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Interleaving models are not that appropriate for design stages in which the distri-bution aspects of the system play a prominent rôle. The global state assumption ofinterleaving models hampers to faithfully model that a system consists of severalco-operating subsystems at di�erent locations, each having its own local state. Inthis design stage the system is considered as a white box where the internal systemstructure prevails. In particular, if the speci�cation serves as a prescription for thesystem's implementation rather than as a reference for the observational behaviourof a system, interleaving models become unattractive or even misleading since theindependence of actions is not reected properly [28]. Also for an important designtechnique, known as action re�nement, where an abstract action is implemented bya concrete behaviour, it appears that noninterleaving models are more appropriate,see, e.g., [26].The incorporation of quantitative information in noninterleaving models, such asevent structures [29], pomsets [24], and Mazurkiewicz traces [19], has received scantattention in the literature. Since these models seem to be attractive at the designstages in which the observational behaviour is no longer prevalent, but where theintensional system characteristics dominate, one might even argue that such modelsin particular should deal with issues like time and probability. In these design stagesit is of utmost importance how actions are scheduled in time and with what proba-bility certain alternative executions, which at a more high level of abstraction couldbe faithfully modelled by means of nondeterminism, can appear.This paper therefore proposes a real-time extension of (a variant of) event structures;probabilities are dealt with in [7, 15]. The real-time model is used as a vehicle toprovide a denotational semantics to a temporal process algebra based on a kernelwhich is akin to LOTOS [5]. This formalism includes a timed action-pre�x operatorwhich constraints the occurrence time of actions, and a timeout and watchdog (i.e.,timed interrupt) operator.The inclusion of time in partial-order models is not new: e.g., extensions are knownof pomsets [8], con�gurations [18], fand; org-automata [12], sets of posets [13] andevent structures [20]. The timed extension of causal trees [10] resembles our model.We are, however, unaware of any proposal that incorporates time, timeouts, andwatchdogs in a partial-order setting. These ingredients are considered to be essentialto specify real-time systems.We use Langerak's extended bundle event structures [17], an adaptation of Winskel'sevent structures [29] to �t the speci�c requirements of multi-party synchronizationand disruption ( [>). Since we believe that both interleaving and noninterleavingmodels are legitimate and complementary in the system design process we also con-sider an event-based operational semantics for the real-time process algebra at handwhich, by omitting event identi�ers, results in an interleaving semantics. The twosemantics are proven to coincide (i.e., strong timed (event) bisimulation equivalent)and thus can be used in a coherent way. This also facilitates the comparison of ourtimed partial order model and the wealth of existing timed interleaving models.33 For space reasons the proofs are omitted from this paper; they can be found in [14].



2 The languageThis paper is based on the process algebraic language PA, in fact LOTOS with asomewhat more concise syntax, generated by the following grammar:B ::= 0 j p j a ; B j B +B j B jjGB j B[H] j B nG j B >> B j B [> B j P:We assume a given set of observable actions Act and an additional invisible action� ; � 62 Act. The special action �, which is not user-de�nable, indicates the successfultermination of a behaviour; � 62 Act. 0 denotes inaction; p represents the successfultermination of a behaviour. a ; B denotes the action-pre�x of a 2 Act [ f � g and B.The choice between B1 and B2 is denoted B1 +B2 and their sequential compositionby B1 >> B2. B1 jjGB2 denotes parallel composition where actions in G [ f � g(G � Act) are synchronization actions. jjj abbreviates jj? , i.e., parallel compositionwithout synchronization. B[H] denotes the relabelling of B according to H whereH(� ) = � , H(�) = � and for a 2 Act : H(a) 6= � and H(a) 6= �. B n G denoteshiding. B1 [> B2 denotes the disruption of B1 by B2; i.e., B1 may at any point ofits execution disrupted by B2, unless it terminated. Finally, P denotes a processinstantiation where a behaviour is considered in the context of a set of processde�nitions of the form P := B where B possibly contains occurrences of P . Theprecedences of the composition operators are, in decreasing binding order: ; , +, jj ,[>, >>, n and []. Trailing 0s are usually omitted.The standard (interleaving) semantics of PA is presented in Table 1 where G� denotesG [ f � g. ` p ��!0` a ; B a�!BB1 a�!B01 ` B1 +B2 a�!B01B2 a�!B02 ` B1 +B2 a�!B02B1 a�!B01 a 6= � ` B1 >> B2 a�!B01 >> B2B1 ��!B01 ` B1 >> B2 ��!B2B1 a�!B01 a 6= � ` B1 [> B2 a�!B01 [> B2B1 ��!B01 ` B1 [> B2 ��!B01B2 a�!B02 ` B1 [> B2 a�!B02B1 a�!B01 a 62 G� ` B1 jjG B2 a�!B01 jjG B2B2 a�!B02 a 62 G� ` B1 jjG B2 a�!B1 jjG B02B1 a�!B01 ^ B2 a�!B02 a 2 G� ` B1 jjG B2 a�!B01 jjG B02B a�!B0 a 62 G ` B nG a�!B0 nGB a�!B0 a 2 G ` B nG ��!B0 nGB a�!B0 ` B[H] H(a)����!B0[H]B a�!B0 P := B ` P a�!B0Table 1. Structured operational semantics of PA.



The real-time variant of PA, baptized PAR, is generated by the following grammar:B ::= 0 j p j (T ) a ; B j B +B j B jjGB j B[H] j B nG j B >> B jB [> B j B tB B j B tI B j P:We use Time = IR+ [ f 0;1g as time domain, T to range over P(Time), and t torange over Time. (T ) a ; B denotes the timed action-pre�x of a and B where a isallowed (but not forced) to occur at some t 2 T . We write (t) a for ([t;1)) a and a for(0) a. B1 tB B2 denotes the timeout of B1 by B2 at time t; initially it behaves like B1,but if B1 does not perform any action before t (since the enabling of this behaviour)then the control is passed to B2. At time t a nondeterministic choice between B1and B2 appears. B is called a `weak timeout' [21]. I is a watchdog operator; initiallyB1 tI B2 behaves like B1 but at time t control is passed to B2 provided B1 is notyet successfully terminated. Note that in B1 tB B2 control is passed to B2 only if B1does not perform any action|either internal or not|before t, whereas in B1 tI B2control is passed to B2 at time t, regardless of the activities of B1 until time t (withthe exception of termination).The synchronization principle is that an action can only occur when all participantsare ready to engage in it. Thus, for instance, in a ; (T1) b jjf a;b g a ; (T2) b, action b isenabled at any time in ta+T1 \ ta+T2 = ta + (T1 \ T2), where t+T denotes f t+t0 jt0 2 T g. Notice that synchronizations may become impossible due to incompatibletiming constraints in the participating behaviours. For instance, if T1 \ T2 = ?,action b can never occur.3 Extended bundle event structuresExtended bundle event structures (or, simply: event structures) consist of eventslabelled with actions (an event modelling the occurrence of its action), together withrelations of causality and conict between events. System runs can be modelled aspartial orders of events satisfying certain constraints posed by the causality andconict relations between the events.Conict is an asymmetric4 binary relation, denoted  , between events and theintended meaning of e  e0 is that (i) if e0 occurs it disables the occurrence of e,and (ii) if e and e0 both occur in a single system run then e causally precedes e0.Causality is represented by a relation between a set X of events, that are pairwisein conict, and an event e. The interpretation is that if e happens in a system run,exactly one event in X has happened before (and caused e). This enables us touniquely de�ne a causal ordering between the events in a system run. When there isneither a conict nor a causal relation between events they are independent. Onceenabled, independent events can occur in any order or in parallel.4 The term asymmetric does not mean that e e0 ) e0 6 e as it might suggest. e e0and e0  e is allowed and is equivalent with e# e0, the usual symmetric conict in eventstructures. The terminology `asymmetric' is adopted from Langerak [17] and Pinna &Poign�e [22].



De�nition 1. An (extended bundle) event structure E is a quadruple (E; ; 7!; l)with E, a set of events,  � E � E, the (irreexive) asymmetric conict relation,7!� P(E) � E, the bundle relation, and l : E �! L, the action-labelling function,where L is a set of action labels, such that8X � E; e 2 E : X 7! e ) (8 e0; e00 2 X : e0 6= e00 ) e0  e00):The constraint speci�es that for bundle X 7! e all events in X are in mutual conict.Event structures are graphically represented in the following way. Events are denotedas dots; near the dot the action label is given. e e0 is indicated by a dotted arrowfrom e to e0. A bundle (X; e) is indicated by drawing an arrow from each event inX to e and connecting all arrows by small lines. We denote an event labelled a byea. EBES denotes the class of event structures; E ranges over EBES.In the sequel we adopt the following notations. For sequences � = x1 : : : xn, let �denote the set of elements in �, that is, � , fx1; : : : ; xn g, and let �i denote thepre�x of � up to the (i�1)-th element, that is, �i , x1 : : : xi�1, for 0 < i 6 n+1.For � a sequence of events e1 : : : en we de�ne c(�) , f e 2 E j 9 ei 2 � : e  ei gand sat(�) , f e 2 E j 8X � E : X 7! e ) X \ � 6= ? g. c(�) is the set of eventsthat are disabled by some event in �. sat(�) is the set of events that have a causalpredecessor in � for all bundles pointing to them. That is, for events in sat(�) allbundles are `satis�ed'. Let en(�) , sat(�) n (c(�) [ �).Event traces consist of distinct events (i.e., ei 62 �i) and are conict-free (ei 62 c(�i)),for obvious reasons. In addition, each event in the event trace is preceded in thesequence by a causal predecessor for each bundle pointing to it (i.e., ei 2 sat(�i)).De�nition 2. An event trace � of E is a sequence of events e1 : : : en with ei 2 en(�i),for all 0 < i 6 n. Let T (E) denote the set of event traces of E .Example 1. Figure 1(a) has bundles f ea g 7! ec, f eb g 7! ec, f eb g 7! ed, and asymmetric conict between ec and ed. In Figure 1(b) we have f ea; e0a g 7! eb, f ea g 7!ex and f e0a g 7! ey. Some event traces of Figure 1(a) are ea eb ec, eb ed ea and eb ea.
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4 Real-time event structuresTime is added to bundle event structures in two ways. To specify the relative de-lay between causally dependent events time is associated to bundles, and in orderto facilitate the speci�cation of timing constraints on events that have no bundlepointing to them (i.e., the initial events), time is also associated to events. Thoughit seems su�cient to only have time labels for initial events, synchronization of eventsmakes it necessary to allow for equipping all events with time labels, including thenon-initial ones. 5We assume mappings T and D to associate a set of time instants, to bundles andevents, respectively. A bundle (X; e) with T ((X; e)) = T is denoted by X T7! e;its interpretation is that if an event in X has happened at a certain time, then e isenabled t time units later, for any t 2 T . The interpretation of event e with D(e) = Tis that e can happen at any t 2 T from the beginning of the system, usually assumedto be time 0.In order to specify timeout mechanisms we use urgent events. Urgent events aredi�erent from other events in the sense that they are forced to occur once they areenabled.De�nition 3. A real-time event structure � is a quadruple hE ;D;T ;Ui with E , anevent structure (E; ; 7!; l), D : E �! P(Time), the event delay function, T : 7!�! P(Time), the bundle delay function, and U : E �! Bool, the urgency predicatesuch that for all e 2 E with U(e):1. 8 e0 2 E;X � E : ((e0  e _ e e0) ^ X 7! e) ) (X 7! e0 _ X  e0)2. 9 t 2 Time : D(e) � [t; t] _ (9X � E : X T7! e ^ T � [t; t]) .Here, X  e0 equals (8 e00 2 X : e00  e0). Note that ? e0 for all e0.The �rst constraint requires that the enablings of an urgent event e are either con-tained in the enablings of an event e0 that it disables, i.e., e0  e, or that an enablingof e is disabled by e0 (the case e e0 is identical). This constraint enforces that assoon as e0 is enabled either e is also enabled (provided e is not disabled in anotherway), or is permanently disabled, since some enabling of e is disabled (by e0). Asa result the global impact of urgent events is limited; see also [16]. Thus, in orderto decide whether e0 can occur|once it is enabled|it su�ces to consider the local(and urgent) disablings of e0.The second constraint ensures that urgent events are enabled at a single time instant,if ever. The motivation for this constraint is that urgent events are used for the sole5 Alternatively, we could explicitly model the start of the system by some �ctitious event,! say. Then the time associated to event e can be considered as the time associated tothe bundle pointing from the �ctitious event to e. We do not consider the introduction ofsuch event ! since the de�nitions become more complex|! has to be treated di�erentlythan `normal' events|and proof obligations become more severe|e.g. one has to provethat bundles X 7! e satisfy X = f! g, or ! 62 X and e 6= !.



purpose of modelling timeouts, and a timeout typically can appear at a single timeinstant only.Let EBESR denote the class of real-time event structures. Bundle and event delaysare depicted near to a bundle and event, respectively. Urgent events are denoted byopen dots, other events by closed dots. Zero delays are omitted.For events that have more than one bundle pointing to them we take the followinginterpretation. Consider f ea g T7! ec and f eb g T 07! ec. Then, if ea happens at timeta and eb at time tb, then ec is enabled at any t 2 (ta+T ) \ (tb+T 0). When theintersection of two (or more) sets of time instants is empty this means that theevent at hand cannot occur at any time and will be permanently disabled.The notion of timed event trace is de�ned as a generalization of the notion of eventtrace. A timed event (e; t) denotes that e happened at time t. For sequences oftimed events � = (e1; t1) : : : (en; tn) let [�] denote the sequence of events in �, i.e.,[�] , e1 : : : en. Let time(�; e) denote the set of time instants at which e 2 en([�])could happen, given that each event ei in timed event trace � occurred at time ti.Event e can occur if (i) its absolute delay D(e) is respected, (ii) the time relative toall its immediate causal predecessors is respected, and (iii) for each event ej withej  e we have that e occurs at at least tj. (ii) and (iii) take care of the fact thatevents cannot occur before their causes, i.e., they entail that causal ordering impliestemporal ordering. So,time(�; e) , T(fD(e) g [ H1 [ H2) whereH1 = f tj + T j 9X � E : X T7! e ^ X \ [�] = f ej g gH2 = f [tj ;1) j 9 ej 2 [�] : ej  e g .The notion of timed event trace is now de�ned as follows. Let Min(T ) denote theminimum of set T . For T = ?, Min(T ) , 1.De�nition 4. A timed event trace of � = hE ;D;T ;Ui is a sequence � of timedevents (e1; t1) : : : (en; tn) with ei 2 E, ti 2 Time, satisfying e1 : : : en 2 T (E), ti 2time(�i; ei), for all 0 < i 6 n, and8 i; e : (e 2 en([�i]) ^ U(e) ^ (ei  e _ e ei)) ) ti 6 Min(time(�i; e)):Let TT (� ) denote the set of timed event traces of � . The �rst two constraints areself-explanatory. The third constraint takes care of the fact that urgent events mayprevent the events that they disable (or by which they are disabled) to occur aftera certain time. That is, event ei can occur at time ti provided there is no enabledurgent event e that disables ei (or that is disabled by ei) and that (if it occurs) mustoccur before ti.Example 2. Figure 2 depicts a real-time event structure with T ((f ea g; ec)) = [3; 7],T ((f eb g; ec)) = [5; 12] and T ((f eb g; ed)) = f 2; 4; 6; : : : g. Event delays are all zero.For the following sequences of timed events the conditions are given under whichthey are timed event traces of Figure 2(a):(ea; ta) (eb; tb) (ed; td) if td 2 f tb+2; tb+4; : : : g; and(ea; ta) (eb; tb) (ec; tc) if max(ta+3; tb+5) 6 tc 6 min(ta+7; tb+12):
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(b)Fig. 2. Two real-time event structures.For Figure 2(b) we obtain:(ea; ta) (ec; tc) if ta > 1 ^ ta + 3 6 tc 6 ta + 30; and(ea; ta) (eb; tb) (ec; tc) if ta > 1 ^ tb = ta + 30 ^ tc > max(ta + 3; tb):Timed event traces do respect causality, but not necessarily time. That is, two (ormore) independent events can occur in a trace in either order regardless of theirtiming. For example, (eb; 1)(ea; 3) and (ea; 3)(eb; 1) are timed event traces of Fig-ure 2. The possible choices correspond to the possible interleavings of the causallyindependent events. Since the causal ordering between events implies their temporalordering the causal ordering can never contradict the temporal order.The following result implies that for any ill-timed event trace � there exists a corre-sponding time-consistent event trace �0, that can be obtained from � by swappingrepeatedly ill-timed pairs of timed events, yielding � = �0.Theorem5. For t0 < t : � (e; t)(e0; t0) �0 2 TT (� ) ) � (e0; t0)(e; t) �0 2 TT (� ).Note that the reverse implication does not hold; for instance, if e causally dependson e0 then the order of events e0 e in a trace cannot be reversed since this wouldcontradict their causal ordering. For a more extensive discussion on ill-timed traceswe refer to [1, 2].5 Event structure semanticsThis section presents a causality-based semantics for PAR using real-time event struc-tures. We de�ne a mapping ER[[ ]] : PAR �! EBESR. For convenience we use thedenotational semantics E 0[[ ]] for the untimed case which is de�ned in Appendix A.De�nition 6. � : PAR �! PA is de�ned as follows:�(0) , 0�(p) , p�((T ) a ; B) , a ; �(B)�(B1 opB2) , �(B1) op �(B2) for op 2 f+; jjG ; >>; [> g�(opB) , op �(B) for op 2 f n; [ ] g�(B1 tB B2) , �(B1) + � ; �(B2)�(B1 tI B2) , �(B1) [> �(B2):



�(B) is the untimed behaviour corresponding to B obtained by omitting all timeannotations in B and converting B and I into + and [>, respectively. The purposeof the internal event introduced by the timeout operator will be explained later on.In the rest of this section let ER[[Bi ]] = �i = hEi;Di;Ti;Uii, for i = 1; 2, withEi = (Ei; i; 7!i; li) and E1 \ E2 = ?. The functions init and exit which denote theset of initial and termination events, respectively, are de�ned for event structures inAppendix A and are used for real-time event structures in the same way. Let EUdenote the (in�nite) universe of events.De�nition 7. ER[[ ]] : PAR �! EBESR is de�ned for 0, p, and (T ) a ; as follows:ER[[0 ]] , hE 0[[�(0) ]];?;?;?iER[[p ]] , hE 0[[�(p) ]]; f (e�;Time) g;?; f (e� ; false) giER[[ (T ) a ; B1 ]] , h(E; 1; 7!; l1 [ f (ea; a) g);D;T ;Ui whereE = E1 [ f ea g for ea 2 EU n E17! = 7!1 [ (f f ea g g � E1)D = f (ea; T ) g [ (E1 � fTime g)T = T1 [ f ((f ea g; e);D1(e)) j e 2 E1 gU = U1 [ f (ea; false) g:The semantics of 0 and p is self-explanatory. In ER[[ (T ) a ; B1 ]] a bundle is intro-duced from a new event ea (labelled a) to all events in �1. The delay of these eventse becomes relative to ea, so each bundle f ea g 7! e is associated with a time delayD1(e), and D(e) becomes Time. D(ea) becomes T . In the untimed case it su�cesto only introduce bundles from e to the initial events of �1, cf. Appendix A. Thebundles to all events of �1 that are introduced in the timed case are used for thesole purpose of making delays relative to ea. Figure 3, e.g., shows (a) ER[[B ]], and(b) ER[[ ([2; 7)) a ; B ]].
1

1

a

b c

d

e

[π,5]

[2,7)

(7,41]

b c

d

e

4 4

3 3
(7,41]

(a): B (b): ([2,7)) a ; B

[π,5]

[0,17]
[0,17]Fig. 3. Example of semantics for timed action pre�x.De�nition 8. ER[[ ]] : PAR �! EBESR is de�ned for n, [ ], +, >> and [> as follows:ER[[B1 opB2 ]] , hE 0[[�(B1 opB2) ]];D1 [ D2;T1 [ T2;U1 [ U2i; op 2 f+; [> gER[[ opB1 ]] , hE 0[[�(opB1) ]];D1;T1;U1i for op 2 f n; [ ] g



ER[[B1 >> B2 ]] , h(E1 [ E2; ; 7!; l);D;T ;U1 [ U2i where =  1 [  2 [ f (e; e0) j e; e0 2 exit(�1) ^ e 6= e0 g7! = 7!1 [ 7!2 [ (f exit(�1) g � E2)l = ((l1 [ l2) n (exit(�1)� f � g)) [ (exit(�1)� f � g)D = D1 [ (E2 � fTime g)T = T1 [ T2 [ f ((exit(�1); e);D2(e)) j e 2 E2 g:For op equal to choice or disrupt ER[[B1 opB2 ]] is the untimed event structure of thecorresponding expression in PA, E 0[[�(B1 op B2) ]], where the timings of events andbundles in �1 and �2 are una�ected. Similarly, ER[[ ]] is de�ned for relabelling andhiding. The events of ER[[B1 >> B2 ]] are those in E1 [ E2. Bundles are introducedbetween the successful termination events of �1 and the events in �2. The reason forintroducing bundles to all events of �2 is to make the event delays in �2 relative tothe termination of �1. This is similar as for timed action-pre�x.Now we consider parallel composition. Recall from Appendix A that events are pairsof events of �1 and �2, or with one component equal to �. The delay of an event isthe maximum of the delays of its components that are di�erent from �. The timeassociated with a bundle is equal to the maximum of the times associated with thebundles we get by projecting on the i-th components (i=1; 2) of the events in thebundle, if this projection yields a bundle in �i.For E = (E1 [ f � g)� (E2 [ f � g); (e1; e2) 2 E and X � E let for i=1; 2 projectionbe de�ned as pri((e1; e2)) , ei, if ei 6= � and pri(X) , f pri(e) j e 2 X \ dom(pri) g.De�nition 9. ER[[ ]] : PAR �! EBESR is de�ned for jjG as follows:ER[[B1 jjGB2 ]] , hE 0[[�(B1 jjGB2) ]];D;T ;Ui whereD((e1; e2)) = D1(e1) \ D2(e2) with Di(�) = Time:T ((X; (e1; e2))) = T1((pr1(X); e1)) \ T2((pr2(X); e2)) with Ti((?; ei)) = TimeU((e1; e2)) = U1(e1) _ U2(e2) with Ui(�) = false:Example 3. Consider the following timed behavioursB1 = ([1; 7)) a ; (5) b ; 0 jjb (f 1; 3; 6 g) c ; (7) b ; 0B2 = ([4; 9]) a ; (2) b ; 0 jjb (((4; 27]) b ; 0+ (3) d ; 0) .Figure 4 shows how ER[[B1 jjf a;b gB2 ]] is constructed from ER[[B1 ]] and ER[[B2 ]].
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In ER[[B1 tB B2 ]] a new internal, urgent event e� is introduced that models theexpiration of the timer. Since either the timer expires or B1 performs an initialaction before (or at) t, event e� is put in mutual conict with all initial events of �1.The events of �2 can only occur after the timeout; this is modelled in the same way asfor action-pre�x: a bundle f e� g 7! e is introduced for all e 2 �2. The delay of thesebundles is determined as in the action-pre�x case. The event delay of e� becomes[t; t] such that it can only occur at t time units since the enabling of ER[[B1 tB B2 ]].So, ER[[B1 tB B2 ]] equals ER[[B1 + ([t; t]) � ; B2 ]] where � is urgent.De�nition 10. ER[[ ]] : PAR �! EBESR is de�ned for B as follows:ER[[B1 tB B2 ]] , h(E; ; 7!; l);D;T ;Ui whereE = E1 [ E2 [ f e� g for some e� 2 EU n (E1 [ E2) =  1 [  2 [ (init(�1)� f e� g) [ (f e� g � init(�1))7! = 7!1 [ 7!2 [ (f f e� g g � E2)l = l1 [ l2 [ f (e� ; � ) gD = D1 [ f (e� ; [t; t]) g [ (E2 � fTime g)T = T1 [ T2 [ f ((f e� g; e);D2(e)) j e 2 E2 gU = U1 [ U2 [ f (e� ; true) g:Example 4. Let B1 = (2) a ; (5) b jjj ([6; 21)) c and B2 = (3) d ; (2) g jjg ([27; 41]) g.Figure 5 illustrates how ER[[B1 12B B2 ]] is constructed from ER[[B1 ]] and ER[[B2 ]].
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Figure 6 shows how �1 12I �2 is constructed from �1 and �2.
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[0,6]Fig. 6. Example of semantics for watchdog operator.Theorem12. 8B 2 PAR : ER[[B ]] 2 EBESR.6 RecursionIn this section we extend PAR with recursion. To that end we extend the syntaxwith the construct B ::= P where P denotes a process instantiation. We assume abehaviour is always considered in the context of a set of process de�nitions of theform P := B where B is a behaviour possibly containing occurrences of P .ER[[P ]] for P := B is de�ned in the following way by using standard �xed pointtheory [27]. A complete partial order (c.p.o.) E is de�ned on real-time event struc-tures with the empty event structure (i.e., ER[[0 ]]) as the least element ?. Then foreach de�nition P := B a function FB is de�ned that substitutes a real-time eventstructure for each occurrence of P in B, interpreting all operators in B as opera-tors on real-time event structures. FB is shown to be continuous, which means thatER[[P ]] can be de�ned as the least upper bound (l.u.b.) of the chain (under E) ?,FB(?), FB(FB(?)); : : :. For this paper we just de�ne the appropriate ordering E,the corresponding l.u.b., and present the main results. Given these ingredients it israther straightforward to de�ne a continuous function FB. Further details can befound in [14].De�nition 13. Let �i = h(Ei; i; 7!i; li);Di;Ti;Uii for i = 1; 2. Then �1 E �2 i�E1 � E2, l1 = l2 � E1, D1 = D2 � E1, U1 = U2 � E1, and1.  1= 2 \ (E1 � E1)2. 7!1= f ((X \ E1); e) j e 2 E1 ^ X 7!2 e g, and3. 8 e 2 E1 : T1((X \ E1; e)) = T2((X; e)).where � denotes restriction. It is straightforward to verify that E is a partial orderwith ? = h(?;?;?;?);?;?;?i as least element. For conicts we require that nonew conicts appear in �2 between events that are already in �1. Similarly, thesecond constraint forbids the introduction of bundles in �2 pointing to events in �1for which there exists no projected bundle in �1. Note that this constraint allows forbundles to grow in such a way that the old bundle is contained in the new one. Thelast constraint requires for those bundles to keep the same delay.



The l.u.b. of a chain �1 E �2 E : : :, denoted Fi �i, can be characterized as follows.For the set of events, conicts, labeling function, and event delays we simply take theunion of all events, conicts, labellings and event delays of the event structures inthe chain. As bundles may grow this approach does not apply to the set of bundles.Suppose some �j has bundle Xj 7!j e. According to the de�nition of E there is aseries of bundles Xj 7!j e, Xj+1 7!j+1 e; : : : satisfying Xk+1 \ Ek = Xk for k > j.Then the l.u.b. contains bundle (SnXj+n) 7! e. For �1 E �2 E : : ::De�nition 14. Let Fi �i , h(SiEi;Si  i; 7!;Si li);SiDi;T ;Si Uii with7!= f (SkXk; e) j 9 j : (8 k > j : Xk 7!k e ^ Xk+1 \ Ek = Xk) gT = f ((SkXk; e); T ) j 9 j : (8 k > j : Xk T7!k e ^ Xk+1 \Ek = Xk) g:Proposition 15. Fi �i is the least upper bound of chain �1 E �2 E : : :.Proposition 16. For �1 E �2 E : : : a chain: TT (Fi �i) = Si Tj>i TT (�j).De�nition 17. For P := B a process de�nition let ER[[P ]] , Fi F iB(?).Example 5. As an example of a recursive process de�nition in PAR we considerP := ([3; 5]) a ; ((14) b ; P + (1) c ; ([3; �)) d ; P ) .The �rst approximation of the real-time event structure semantics of this de�nitionis ?, the empty structure. The second approximation FB(?) is depicted in Fig-ure 7(a). By repeated substitution we obtain the real-time event structure depictedin Figure 7(b).
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7 Example: a time-constrained FIFO bu�erWe show how PAR and real-time event structures can be used to specify real-timesystems by treating a time-constrained �rst-in �rst-out (FIFO) bu�er. This exampleis taken from [30]; the only di�erence is that we consider a bu�er of in�nite length.A simple way to specify a FIFO bu�er is by using an abstract data type queue:Fifo(w : queue) := Xx2D ([w = hxi_w0]! rdx ; Fifo(w0) + wrx ; Fifo(w_hxi)) .D is a set of data values that can be bu�ered, wrx denotes the writing (i.e., insertion)of x 2 D into the bu�er and rdx denotes the reading (i.e., removal) of x from thebu�er. P is a generalized version of the choice operator; hxi denotes a singletonqueue containing x and _ denotes concatenation of queues. [b]! E denotes that Ecan be executed if condition b holds.The FIFO bu�er should model a communication network with the following timingconstraints [30]: (i) message latency in the range of 2 to 5 time units; (ii) messageinput rate set to 1 message per time unit; (iii) message output rate of 1 message pertwo time units. These time constraints are maintained by the following processes:TD := (wrx ; ([2; 5]) rdx) jjjTDWr := wrx ; Wr 0 where Wr 0 := (1) wrx ; Wr 0Rd := rdx ; Rd0 where Rd0 := (2) rdx ; Rd0 .The required bu�er is obtained by putting these processes in parallel with Fifo:Fifo(h i) jjRd jjWr jjTDwhere jj is a shorthand for jjAct , i.e., full synchronization. This speci�cation stronglyresembles the timed CSP speci�cation in [30].A problem with this speci�cation is that it prescribes a mutual exclusion betweenreading and writing: at any moment one may either choose to read (provided thebu�er is not empty) or to write. However, intuitively reading and writing shouldbe to a certain extent independent. If the queue contains one or more elements, itshould be possible to read them in parallel with writing new elements. The mutualexclusion constraint is especially unnatural if reading and writing take place atdi�erent locations (which is quite common in case of a communication network).We therefore propose a di�erent way of modelling a time-constrained FIFO bu�erin which we exploit the use of event structures as a partial order model:Cell := wp ; Xx2Dwrx ; ((1) wn jjj ([2; 5]) rp ; rdx ; (2) rn)Chain := (Cell jjfwn;rn g Chain[wp := wn; rp := rn]) n fwn; rn gBuf := Chain n fwp; rp g .The real-time event structures corresponding to the Cell and Buf processes are de-picted in Figure 8(a) and (b), respectively. The unlabelled, grey dots represent in-ternal events.
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(b)Fig. 8. Real-time event structure of a time-constrained FIFO bu�er.Process Cell describes a bu�er cell allowing the writing and reading of a data value.The actions wp and rp ensure that the cell waits before writing resp. reading; wnand rn indicate the �nish of writing and reading and are used in Chain to `start' thenext cell. Chain puts an unbounded number of cells in parallel using an appropriaterenaming function. Finally, process Buf hides the write-previous and read-previousactions of the front cell.Note that the rdx and wrx events in the latter speci�cation are in principle time-unconstrained. It would be more natural to force these events to happen as soonas they are enabled. This can be done by using an explicit urgent operator; thetreatment of such operator in our setting falls beyond the scope of this paper andcan be found in [16].8 Event-based operational semanticsVarious timed process algebras are known based on an interleaving semantics. Inorder to compare our noninterleaving approach to these existing approaches andto investigate the `compatibility' of our proposal with the standard (interleaving)semantics of LOTOS we present an event-based operational semantics for PAR. Thebasic idea is to de�ne a transition system (in the sense of [23]) in which we keeptrack of the (times of) occurrence of actions rather than the actions themselves asis usual in structured operational semantics. This results in a timed event transitionsystem. The approach is adopted from [6, 17] and is also applied in [16].Each occurrence of an action-pre�x, p and B is subscripted with an arbitrary butunique event occurrence identi�er, denoted by a Greek letter. These occurrenceidenti�ers play the rôle of event names. For parallel composition new event namescan be created. If e is an event name of B and e0 an event name in B0, then possiblenew names for events in B jjGB0 are (e; �) and (�; e0) for unsynchronized events and(e; e0) for synchronized events.The operational semantics de�nes a set of transition relations (e;a;t)����!!. B (e;a;t)����!!B0 denotes that behaviour B can perform event e, labelled with action a 2 Act�;�,at time t 2 Time, and subsequently evolve into B0. The transition relation �!! isthe smallest relation closed under all inference rules listed in Table 2.As a subsidiary notion let ut(B) denote the set of time instants at which B can ini-tially perform an urgent event. Let PA+R denote PAR including the auxiliary operatorst[ ] and tf g (see below).



De�nition 18. ut : PA+R �! P(Time) is de�ned by:ut(t[B ]) , f t0+t j t0 2 ut(B) gut(B1 opB2) , ut(B1) [ ut(B2) for op 2 f+; [>; jjG gut(tfB g) , f t0 2 ut(B) j t0 > t gut(B1 >> B2) , ut(B1)ut(opB) , ut(B) for op 2 f n; [ ] gut(B1 tB B2) , ut(B1) [ f t gut(B1 tI B2) , ut(B1) [ ut(t[B2 ])ut(P ) , ut(B) for P := B:For all other syntactical constructs let ut(B) , ?.Let mt(B) abbreviate Min(ut(B)), where Min of the empty set equals1. In order tolet ut be well de�ned we require process instantiations to occur in a weakly guardedway (i.e., they should become guarded after a �nite number of substitutions of bodiesfor their process names).As 0 cannot perform any transition there is no rule for this construct. p can performthe successful termination action � at any time t. (T ) a� ; B can perform event � attime t, t 2 T , and evolves into t[B ]. t0 [B ] can be considered as behaviour B shiftedt0 time units in advance. That is, if B can perform event �, say, at time t, then t0 [B ]can perform � at time t+t0. Note that t0 [B ] is only an auxiliary construct; it has nocounterpart at the language level.The rules for parallel composition in which no synchronization takes place, for hiding,and for relabelling are straightforward extensions of the untimed rules. Synchroniza-tion can only take place when both participants can perform an equally labelledevent whose label is in the synchronization set G (or equals �) at time t.The rules for >> are also a straightforward extension of the rules for the untimedcase except that in case B1 performs a successful termination action � at time t,then B1 >> B2 evolves into t[B2 ] rather than B2. This represents that t time unitshave been passed before B2 can start with its execution. This is similar to the timedaction-pre�x case.The rules for B1 + B2 are somewhat adapted since (initial) urgent events in B1 orB2 can decide the choice. E.g., in(12) a+ ((18) b 5B� ([1; 7) c)the event � will occur at time 5, and resolve the choice in favour of B2. In general,if B1 performs an event at time t then B1 + B2 can perform the same providedthat B2 cannot perform an urgent event at any time earlier, i.e., if t 6 mt(B2).By symmetry, a similar condition is obtained for B2 performing an event. Similarconditions appear for [>, B, and I.For B1 [> B2 the rules are justi�ed as follows. If B1 performs an event at time t andevolves into B01 then B1 [> B2 can do the same while evolving into B01 [> tfB2 g.



` p� (�;�;t)����!! 0t 2 T ` (T ) a� ; B (�;a;t)�����!! t[B ]B (�;a;t)�����!! B0 ` t0 [B ] (�;a;t+t0)�������!! t0 [B0 ]B1 (�;a;t)�����!! B01 t 6 mt(B2) ` B1 +B2 (�;a;t)�����!! B01B2 (�;a;t)�����!! B02 t 6 mt(B1) ` B1 +B2 (�;a;t)�����!! B02B1 (�;a;t)�����!! B01 a 6= � ` B1 >> B2 (�;a;t)�����!! B01 >> B2B1 (�;�;t)����!! B01 ` B1 >> B2 (�;�;t)����!! t[B2 ]B1 (�;a;t)�����!! B01 (a 6= � ^ t 6 mt(B2)) ` B1 [> B2 (�;a;t)�����!! B01 [> tfB2 gB1 (�;�;t)����!! B01 t 6 mt(B2) ` B1 [> B2 (�;�;t)����!! B01B2 (�;a;t)�����!! B02 t 6 mt(B1) ` B1 [> B2 (�;a;t)�����!! B02B (�;a;t)�����!! B0 t > t0 ` t0fB g (�;a;t)�����!! t0fB0 gB1 (�;a;t)�����!! B01 a 62 G� ` B1 jjG B2 ((�;�);a;t)�������!! B01 jjG B2B2 (�;a;t)�����!! B02 a 62 G� ` B1 jjG B2 ((�;�);a;t)�������!! B1 jjG B02B1 (�;a;t)�����!! B01 ^ B2 ( ;a;t)�����!! B02 a 2 G� ` B1 jjG B2 ((�; );a;t)�������!! B01 jjG B02B (�;a;t)�����!! B0 a 62 G ` B nG (�;a;t)�����!! B0 nGB (�;a;t)�����!! B0 a 2 G ` B nG (�;�;t)����!! B0 nGB (�;a;t)�����!! B0 ` B[H] (�;H(a);t)�������!! B0[H]B1 (�;a;t0)�����!! B01 t0 6 t ` B1 tB B2 (�;a;t0)�����!! B01t 6 mt(B1) ` B1 tB B2 ( ;�;t)�����!! t[B2 ]B1 (�;a;t0)�����!! B01 (t0 6 t ^ a 6= �) ` B1 tI B2 (�;a;t0)�����!! B01 tI B2B1 (�;�;t0)�����!! B01 t0 6 t ` B1 tI B2 (�;�;t0)�����!! B01B2 (�;a;t0)�����!! B02 t 6 mt(B1) ` B1 tI B2 (�;a;t+t0)�������!! t[B02 ]B (�;a;t)�����!! B0 (P := B) ` P� (��;a;t)�����!! �(B0)B (�;a;t)�����!! B0 ` �(B) (��;a;t)�����!! �(B0)Table 2. Event-based operational semantics for PAR.tfB2 g behaves like B2 except that it is unable to perform events before t. Thisensures that B2 cannot disrupt B01 [> B2 by performing an event at time t0, say, whileB1 has performed an event at time t > t0. The other inference rules for disrupt arestraightforward extensions of the rules for the untimed case (using similar conditionsas for +).The inference rule for t0fB g is that if B can perform an event at time t, then t0fB gcan do so if t > t0. Note that t0fB g is|like t0 [B ]|an auxiliary operator that cannotbe speci�ed by the user.If B1 performs an event at time t0, with t0 6 t, and evolves into B01 then B1 tB B2can do the same; in this case the possibility that B2 happens is dropped since B1has performed an action before (or at) time t. At time t the timeout event  canhappen and the resulting behaviour is t[B2 ], B2 shifted t time units in advance.This can only be done if t 6 mt(B1). This condition ensures that  is not performedif B1 can perform an urgent event before t. E.g., in (a 7B� b) 21B c it prevents  from



happening (at time 21), since � should have happened (at time 7).If B1 performs an event (which is not a successful termination event) at time t0,with t0 6 t, and evolves into B01 then B1 tI B2 can do the same while evolving intoB01 tI B2; the possibility for disruption (at time t) by B2 remains. If B1 terminatessuccessfully at time t0, t0 6 t, disruption by B2 becomes impossible (like for B1 [>B2). If B2 performs an event at time t0 and evolves into B02 then B1 tI B2 can performthe same (provided B1 cannot perform an urgent event before t) and evolves intot[B02 ], B02 shifted t time units in time.It is assumed that each process instantiation of P is uniquely identi�ed like all occur-rences of action-pre�x and p. Di�erent occurrences of the same process instantiationshould produce di�erent event transitions. In addition, event transitions cannot berepeated. For P := ([2; 7]) a� ; P� we �rst have an event transition with (�; a; t) fort 2 [2; 7]; the next time that action a occurs it should be labelled with a label di�er-ent from �. These complications are resolved by using an event renaming operatorthat pre�xes all events in a behaviour with a certain occurrence identi�er. �(B) isbehaviour B where all event identi�ers in B are pre�xed with �.Let UE(B) denotes the set of urgent events in B. (This function can easily be de�nedby induction on the structure of B and is omitted here.)Proposition 19. 8B 2 PA+R : (t 6 mt(B)), (8 e 2 UE(B); t0 < t : B (e;�;t0)������!=!).The consistency between the denotational and operational semantics of PAR is givenbyTheorem20. 8B 2 PAR : TT (ER[[B ]]) = f� j 9B0 : B ��!! B0 g.9 Conclusions and related workThis paper concerns a real-time extension of (a variant of) event structures, a partial-order model for concurrent systems. The original incentives of our work are to studythe expressiveness of event structures to e�ectively support the speci�cation of dis-tributed systems and to facilitate formal representation of performance and relia-bility aspects. A secondary aim is to (formally) relate the real-time extension ofevent structures to interleaving models for concurrency such that partial-order andinterleaving models can be used coherently in the system design process and can becompared in a perspicuous way.To achieve this we proposed a real-time variant of extended bundle event structures,used this model for providing a (noninterleaving) denotational semantics to a real-time process algebraic formalism that includes a timeout and watchdog operator,and constructed a corresponding event-based operational semantics. This shows thatevent structures are suitable for modelling real-time systems. Both semantics arecharacterized by the absence of any mechanism that explicitly forces the passage



of time; time is treated as a parameter. The event-based operational semantics is aconservative extension of the standard interleaving operational semantics of LOTOS.An interaction can take place if all participants can engage in it at the same timeinstant. The interaction cannot appear if such common time instant does not exist.Since in our model we do not have an explicit notion of the passage of time suchan impossible interaction does not result in behaviours which do block the passageof time (so-called timelocks) in the entire system|even in causally independentparts!|but simply in the local impossibility to execute the event at hand.The model based on timed-actions allows for the generation of ill-timed traces likein [1, 2]. Recently, [11] proposed a timed process algebra with the theoretical CSPparallel operator that also includes ill-timed traces. In the proposals [1, 2, 11] sub-processes have their independent local clock, and since local clocks are only synchro-nized at interaction, ill-timedness appears. We believe that the operational semanticspresented in this paper is simpler by avoiding local clocks.Ill-timedness is a phenomenon that is sometimes explicitly avoided by others (likein real-time ACP [4] and TIC [25]), since the precedence of timed events in thetrace does not reect the order in time. To our opinion ill-timed traces are not thatobscure, since for each ill-timed trace there exists a corresponding time-consistenttrace with the same timed events. Moreover, we think that the avoidance of themleads to a more complicated operational semantics.Acknowledgements. The authors would like to thank Pedro d'Argenio and ArendRensink for their suggestions.A Denotational semantics of PAIn this appendix we provide the full de�nition of the causality-based semantics ofPA. The initial events and successful termination events of an event structure arede�ned as follows: init(E) , f e 2 E j : (9X � E : X 7! e) g and exit(E) , f e 2E j l(e) = � g.E [[ ]] is de�ned recursively in De�nition 21. We suppose there is an in�nite universeEU of events. In the rest of this section let E [[Bi ]] = Ei = (Ei; i; 7!i; li), for i=1; 2with E1 \ E2 = ?. (If E1 \ E2 6= ? then a suitable event renaming can be appliedextended to  , 7! and l.)The semantics of 0 and p is self-explanatory. In E [[ a ; B1 ]] a bundle is introducedfrom the new event ea (labelled a) to all initial events in E1 as ea causally precedesthese events. E [[B1+B2 ]] is equal to E1 [ E2 extended with mutual conicts betweenall initial events of E1 and E2 such that in the resulting structure only either B1 orB2 can happen.E [[B1 n G ]] is identical to E1 except that events labelled with a label in G are nowlabelled with � turning those events into internal ones. E [[B1[H] ]] is de�ned similarlywhere events are relabelled according to H (� denotes usual function composition).E [[B1 >> B2 ]] is equal to E1 [ E2 where bundles are introduced from the success-ful termination events of E1 to the initial events of E2. (To create bundles, mutual



conicts are introduced between the successful termination events of E1.) This cor-responds with the fact that these initial events can only occur if B1 has success-fully terminated. The successful termination events of E1 are relabelled into internalevents.E [[B1 [> B2 ]] is equal to E1 [ E2 extended with some additional asymmetric conicts.First, each event in E1 may be disabled by an initial event of E2. This models thatB1 is disrupted once an initial event of B2 happens. In addition, after the occurrenceof a successful termination event in E1 no initial event of E2 can happen anymore.We �nally consider parallel composition. The events of E [[B1 jjGB2 ]] are constructedin the following way: an event e of E1 or E2 that does not need to synchronize ispaired with the auxiliary symbol �, and an event which is labelled with an action inG� is paired with all events (if any) in the other process that are equally labelled.Thus events are pairs of events of E1 and E2, or with one component equal to �.Two events are now put in conict if any of their components are in conict, orif di�erent events have a common component di�erent from � (such events appearif two or more events in one process synchronize with the same event in the otherprocess). A bundle is introduced such that if we take the projection on the i-thcomponent (i=1; 2) of all events in the bundle we obtain a bundle in E [[Bi ]].For G � Act, Esi , f e 2 Ei j li(e) 2 G� g is the set of synchronization events andEfi , Ei n Esi the set of non-synchronizing events.De�nition 21. E [[ ]] : PA �! EBES is de�ned as follows:E [[0 ]] , (?;?;?;?)E [[p ]] , (f e� g;?;?; f (e� ; �) g) for some e� 2 EUE [[ a ; B1 ]] , (E; 1; 7!; l1 [ f (ea; a) g) whereE = E1 [ f ea g for some ea 2 EU n E17! = 7!1 [ (f f ea g g � init(E1))E [[B1 +B2 ]] , (E1 [ E2; ; 7!1 [ 7!2; l1 [ l2) where =  1 [  2 [ (init(E1)� init(E2)) [ (init(E2)� init(E1))E [[B1 nG ]] , (E1; 1; 7!1; l) where(l1(e) 2 G ) l(e) = � ) ^ (l1(e) 62 G ) l(e) = l1(e))E [[B1[H] ]] , (E1; 1; 7!1;H � l1)E [[B1 >> B2 ]] , (E1 [ E2; ; 7!; l) where =  1 [  2 [ f (e; e0) j e; e0 2 exit(E1) ^ e 6= e0 g7! = 7!1 [ 7!2 [ (f exit(E1) g � init(E2))l = ((l1 [ l2) n (exit(E1)� f � g)) [ (exit(E1)� f � g)E [[B1 [> B2 ]] , (E1 [ E2; ; 7!1 [ 7!2; l1 [ l2) where =  1 [  2 [ (E1 � init(E2)) [ (init(E2)� exit(E1))E [[B1 jjGB2 ]] , (E; ; 7!; l) whereE = (Ef1 � f� g) [ (f � g � Ef2 ) [f (e1; e2) 2 Es1 � Es2 j l1(e1) = l2(e2) g
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