
Architectures for Wireless Sensor Networks
Stefan Dulman 1, Paul Havinga 2

Ambient Systems BV; the Netherlands
stefan@ambient-systems.net

2 University of Twente, the Netherlands
p.j.m.havinga@ewi.utwente.nl

Abstract

Various architectures have been developedfor wireless sensor
networks. Many of them leave to the programmer important
concepts as the way in which the inter-task communication
and dynamic reconfigurations are addressed. In this paper we
describe the characteristics ofa new architecture we proposed
- the data-centric architecture. This architecture offers an
easy way of structuring the applications designedfor wireless
sensor nodes that confers them superior performances.

1. INTRODUCTION

Although the nodes of a wireless sensor networks might be
equipped with a power supply or energy scavenging means and
an embedded processor that makes them autonomous and self-
aware, their functionality and capabilities will be very limited.
Therefore, collaboration between nodes is essential to deliver
smart services in a ubiquitous setting.
New algorithms for networking and distributed collabora-

tion need to be developed. These algorithms will be key for
building self-organizing and collaborative sensor networks that
show emergent behavior and can operate in a challenging
environment where nodes move, fail, and energy is a scarce
resource.
The question that rises is how to organize the internal

software and hardware components in a manner that will allow
them to work properly and be able to adapt dynamically to new
environments, requirements and applications. At the same time
the solution should be general enough to be suited for as many
applications as possible. Architecture definition also includes,
at the higher level, a global view of the whole network. The
topology, placement of base stations, beacons, etc. are also of
interest.

In this paper we present a brief state of the art of exist-
ing architectures for wireless sensor networks and introduce
the concepts of a new, data-centric architecture. The new
architecture offers, for a small overhead, features hard to
emulate on the other existing architectures - basically, it offers
dynamic on-line reconfiguration as a solution to many existing
problems in sensor networks. The architecture was shown to
be a working concept by the various operating systems [8],
[7] and the simulator designed on top of it.

This paper is organized as follows: Section 2 looks into the
characteristics of the environment in which sensor networks
are deployed. Then, Section 3 presents the usual characteristics

of a regular node in a sensor network. We continue discussing
in Section 4 the characteristics of already existing topologies
in sensor networks. Next, we present the underlying concepts
of the data-centric architecture (Section 5) and we end the
paper with Section 6 - the conclusions.

2. DIVERSITY AND DYNAMICS

The environment in which sensor nodes operate can be de-
scribed as dynamic.
As we already suggested, there may be several kinds of

sensor nodes present inside a single sensor network. We could
talk of heterogeneous sensor nodes from the point of view of
hardware and software. From the point of view of hardware, it
seems reasonable to assume that the number of a certain kind
of devices will be in an inversely proportional relationship to
the capabilities offered. We can assist to a tiered architecture
design, where the resource poor nodes will ask more powerful
or specialized nodes to make more accurate measurements of
a certain detected phenomenon, to perform resource intensive
operations or even to help in transmitting data at a higher
distance.

Diversity can also refer to sensing several parameters and
then combine them in a single decision, or in other words
to perform data-fusion. We are talking about assembling
together information from different kinds of sensors like: light,
temperature, sound, smoke, etc. to detect for example that a
fire has started.

Sensor nodes will be deployed in the real world, most
probably in harsh environments. This puts them in contact
with an environment that is dynamic in many senses and has
a big influence on the algorithms that the sensor nodes should
execute. First of all, the nodes will be deployed in a random
fashion in the environment and in some cases, some of them
will be mobile. Secondly, the nodes will be subject to failures
at random times and they will also be allowed to change their
transmission range to better suit their energy budget. This
leads to the full picture of a network topology in a continuous
change. The algorithms for the wireless sensor networks have
as one of their characteristic the fact that they do not require
a predefined well-known topology.
One more consequence of the real world deployment is that

there will be many factors influencing the sensors in contact
with the phenomenon. Individual calibration of each sensor
node will not be feasible and probably will not help much as
the external conditions will be in a continuous change. The

0-7803-9399-6/05/$20.00 © 2005 IEEE ISSNIP 200531

Fig. 1: Sensor node components

sensor network will calibrate itself as a reply to the changes
in the environment conditions. More than this, the network
will be capable of self-configuration and self-maintenance.

Another issue we need to talk about is the dynamic nature of
the wireless communication medium. Wireless links between
nodes can periodically appear or disappear due to the particular
position of each node. Bidirectional links will coexist with
unidirectional ones and this is a fact that the algorithms for
wireless sensor networks need to consider.

3. SENSOR NODE ARCHITECTURE

Current existing technology already allows integration of func-
tionality for information gathering, processing and commu-
nication in a tight packaging or even in a single chip. The
four basic blocks needed to construct a sensor node are (see
Figure 1):

* Sensor platform
The sensors are the interfaces to the real world. They
collect the necessary information and have to be moni-
tored by the central processing unit. The platforms may
be built in a modular way such that a variety of sensors
can be used in the same network. The utilization of a
very wide range of sensors (monitoring characteristics of
the environment such as light, temperature, air pollution,
pressure, etc.) is envisioned. The sensing unit can also be
extended to contain one or more actuation units (e.g. to
give the node the possibility to re-position itself).

. Processing unit

The processing unit is the central intelligence of the sen-
sor node. It will not only collect the information detected
by the sensor but will also be used in the communication
with the network. The level of intelligence in the sensor
node will strongly depend on the type of information that
is gathered by its sensors and by the way in which the
network operates. The sensed information will be pre-
processed to reduce the amount of data to be transmitted
via the wireless interface. The processing unit will also
have to execute some networking protocols in order to

forward the results of the sensing operation through the
network to the requesting user.

. Communication interface
The communication interface is the link of each node to
the sensor network itself. The focus relies on a wireless
communication link, in particular on the radio commu-
nication, although visible or infrared light, ultrasound,
etc. means of communications have already been used
[3]. The used radio transceivers can usually function in
simplex mode only, and can be completely turned off, in
order to save energy.

* Power source

Due to the application areas of the sensor networks,
autonomy is an important issue. Sensor nodes are usually
equipped with a power supply in the form of one or more
batteries. Current studies focus on reducing the energy
consumption by using low power hardware components
and advanced networking and data management algo-
rithms. The usage of such energy scavenging techniques
for sensor nodes might make possible for the sensor
nodes to be self-powered. No matter which form of power
source is used, energy is still a scarce resource and a
series of trade-offs will be employed during the design
phase to minimize its usage.

Sensor networks will be heterogeneous from the point of
view of the types of nodes deployed. Moreover, whether or
not a any specific sensor node can be considered as being
part of the network only depends on the correct usage and
participation in the sensor network suite of protocols and
not on the node's specific way of implementing software or
hardware. An intuitive description given in [5] envisions a sea
of sensor nodes, some of them being mobile and some of them
being static, occasionally containing tiny isles of relatively
resource-rich devices. Some nodes in the system may execute
autonomously (e.g. forming the backbone of the network by
executing network and system services, controlling various
information retrieval and dissemination functions, etc.), while
others will have less functionality (e.g. just gathering data and
relaying it to a more powerful node).

Thus, from the sensor node architecture point of view we
can distinguish between several kinds of sensor nodes. A
simple yet sufficient in the majority of the cases approach
would be to have two kind of nodes: high-end sensor nodes
(nodes that have plenty of resources or superior capabilities;
the best candidate for such a node would probably be a fully
equipped PDA device or even a laptop) and low-end nodes
(nodes that have only the basic functionality of the system
and have very limited processing capabilities).
The architecture of a sensor node consists of two main

components: defining the needed functionality and how to
join various elements to form a coherent sensor node. In
other words, sensor node architecture means defining the exact
way in which the selected hardware and software components
connect to each other, how they communicate and how they
interact with the central processing unit, etc.

32

Fig. 2: Protocol stack representation of the architecture [1]

A large variety of sensor node architectures have been built
up to this moment. As a general design rule, all of them
have targeted the following three objectives: energy efficiency,
small size and low cost. Energy efficiency is by far the
most important design constraint because energy consumption
depends on the lifetime of the sensor nodes. As the typical
scenario of sensor networks deployment assumes that the
power supplies of nodes will be limited and not rechargeable, a
series of trade-offs need to be made to decrease the amount of
consumed energy. Small size of the nodes leads to the ability
of deploying lots of them to study a certain phenomenon. The
ideal size is suggested by the name of one of the first research
projects in the area: Smart Dust [11]. Very cheap sensor nodes
will lead to rapid deployment of such networks and large scale
usage.

4. SENSOR NETWORK ARCHITECTURES
A sensor network is a very powerful tool when compared to a
single sensing device. It consists of a large number of nodes,
equipped with a variety of sensors that are able to monitor
different characteristics of a phenomenon. A dense network
of such small devices, will give the researcher the opportunity
to have a spatial view over the phenomenon and, at the same
time, it will produce results based on a combination of various
sorts of sensed data.
Each sensor node will have two basic operation modes:

initialization phase and operation phase. But, the network as
a whole will function in a smooth way, with the majority of
the nodes in the operation mode and only a subset of nodes
in the initialization phase. The two modes of operation for the
sensor nodes have the following characteristics:

* Initialization mode

A node can be considered in initialization mode if it tries
to integrate itself in the network and is not performing
its routine function. A node can be in initialization mode
for example at power on or when it detects a change
in the environment and needs to configure itself. During
initialization, the node can pass through different phases
such as detecting its neighbors and the network topology,
synchronizing with its neighbors, determining its own
position or even performing configuration operations on
its own hardware and software. At a higher abstraction
level, a node can be considered in initialization mode if
it tries to determine which services are already present
in the network, which services it needs to provide or can
use.
Operation mode

After the initialization phase the node enters a stable
state, the regular operation state. It will function based
on the conditions determined in the initialization phase.
The node can exit the operation mode and pass through
an initialization mode if either the physical conditions
around it or the conditions related to the network or to
itself have changed. The operation mode is characterized
by small bursts of node activity (such as reading sensors
values, performing computations or participating in net-
working protocols) and periods spent in an energy-saving
low power mode.

A. Protocol stack approach
A first approach to building a wireless sensor network will be
to use a layered protocol stack as a starting point, as in the
case of traditional computer network.
The main difference between the two kinds of networks is

that the blocks needed to build the sensor network usually span
themselves over multiple layers, while depending on each-
others. This characteristic of sensor networks comes from the
fact that they have to provide functionality that is not present
in traditional networks. Figure 3 presents an approximate
mapping of the main blocks onto the traditional OSI protocol
layers [5].
The authors of [1] propose an architecture based on the five

OSI layers together with three management planes that go
throughout the whole protocol stack (see Figure 2). A brief
description of the layers included can be: the physical layer
addresses mainly the hardware details of the wireless com-
munication mechanism: the modulation type, the transmission
and receiving techniques, etc. The data link layer is concerned
with the Media Access Control (MAC) protocol that manages
communication over the noisy shared channel. Routing the
data between the nodes is managed by the network layer, while
the transport layer helps to maintain the data flow. Finally, the
application layer contains (very often) only one single user
application.

In addition to the five network layers, the three management
planes have the following functionality: the power manage-
ment plane coordinates the energy consumption inside the
sensor node. It can, for example, based on the available amount

33

Application AIL AS

Transport

Network

ing
Link l W y

Physical

Fig. 3: Relationship building blocks / OSI layers

of energy, allow the node to take part in certain distributed
algorithms or to control the amount of traffic it wants to
forward. The mobility management plane will manage all
the information regarding the physical neighbors and their
movement patterns as well as its own moving pattern. The
task management plane coordinates sensing in a certain region
based on the number of nodes and their placement (in very
densely deployed sensor networks, energy might be saved by
turning certain sensors off to reduce the amount of redundant
information sensed).

B. EYES project approach
The approach taken in the EYES project [9] consists of only
two key system abstraction layers: the sensor and networking
layer and the distributed services layer (see Figure 4). Each
layer provides services that may be dynamically specified and
reconfigured.

. Sensors and networking layer - This layer contains
the sensor nodes (the physical sensor and wireless trans-
mission modules) and the network protocols. Ad-hoc
routing protocols allow messages to be forwarded through
multiple sensor nodes taking into account the mobility
of nodes and the dynamic change of topology. Commu-
nication protocols must be energy-efficient since sensor
nodes have very limited energy supplies. To provide more
efficient dissemination of data, some sensors may process
data streams, and provide replication and caching.

. Distributed services layer - This layer contains dis-
tributed services for supporting mobile sensor applica-
tions. Distributed services coordinate with each other to
perform decentralized services. These distributed servers
may be replicated for higher availability, efficiency and
robustness. We have identified two major services. The
look-up service supports mobility, instantiation, and re-
configuration. The information service deals with aspects
of collecting data. This service allows vast quantities
of data to be easily and reliably accessed, manipulated,
disseminated, and used in a customized fashion by appli-
cations.

| e 1 t Applications

InfttntionsenicemI ice Distibutedservices J

Sesrsadnetworkin,

Fig. 4: EYES project architecture description

On top of this architecture applications can be built using
the sensor network and distributed services. Communication
in a sensor network is data-centric since the identity of the
numerous sensor nodes is not important, only the sensed data
(together with the time and the location information) counts.
The three main functions of the nodes within a sensor network
are directly related to this:

. Data discovery - Data will be collected using the several
classes of sensors employed in the network. Specialized
sensors can monitor climatic parameters (humidity, tem-
perature, etc.), motion detection, vision sensors and so on.
A first step of data pre-processing can also be included
in this task.

. Data processing and aggregation - This task is directly
related to performing distributed computations on the
sensed data and also aggregating several observations into
a single one. The goal of this operation is the reduction of
energy consumption. Data processing influences it by the
fact that the transmission of one (raw sensed) data packet
is equivalent to many thousands of computation cycles
in the current architectures. Data aggregation keeps the
overall traffic low by inspecting the contents of the routed
packets, and in general, reducing the redundancy of the
data in traffic by combining several similar packets into
a single one.

. Data dissemination - This task includes the networking
functionality comprising routing, multicasting, broadcast-
ing, addressing, etc.

The existing network scenarios contain both static and mo-
bile nodes. In some cases, the static nodes can be considered
to form a back-bone of the network and are more likely to
be preferred in certain distributed protocols. Both mobile and
static nodes will have to perform data dissemination, so the
protocols should be designed to be invariant to node mobility.
The particular hardware capabilities of each kind of sensor
node will determine how the previously described tasks will
be mapped onto them (in principle all the nodes could provide
all the previous functionality). During the initialization phase

34

of the network, the functionality of every node will be decided
based on both the hardware configurations and the particular
environmental conditions.

For a large sensor network to be able to function correctly,
a tiered architecture is needed [4]. This means that nodes will
have to organize themselves into clusters based on certain
conditions. The nodes in each cluster will elect a leader - the
best fitted node to perform coordination inside the cluster (this
can be for example the node with the highest amount of energy,
or the node having the most advanced hardware architecture,
or just a random node). The cluster leader will be responsible
for scheduling the node operations, managing the resources
and the cluster structure and maintaining communication with
the other clusters.
We can talk about several types of clusters that can coexist

in a single network:
* Geographical clustering - The basic mode of organizing

the sensor network. The clusters are built based on the
geographical proximity. Neighboring nodes (nodes that
are in transmission range of each-other) will organize
themselves into groups. This operation can be handled in
a completely distributed manner and it is a necessity for
the networking protocols to work even when the network
scales up.

. Information clustering - The sensor nodes can be
grouped into information clusters based on the services
they can provide. This clustering structure belongs to
the distributed services layer and is built on top of
the geographical clustering. Nodes using this clustering
scheme need not be direct neighbors from the physical
point of view.

. Security clustering - An even higher order hierarchy
appears if security is taken into consideration. Nodes can
be grouped based on their trust levels or based on the
actions they are allowed to perform or resources they are
allowed to use in the network.

Besides offering increased capabilities to the sensor net-
work, clustering is considered one of the principal building
blocks for the sensor networks also from the point of view
of energy consumption. The overhead given by the energy
spent for creating and organizing the sensor network is easily
recovered in the long term due to the reduced traffic it leads
to.

5. DATA CENTRIC ARCHITECTURE
As we previously stated, the layered protocol stack description
of the system architecture for a sensing node cannot cover
all the aspects involved (such as cross-layer communication,
dynamic update, etc.). In this section we address the problem
of describing the system architecture in a more suited way and
its implications in the application design.

A. Motivation
The sensor networks are dynamic from many points of view.
Continuously changing behaviors can be noticed in several
aspects of sensor networks, some of them being:

. Sensing process - The natural environment is dynamic
by all means (the basic purpose of sensor networks is
to detect, measure and alert the user of the changing
of its environment). The sensor modules themselves can
become less accurate, need calibration or even break
down.

. Network topology - One of the features of the sensor
networks is their continuously changing topology. There
are a lot of factors contributing to this, such as: failures of
nodes or the unreliable communication channel, mobility
of the nodes, variations of the transmission ranges, clus-
ters reconfiguration, addition/removal of sensor nodes,
etc. Related to this aspect, the algorithms designed for
sensor networks need to have two main characteristics:
they need to be independent on the network topology and
need to scale well with the network size.

. Available services - Mobility of nodes, failures or avail-
ability of certain kinds of nodes might trigger recon-
figurations inside the sensor network. The functionality
of nodes may depend on existing services at certain
moments and when they are no longer available, the
nodes will either reconfigure themselves or try to provide
these services themselves.

. Network structure - New kinds of nodes may be added
to the network. Their different and increased capabilities
will bring changes to the regular way in which the
network functions. Software modules might be improved
or completely new software functionality might be im-
plemented and deployed in the sensor nodes.

Most wireless sensor network architectures currently use a
fixed layered structure for the protocol stack in each node.
This approach has certain disadvantages for wireless sensor
networks. Some of them are:

* Dynamic environment - Sensor nodes address a dynamic
environment where nodes have to reconfigure themselves
to adapt to the changes. Since resources are very limited,
reconfiguration is also needed in order to establish an
efficient system (a totally new functionality might have
to be used if energy levels drop under certain values). The
network can adapt its functionality to a new situation, in
order to lower the use of the scarce energy and memory
resources, while maintaining the integrity of its operation.

. Error control - Error control normally resides in all
protocol layers so that for all layers the worst case
scenario is covered. For a wireless sensor network this
redundancy might be too expensive. Adopting a central
view on how error control is performed and cross-layer
design will reduce the resources spent for error control.

. Power control - Power control is traditionally done only
at the physical layer, but since energy consumption in
sensor nodes is a major design constraint, it is found
in all layers (physical, data-link, network, transport and
application layer).

. Protocol place in the sensor node architecture - An
issue arises when trying to place certain layers in the

35

* Data

--- Triggering data
I... 1* Non-triggering data

DataData
....

=

Fig. 5: Entity description

protocol stack. Examples may include: timing and syn-
chronization, localization and calibration. These protocols
might shift their place in the protocol stack as soon
as their transient phase is over. The data produced by
some of these algorithms might make a different protocol
stack more suited for the sensor node (e.g. a localization
algorithm for static sensor networks might enable a better
routing algorithm that uses information about the location
of the routed data destination).

* Protocol availability - New protocols might become
available after the network deployment or at certain
moments, in specific conditions, some of the sensor nodes
might use a different protocol stack that better suits their
goal and the environment.

It is clear from these examples that dynamic reconfiguration
of each protocol as well as dynamic reconfiguration of the
active protocol stack is needed.

B. Architecture description

The system we are trying to model is an event-driven system,
meaning that it reacts and processes the incoming events and
afterward, in the absence of these stimuli, it spends its time
in the sleep state (the software components running inside the
sensor node are not allowed to perform blocking waiting).

Let us name a higher level of abstraction for the event class
as data. Data may encapsulate the information provided by
one or more events, have a unique name and contain additional
information such as deadlines, identity of producer, etc. Data
will be the means used by the internal mechanisms of the
architecture to exchange information components.

In the following we will address any protocol or algorithm
that can run inside a sensor node with the term entity (see
Figure 5). An entity is a software component that will be
triggered by the availability of one or more data types. While
running, each entity is allowed to read available data types
(but not wait for additional data types becoming available).
As a result of the processing, each software component can
produce one or more types of data (usually on their exit).
An entity is also characterized by somefunctionality, mean-

ing the sort of operation it can produce on the input data. Based
on their functionality, the entities can be classified as being
part of a certain protocol layer as in the previous description.
For one given functionality, several entities might exist inside

i

i ,

==tkl-*
i _

= ;:X0002~_1_

Module manager

(publish/subscribe server)

i._
_ T<O y>_

_ iiS,:Ej

t~-142 1
-O

_ _ Z

Fig. 6: Data-centric architecture

a sensor node; to discern among them, one should take into
consideration their capabilities. By capability we understand
high-level description containing the cost for a specific entity
to perform its functionality (as energy, resources, time, etc.)
and some characteristics indicating the estimated performance
and quality of the algorithm.

In order for a set of components to work together, the
way in which they have to be interconnected should be
specified. The existent architectures in the wireless sensor
network field, assume a fixed way in which these components
can be connected, which is defined at compile time (except
for the architectures that for example allow execution of
agents). To change the protocol stack in such an architecture,
the user should download the whole compiled code into the
sensor node (via the wireless interface) and then make use of
some boot code to replace the old running code in it. In the
proposed architecture we are allowing this interconnection to
be changed at run time, thus making on-line update of the code
possible, the selection of a more suited entity to perform some
functionality based on the changes in the environment, etc.
(in one word allowing the architecture to become dynamically
reconfigurable).
To make this mechanism work, a new entity needs to be

implemented; we call this the data manager. The data manager
will monitor the different kinds of data being available and will
coordinate the data flow inside the sensor node. At the same
time it will select the most fitted entities to perform the work
and it will even be allowed to change the whole functionality
of the sensor node based on the available entities and external
environment (see Figure 7).
The implementation of these concepts can not make an

abstraction of the small amount of resources each sensor
node has (as energy, memory, computation power, etc.). Going
down from the abstraction level to the point where the device
is actually working, a compulsory step is implementing the
envisioned architecture in a particular operating system (in this
case maybe a better term is system software). A large range of
operating systems exist for embedded systems in general [10],
[13]. Scaled down versions with simple schedulers and limited
functionality have been developed especially for wireless

36

Fig. 7: Architecture transitions

sensor networks [6].
Usually, the issues of system architecture and operating

system are treated separately, both of them trying to be as
general as possible and to cover all the possible application
cases. A simplistic view of a running operating system is a
scheduler that manages the available resources and coordinates
the execution of a set of tasks. This operation is centralized
from the point of view of the scheduler that is allowed to
take all the decisions. Our architecture can also be regarded
as a centralized system, with the data manager coordinating
the data flow of the other entities. To obtain the smallest
overhead possible there should be a correlation between the
function of the central nucleus from our architecture and the
function of the scheduler from the operating system. This
is why we propose a close relationship between the two
concepts by extending the functionality of the scheduler with
the functionality of the data manager. The main challenges
that arise are keeping the size of the code low and the context-
switching time.

C Additional requirements
As we mentioned earlier, the general concept of data is used
rather than the event one. For the decision based on data to
work, there are some additional requirements to be met.

First of all, all the modules need to declare the name of
the data that will trigger their action, the name of the data
they will need to read during their action (this can generically
incorporate all the shared resources in the system) and the
name of the data they will produce. The scheduler needs all
this information to take the decisions.
From the point of view of the operating system, a new

component that takes care of all the data exchange needs
to be implemented. This would in fact be an extended mes-
sage passing mechanism, with the added feature of notifying
the scheduler when new data types become available. The
mapping of this module in the architecture is the constraint
imposed to the protocols to send/receive data via, for example,
a publish/subscribe mechanism to the central scheduler.
An efficient naming system for the entities and the data is

needed. Downloading new entities to a sensor node involves
issues similar to services discovery. Several entities with
the same functionality but with different requirements and

capabilities might co-exist. The data centric scheduler has to
make the decision which one is the best.

D. Extension of the architecture
The architecture presented earlier might be extended to groups
of sensor nodes. Several Data Centric Schedulers together with
a small, fixed number of protocols can communicate with each
other and form a virtual backbone of the network.

Entities running inside sensor nodes can be activated using
data types that become available at other sensor nodes (for
example, imagine one node using his neighbor routing entity
because it needs the memory to process some other data).
Of course, this approach raises new challenges. A naming

system for the functionality and data types, reliability issues of
the system (for factors such as mobility, communication fail-
ures, node failures, security attacks) are just a few examples.
Related work on these topics already exist (for example: [2],
[12]).
E. Example
In order to better understand the flexibility offered by this
architecture, we will proceed with an example. Figure 8
illustrates the case of a dynamic architecture for a sensor node.

Let us assume that the goal of the sensor network is to
monitor and analyze a certain feature of the environment - as
the quality of perishable merchandise stored in containers in
a large warehouse. The nodes are attached to containers, so
they are static for most of the time; this scenario involves a
limited amount of mobility.
The nodes will start running a basic Media Access Control

(MAC) protocol which makes communication possible be-
tween each other. The monitoring application will run directly
on top of the MAC layer, basically storing sampled data from
the actual sensors. As soon as the MAC layer has gathered
enough information about the neighbors of the node, an ID
based routing block can be loaded into memory to allow the
dissemination of the sensed data.

In parallel, a security module could be loaded for example
to determine the keys needed for each node to encrypt their
data. At the same time, a link layer module could also run
in order to make communication more reliable and to save
energy.
As the routing protocol gathers even more data about the

neighborhood, a timing and synchronization protocol can run,
in order to give all the nodes the same notion of time.
A new transition towards a more efficient architecture is

possible right now. As the set of needed keys for encrypting
the data have been gathered, there is no need for the security
module to occupy memory any longer. It can be unloaded
and, for example, a localization protocol can start running. Its
results will enable the employment of a geographic routing
block, known for its increased performances and reduced
memory usage when compared to an ID based routing scheme.
As position is determined, the localization block can be

unloaded from memory as it is not useful anymore (or at least
until the position of the node changes). Running an efficient

37

User Applicato

Security Centrc Routin P

mng and

MA Protocol y-. nchronizatio

Pysical Layer

User Application

)ositioninog D Centric Routin eographic Routin

L In ayer ontro

Timi.ng and
MACProtocol Sy~nchronizati

Pysical ae

Fig. 8: Example of architecture transitions

protocol stack, having notion of time and position, being
capable of encrypting data, the node is ready for continuous
monitoring of the environment and has the resources free in
order to load data processing algorithms or to participate in
efficient data dissemination protocols.

In the case of failures, mobility, availability of new algo-
rithms, low energy levels, etc. the architecture of the node can

change again on the fly, suiting the current running situation
without the need of a human operator. Loading new blocks into
the memory is easy due to the publish/subscribe mechanism
that does not require a fixed protocol stack and enables easy
sharing of data between any number of protocols (no matter
where they might be placed in the protocol stack).

6. CONCLUSIONS
In this paper we have outlined the characteristics of wireless
sensor networks from an architectural point of view. As sensor

networks are designed for specific applications, there is no

precise architecture to fit them all but rather a common set of
characteristics that can be taken as a starting point.
The combination of the data centric features of sensor

networks and the need to have a dynamic reconfigurable
structure has led to a new architecture that provides enhanced
capabilities than the existing ones. The new architecture char-
acteristics and implementation issues have been discussed,
laying the foundations for future work.
We have briefly presented some of the existing architectures

and described the ideas behind the data-centric architecture we
proposed earlier.

The new architecture offers improved functionality and
gives the user more flexibility in designing sensor network
protocols and applications.

REFERENCES
[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey

on sensor networks. IEEE Communication Magazine, 40(8):102-114,
August 2002.

[2] E. Cheong, J. Liebman, J. Liu, and F. Zhao. TinyGALS: a programming
model for event-driven embedded systems. In Proceedings of the 2003
ACM symposium on Applied computtinig, pages 698-704. ACM Press,
2003.

[3] P.B. Chu, N.R. Lo, E. Berg, and K.S.J. Pister. Optical communication
using micro corner cuber reflectors. In MEMS97, pages 350-355,
Nagoya, Japan, January 1997.

[4] D. Estrin, R. Govindan, J.S. Heidemann. and S. Kumar. Next century
challenges: Scalable coordination in sensor networks. In Mobile Com-
putinig and Networking, pages 263-270, 1999.

[5] P. Havinga. Eyes deliverable 1.1 - system architecture specification.
[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister.

System architecture directions for networked sensors. In Architectural
Supportfor Programming Languages and Operating Systems, pages 93-
104, 2000.

[7] T.J. Hofmeijer. The development of system software to support a
data centric real-time architecture for sensor networks. Master's thesis,
Twente University, july 2004.

[8] J. Mulder. Peeros preemptive eyes real-time operating system. Master's
thesis, Twente University, april 2003.

[9] Eyes European Project. http://www.eyes.eu.org.
[10] Salvo. Pumpkin Incorporated, http://www.pumpkininc.com.
[1 1] SmartDust. http://robotics.eecs.berkeley.edu/ pister/SmartDust.
[12] P. Verissimo and A. Casimiro. Event-driven support of real-time sentient

objects. In Proceedings of WORDS 2003, 2003.
[13] VxWorks. Wind River, http://www.windriver.com.

38

ser pp

MCPoocol

PysiCal Laer

