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A framework for developing,
implementing, and evaluating clinical
prediction models in an individual
participant data meta-analysis
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The use of individual participant data (IPD) from multiple studies is an increasingly popular approach when
developing a multivariable risk prediction model. Corresponding datasets, however, typically differ in important
aspects, such as baseline risk. This has driven the adoption of meta-analytical approaches for appropriately
dealing with heterogeneity between study populations. Although these approaches provide an averaged predic-
tion model across all studies, little guidance exists about how to apply or validate this model to new individuals
or study populations outside the derivation data. We consider several approaches to develop a multivariable
logistic regression model from an IPD meta-analysis (IPD-MA) with potential between-study heterogeneity. We
also propose strategies for choosing a valid model intercept for when the model is to be validated or applied to
new individuals or study populations. These strategies can be implemented by the IPD-MA developers or future
model validators. Finally, we show how model generalizability can be evaluated when external validation data
are lacking using internal–external cross-validation and extend our framework to count and time-to-event data.
In an empirical evaluation, our results show how stratified estimation allows study-specific model intercepts,
which can then inform the intercept to be used when applying the model in practice, even to a population
not represented by included studies. In summary, our framework allows the development (through stratified
estimation), implementation in new individuals (through focused intercept choice), and evaluation (through
internal–external validation) of a single, integrated prediction model from an IPD-MA in order to achieve
improved model performance and generalizability. Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

Clinical prediction models are an increasingly important tool in evidence-based medical decision
making [1–3]. They aim to accurately predict an individual’s risk of disease being present (diagnostic
prediction model) or occurring in the future (prognostic prediction model), to thereby inform clinical
and therapeutic decisions, facilitate healthcare and public health policies, and aid patient counseling
[1, 4–7]. An example is the diagnostic model developed by Oudega et al. [6], which aims to predict the
presence of deep vein thrombosis (DVT) in patients suspected of DVT at primary care. Such prediction
models are typically derived from a single dataset including individual participant data (IPD), in which
the association between the presence or occurrence of the outcome of interest and a set of predictors
(covariates) is estimated [3,8,9]. During the past decades, prediction research has become more popular,
and international collaboration has become more commonplace. This has led to an increased sharing of
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IPD and subsequently exposed the need for IPD meta-analysis (IPD-MA) to appropriately synthesize
these data to develop (and validate) a single prediction model [10, 11]. Examples of IPD-MA that have
led (or will lead) to the development and validation of risk prediction models are abound in the literature
[7, 12–14].

Prediction models resulting from IPD-MA are appealing as they may be seen to be more generaliz-
able as compared with using IPD from just a single study population; the inclusion of multiple studies
addresses a wider range of study populations and increases the variation in the characteristics of the
included participants. However, by simply combining IPD to produce a prediction model averaged across
all study populations, researchers might actually obfuscate the extent to which the individual studies were
comparable and can mask how the model performs in each study population separately. For example,
when study differences in model parameter estimates cannot be explained by sampling variability solely,
that is, heterogeneity is present, resulting models may not generalize well and perform poorly when
applied in new individuals. One of the key expressions of this heterogeneity is differences in the baseline
risks, that is, outcome prevalences (for diagnostic models) or incidences (for prognostic models), or in
the predictor–outcome associations [15–17]. Potential causes of such heterogeneity in otherwise related
study populations are differences in study design, inclusion and exclusion criteria, disease severity, and
interventions undergone [18, 19].

When an IPD-MA aimed at developing ‘an average’ prediction model does not appropriately handle
potential heterogeneity, resulting prediction models may yield systematically biased predictions when
validated or applied in new individuals or study populations. This, in turn, renders their clinical useful-
ness obsolete [17, 20]. Consequently, the implementation of random effects modeling that effectively
account for heterogeneity across the included studies seems highly recommended [11, 21, 22]. This
approach, however, also complicates external validation and implementation of the resulting predic-
tion model, as parameters (such as intercept and predictor–outcome associations) are allowed to take
different values for each included study [23, 24]. This then raises the question about which parameters
should be used when the prediction model is validated or applied in new individuals or study populations
that were not considered during its derivation; researchers hardly address this difficulty. Furthermore, an
IPD-MA may not always improve the generalizability of clinical prediction models, as it is possible that
study populations differ too much to usefully combine them; focusing on an average model across all
study populations is thus misleading [22]. A framework is therefore needed that supports both the iden-
tification of the extent to which aggregation of IPD is justifiable and the optimal approach to achieve this
aggregation. In addition, this framework should guide subsequent researchers and potential users how to
validate or apply the model to new individuals.

Royston et al. proposed a framework to construct and validate a prognostic survival model from
an IPD-MA [12]. This framework adopts an ‘internal–external cross-validation’ (IECV) approach to
evaluate whether derived models have good prognostic separation in independent studies and whether
the baseline survival distribution is heterogeneous across studies. Afterwards, a single final model is
derived from all available IPD using flexible parametric proportional hazards (PH) modeling techniques.
Although this framework appears to be a useful strategy for accounting and adjusting for heterogeneity
in an IPD-MA aimed at developing a single, average prediction model, it has not yet been widely imple-
mented. In addition, the suggested framework pools the baseline hazard distribution functions, which
may not be justified when heterogeneity is largely present. Finally, it remains unclear how the framework
should be applied when models aim to predict binary outcomes, using multivariable logistic regression,
rather than time to event.

Here, we propose several approaches to account and adjust for heterogeneity in an IPD-MA that aims
to develop a novel prediction model for a binary outcome and allow it to be externally validated or
applied in new individuals. We begin by considering a range of strategies for developing a model when
the included studies may have different outcome frequencies (baseline risks) that potentially require
different intercepts in the model. We then describe how to apply the fitted model to a new study popu-
lation by obtaining an appropriate intercept for this new study population, even when its baseline risk
is unknown. In this manner, we aim to facilitate its implementation or external validation when base-
line risks are heterogeneous across studies. We demonstrate that only limited information about the new
study population is sufficient to adjust the derived prediction model and facilitate reliable predictions
[20, 25, 26]. Furthermore, we extend the IECV approach proposed by Royston et al. [12] to evaluate
the generalizability of derived prediction models in other study populations. This approach can also
be used to identify which combination of studies yield consistent prediction models and which studies
may present problematic sources of evidence and may need to be excluded for the model development.
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Finally, we extend the framework to count and time-to-event data prediction models and illustrate the
approaches using a diagnostic modeling IPD-MA on the prediction of the presence of DVT.

2. Methods

This section describes our framework to develop a prediction model from an IPD-MA with a binary
outcome and optimally adjust its intercept to a new study population. We summarize this framework
in Figure 1 and now explain each step in detail. We begin by assuming that the included studies
have similar predictor–outcome associations but may have a heterogeneous outcome frequency or
baseline risk. Consequently, three important steps can be distinguished: (1) estimation of predictor–
outcome associations from the available studies while accounting for heterogeneity in baseline risks,
(2) estimation of an appropriate model intercept when the model is to be implemented or validated in
a new study population outside the IPD-MA, and (3) evaluating the generalizability of the resulting
model. This last step iteratively assesses the extent to which estimations of the predictor–outcome
associations and model intercept from a subset of the available studies yield accurate model predictions
in the remaining IPD.

Finally, we consider the value of the framework in the presence of additional heterogeneity in the
predictor–outcome associations in Section 4.2.

2.1. Step 1: Estimation of predictor-outcome associations

This first step estimates the predictor–outcome associations across the available IPDs in the IPD-MA
dataset and considers several approaches to account for differences in baseline risk. For the sake of
simplicity, we assume that a pre-selection (based on, e.g., prior knowledge or clinical expertise) of the
candidate predictors has been carried out and that their specification (e.g., linear or nonlinear forms
in case of continuous predictors) in the model is predefined. We refer the reader to other sources that
discuss the selection and specification of predictor variables [8,27] and note that it is possible to evaluate
different choices of model specification by assessing its performance in a validation sample. We consider
the situation in which IPD from j D 1; : : : ;M studies are available. The data from each study are
described by K independent predictors, a dichotomous outcome y , and contains Nj subjects. Let X ij

Figure 1. Recommended steps for developing, implementing, and evaluating a risk prediction model when
individual participant data from multiple studies are available.
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denote a 1 �K vector with the predictors for subject i D 1; : : : ; Nj in study j . Three possible logistic
regression modeling approaches in this situation are stacking, random intercept effects, and stratification.

2.1.1. Stacking. A first, potentially naive approach may assume that all IPD were collected from a
single and homogeneous population. This approach ignores the clustering of participants within different
studies and merges all their data into one dataset by means of stacking:

yi � Bernoulli .�i /

logit .�i /D ˛C ˇ
0X i

(1)

The common intercept ˛ and predictor–outcome associations ˇ (representing a 1 �K vector) for all
studies shows that clustering is being ignored. This type of meta-analysis is hard to justify when study
populations have different outcome incidence or prevalence, as then the baseline risk is different for each
study. It is known that ignoring such heterogeneity in baseline risk can induce bias in predictor–outcome
associations [28].

2.1.2. Random effects modeling of the intercept. If heterogeneity in an IPD-MA only occurs in the
baseline risk, it is possible to account for these differences using a random effects logistic regression
model. This approach estimates a weighted average model intercept by assuming random effects for
the model intercepts across the included studies in the IPD-MA [29–31]. To this purpose, it allows a
separate intercept for each study and estimates the distribution of this intercept across studies. Here, we
assume a normal distribution that leads to an estimated mean (i.e., the average study intercept), ˛, and
variance (i.e., the between-study heterogeneity in intercept), �2˛ . The corresponding logistic regression
model consists of K C 2 parameters and is specified as follows:

yij � Bernoulli .�ij /

logit .�ij /D aj C ˇ
0X ij with aj �N

�
˛; �2˛

� (2)

By assuming random effects, it becomes possible to model heterogeneity in baseline risk with
relatively few parameters. Unfortunately, it is often difficult to evaluate whether the corresponding
assumptions are justifiable, particularly when a small number of studies are available in the IPD-MA.
Although it is possible to relax the required assumptions by adopting a Bayesian perspective using vague
priors, such strategy requires advanced statistical expertise and specialized software packages, which
may not always be available [32].

2.1.3. Stratified estimation of the intercept. Given these aforementioned limitations, it may sometimes
be inappropriate to estimate an average intercept across all studies. For this reason, we propose
estimating a stratified intercept for each study when relatively few IPD studies are at hand. This implies
that a separate intercept ˛j is estimated for each study, and an underlying distribution of random intercept
effects is no longer assumed.

yij � Bernoulli .�ij /

logit .�ij /D
MX
mD1

.˛mImDj /C ˇ
0X ij

(3)

where I represents an indicator variable that equals 1 when m D j and 0 otherwise. It is by using an
indicator variable to estimate a separate intercept for each study that the normality assumption from
expression (2) is avoided, and an overall estimate for the model intercept as in the random effects
approach is no longer estimated. Unfortunately, this also implies that the resulting model focuses on
the studies at hand, and the choice of intercept when validating or applying the final model to new
individuals (outside the IPD-MA) is not immediately obvious. We further address on how to deal with
this in Section 2.2. It should also be noted that stratification may result into estimation difficulties when
some studies have few or no events and now involves M CK instead of K C 2 (random effects mod-
elling) orKC1 (stacking) unknown parameters. For this reason, stratification may not be feasible when
many studies with relatively few participants are at hand.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 3158–3180

3161



T. P. A. DEBRAY ET AL.

2.2. Step 2: Choosing an appropriate model intercept when implementing the model to new individuals

Although all methods in step 1 yield a unique choice of predictor–outcome associations, the presence of
heterogeneity in baseline risk across the study populations of the IPD-MA may induce a set of different
model intercepts. For example, the ˇ estimates from the prediction model in expression (3) need to be
combined with an intercept that is appropriate for the study population in which one wants to validate or
apply the IPD model. It may be clear that the presence of heterogeneity in baseline risk complicates the
implementation of a prediction model in individuals outside the IPD-MA. Although model developers
could report a unique summary intercept in such scenarios (Section 2.2.1), an alternative strategy is
to allow future model implementors or validators to obtain an intercept that is optimal for their specific
study population. In this section, we describe three methods for obtaining such an intercept with minimal
information about the new individuals or study population. Two of these strategies solely require base-
line descriptives about the study population (Sections 2.2.2 and 2.2.3), whereas the third method ensures
intercept optimality by re-estimating the intercept using IPD (Section 2.2.4). All methods can be imple-
mented without the original participant data, as long as some basic information about these data is
reported. In summary, this second step aims to facilitate future validations and applications of the final
IPD model by presenting several strategies for obtaining a unique model intercept when baseline risks
are heterogeneous across the included study populations.

2.2.1. Average intercept. A straightforward approach for obtaining an appropriate model intercept may
use the estimated (weighted) average from the IPD-MA, as captured by ˛ in the stacking or random
effects approaches described earlier. Royston et al. proposed this approach, in which they pool the
baseline hazard distribution functions of the studies in an IPD-MA for deriving a prognostic model
[12]. Although ˛ is unavailable in the stratified approach, an estimate can be obtained by pooling
the individual intercepts aj estimates using a fixed or random effects meta-analysis as necessary. A
major advantage of an average intercept based on all included studies is that it can directly be used
as approximation of baseline risk in a new study population with unknown outcome incidence or
prevalence. Unfortunately, this uncertainty about the new study population implies that the resulting
average estimate may be very different to the actual intercept in a single population, especially when
outcome incidences or prevalences do differ across patient populations, which is often the case in
practice. This error in the intercept may then lead to poor predictive accuracy when the model is applied.

2.2.2. Intercept selection. To avoid using an average model intercept, an alternative approach is to
simply select an estimated intercept from one of the IPD studies that is most similar to the new study
population. This intercept can be directly obtained from aj (random effects approach) or ˛j (stratified
approach). Although we believe that this comparison should be guided by clinical expertise, it is
possible to rely on a purely statistical approach. This approach could, for instance, evaluate similarity by
comparing the outcome frequency of each derivation IPD with the new population where the model is
to be applied. This approach is taken by Steyerberg et al. who develop a risk prediction model across
multiple studies, and then when validating the model, they use the intercept taken from just one of the
included studies, as this study had an outcome prevalence most similar to that found in clinical settings
[13]. Alternatively, one could identify the closest matching IPD study by evaluating differences in base-
line characteristics between the new study population and the IPD studies by comparing observed means
(e.g., mean age) and proportions (e.g., % male) for each included study (Appendix A). Evidently, these
strategies require the IPD-MA developers to report the estimated intercepts of each study population, as
well as their corresponding outcome frequency or baseline characteristics. Although information about a
population’s outcome frequency or baseline characteristics is typically available when the model is to be
externally validated in that population (as this process typically entails the collection of IPD), it may be
missing when a model is to be implemented in a new population. In these scenarios, researchers could
revert back to using the weighted average intercept from the random effects or stratified model [12],
given that these estimates are reported.

2.2.3. Intercept estimation from outcome prevalences. It is also possible to calculate an estimate of the
model intercept for a particular population using the outcome incidence or prevalence (proportion of
patients developing the outcome) prevnew when known in that population. Estimates of these proportions
may be obtainable from (a systematic review of) the medical literature or experts in the field and can be
translated into a model intercept by applying the logit transformation:
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Ǫ D ln

�
prevnew

1� prevnew

�
(4)

However, implementation of the resulting Ǫ as the intercept when applying the prediction model
is only justified when the included variables in the prediction are mean centered for each included
study, where the mean of dichotomous predictors (e.g., sex: male D 1, female D 0) corresponds to
their prevalence (e.g., the proportion who are male). The underlying reason is that prevnew represents
the predicted outcome risk of a random individual in the new population. If the variables in each study
IPD are not mean centered, the intercept term of their linear predictor represents a specific subgroup of
individuals (such as gender D female or age D 0). Mean centering of predictor variables ensures that
ˇ0X D 0 on average and thus that ˛ represents the outcome logit risk for a random individual in the
population. Although this particular individual may not exist (as individuals cannot have a mean gender
between 0 and 1), it reflects the average study participant and therefore remains representative on the
population level from which prevnew is derived. Note that because a mean-centered prediction model
has population-specific predictor means in the linear predictor, it can only be implemented in a new
study population when the mean predictor values are also available for that population. That is, in the
new population, one needs to apply the prediction model as specified by the following:

�i D logit�1
�
Ǫ C Ǒ

0 �
X i �X

��
(5)

where the beta estimates are taken from the developed prediction model in step 1 (e.g., the aforemen-
tioned stratified or random effects) and the alpha term is from Equation (4).

2.2.4. Intercept estimation from new IPD. Finally, at the time of wishing to apply the prediction
model to a new study population, IPD may additionally be available from this population of interest,
and these data may serve for updating or re-estimating the model intercept using methods previously
described [8,17,20,33]. This can generally be achieved by setting the linear predictor Ǒ

0
X as offset and

re-estimating the corresponding intercept. For the centered approach, the mean predictor values can
directly be obtained from this new IPD, and the corresponding offset is given as Ǒ

0
.X �X/, where Ǒ is

taken from the developed prediction model in step 1.

2.3. Step 3: Model evaluation using internal–external cross-validation

In the previous sections, we described the first two steps necessary for estimating and implement-
ing a prediction model so that it can be considered for external validation and application in routine
care. Although external validation has been proposed as the ultimate solution for evaluating a model’s
generalizability, corresponding IPDs are often lacking and their collection typically requires much effort.
Consequently, some form of internal validation seems desirable to guarantee that the derived model is
accurate enough to be clinically useful. Specifically, the strategies for obtaining accurate predictor–
outcome associations (step 1) and an appropriate model intercept (step 2) should lead to consistent
and discriminative model predictions. Because it is possible that the IPD-MA model developers cannot
present a unique model intercept because of heterogeneity in baseline risk, it would also be useful for
them to investigate whether future model implementors or validators can obtain an accurate model inter-
cept from the available evidence. Consequently, this third step is an extended form of internal model
validation to evaluate its performance and generalizability when external validation data are lacking
[2,17,34–36]. One option is to develop the model in steps 1 and 2 using just a subset of IPD studies and
keep others aside for validation. However, we consider it is important to both maximize the data avail-
able for the model development and also the model validation. In this section, we thus adapt the IECV
technique originally proposed by Royston et al. [12]. This technique iteratively usesM �1 studies from
the available IPD-MA to develop a prediction model and the remaining study for its validation. In this
manner, M scenarios are available to investigate consistent model performance when applied in another
study population that was not included during its development. We propose the following stages in the
IECV technique:

1. Select the IPD of M � 1 studies from the meta-analysis. These data will serve as derivation data,
whereas the IPD of the remaining study will serve as validation data (i.e., sample where the model
is to be implemented and externally validated).

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 3158–3180
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2. Estimate the predictor–outcome associations in the derivation data using one of the approaches
described in Section 2.1.

3. Choose a model intercept that is appropriate for the validation sample, using one of the approaches
described in Section 2.2. Here, the validation data may be used to borrow (limited) information
about the new study population, such as the outcome prevalence or predictor mean values.

4. Combine the estimated predictor–outcome associations (from 2) and chosen model intercept
(from 3) into a single model and apply this model in the validation data.

5. Use the validation study to evaluate the performance of the derived prediction model (from 4).
6. Repeat 1–5 for each permutation of M � 1 derivation studies.

We focus on statistical criteria to assess model performance in the validation sample and explicitly
distinguish between discrimination and calibration [36, 37]. Whereas the former reflects the ability to
distinguish high-risk subjects from low-risk subjects, the latter indicates the extent to which the predicted
outcome probabilities and actual probabilities agree.

An overall indication of model calibration is reflected by the ratio of predicted (expected) to observed
outcomes, denoted by E/O. This ratio should ideally be 1, and deviations above (or below) this value
indicate that the model intercept is too high (or too low). We also measure the calibration slope in the
validation sample, boverall, to evaluate whether the average strength of the predictor–outcome associations
is similar in these data [8, 38, 39]. A poor calibration slope .boverall ¤ 1/ usually reflects overfit-
ting of the model in the derivation sample but may also indicate heterogeneity of predictor–outcome
associations between the derivation and validation sample. However, because the calibration slope is
an overall measure of fit, it may not reveal all potential pitfalls. For this reason, it may be more useful
to directly compare estimated predictor–outcome associations in the derivation and validation sample.
Visual inspection of the calibration plot may further reveal how the quality of predicted risks is affected
[8, 40]. This plot indicates how predicted risks diverge from observed outcomes in different deciles of
predicted risks and shows perfect predictions when the calibration curve goes through the origin and has
a slope of 45ı.

Finally, we assess to what extent the model is able to distinguish between patients with the outcome
and patients without the outcome by means of the area under the ROC curve (AUC), also known as the C
statistic [41]. This score ranges from 0.5 (no discrimination) to 1.0 (perfect discrimination). Additional
insight into discrimination can be achieved through Hedges’ g statistic or the overlap coefficient [42].

Results from the IECV technique can be interpreted as follows. In general, if the derived models
(i.e., the M models produced by omitting each IPD study in turn) all validate well across the considered
permutations, all datasets can then be combined and used to develop the final prediction model. If some
of the derived models do not calibrate well in the validation sample, the IECV indicates that general-
izability of any model across all M studies is not guaranteed. In those scenarios, to identify the cause
of the problem, it is useful to examine the consistency of estimated predictor–outcome associations and
model intercepts (or visually inspect the calibration plot) across the M studies as follows.

If the E/O ratio considerably differs from 1 or calibration curves do not coincide with the reference
line in many validation samples, this may suggest that the strategy chosen for obtaining a model intercept
in the new study population (Section 2.2) does not perform well. It may then be preferable to collect IPD
from the new study population in order to obtain a more study-specific model intercept. Conversely,
when predictor–outcome associations substantially differ between the derivation and validation sample,
approaches to overcome heterogeneity in baseline risk no longer perform well, and the model’s gener-
alizability may suffer. This is because the model intercept encapsulates all sources of unexplained risk
and not only difference in the incidence of the outcome. It may therefore be affected in unpredictable
ways when baseline risk or predictor–outcome associations are heterogeneous. This, in turn, implies that
derivation of prediction models from an IPD-MA may not be feasible when predictor–outcome asso-
ciations are known to be heterogeneous. This pitfall is also reflected by calibration curves that are not
straight or have a slope different from 45ı and could be further examined by measuring or testing the
amount of heterogeneity [43–45]. Although the inclusion of additional covariates, nonlinear associa-
tions, or interaction terms may reduce heterogeneity, such an approach inevitably increases the risk of
overfitting. Where heterogeneity in predictor effects cannot be reduced and the IECV approach shows
poor model performance and generalizability, it should signal to the researcher that a single prediction
model that applies to all study populations is unlikely to be possible using the predictors available. In
those scenarios, other predictor variables should be considered, or some studies could be excluded and
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the model built on a more homogeneous set. Then, researchers need to clearly report which studies
(populations) were excluded and note that the developed model is unlikely to generalize to them.

Finally, evaluation of the AUC may further help to identify whether accurate predictions also lead to
good discrimination. After all, accurate predictions may not be very useful if they are similar regardless
of the developed outcome. This is particularly the case for diagnostic models, where the ultimate goal is
to accurately classify subjects into their true disease states [37]. Although the AUC should ideally be 1,
there are no specific guidelines about acceptable performance thresholds as these differ according to the
considered prediction task.

It should be noted that results from the IECV are only useful if sufficient data are available on indi-
vidual participant and study level. Specifically, if some studies in the IPD-MA contain very few patients,
performance statistics may become unreliable, and corresponding confidence intervals may substantially
inflate. Although there are some guidelines for sample size requirements in external validation studies
(Vergouwe et al. proposed a rule of thumb to use a minimum of 100 events and 100 nonevents), there
is no clear threshold for which reliable performance statistics can be achieved [46, 47]. Similarly, if few
studies are available in the IPD-MA, little insight into model generalizability can be gained by applying
the IECV technique, and identification of variation in baseline risk becomes difficult. For this reason,
we recommend the inclusion of at least four or five studies in the development of a meta-analytical
prediction model that have a reasonably large sample size and number of events.

Furthermore, it is important to realize that implementing this proposed framework requires care-
ful planning and consideration beforehand. Interpreting the performance and heterogeneity measures
obtained from this process is subjective and requires in-depth knowledge of the clinical research prob-
lem. Devoid of this context, the statistical measures we present here have no direct relation to the
impact a model is likely to have in routine care. For this reason, we recommend that desired perfor-
mance characteristics are predefined (e.g., What minimal AUC is required? Is there a particular range
of predicted probabilities for which good calibration is required?) [1, 36, 48] and evaluated alongside
the consequences that would result from implementing the model in routine care [49, 50]. Furthermore,
the research question needs careful thought and reporting in terms of which primary studies need to be
included in the meta-analysis. In this regard, potential sources of heterogeneity should be investigated
by using knowledge in the subject area or performing descriptive analyses on the key characteristics
of the available studies. Then, researchers may decide which factors could contribute to heterogeneity
and whether aggregation would be justified or if study exclusion is necessary. Finally, characteristics of
included and excluded studies should be adequately reported such that the final model can successfully
be implemented and validated in routine care.

In summary, when developing a risk prediction model using IPD from multiple studies with binary
outcomes, researchers have three main options for model development (stacked, random effects on
intercept, and stratified intercept) and must decide how to designate an intercept value when the model
is applied to new individuals. The IECV is a framework for evaluating this entire strategy and the
performance and generalizability of the model it produces. Evidence that the model does not generalize
(validate) consistently across all M studies signals that researchers should re-evaluate their strategy and
aim to reduce any heterogeneity in predictor–outcome associations and improve the reliability of their
chosen intercept.

3. Extension to count and time-to-event data

Although we described how our framework can be implemented for a prediction model using binary
outcome data, it is fairly straightforward to extend this framework to other outcome data types. For
instance, count data can be modeled using a Poisson model, where expression (1) becomes the following:

yi � Poisson .�i /

ln .�i /D ˛C ˇ
0X i

(6)

In this expression, ˛ represents the log of the baseline rate and can be modeled using random effects
or stratified estimation similar to expressions (2) and (3). This model can further be extended to estimate
PH models when time-to-event data are available such that each patient can have a different length of
follow-up [51–54]:

yi � Poisson .�i /

ln .�i /D ln.ti /C ˛C ˇ
0X i

(7)

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 3158–3180

3165



T. P. A. DEBRAY ET AL.

where ln.ti / is a standardizing offset term for subject i with exposure time ti . Note that this model
assumes that the baseline hazard (i.e., the hazard when all covariates are zero) is a constant over the
whole period. Although it is possible to relax this assumption by adopting a Cox PH model (which
still assumes proportional hazards at all times) [12], there are several limitations to this approach. Most
importantly, Cox PH models have an unspecified baseline hazard that hampers prediction of survival
times [25, 55]. For this reason, PH models that make specific assumptions about the baseline hazard
distribution are sometimes preferred. The conditional hazard function of PH models can be generalized
as follows [56]:

h.t jX i /D g.a; t /e
ˇ0X i (8)

where g.� / is a function known up to a multidimensional parameter a. The exponential distribution is a
common example and assumes a constant hazard over time, that is, g.� / D �. Here, a random baseline
hazard effect can be modelled as follows:

h.t jX ij /D �j�e
ˇ0X ij with �j � �.1; �0/ (9)

This expression is similar to the Gamma frailty model [57], where the �j are study effects distributed
as independent and identically distributed gamma random variables with mean 1 and variance �0. The
variance parameter is interpretable as a measure of the heterogeneity across studies in baseline risk.
When �0 is small, values of � are closely concentrated around 1, and the study effects are small. If
�0 is large, then values of � are more dispersed, inducing greater heterogeneity in the study specific
baseline hazards �j�. The study-specific baseline hazards are all proportional to �. In addition, more
advanced distributions are the Weibull distribution, where g.� /D ��t��1, or the Gompertz distribution,
where g.� / D �e˛t . Heterogeneity in baseline hazards could be introduced here in a similar manner by
adding a study effect �j or by estimating a stratified baseline hazard g.� / for each study. An appropriate
baseline hazard could then be selected from existing studies in the meta-analysis using the incidence
in the new study population. Note that the baseline hazard could also be modeled using restricted
cubic splines within a flexible parametric framework [12, 58]. Finally, it is important to acknowledge
that estimation issues may further be complicated if the studies in the IPD-MA are subject to different
censoring mechanisms.

4. Case studies

To demonstrate the potential value of the aforementioned approaches for model development, intercept
choice, and IECV, we now consider three scenarios that use the IPD of 12 studies conducted for
diagnosing DVT in patients with a suspected DVT. The scenarios differ in the predictor variables they
consider. In the first example, the modeled predictor–outcome associations are homogeneous across all
studies, in the second they are strongly heterogeneous, and in the third they are weakly heterogeneous.
In all scenarios, the baseline risk is heterogeneous across the 12 included studies of the IPD-MA. We
summarize the studies in Table I, and the studies contained a total of 10,014 patients of which 1,897
(18.9%) truly have DVT. The corresponding IPD were collected between 1994 and 2007 in the USA,
Sweden, Canada, and the Netherlands.

In each scenario, we apply the three steps of Section 2. In step 1, we consider the stacking, random
effects, and stratified approaches for estimation of the predictor–outcome associations. Then, in step 2,
for choosing the intercept for use in a new population following the stacking and random effects
approach, the estimated average intercept ˛ was used as final choice (Section 2.2.1). For the stratified
approach, three different strategies were evaluated: intercept selection based on the outcome propor-
tion in the new study population (Section 2.2.2), intercept selection based on similarities of baseline
descriptives (Section 2.2.2), and intercept estimation based on the outcome proportion observed in
the IPD of the new study population (Section 2.2.3). Finally, in step 3, we used the IECV approach
for assessing the extent to which the described approaches yield generalizable prediction models. We
evaluated whether model performance remained consistent in each validation study by measuring the
statistics proposed in Section 2.3 (proportion of predicted and observed outcomes, average percentage
bias of the predictor–outcome associations, and the AUC) and visually inspecting the calibration plots.

We performed all analyses on a Linux system (kernel 3.2.0) with R version 2.15.2 (R Foundation
for Statistical Computing, Vienna, Austria) using the lme4 library. The corresponding source code is
available on request.
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4.1. Case study 1: Homogeneous predictor–outcome associations

In this first scenario, we derive a prediction model by only including predictor–outcome associations
that are (nearly) homogeneous in the IPD-MA. In this manner, we ensure validity of the fixed effects
assumption for the predictor effects of the proposed methods described in Section 2.1. Just two variables,
sex and surg, are included, and to check the homogeneity assumption, we performed a multivariate
meta-analysis allowing full random effects on the intercept and both predictor–outcome associations
considered [59]. The corresponding model is specified as follows and was estimated using all 12 studies:

yij � Bernoulli .�ij /

logit .�ij /D Œa	j C Œbsex	j ŒXsex	ij C Œbsurg	j ŒXsurg	ij2
64

a

bsex

bsurg

3
75
j

�MVN

0
B@
2
64

˛

ˇsex

ˇsurg

3
75 ;
2
64

�2˛ �˛ˇsex �˛ˇsurg

�˛ˇsex �2
ˇsex

�ˇsexˇsurg

�˛ˇsurg �ˇsexˇsurg �2
ˇsurg

3
75
1
CA

(10)

Here, we found that Ǫ D �1:80 ( O�˛ D 0:47 with a 95% CI of 0.42–0.55), Ǒsex D 0:47 ( O�ˇsex D 0:03

with a 95% CI of 0.01–0.29), and Ǒsurg D 0:67 ( O�ˇsurg D 0:05 with a 95% CI of 0.03–0.52). Because the
between-study variability ( O�ˇ ) in the predictor–outcome associations for sex and surg appears negligible,
we considered that assuming homogeneity was sensible and so used these predictors to derive a novel
prediction model according to the approaches described in Section 2.1. We present results from the IECV
in Table II, for each of the stacking, random effects on intercept, and stratified intercept approaches.

4.1.1. Consistency of estimated predictor–outcome associations. All approaches yielded similar and
consistent predictor–outcome associations (estimates not shown) in the IECV. Particularly, we found that
their average strength was reasonable (0:80 < boverall < 1:20) in 8 of the 12 validation samples (Table II),
which indicates that the modeled predictor–outcome associations were often comparable across studies.
Accurate estimates of predictor–outcome associations could, however, not always be established in the
validation studies. For instance, the predictor–outcome association for sex ( Ǒsex;der D 0:49) was unstable
in study 3 ( Ǒsex;val D �0:24 with standard error D 0.46) and in study 8 ( Ǒsex;val D 0:16 with standard
errorD 0.26). It remains unclear whether the resulting discrepancy in predictor–outcome associations is
due to heterogeneity or small effective sample size, but the latter is plausible given the small estimated
heterogeneity for sex from the multivariate meta-analysis.

4.1.2. Quality of estimated model intercepts. Our results demonstrate that the derived prediction models
do not validate well when using intercepts for a new population obtained through averaging individual
intercepts of an IPD-MA (i.e., through either the stacking or random effects approach). Particularly, these
intercepts give an unequal proportion of predicted and observed outcomes and considerably overestimate
(E=O > 1:2 in 4 of the 12 validation samples) or underestimate (E=O 6 0:8 in 3 of the 12 valida-
tion samples) the outcome presence. Similar results were obtained when using the stratified approach
and selecting the intercept from a study with similar baseline descriptives of the new study population
(i.e., matching the summary baseline characteristics from the validation study data to an IPD study used
in model development and using the latter’s estimated intercept). The calibration improved greatly when
the stratified approach was used and the chosen intercept was selected from an included study that had
a similar observed outcome incidence (Table II). For example, when study 1 was used as the validation
data, the E/O statistic was 1.42 when using the weighted average intercept from random effects model (3)
but was 1.03 when using the intercept estimate for the study with the most similar incidence. However,
even this approach does not guarantee good agreement between predicted and observed outcomes. Poor
calibration may, for instance, arise when there are no studies with a similar outcome proportion or inci-
dence available. This situation arose when study 2 (outcome incidence of 39% in the validation study
versus 24% in the included study with the most similar incidence) or study 7 (outcome incidence of 8%
versus 13%) were used as validation data in the IECV approach. In these validation studies, the outcome
presence was considerably underestimated (E=O D 0:615 for study 2) and overestimated (E=O D 1:6

for study 7). Optimal agreement between predicted and observed outcomes was achieved when the inter-
cept was estimated from the outcome proportion in the IPD for the new population by mean centering
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the included predictor variables (cf. Section 2.2.3). Here, the E/O statistic is always close to 1, ranging
between 1.00 and 1.03.

4.1.3. Quality of model predictions. Visual inspection of the calibration plots (Figure A.1 in the
Appendix) demonstrates that the stratified approach yields prediction models with superior calibration
over the entire range of predicted probabilities when the final intercept is estimated from the outcome
prevalence observed in the new study population. Particularly, the calibration curve in these plots coin-
cides with the 45ı reference line, reflecting that predicted and actual probabilities agree for individual
patients in the validation studies. Confidence intervals of the calibration curves are inflated for studies 3
and 8, where the least data were available. Calibration curves for other approaches were similar (results
not included), with curves shifted upward and downward according to underestimation (E=O < 1) and
overestimation (E=O > 1), respectively, of the outcome presence. Evaluation of the AUC indicates that
all approaches yielded prediction models with very similar discriminative ability. This statistic ranged
from 0.55 to 0.65 across the different validation studies, suggesting that the predictors sex and surg
poorly distinguish between patients with and without DVT. For instance, the interquartile ranges of
predicted probabilities in validation study 3 ranged from 14% to 22% and 13% to 19% for cases and
non-cases, respectively. In conclusion, model predictions appear to be well calibrated but are not very
informative as they are similar for cases and non-cases.

4.1.4. General conclusions. For homogeneous predictor–outcome associations, we found that stratified
estimation yields superior prediction model performance, particularly when the intercept is adapted to
the new study population. This is best achieved by selecting the intercept from an available study in
the meta-analysis that most closely matches the validation study according to the outcome proportion
(prevalence) or by re-estimating the intercept from the outcome proportion or incidence in the IPD for
the new (validation) population. Compared with using the average intercept, these approaches generally
gave E/O ratios much closer to 1 in the validation study and yielded calibration curves that coincided
with the 45ı reference line. Unfortunately, derived models did not discriminate well because the included
predictors sex and surg are not highly predictive. This implicates that risk predictions are quite accurate
on a whole but that the model cannot discriminate well between cases and non-cases. We therefore
consider a second scenario where we include a set of strong predictors during model derivation.

4.2. Case study 2: Strongly heterogeneous predictor–outcome associations

In the second scenario, we consider the derivation of a prediction model with important but heteroge-
neous predictors to investigate the impact of invalid homogeneity assumptions concerning the predictor–
outcome associations across the included studies. Previous research identified malign, surg, calfdif3, and
ddimdich as core predictors for diagnosing DVT [24]. Consequently, we included these predictors from
10 of the 12 datasets to derive a novel prediction model, as two studies did not measure all variables. By
performing a full random effects meta-analysis similar to Section 4.1, we found Ǫ D �3:98 . O�˛ D 0:31/,
Ǒ
malign D 0:38

�
O�ˇmalign D 0:35

�
, Ǒcalfdif3 D 1:05

�
O�ˇcalfdif3 D 0:16

�
, Ǒsurg D 0:25

�
O�ˇsurg D 0:09

�
, and

Ǒ
ddimdich D 2:76

�
O�ˇddimdich D 0:41

�
. Clearly, the heterogeneity estimates (� values) are quite large for

most variables. We present results from the IECV in Table III.
Results in Table III demonstrate that all strategies for choosing intercepts perform poorly, as they

generally give E/O ratios that are not close to 1, and thus considerably overestimate or underestimate the
outcome prevalence when applied in other study populations. Even the strategies that performed very
well in case study 1, that of estimating the intercept from the outcome prevalence in the validation study,
or that of selecting an intercept from a study that most closely matched the outcome prevalence in the
validation study, show poor performance on the whole.

Although the calibration slope boverall is quite good in most validation samples, visual inspection of the
calibration plots (Figure A.2 in the Appendix) reveals that calibration curves of derived models strongly
deviate from the 45ı reference line. Accordingly, we may conclude that predicted probabilities do not
correspond to actual outcome risks and that the quality of model predictions is poor. This deterioration
in calibration strongly contrasts with a considerable improvement in the discriminative ability of derived
models. Whereas models from case study 1 achieved an AUC between 0.55 and 0.65 in the validation
studies, the inclusion of malign, surg, calfdif3, and ddimdich increased this statistic to values between
0.73 and 0.92.
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In conclusion, when predictor–outcome associations in the IPD-MA are strongly heterogeneous, we
found that all approaches yield prediction models that generally have poor calibration when applied in
the validation studies. This is likely due to model intercepts and predictor–outcome associations that
do not correspond to the true intercepts and predictor–outcome associations in the validation studies
because of heterogeneous predictor–outcome associations of the included variables. However, we found
that the inclusion of these strong predictors did considerably improve the discriminative ability of derived
prediction models. The resulting models are better able to discriminate between cases and non-cases but
yield inaccurate risk predictions, limiting their usefulness.

4.3. Case study 3: Weakly heterogeneous predictor–outcome associations

In this last scenario, we attempt to derive a useful prediction model that both achieves good calibration
(similar to case study 1) and good discrimination (similar to case study 2). To this purpose, we consider
the derivation of a prediction model that includes the homogeneous predictors sex and surg from
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Figure 2. Calibration plots of models derived by stratified estimation of the intercept (where the final intercept
is estimated from the outcome proportion in the validation study) in the validation studies of case study 3. The
triangles indicate groups of observations with similar predicted probabilities and their corresponding outcome
proportion. Note that a maximum of eight groups can be generated because the included predictor variables sex,

surg, and calfdif3 are dichotomous.
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Case Study 1 and one strong predictor calfdif3 from case study 2. By performing a full multivari-
ate random effects meta-analysis similar to Section 4.1, we found Ǫ D �2:25 . O�˛ D 0:47/, Ǒsex D

0:37
�
O�ˇsex D 0:06

�
, Ǒsurg D 0:56

�
O�ˇsurg D 0:15

�
, and Ǒcalfdif3 D 1:28

�
O�ˇcalfdif3 D 0:19

�
. The estimated

� values indicate that these predictor–outcome associations are weakly to moderately heterogeneous.
We present results from the IECV in Table IV, and the results indicate that stratified estimation (where
the final intercept is estimated from the outcome prevalence in the new study population or selected
from an available study in the meta-analysis that most closely matches the validation study according
to the outcome proportion) again yields prediction models with superior performance. Specifically, this
approach resulted into E/O ratios close to 1 in all validation studies. Furthermore, visual inspection
of the calibration plots (Figures 2 and 3) revealed good agreement, across the whole range, between
predicted and actual outcome probabilities in at least 9 of the 12 validation studies (studies 1, 2, 4,
6, 9, 11, and 12). Studies 3, 8, and 10 showed poor calibration at predicted probabilities around 0.4,
but as these studies also involved relatively small numbers of participants and events, it is difficult to
know whether this is due to chance or a truly poor prediction performance in these settings. To be
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Figure 3. Calibration plots of models derived by stratified estimation of the intercept (where the final intercept
is estimated from the outcome proportion in the validation study) in the validation studies of case study 3. The
triangles indicate groups of observations with similar predicted probabilities and their corresponding outcome
proportion. Note that a maximum of eight groups can be generated because the included predictor variables sex,

surg, and calfdif3 are dichotomous.

3174

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 3158–3180



T. P. A. DEBRAY ET AL.

cautious, one could consider discarding these studies when fitting the final model, but our judgment was
to leave them in. Finally, the discriminative ability of derived models was relatively good and ranged
between 0.64 and 0.76 across the validation studies. Consequently, the inclusion of weakly to moderately
heterogeneous predictors resulted into prediction models that both discriminate and calibrate well in new
patient populations.

5. Discussion

An increasing number of prediction models are derived from an IPD-MA. Very little guidance currently
exists about how researchers should account for the inherent potential for between-study heterogeneity
and how to implement the model in practice when outcome frequencies (baseline risks) differ across
included study populations. As a consequence, many prediction models ignore clustering of participants
and thus effectively assume they are using IPD from a single study. This straightforward stacking of
IPD datasets is often not justified and, as we show in our case study 1 (Table II), may lead to inconsis-
tent model performance and considerably reduced generalizability. We therefore considered two other
approaches to account for heterogeneity of baseline risk (random effects or stratified estimation) and
evaluated several techniques to implement the developed model in a new clinical setting where the
baseline risk is potentially unknown.

When there is homogeneity in predictor–outcome associations, stratified estimation of the model
intercept helps to improve generalizability. This approach allows to derive a near-optimal intercept
from reported outcome incidences when predictor variables are centered around their local means
(Section 2.2.3). Alternatively, an estimated intercept can be selected from existing studies in the meta-
analysis using the outcome incidence or prevalence in the new study population (Section 2.2.2). When
no information about the population of interest is available, using the average intercept (for instance
obtained by random effects or stacking) presents a workable solution, but generally, this may cause poor
calibration when baseline risks strongly differ (Sections 2.1.1 and 2.1.2). In such situations, the IECV
technique may be particularly helpful to identify the generalizability of derived prediction models across
other study populations [12]. It allows the model fit and its predictive ability to be appraised across
several studies and ultimately allows a single (final) prediction model to be built using as much of the
data as possible. It also identifies which populations (if any) the model is not suitable for and helps ascer-
tain the strategy for choosing an intercept, an additional validation step to gain insight into the future
generalizability of the newly constructed model.

Some important limitations need to be considered to fully appraise the findings of this study. Firstly,
the inclusion of homogeneous predictors may not always yield highly discriminative prediction models.
Weakly heterogeneous but strong predictors may therefore be included to improve discrimination at
the cost of model calibration. Heterogeneity may further be reduced by including additional covari-
ates, nonlinear associations, or interaction terms, or by applying bootstrap and shrinkage techniques
[8, 60–63]. Secondly, when many but relatively small studies are available, stratified estimation may
no longer be feasible because of its inherent model complexity. In such scenarios, random intercept
effects modeling may considerably reduce the amount of unknown parameters while still allowing
individual study intercepts. Thirdly, our case studies indicate that IPD-MA developers should report
estimated model intercepts and corresponding outcome frequencies of included studies when their base-
line risks are heterogeneous. In this manner, the derivation of an appropriate model intercept can be
facilitated when the model is to be implemented or externally validated in new study populations.
Note that it is possible to further improve the intercept choice by estimating an appropriate intercept
from characteristics of the new study population. Further research might therefore consider a Bayesian
approach to this framework and the selection of an intercept. Finally, it is often difficult to obtain IPD
with the same and prognostically important information, especially if datasets were originally collected
for a different purpose. Consequently, missing data are likely to be a common challenge in IPD-MA,
and advanced imputation methods may be required to appropriately address their hierarchical nature.
Future research will investigate the performance of several imputation methods, adopting a frequentist
or Bayesian perspective.

In conclusion, in this article, we have recommended steps for developing, implementing, and eval-
uating a risk prediction model when IPD from multiple studies are available (Figure 1). For model
development, stratified estimation appears to be the most promising approach, which accounts for
clustering of patients within studies and thereby allows a separate intercept per study. For implementation

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 3158–3180
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and external validation of this model, the predictor–outcome associations can be combined with the
population’s intercept as estimated from the outcome prevalence in the new population or by taking the
estimated intercept for one of the studies included in the model development whose outcome incidence
closely matches that in the new population. Alternatively, it is possible to implement the population’s
intercept as estimated from IPD available for this population. Performance of the model and intercept
strategy can be evaluated using the IECV approach. A reliable model that is generalizable across all
studies is facilitated by homogeneity in predictor–outcome associations; however, restricting inclusion
to just homogeneous predictors may cause the model to have poor discrimination and so weakly hetero-
geneous predictors might also be considered. Further research is needed to evaluate how between-study
differences in predictor–outcome associations could be addressed appropriately.

Appendix A

Comparison of baseline descriptives to select a model intercept.

1. For each predictor and/or outcome,

(a) calculate difference in mean (continuous variables) or proportion (discrete variables) of
observed individuals for each study.

(b) assign a rank for each study according to similarity, where increasing ranks indicate a
decreasing distance (i.e., more similarity).

2. For each study, calculate the median rank over all variables.
3. Select the model intercept from the study with the largest median rank. Alternatively, it is possible

to weight estimated intercepts according to the achieved ranks.
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Figure A.1. Calibration plots of models derived by stratified estimation of the intercept (where the final intercept
is estimated from the outcome proportion in the validation study) in the validation studies of case study 1. The
triangles indicate groups of observations with similar predicted probabilities and their corresponding outcome
proportion. Note that a maximum of four distinct groups can be generated because the included predictor variables

sex and surg are dichotomous.
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Figure A.2. Calibration plots of models derived by stratified estimation of the intercept (where the final intercept
is estimated from the outcome proportion in the validation study) in the validation studies of case study 2. The
triangles indicate groups of observations with similar predicted probabilities and their corresponding outcome
proportion. Note that a maximum of 16 groups can be generated because the included predictor variables malign,

calfdif3, surg, and ddimdich are dichotomous.

Appendix B

Reference list of studies used in the case studies.

a. Büller HR, Ten Cate-Hoek AJ, Hoes AW, Joore MA, Moons KGM, Oudega R, Prins MH,
Stoffers HEJH, Toll DB, van der Velde EF, van Weert HCPM. Safely ruling out deep venous
thrombosis in primary care. Annals of Internal Medicine 2009; 150(4):229–235.

b. Schutgens REG, Ackermark P, Haas FJLM, Nieuwenhuis HK, Peltenburg HG, Pijlman AH,
Pruijm M, Oltmans R, Kelder JC, Biesma DH. Combination of a normal D-dimer concentration and
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Circulation Feb 2003; 107(4):593–607, doi:10.1161/01.CIR.0000045670.12988.1E.

c. Anderson DR, Wells PS, Stiell I, MacLeod B, Simms M, Gray L, Robinson KS, Bormanis J,
Mitchell M, Lewandowski B, Flowerdew G. Management of patients with suspected deep vein
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testing. The Journal of Emergency Medicine Oct 2000; 19(3):225–230.
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Camporese G, Potter Van Loon BJ, Prins MH, Prandoni P, Büller HR. Simplification of the diag-
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e. Toll DB, Oudega R, Bulten RJ, Hoes AW, Moons KGM. Excluding deep vein thrombosis safely in
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