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Aggregating published prediction models
with individual participant data: a
comparison of different approaches
Thomas P. A. Debray,a*† Hendrik Koffijberg,a
Yvonne Vergouwe,b Karel G. M. Moonsa‡ and
Ewout W. Steyerbergb‡

During the recent decades, interest in prediction models has substantially increased, but approaches to
synthesize evidence from previously developed models have failed to keep pace. This causes researchers to
ignore potentially useful past evidence when developing a novel prediction model with individual participant
data (IPD) from their population of interest. We aimed to evaluate approaches to aggregate previously published
prediction models with new data. We consider the situation that models are reported in the literature with
predictors similar to those available in an IPD dataset. We adopt a two-stage method and explore three
approaches to calculate a synthesis model, hereby relying on the principles of multivariate meta-analysis. The
former approach employs a naive pooling strategy, whereas the latter accounts for within-study and between-
study covariance. These approaches are applied to a collection of 15 datasets of patients with traumatic brain
injury, and to five previously published models for predicting deep venous thrombosis. Here, we illustrated
how the generally unrealistic assumption of consistency in the availability of evidence across included studies
can be relaxed. Results from the case studies demonstrate that aggregation yields prediction models with an
improved discrimination and calibration in a vast majority of scenarios, and result in equivalent performance
(compared with the standard approach) in a small minority of situations. The proposed aggregation approaches
are particularly useful when few participant data are at hand. Assessing the degree of heterogeneity between
IPD and literature findings remains crucial to determine the optimal approach in aggregating previous evidence
into new prediction models. Copyright © 2012 John Wiley & Sons, Ltd.

Keywords: prediction research; prediction models; meta-analysis; logistic regression; multivariable;
Bayesian inference

1. Introduction

It is well known that many prediction models do not generalize well across patient populations
[1–6]. This quandary may occur, for example, when prediction models are developed from small data
sets, when too many predictors were studied compared with the effective sample size, or when the
population in which the model is validated or applied diverges (substantially) from the population
where the model was developed. Although the use of larger datasets for model development covers a
straightforward solution, in practice this option is frequently not possible owing to, for example, cost
constraints, ethical considerations or inclusion problems.

It is remarkable that despite the scarcity of individual participant data (IPD), there is an abundance
of prediction models in the medical literature, even for the same clinical problem. For example, there
are over 60 published models aiming to predict outcome after breast cancer [7,8], over 25 for predicting
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long-term outcome in neurotrauma patients [9], and about 10 to diagnose venous thromboembolism.
This dispersion of information reduces the scientific and clinical utility of prognostic research overall.
Prior knowledge from previous research goes unused and clinicians are left to pick from a cacophony of
unreliable prognostic models with limited scope. This is undesirable for all parties involved.

Conceptually, combining prior knowledge from multiple studies is already widespread in etiologic
and intervention research, in the form of meta-analyses [10]. More elaborate approaches, for exam-
ple, for synthesizing the accuracy of diagnostic tests [11], have also recently emerged but remain largely
lacking in prediction research, despite the fact that the potential gains are arguably even greater [12]. The
closest existing equivalent techniques focus upon updating of existing prediction models that are being
applied to a different setting [3, 5, 13–15]. Approaches for using prior knowledge in prediction research
are underdeveloped [12]. Some published approaches rely on evidence that is typically not published,
such as covariance matrices or regression coefficients, or lack a formal statistical foundation [16, 17].

We aimed to investigate how previously published prediction models or studies can be used in the
development of a (new) prediction model when published models and the IPD incorporate similar predic-
tors. We realize that published prediction models often differ in their composition through the inclusion
of different covariates in the models, the transformations and coding applied, and adjustment for overfit-
ting [18,19]. We here assume, as a start, that identical model formulations are available for the published
prediction models.

We adopt the two-stage method proposed by Riley et al. [20] and explore three approaches to aggre-
gate the published prediction models (with similar predictors) with IPD. These approaches reduce the
available IPD to aggregate data (AD), and combine this evidence with the AD from the literature
(i.e., the published prediction models). The first two approaches calculate an overall synthesis model,
whereas the third approach employs a Bayesian perspective to adapt the coefficients of previously
published prediction models with the IPD at hand. The approaches are evaluated here through
testing the predictive performance of prediction models for 6-month outcome in 15 traumatic brain
injury (TBI) datasets [21, 22]. In addition, we illustrate their application in a genuine example involving
the prediction of deep vein thrombosis (DVT).

2. Methods

We consider the situation in which an individual participant dataset (IPD) as well as a number of
previously published multivariate logistic regression models are available. The IPD is described by
i D 1; : : : ; K independent predictors, a dichotomous outcome, and contains NIPD subjects. The char-
acteristics and observed outcome of subject s D 1; : : : ; NIPD in these data are denoted as xs1; : : : xsK and
ys , respectively. The AD from the literature studies are represented by the published prediction models,
and can be obtained from individual study publications or directly from the study authors themselves. We
assume that the literature models have a similar set of predictors as the IPD, and were developed with
a similar prediction task in mind. Furthermore, we assume that for each of j D 1; : : : ;M previously
published prediction models, the estimated regression coefficients Ǒ0j ; : : : ; ǑKj and their correspond-
ing standard errors O�0j ; : : : ; O�Kj are available. The regression coefficients obtained from the IPD are
denoted as Ǒ1;IPD; : : : ; ǑK;IPD (with intercept Ǒ0;IPD) and their respective variance–covariance matrix
as O†IPD. Although we focus on the presence of one IPD, it is possible to add additional IPDs in a
similar manner.

From this situation, we propose three approaches to then combine the literature models with the IPD
and derive a novel, aggregated prediction model with coefficients ˇ0;UPD; : : : ; ˇK;UPD and variance–
covariance matrix †UPD (with variance elements �20;UPD; : : : ; �

2
K;UPD where UPD stands for “updated”).

These approaches adopt the two-stage method described by Riley et al. [20], where the available IPD
are reduced to AD, and then combined with existing AD using meta-analytical techniques. Specifi-
cally, the IPD is first reduced to Ǒ0;IPD; : : : ; ǑK;IPD and O†IPD, and then aggregated with Ǒ0j ; : : : ; ǑKj
and O�0j ; : : : ; O�Kj using meta-analysis techniques appropriate for multivariate synthesis. The first two
approaches derive an average synthesis model across the included study populations, which may not be
relevant to the population of interest. For this reason, the third approach assumes that the IPD reflects the
clinically relevant population, and uses the synthesis model from the literature for updating the regres-
sion coefficients from the IPD. Finally, all aggregation approaches reestimate the model intercept in the
IPD to ensure that updated models remain well calibrated. For all three approaches, this can be achieved
by fitting a logistic regression model in the IPD, using an offset variable that is calculated from the
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updated regression coefficients:

Pr.ys D 1/D logit�1.ˇ0;adjC offset/ (1)

where offsetD Ǒ1;UPDxs1C : : :C ǑK;UPDxsK (2)

In this expression, ˇ0;adj is the only free parameter that is used as new estimate for the intercept of the
aggregated prediction model. The variance–covariance matrix O†UPD can be adjusted according to the
variance-correlation decomposition:

bcov
�
Ǒ
0;adj; Ǒi;UPD

�
D
O�0;adj

O�0;UPD
bcov

�
Ǒ
0;UPD; Ǒi;UPD

�
where i D 1; : : : ; K (3)

All approaches were implemented in R 2.14.1 [23]. The corresponding source code is available
on request.

2.1. Univariate meta-analysis

A straightforward strategy to combine the previously published prediction models with IPD is to sum-
marize their corresponding multivariate coefficients and standard errors. We propose the weighted least
squares approach as a first simple approach to combine the coefficients. Appropriate weights for the
coefficients can be obtained from their corresponding standard errors or study sample size when these
are not available. This approach corresponds to a typical meta-analysis involving fixed or random effects
as commonly applied to univariate regression coefficients or effect estimates. Here, the coefficient Ǒij is

weighted according to wij D 1=
�
O�2ij C �

2
j

�
with �2j the between-study variance of Ǒj .

As the coefficients are pooled independently for each predictor, dependencies between regression
coefficients are ignored. This simplification is not necessarily problematic when the previously published
regression coefficients are homogeneous. However, when estimates for these coefficients are known to
be correlated across studies, a more advanced approach that accounts for between-study covariance may
be more appropriate. We will discuss such an approach next.

2.2. Multivariate meta-analysis

The concept of multivariate meta-analysis is relatively new to the medical literature and can be seen
as a generalization of DerSimonian and Laird’s methodology for summarizing effect estimates [10, 24].
In contrast to univariate meta-analysis, the multivariate approach accounts for within-study covariance
(instead of within-study variance). Furthermore, multivariate meta-analysis estimates between-study
covariance (rather than between-study variance) of regression coefficients, and may therefore better
account for heterogeneity across studies. This explicit distinction of within-study and between-study
(co)variance has become paramount in epidemiological research. For this reason, we do not pursue other
potentially useful approaches where evidence is aggregated from a different perspective, such as the
generalized least squares approach proposed by Becker et al. [16].

In this section, we present a generalized random effects model that accounts for within-study and
between-study covariance of the regression coefficients when pooling them. A univariate [25] and
bivariate random effects model [26] for this purpose can be generalized as follows:

.ˇ0; ˇ1; : : : ; ˇk/
T
l �NKC1 .�re; .†re/l/ (4)

with

.†re/l D†bsC†l (5)

and

†bs D

0
BB@

�20 �01 : : : �0K

�01 �21 : : : �1K
: : : : : : : : : : : :

�0K �1K : : : �2K

1
CCA (6)
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and

†l D

0
BB@

�20 cov.ˇ0; ˇ1/ : : : cov.ˇ0; ˇK/
cov.ˇ0; ˇ1/ �21 : : : cov.ˇ1; ˇK/

: : : : : : : : : : : :

cov.ˇ0; ˇK/ cov.ˇ1; ˇK/ : : : �2K

1
CCA
l

(7)

In the expressions earlier, between-study estimates are denoted as bs and random-effects estimates as re.
Here, l denotes each included set of predictors from literature and IPD, that is, l D f1; : : : ;M; IPDg.

We explicitly distinguish between the within-study and between-study covariance of the regres-
sion coefficients, denoted as †l (for study l) and †bs, respectively. Estimates for .ˇ0; ˇ1; : : : ; ˇK/l
and †l can be obtained from . Ǒ0; Ǒ1; : : : ; ǑK/l and O†l , respectively. The unknown parameters
in �re and †bs can be estimated with maximum likelihood, and provide the pooled means �UPD D

�re and covariance matrix †UPD D
�PMC1

lD1 .†re/
�1
l

��1
. Their corresponding log-likelihood is given

by `.�re; †bs/ D
P
`l.�re; †bs/ where `l.�re; †bs/ D log.Pr .ˇ0l ; : : : ; ˇKl j�re; .†re/l// and

Pr.ˇ0l ; : : : ; ˇKl j�re; .†re/l/ � NKC1.�re; .†re/l/. To facilitate convergence of the maximum likeli-
hood estimation procedure, we used the independently pooled estimates of the previously published
regression coefficients as initial values for �re, and a zero-matrix as initial choice for †bs. In addition,
we used the Cholesky decomposition to ensure that †bs is positive semidefinite.

Although †l is fully defined for the IPD, its non-diagonal entries are usually unknown for previously
published regression coefficients. For this reason, we propose to impute missing entries in O†l based on
the observed correlations in O†IPD, according to

O†� l Dbcov
�
Ǒ
�l ; Ǒ l

�
D
bcov

�
Ǒ
�;IPD; Ǒ ;IPD

�
O��l O� l

O��;IPD O� ;IPD
(8)

with �; D 0; : : : ; K. This imputation strategy assumes that the within-study covariance of regression
coefficients is exchangeable across all studies. Alternatively, it is possible to restrict non-diagonal entries
in O†l to zero, according to O†l D diag

�
O�2
0l
; O�2
1l
; : : : ; O�2

Kl

�
. The former approach may be more appropri-

ate in more homogeneous sets of studies, as then the correlations from the IPD are likely to be closer to
the underlying correlations in the included AD. Furthermore, it is possible to assume a common corre-
lation value among all slopes (e.g., O†� l D 0:2 O��l O� l ), or to introduce uncertainty in the correlation
parameter(s) by adopting a Bayesian perspective [16, 27]. Finally, simulation studies have revealed that
multivariate meta-analysis models appear to be fairly robust to errors made in approximating within-
study covariances when only summary effect estimates (here represented by the regression coefficients)
are of interest [27].

The complexity of the meta-analysis is mostly defined by †bs. If each element in this matrix is
modeled as an unknown parameter, a full random effects meta-analysis is performed. Conversely, if
all (non-diagonal) entries in †bs and †l are restricted to zero, the regression coefficients are pooled
independently as described in Section 2.1. Furthermore, it is possible to perform a reduced random
effects meta-analysis by restricting a selection of †bs-elements to zero. For instance, we can assume
fixed effects for ˇ1 by choosing �21 D �0;1 D �1;2 D : : : D �1;K D 0. Additional fixed effects can
be introduced in a similar manner. We argue that by restricting the amount of unknown parameters in
†bs, estimates for their corresponding values may become more robust. The stability of �re and †bs

may further be improved by introducing (weakly) informative prior distributions. Unfortunately, such
approach ultimately requires the use of highly advanced distributional families, which may not have a
straightforward interpretation or implementation. Implementing these is beyond the scope of this article.

Finally, the described approach can easily be extended to scenarios in which multiple IPDs are avail-
able. In these scenarios,†l is fully defined for multiple studies and hence allows an improved estimation
of the unknown parameters. Alternatively, it is possible to adopt a one-stage approach that does not
reduce the IPD to AD, but instead accounts for the fact that some studies provide IPD, and some studies
provide only AD [28]. Similarly, when no IPDs are available, the non-diagonal entries of †l are (prob-
ably) undefined for all studies, and making reasonable assumptions about these entries becomes more
important to obtaining valid results.
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2.3. Bayesian inference

The approaches described in Sections 2.1 and 2.2 estimate a “pooled” prediction model whenever a
number of previously published prediction models as well as IPD are available. It may be clear that an
average synthesis model across the included study populations may not always reflect the population
of interest. Here, we assume that the IPD represents the clinically relevant population. Good prediction
in these particular subjects is hence of primary interest. Therefore, we consider an alternative approach
where the evidence from existing prediction models is used to update the regression coefficients from
the IPD. To this purpose, we apply a Bayesian framework where a summary of the previously pub-
lished regression coefficients serves as prior for the regression coefficients in the IPD. This summary of
literature evidence can be obtained through the approach described in Section 2.2:

�PRIOR D �re (9)

†PRIOR D

0
@
MX
jD1

.†re/
�1
j

1
A
�1

(10)

Note that this prior distribution does not include estimates from the IPD. Instead, we assume
that the estimated coefficients from the IPD follow a multivariate normal distribution with mean
�IPD and covariance matrix †IPD. This distribution represents the likelihood and can be formulated
as Pr.ˇ0;IPD; : : : ; ˇK;IPDj�IPD; †IPD/ � NKC1.�IPD; †IPD/. We propose to construct a conjugate
prior distribution for �IPD with Pr.�IPD/ � NKC1.�PRIOR; †PRIOR/ such that the posterior density
Pr.�IPDjˇ0;IPD; : : : ; ˇk;IPD; †IPD/�NKC1.�POST; †POST/ can be determined analytically:

�UPD D
�
†�1PRIORC†

�1
IPD

��1 �
†�1PRIOR �PRIORC†

�1
IPD �IPD

�
(11)

†UPD D
�
†�1PRIORC†

�1
IPD

��1
(12)

Here, the parameters �IPD and †IPD can be substituted by . Ǒ0;IPD; : : : ; ǑK;IPD/ and O†IPD, respectively.
Consequently, the vector �UPD represents the expected (posterior) value of the multivariate regression
coefficients ˇ0;UPD; : : : ; ˇK;UPD, and †UPD represents the expected (posterior) value of the correspond-
ing variance–covariance matrix. When multiple IPDs are available, it is possible to subsequently add
each IPD using Bayesian inference.

3. Application: traumatic brain injury

We tested univariate meta-analysis, multivariate meta-analysis, Bayesian inference, and standard logistic
regression (SLR) modeling (i.e., analysis using the IPD only) on 15 empirical datasets of TBI patients.
TBI is a leading cause of death and disability worldwide with a substantial economic burden [29, 30].
It is difficult to establish a reliable prognosis on admission [31]. This requires the consideration of
multiple and easily accessible risk factors in multivariable prognostic models [5, 22, 32, 33]. Many
prognostic models with admission data are readily available from the literature [32]. However, most
models were developed on relatively small sample sizes originating from a single center or region and
lack external validation [9, 32]. Therefore, their aggregation might improve the generalization of novel
prognostic models.

3.1. Application setup

To test the potential value of our approaches, we used 15 series of IPD collected in the International
Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) project [21]. The outcome
used in each of these trials was the Glasgow Outcome Scale score (GOS) at 6 months after injury,
dichotomized between severe and moderate disability.

We fitted a logistic regression model to each of the available datasets and considered a core set of
conventional TBI prognostic factors (age, motor score, and pupil response to light) (Table I) [22, 32]. In
this manner, we aimed to simulate scenarios in which a common set of core predictors is available and
can be aggregated with IPD. We realize that, for many genuine examples, the assumption of literature
models sharing the same set of parameters is unrealistic. This problem also arises in our application,
where some of the previously published regression coefficients are unknown because some studies did

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2697–2712
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not contain all categories of the motor score or pupil response. Instead of discarding the correspond-
ing predictors from the aggregated model, we propose using uninformative regression coefficients when
they cannot be estimated from the data. We argue that this strategy can also be applied in other examples
where the literature models do not share the same set of parameters. Finally, we measured the area under
the receiver operator characteristic curve (AUC) and the Brier score (BS) of the aggregated models as
indication of performance. Whereas the former quantifies the model’s ability to distinguish high-risk
from low-risk patients, the latter assesses the accuracy of its predictions [34, 35].

3.2. Practical example

As an illustration, we used the HIT I study [36] as IPD, the HIT II study [37] as validation data, and the
prediction models of the remaining studies as previously published evidence (Table II). We calculated
the I 2 index of heterogeneity for each separate (and known) regression coefficient of the previously pub-
lished prediction models by performing a univariate meta-analysis [38]. These coefficients were found
to be moderately to strongly heterogeneous with I 2. Ǒ0/ D 0:71 , I 2. Ǒ1/ D 0:15, I 2. Ǒ2/ D 0:49,
I 2. Ǒ3/ D 0:40, I 2. Ǒ4/ D 0:52, I 2. Ǒ5/ D 0:48, I 2. Ǒ6/ D 0:54, I 2. Ǒ7/ D 0:53 and I 2. Ǒ8/ D 0:61.
These estimates should however be interpreted with caution, as much discrepancy between the previ-
ously published regression coefficients is caused by small standard errors. Next, we imputed previously
published regression coefficients that could not be estimated from the data and performed a sensitivity
analysis to assess two different imputation approaches.

To this effect, we evaluated Ǒ� D 0 with O�2� D 100 and compared it with a mean imputation with

O�2� D
PM
jD1 O�

2
�j . Finally, we aggregated the previously published prediction models with the IPD. The

considered approaches are: SLR modeling ignoring the literature studies, univariate meta-analysis, mul-
tivariate meta-analysis, and Bayesian inference. We also performed a logistic regression analysis using
all available IPD datasets (except for the validation study), and used the resulting model as “gold stan-
dard” for comparing the aggregated models. Because the multivariate meta-analysis approach requires
the within-study covariance of the previously published prediction models to be fully specified, we eval-
uated two strategies for imputing missing (i.e., non-diagonal) entries in †l . As explained earlier, we
compared a strategy that involved imputing missing covariance entries based on observed correlation in
the IPD with a strategy based on restricted non-diagonal entries in †l to zero.

Results (Table II) from this example illustrate that particular choices for imputing missing regression
coefficients and unknown within-study covariance do not have a large impact on the resulting predic-
tion model. Although each strategy yields somewhat different estimated regression coefficients, most
variation seems to arise from the uncertainty in the available regression coefficients. The example also
illustrates that regression coefficients of aggregated prediction models are more similar to the coefficients
from the reference “gold standard” model (compared with SLR modeling). Furthermore, we noticed that
prediction models incorporating prior evidence achieved slightly improved AUC and Brier scores. It is
possible that improvements in this particular example are relatively small owing to the strong relation
between the IPD and validation data (the HIT II study is a follow-up study of the HIT I study). Finally,
we noticed a considerable decrease in the standard errors of estimated regression coefficients when prior
evidence was incorporated. Although these errors are not of primary concern in prediction research, they
reflect an improved stability of the derived prediction models.

3.3. Performance study

In order to evaluate the overall performance of aggregation models, we performed a split-sample proce-
dure where IPD and validation data were sampled (without replacement) from a common dataset. The
prediction models generated from the remaining datasets were used as prior evidence for the aggregation
methods. This procedure was repeated 100 times for each scenario to ensure stable estimates of model
performance. We evaluated NIPD D 500 and NIPD D 200, and imputed unknown regression coefficients
according to Ǒ� D 0 with O�2� D 100.

Results indicate that all aggregation approaches perform similarly and yield prediction models with
an improved AUC and Brier score (Table III). These improvements particularly occur in small datasets
(NIPD D 200) but do not necessarily disappear when more IPD is at hand (NIPD D 500). Furthermore,
we noticed that aggregated prediction models perform similarly compared with models derived with the
IPD from all original studies (Full IPD modeling). Finally, we noticed that standard errors of aggregated
regression coefficients tend to be smaller when estimated with multivariate meta-analysis (compared
with univariate meta-analysis).

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2697–2712

2703



T. P. A. DEBRAY ET AL.

Ta
bl

e
II

.
A

n
ill

us
tr

at
io

n
of

th
e

pr
op

os
ed

ap
pr

oa
ch

es
in

th
e

T
B

I
ap

pl
ic

at
io

n:
up

da
te

d
re

gr
es

si
on

co
ef

fic
ie

nt
s

(a
nd

st
an

da
rd

er
ro

r)
w

he
n

th
e

H
IT

I
st

ud
y

(N
D
3
5
0

)
is

us
ed

as
in

di
vi

du
al

pa
rt

ic
ip

an
td

at
as

et
,t

he
H

IT
II

st
ud

y
(N
D
8
1
9

)
as

va
lid

at
io

n
da

ta
se

ta
nd

th
e

re
m

ai
ni

ng
st

ud
ie

s
as

ev
id

en
ce

fr
om

th
e

lit
er

at
ur

e.

(I
nt

er
ce

pt
)

A
ge

,y
ea

rs
M

ot
or

sc
or

e
*

P
up

ill
ar

y
re

ac
ti

vi
ty

**
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Ǒ 4
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4. Application: deep venous thrombosis

To confirm the potential value of the proposed approaches, we describe a genuine clinical example
involving the prediction of deep venous thrombosis (DVT). In this example, we aggregated five pre-
viously published prediction models [39–44] with one IPD set, and evaluated different strategies for
coping with missing predictor values and within-study covariance. We used an IPD (N D 1028) from
the Amsterdam–Maastricht–Utrecht Study on thromboEmbolism (AMUSE-1) [45] and aggregated these
data with the prediction models described next. A detailed description of the predictors can be found in
the Appendix. After aggregation, we validated the original and aggregated models in an independent
dataset of 791 participants [46].

Unfortunately, we encountered some difficulties during incorporation of the previously published
prediction models. For instance, some articles did not report the original regression coefficients and
standard errors of the prediction model and reported a scoring rule with weights instead, with score D
weight1x1C : : :CweightKxK (e.g., Wells rule, modified Wells rule, and Hamilton rule). We attempted
to reconstruct the original regression coefficients and standard errors by deriving a prediction model in
the IPD with the scoring rule as single variable according to:

Pr.DVT presence/D logit�1.ˇadj0C ˇadj1score/ (13)

The resulting slope Ǒadj1 is then multiplied with the reported weights to obtain an estimate for the origi-
nal regression coefficients, and Ǒadj0 is used as estimate for the model intercept. Conservative estimates
for the corresponding standard errors can be obtained by assuming

�adj1 D

0
@
MX
jD1

��2j

1
A
�1=2

(14)

This assumption implies that the standard errors �j are equal for all regression coefficients of the model
under consideration. The standard error for the model intercept can be directly obtained from O�adj0. Alter-
natively, reported p-values of regression coefficients can be converted into standard errors by assuming
normality. An advantage of this approach is that the AUC of reconstructed models remains equal to the
performance of the original models, as the linear predictors are proportionally identical.

We illustrate this approach using the Wells rule. This rule consists of nine clinical items where
WellsScoreD 1malign C 1 par C 1 surg C 1 tend C 1 leg C 1 calfdif3 C 1 pit C 1 vein � 2 altdiagn.
We attempted to reconstruct the original regression coefficients and standard errors by deriving a predic-
tion model in the IPD with the Wells score as single variable. This approach yielded the following model:
Pr.DVT presence/D logit�1.�2:66C 0:52WellsScore/. Consequently, we may reconstruct the original
regression coefficients as follows: Ǒ0 D �2:66, Ǒmalign D 0:52, Ǒpar D 0:52, Ǒsurg D 0:52, Ǒtend D 0:52,
Ǒ
leg D 0:52, Ǒcalfdif3 D 0:52, Ǒpit D 0:52, Ǒvein D 0:52 and Ǒaltdiagn D �1:04. We found O�adj0 D 0:15 and
O�adj1 D 0:05, such that O�0 D 0:15 and O�malign; : : : ; O�altdiagn D 0:16.

We applied the previously published models in the validation data and observed an AUC< 0:634, and
a Brier score > 0:133 for most models, with exception of the Oudega model (AUC D 0.767 and Brier
scoreD 0.125).

4.1. Evidence aggregation

Consequently, we aggregated the previously published prediction models with the IPD. The approaches
considered are: standard logistic regression (ignoring the evidence from the literature), univariate meta-
analysis, multivariate meta-analysis, and Bayesian inference. Because a relatively large number of
predictors were considered, including all of them would preclude multivariate meta-analysis that would
lead to clinically viable prediction models (15 predictorsC intercept). Hence, we focused on a subset of
four important predictors: malign, surg, calfdif3, and ddimdich. A summary of the evidence from each
of the literature sources and from the IPD is presented in Table IV. These were then pooled. In order
to appraise the quality of the derived model (which only included four core predictors), we also fitted
a more complex prediction model where we considered the eight predictors from the Oudega model.
The AUC of the resulting model however decreased from 0.72 to 0.70, indicating that the simplified
model is more generalizable and presents a better reference for comparing the aggregated prediction
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Table IV. Overview of reconstructed regression coefficients (and standard errors) of the previously published
prediction models in the DVT application.

Characteristics Logistic regression coefficients for DVT outcome

Prediction model Wells Modified Wells Gagne Hamilton Oudega IPD (4) IPD (8)
Patients 593 530 276 309 1,295 1,028 1,028

(Intercept) �2.66 (0.15) �2.77 (0.15) �1.69 (0.10) �2.72 (0.17) �5.47 (NA) �3.95 (0.28) �4.67 (0.37)
altdiagn �1.05 (0.16) �1.06 (0.17) �1.77 (0.19)
calfdif3 0.52 (0.16) 0.53 (0.17) 0.70 (0.19) 0.43 (0.18) 1.13 (0.34) 0.86 (0.20) 0.87 (0.21)
ddimdich 3.01 (0.91) 2.39 (0.29) 2.40 (0.30)
eryt 0.43 (0.18)
histdvt 0.53 (0.17) 0.63 (0.19) 0.87 (0.18)
leg 0.52 (0.16) 0.53 (0.17)
malign 0.52 (0.16) 0.53 (0.17) 1.69 (0.19) 0.87 (0.18) 0.42 (0.24) 0.77 (0.36) 0.68 (0.36)
notraum 0.60 (0.19) 0.55 (0.25)
oachst 1.17 (0.19) 0.75 (0.24) �12.44 (535)
par 0.52 (0.16) 0.53 (0.17) 0.87 (0.18)
pit 0.52 (0.16) 0.53 (0.17)
sex 0.43 (0.18) 0.59 (0.18) 0.60 (0.21)
surg 0.52 (0.16) 0.53 (0.17) 0.53 (0.19) 0.43 (0.18) 0.38 (0.19) �0.13 (0.37) �0.04 (0.38)
tend 0.52 (0.16) 0.53 (0.17)
vein 0.52 (0.16) 0.53 (0.17) 0.48 (0.16) 0.22 (0.26)

Note W IPD (4) and IPD (8) represent the models derived from the AMUSE-1 study, with four and eight core predictors,
respectively.

models. Finally, we compared the simplified aggregated models with a more extensive model derived
with univariate meta-analysis using the eight predictors from the Oudega model. This model yielded
the following regression coefficients (and standard error): Ǒ0 D �4:70 (0.10), Ǒcalfdif3 D 0:63 (0.08),
Ǒ
ddimdich D 2:45 (0.28) Ǒmalign D 0:79 (0.20), Ǒnotraum D 0:58 (0.15), Ǒoachst D 1:01 (0.15), Ǒsex D 0:54

(0.11), Ǒsurg D 0:46 (0.08), and Ǒvein D 0:48 (0.09).

4.2. Results in the DVT case study

Results in Table V indicate that the aggregated prediction models, despite including few(er) predictors,
are superior to models that do not incorporate evidence from the literature. However, we also noticed
that the Oudega model outperforms the aggregated models in terms of AUC (but achieves a similar
Brier score). This discrepancy decreases when an extended model with eight predictors using univari-
ate meta-analysis is derived (AUC D 0.759 and Brier Score D 0.124). These results possibly indicate
that the Oudega model considerably contributes to the discriminative ability of the aggregated models.
Particularly, it is the only literature model with a regression coefficient for ddimdich, a relatively
strong predictor in DVT. We noticed that Ǒddimdich was considerably smaller in the IPD and aggregated
models, and much larger in the Oudega model and validation data ( Ǒddimdich D 3:95, adjusted for the
four core predictors), which may partially explain the decrease in discriminative ability. Furthermore,
results indicate that different implementations for multivariate meta-analysis perform similarly. Esti-
mated regression coefficients and standard errors, on the other hand, may considerably differ according
to the implemented approach. For instance, we noticed that uninformative imputation yielded relatively
large standard errors for Ǒddimdich. Possibly, these errors are inflated in multivariate meta-analysis because
some of the estimated between-study correlations take extreme values: �. Ǒddimdich; Ǒ0/ D �0:79 and
�. Ǒddimdich; Ǒmalign/ D �0:97 [47]. Finally, we noticed that standard errors of aggregated regression
coefficients tend to be smallest when estimated with Bayesian inference.

5. Discussion

In line with previous research, we found that the aggregation and incorporation of previously pub-
lished prediction models can indeed improve the performance of a novel prediction model [3,13,26,48].
The case studies demonstrate that the proposed methods are particularly useful when a few participant
data are at hand. Although the aggregation methods perform similarly in most scenarios, multivariate

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2697–2712
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Table V. Multivariate regression coefficients (and standard error) of the aggregated prediction models in the
DVT application.

Ǒ
0
Ǒmalign Ǒsurg Ǒcalfdif3 Ǒddimdich AUC BS

SLR modeling �3.95 0.77 �0.13 0.86 2.39 0.723 0.123
Analysis ignoring literature studies (0.28) (0.36) (0.37) (0.20) (0.29) (0.021) (0.007)

Uninformative regression coefficients for missing estimates in the literature models
�
Ǒ
� D 0 with O�2� D 100

�

Univariate meta-analysis �3.94 0.80 0.46 0.63 2.44 0.730 0.123
(0.10) (0.20) (0.08) (0.08) (0.28) (0.019) (0.007)

Multivariate meta-analysis �3.52 0.75 0.40 0.64 1.95 0.730 0.122
missing within-study covariance restricted to zero (0.10) (0.17) (0.11) (0.10) (1.02) (0.019) (0.007)
Bayesian inference �3.28 0.49 0.45 0.68 1.64 0.738 0.122
missing within-study covariance restricted to zero (0.10) (0.14) (0.08) (0.10) (0.20) (0.020) (0.007)

Mean imputation for missing estimates in the literature models
�

with O�2� D
PM
jD1 O�

2
�j

�

Univariate meta-analysis �4.08 0.80 0.46 0.63 2.60 0.730 0.123
(0.10) (0.20) (0.08) (0.08) (0.24) (0.019) (0.007)

Multivariate meta-analysis �3.96 0.72 0.40 0.74 2.43 0.738 0.123
missing within-study covariance restricted to zero (0.10) (0.18) (0.09) (0.12) (0.45) (0.020) (0.007)
Bayesian inference �3.88 0.72 0.38 0.80 2.30 0.738 0.123
missing within-study covariance restricted to zero (0.10) (0.16) (0.08) (0.10) (0.21) (0.020) (0.007)

Note W The area under the receiver operator characteristic curve (AUC) and the Brier score (BS) of the aggregated
models are presented together with their standard error as measure of performance in the validation dataset.

meta-analysis and Bayesian inference tend to yield smaller confidence intervals for the regression coef-
ficients. According to previous research, this may be related to the fact that these approaches take more
evidence into account [49] and allow more flexibility. The inclusion of additional evidence (i.e., within-
study covariance) may, however, also introduce additional uncertainty and cause estimation difficulties,
resulting in an inflation of standard errors [27,47]. Finally, results indicate that the proposed aggregation
approaches may considerably reduce model complexity without comprising their predictive accuracy.
Particularly, by focusing on a set of core predictors, the model can be pruned effectively.

In this article, we evaluated and compared three evidence aggregation approaches in two case stud-
ies using real clinical data. The two case studies demonstrate that aggregation yields prediction models
with an improved discrimination and calibration in a vast majority of scenarios, and result in equivalent
performance (compared with the standard approach) in a small minority of situations. The exact precon-
ditions for this occurrence could not be definitively established here. Possibly, data aggregation is little
added value in scenarios where derivation and validation populations are highly similar and the AD from
the literature is relatively different. The exact causes need to be further explored.

Finally, we have illustrated how the generally unrealistic assumption of consistency in the availability
of evidence across included studies can be relaxed for real-life scenarios. Specifically, we have demon-
strated how these methods can be applied when predictor values, covariance data, and even original
regression coefficients are unknown. The fact that aggregation of such evidence succeeds in improving
the performance of novel prediction models underscores the value and versatility of this methodology,
as illustrated in the DVT example.

Based on these results from our empirical studies, the following tentative guidelines can be
proposed. First, when there are relatively many IPD at hand and evidence from the literature is strongly
heterogeneous with these data, the standard approach, by fitting a new model (from scratch) from that
dataset without incorporating or synthesizing the published evidence, is acceptable. Secondly, when
the evidence from the literature is moderately heterogeneous, or the IPD is relatively small, Bayesian
inference (and multivariate meta-analysis) may improve calibration and discrimination of the newly
developed prediction model. Even when the actual degree of heterogeneity is unknown, these approaches
may still be preferred to the standard approach of fitting an entirely new model from scratch, and is
relatively easy to implement. Finally, when the evidence from the literature is (relatively) homogeneous,
univariate meta-analysis represents a superior approach for improving or updating the newly devel-
oped prediction model. Heterogeneity may be quantified using the I 2-statistic, where published criteria
suggest adjectives of low, moderate, and high to I 2 values of 25 50 and 75% [38].
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5.1. Limitations

Although we addressed important aspects of aggregating data in the two case studies, we did not assess
or address the potential impact of selection bias. Conceivably, pooled regression coefficients may be
overestimated or underestimated when important predictors are excluded. This problem may arise when
literature models are derived using data-driven selection with stepwise methods, and particularly in
small samples [50]. Furthermore, the selection of a core set of predictors may introduce additional
bias when the excluded regression coefficients are strongly influential or correlated with the included
predictors. This is known as confounding of pooled effects, and usually results in underestimation of
pooled regression coefficients (as predictors are typically positive in clinical prediction research). It
is therefore important to select a reasonable set of core predictors when pooling differently specified
prediction models.

Another potential limitation of this article is the fact that only two clinical examples were examined.
Conceivably, these may not be representative of the majority of clinical prediction research, and our
evaluation of the evidence aggregation methods are not reproducible in different scenarios. We feel that
this is unlikely because the examples used, TBI and DVT, are two typical areas of clinical prediction
research for which we included numerous articles (15 and 5, respectively). We welcome the evaluation
of these approaches in other case studies by other authors.

Finally, our DVT application illustrates that aggregated prediction models generally improve the
predictive accuracy of novel prediction models but do not always outperform previously published pre-
diction models in terms of discriminative ability. We demonstrated that this situation may occur when a
strong predictor is poorly available from the literature and not well estimated in the IPD. Moreover, it
is well known that the AUC is not the most sensitive measure to assess incremental value of predictors
[51, 52]. For this reason, we also considered model accuracy in terms of the Brier score.

5.2. Conclusion

The incorporation of previously published prediction models into the development of a novel prediction
model with a similar set of predictors is both feasible and beneficial when IPD are available. Particularly
in small datasets, we noticed that the inclusion of such aggregate evidence may provide considerable
leverage to improve the regression coefficients and discriminative ability of the new prediction model.
However, it remains paramount that researchers identify to what extent the previously published pre-
diction models are comparable with those in the available IPD, as the justification of the considered
approaches depends on the clinical relevance of the aggregated model. Future research may therefore
focus on the quantification of heterogeneity across prediction models. In conclusion, aggregation is
better or at least equivalent. Real-life clinical examples support these conclusions.

Appendix A. Overview of the variables in the AMUSE-1 dataset.

sex Gender
0D female
1D male

age Age
side Side of legpain

0D left side
1D right side
2D both sides

durat Duration of symptoms
malign Active malignancy

0D no active malignancy
1D active malignancy

par Paresis
0D no paresis
1D paresis

surg Recent surgery (or bedridden)
0D no recent surgery (or bedridden)
1D recent surgery (or bedridden)

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2697–2712
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tend Tenderness venous system
0D no localised tenderness deep venous system
1D localised tenderness deep venous system

leg Entire leg swollen
0D entire leg not swollen
1D entire leg swollen

calfdif Calf difference
calfdif3 Calf difference >D 3 cm

0D calf difference < 3 cm
1D calf difference >D 3 cm

pit Pitting edema
0D no pitting edema
1D pitting edema

vein Vein distension
0D no vein distension
1D vein distension

altdiagn Alternative diagnosis present
0D no alternative diagnosis present
1D alternative diagnosis present

oachst Oral contraceptives or hst
0D no oac or hst
1D oac or hst used

notraum Absence of leg trauma
0D leg trauma present
1D no leg trauma present

eryt Erythema
0D no erythema
1D erythema

histdvt History of previous DVT
0D no history of previous DVT
1D history of previous DVT

histpe History of previous PE
0D no history of previous PE
1 = history of previous PE

coag Family history of thrombofilia
0D no family history of thrombofilia
1D family history of thrombofilia

trav Prolonged traveling
0D no prolonged traveling
1D prolonged traveling

pregn Pregnancy
0D not pregnant
1D pregnant

ddim D-dimer value
ddimdich Dichotimized d-dimer value

0D D-dimer negative
1D D-dimer positive

dvt Final diagnosis of DVT
0D no DVT
1D DVT
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