verschillende
subsystemen communiceren door middel van het uitwisselen van berichten. Deze



Bibliography 291

aanpassing gebruikt proces algebra voor het abstraheren van berichtuitwisselin-
gen, in plaats van aanpassingen aan een gedeeld geheugen. Daarnaast onderzoe-
ken we hoe deductieve verificatie gecombineerd kan worden met model-checking.
De motivatie hiervoor is dat deductieve verificatie en model-checking complemen-
taire technieken zijn. Deductieve verificatie is gespecialiseerd in het verifiéren van
datagedreven gedrag, terwijl model-checking gespecialiseerd is in het verifiéren
van controle-georiénteerd gedrag. Deze combinatie is gunstig voor het redeneren
over gedistribueerde systemen, omdat ze zowel computaties als communicatie uit-
oefenen. Onze abstractietechniek is correct bewezen met behulp van Coq en is
geimplementeerd als een handmatige codering in Viper.

Alles samengenomen maakt dit proefschrift een stap voorwaarts richting prakti-
sche, expressieve en betrouwbare verificatie van globale gedragseigenschappen van
concurrent, en gedistribueerde software. De technieken in dit proefschrift zijn be-
trovwbaar omdat ze ondersteund worden door mechanische correctheidsbewijzen
in Coq; zijn expressief omdat ze compositioneel zijn en voortbouwen op wiskun-
dige modellen met een gunstige algebraische structuur; en zijn praktisch omdat ze
ondersteund worden door automatische verificatieprogramma’s.
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This thesis contributes formal techniques for verifying global
behavioural properties of real-world concurrent software in a
sound and practical manner.

The first part of this thesis discusses how Concurrent Separation
Logic (CSL) can be used to mechanically verify the parallel nested
depth-first search (NDFS) model checking algorithm. This verifica-
tion has been performed using VerCors. We also demonstrate how
our mechanised correctness proof allows verifying various optimi-
sations of parallel NDFS with only little extra effort.

The second part contributes an abstraction technique for verifying
global behavioural properties of shared-memory concurrent soft-
ware. This abstraction technique allows specifying program beha-
viour as a process-algebraic model, with an elegant algebraic
structure. Furthermore, we extend CSL with logical primitives that
allow one to prove that a program refines its process-algebraic
specification. This abstraction technique is proven sound using
Cogq and is implemented in VerCors. We demonstrate our
approach on various examples, including a real-world case study
from industry that concerns safety-critical code.

In part three, we lift our abstraction technique to the distributed
case, by adapting it for verifying message passing concurrent soft-
ware. This adaption uses process-algebraic specifications to
abstract the communication behaviour of distributed agents. We
also investigate how model checking of these specifications can
soundly be combined with the deductive verification of the speci-
fied program.
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