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Abstract—Markov chains are widely used in the context of
performance and reliability evaluation of systems of vari-
ous nature. Model checking of such chains with respect to
a given (branching) temporal logic formula has been pro-
posed for both the discrete [8] and the continuous time set-
ting [1], [3]. In this short paper, we describe the prototype
model checker E T MC2 for discrete and continuous-time
Markov chains, where properties are expressed in appro-
priate extensions of CTL. We illustrate the general benefits
of this approach and discuss the structure of the tool.
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I. Introduction

A. Model checking

Model checking [6] is a system validation technique
that has received an increased attention during the
last decade. Given a model of the system (the “pos-
sible behavior”) and a specification of the property
to be considered (the “desirable behavior”), model
checking is a technique that systematically checks the
validity of the property in the model. Models are typi-
cally non-deterministic finite-state automata, consist-
ing of a finite set of states and a set of transitions
that describe how the system evolves from one state
into another. These automata are usually generated
from a high-level description language such as Petri
nets, process algebra, Promela [19] or Statecharts
[9]. Properties are typically specified in temporal
logic, an extension of propositional logic that allows
one to express properties that refer to the relative or-
der of events. Statements can either be made about
states or about paths, i.e., sequences of states that
model a possible evolution of the system. The basis
of model checking is a systematic, usually exhaustive,
state-space exploration to check whether the property
is satisfied in each state or path of the model, thereby
using effective methods to combat the state-space ex-

plosion problem. Typical properties that are assessed
by model checking are:
(i) safety: e.g., does a given mutual exclusion algo-
rithm guarantee mutual exclusion?
(ii) liveness: e.g., will a transmitted packet eventually
arrive at its correct destination?
(iii) fairness: e.g., will a repeated attempt to carry
out a transaction be eventually granted?

B. On the role of probabilities

Whereas formal verification techniques focus on the
absolute guarantee of correctness — “it is impossible
that the system fails” — in practice such rigid notions
are hard, or even impossible, to guarantee. Instead,
systems are subject to various phenomena of proba-
bilistic nature, such as buffer overflow, message loss or
garbling and the like, and correctness — “with 99%
chance the system will not fail” — is becoming less
absolute. In this paper we consider the automated
verification of probabilistic systems, i.e., systems that
exhibit probabilistic aspects1. Probabilistic aspects
are essential for:
• tackling problems for which non-probabilistic solu-
tions have been proven to be impossible. Typical ex-
amples are distributed algorithms like leader election
or consensus algorithms where probabilities are used
to break the “symmetry” between the processes such
that e.g. consensus will eventually be reached with
probability one.
• modeling unreliable and unpredictable system be-
havior. Phenomena like message loss, processor fail-
ure and the like can be modeled as non-deterministic
scenarios. This is often appropriate in early system
design phases where systems are considered at a high

1Note: verifying probabilistic systems should not be confused
with probabilistic verification, a model checking technique (such
as [18]) based on a partial state-space search using imperfect
hashing
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level of abstraction and where information about the
likelihood is (sometimes deliberately) left unspecified.
In later design stages, though, where the internal sys-
tem characteristics become more dominant, probabil-
ities are a useful vehicle to quantify (and thus refine)
this information.
• model-based performance evaluation. As perfor-
mance evaluation is aimed at forecasting system per-
formance and dependability, probabilistic information
— what is the distribution of the message transmis-
sion delay or what is the failure rate of a processor? —
needs to be present in order to evaluate quantitative
properties (waiting time, queue length, time between
failure, and so on).

C. Probabilistic models

There are different ways of adapting finite-state
automata to probabilistic phenomena. If all non-
determinism is resolved by probabilities, discrete-time
Markov chains (DTMCs) result; if non-determinism
and probabilistic branching may co-exist, Markov de-
cision processes (MDPs) result. In a DTMC each
transition is thus equipped with a (possibly trivial)
probability, in an MDP both probabilistic and non-
deterministic transitions may appear. Performance
and dependability analysis is mostly based on purely
probabilistic models, while randomized algorithms are
appropriately modeled by MDPs, as probabilities typ-
ically affect just a small part of the algorithm and non-
determinism is used to model concurrency between
processes (“interleaving”). As we are mainly inter-
ested in performance and dependability issues, we fo-
cus on purely probabilistic systems.

II. Discrete-time Markov chains

A. Modeling a telescope

As an example Markov chain we model the failure
behavior of the Hubble space telescope, a well-known
orbiting astronomical observatory. In particular, we
focus on the steering unit which contains six gyro-
scopes. These gyroscopes are essential to determine
where the telescope is pointing. Decisions to move
or stabilize the telescope are based on their collected
information. Due to their failure possibilities, the gy-
roscopes are arranged in such a way that any group
of three gyroscopes can keep the telescope operating
with full accuracy. With less than three gyroscopes
the telescope turns into sleep mode and a space shut-
tle mission must be undertaken for repair. Without
operational gyroscope the telescope runs the risk to

1 1

5 4

sleep1 sleep2

1

1

0.0020.001

0.677

0.836

crash

0.164

6

1 2

3

0.323

0.999 0.998

Fig. 1. DTMC of the Hubble space telescope

crash. In practice, three servicing missions (1993,
1997, 1999) have been carried out so far.

The DTMC modeling the failure and repair of the
HST gyroscopes is depicted in Fig. 1. For convenience,
each state is labelled with the number of operational
gyroscopes, apart from the states in which the HST
is sleeping or crashed. If there are more than two
gyroscopes operational, no repairs can take place (as
no mission is being sent) and a next gyroscope will
fail with probability one. In case two gyroscopes are
operational, the system can either move to the sleep
mode with probability 0.998 or one of the remaining
gyroscopes can fail with probability 0.002. Note that
these probabilities do not depend on the outcome of
decisions taken earlier. Instead, only the current state
is decisive to completely determine the probability of
evolving to a next state. This is also known as the
memoryless property of Markov chains. Unless stated
otherwise, we consider state 6, the state in which all
gyroscopes are operational, as the initial state.

B. Model checking discrete-time Markov chains

With traditional non-probabilistic model checking
approaches, properties like:

“the telescope will eventually crash”

can be formally specified and automatically checked.
As a DTMC contains quantitative information that
enables to determine the actual probability of a cer-
tain path being taken, one can gain more insight by
checking whether the probability for a certain prop-
erty meets a given lower- or upper-bound, such as

“the probability that the telescope crashes eventually
without ever being in state 1 is at most 10−5”

The temporal logic PCTL (Probabilistic CTL) sup-
ports the formal specification of such properties [8].
Clearly, in order to assess the validity of such state-
ments, calculations involving probabilities have to be
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carried out. Hansson and Jonsson showed that by
a combination of graph algorithms and by solving
linear systems of equations, PCTL properties over
DTMCs can be automatically verified. This form of
model checking is known as quantitative model check-
ing. Prototype implementations of their algorithms
have been earlier reported in [7], [10], [21].

III. Continuous-time Markov chains

DTMCs are memoryless since probabilistic deci-
sions do only depend on the current state and not on
decisions taken earlier. For CTMCs, the continuous-
time variant of DTMCs where time ranges over (pos-
itive) reals instead of discrete subsets thereof, the
memoryless property further implies that the prob-
abilities of taking next transitions do not depend on
the amount of time spent in the current state.

A. What is a CTMC?

A CTMC is a finite-state automaton where transi-
tions are labelled by (the rates of) negative exponen-
tial distributions. Recall that a random variable X is
exponentially distributed with rate λ if the probabil-
ity of X being at most t (where t is a time parameter)
is given by:

FX(t) = Prob(X 6 t) = 1− e−λ·t for t > 0

and has mean 1
λ .

To illustrate the concept of a CTMC let us return
to the telescope example. We make the following (not
necessarily realistic) assumptions about the timing be-
havior of the telescope: each gyroscope has an average
lifetime of 10 years, the average preparation time of
a repair mission is two months, and to turn the tele-
scope into sleep mode takes 1/100 years (about 3.5
days) on average. Assuming a base time scale of a
single year, the real-time probabilistic behavior of the
failure and repair of the gyroscopes is now modeled by
the CTMC of Fig. 2. This model can be understood
as follows. The mean residence time of a state is the
reciprocal of the sum of its outgoing transition rates.
In state 6, for instance, one out of 6 gyroscopes may
fail. As these failures are stochastically independent
and as each gyroscope fails with rate 1

10 , this state
has outgoing rate 6

10 . If less operational gyroscopes
are available, these rates decrease proportionally, and
state residence times become larger. Being in state 2
there are two possibilities: either one of the remain-
ing two gyroscopes fails, or the telescope is turned into
sleep mode. The mean residence time of this state is
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Fig. 2. CTMC of the Hubble space telescope

10
1002 . The DTMC of Fig. 1 can be obtained from the
CTMC of Fig. 2 by multiplying the transition rates
by the mean residence time of the state from which
they emanate.

B. On the applicability of CTMCs

Markov chains are widely used as simple yet ade-
quate models in diverse areas, ranging from mathe-
matics and computer science to other disciplines such
as operations research, industrial engineering, biol-
ogy and demographics. They can be used to esti-
mate performance characteristics of various nature,
for instance to quantify throughput of manufacturing
systems, to locate bottlenecks in communication sys-
tems, or to estimate reliability in aerospace systems.
Due to their modeling convenience and presence of
efficient analysis methods, the vast majority of appli-
cations of Markov chain modeling involves CTMCs as
opposed to DTMCs. Due to the rapidly increasing size
and complexity of systems, specifying and analyzing
stochastic models at the level of states and transi-
tions becomes more and more cumbersome and error-
prone. In order to overcome this problem, CTMCs
can be generated from higher level specifications, such
as queueing networks, stochastic Petri nets, stochastic
process algebras, or from semi-formal software devel-
opment techniques such as UML (The Unified Model-
ing Language) or SDL (Specification and Description
Language).

C. Model checking continuous-time Markov chains

Performance and dependability analysis of CTMCs
most often boils down to the calculation of steady-
state and transient state probabilities. Steady-state
probabilities refer to the system behavior on the “long
run” while the transient probabilities consider the sys-
tem at a fixed time instant t. High-level measures-
of-interest are determined on the basis of these state-
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Fig. 3. Model checking CTMCs with E T MC2

level probabilities. Until so far, the specification of the
measure-of-interest for a given CTMC cannot always
be done conveniently, nor can all possible measures-
of-interests be expressed conveniently. In particular,
measures for which a selection of paths matter are
usually either “specified” informally, with all its neg-
ative implications, or require a manual tailoring of the
CTMC so as to address the right subsets of states.

With the use of an appropriate extension of tempo-
ral logic such measures can be specified in an unam-
biguous way. Let us illustrate this by means of the
Hubble telescope example. In addition to the proper-
ties discussed for the DTMC model of the telescope,
the presence of durations in a CTMC allows us to
specify and verify properties that refer to the time
until a certain scenario happens. Under the assump-
tion that a rare astronomic event, such as the appear-
ance of an interesting comet in the coverage of the
telescope, happens in five years, say, it would be in-
teresting to check whether

“the telescope is operational in exactly 5 years from
now with at least probability 99%”

Another quantity of interest is the time span before
the (fully operational) telescope has to be put into
sleep mode for the first time. In reality, this hap-
pened within 2.7 years. One could check whether

“with at most 10% change the operational telescope
turns into sleep mode within 2.7 years”

As a last example property, since the Hubble space
telescope is planned to stay in orbit through 2010, it
is worth to study the likelihood of a crash before that
year:

“there is at most a 1% chance that the system will
crash within the next 10 years”

given that the system was reset to state 6 in late
1999. The recently developed logic CSL (Continuous
Stochastic Logic) [1], [3] is an extension of both PCTL
and CTL tailored to specify quantitative properties of

CTMCs.

IV. The model checker E T MC2

The Erlangen–Twente Markov Chain Checker
(E T MC2) is a model checker for DTMCs and CTMCs
that supports the automated verification of CSL and
PCTL properties.

A. Main model-checking algorithms

The model checker uses numerical methods to
model check PCTL and CSL-formulas, based on [8],
[3], [2]. Apart from standard graph algorithms, model
checking CSL involves matrix-vector multiplication,
solution of linear systems of equations, and solution of
systems of Volterra integral equations. Linear systems
of equations are solved iteratively by standard numer-
ical methods [22]. Two alternatives to solve systems of
integral equations are implemented: One is based on
piecewise integration of discretized distribution func-
tions, the other is based on uniformisation [2], [20].
Uniformisation is the default option, because it allows
the tool to a priori calculate the computational effort
needed to check a given property. This effort depends
on the numerical parameters of the current model, on
the property to be checked, and on the required nu-
merical precision ε (the latter is a parameter set by
the user).

B. Implementation considerations

E T MC2 is a global model checker, i.e. it checks the
validity of a formula for all states in the model. It has
been developed such that it can easily be linked to a
wide range of existing high-level modelling tools based
on, for instance, stochastic process algebras, stochas-
tic Petri nets, or queueing networks. A whole variety
of such tools exists [11], most of them using dedicated
formats to store the transition matrix R of the Markov
chain that is obtained from a high-level specification.
This matrix encodes the probabilistic behaviour of
the system as time passes. Together with a labelling
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function L, which associates the states of the Markov
chain with sets of atomic propositions, the matrix R
constitutes the interface between the high-level for-
malism at hand and the model checker. Currently,
the tool accepts DTMCs and CTMCs represented in
a format generated by the stochastic process algebra
tool TIPPtool [17], but the tool is designed in such
a way that it can easily bridge to various other input
formats. The stochastic Petri net tool DaNAMiCS
[4] has recently been extended to generate input for
E T MC2. An overview of model checking with the
tool is given in Fig. 3.

C. Tool architecture

The tool has been written entirely in Java (version
1.2), in order to provide platform independence and to
enable fast and efficient program development. Fur-
thermore, support for the development of graphical
user interfaces as well as grammar parsers is at hand.
For the sake of simplicity, flexibility and extensibil-
ity we abstained from low-level optimizations, such as
minimization of object invocations. The design and
implementation took approximately 15 man-months,
with about 10000 lines of code for the kernel and 1500
lines of code for the GUI implementation, using the
Swing library. The tool architecture consists of five
components, cf. Fig. 4:
• Graphical User Interface (cf. Fig. 5) enables the user
to load, modify and save verification projects. Each
project consists of a model R, a labelling L, and the
properties to be checked. The GUI contains the ‘CSL
Property Manager’ which allows the user to construct
and edit CSL-formulas. The GUI also prints results
and additional logging information on screen or writes
them into file. Several verification parameters for the
numerical analysis, such as solution method, precision

Fig. 5. User interface of E T MC2

ε, and number of interpolation points for the piecewise
integration, can be set by the user.
• Tool Driver controls the model checking procedure.
It generates the parse tree corresponding to a given
CSL property. Subsequent evaluation of the parse tree
issues calls to the respective verification objects that
encapsulate the verification sub-algorithms. These
objects, in turn, use the analysis and/or numerical
engine.
• Analysis Engine is the engine that supports stan-
dard model checking algorithms for CTL-style until-
formulas, as well as graph algorithms, for instance
to compute the bottom strongly connected compo-
nents of a Markov chain. The former algorithms are
very useful in a pre-processing phase during the check-
ing of probabilistic until-formulas (they may help to
avoid many numerical calculations), while the latter is
needed when calculating long-run average properties.
• Numerical Engine is the numerical analysis engine
of the tool. It provides several methods for the numer-
ical solution of linear systems, for numerical integra-
tion, and for uniformisation. These are used to solve
sytems of linear or integral equations on the basis of
parameters provided by the user via the GUI.
• State Space Manager represents DTMCs and
CTMCs in a uniform way. In fact, it provides an inter-
face between the various checking and analysis com-
ponents and the way in which DTMCs and CTMCs
are actually represented. This eases the use of dif-
ferent, possibly even symbolic (i.e. BDD-based) state
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space representations. It is designed to support input
formats of various kinds, by means of a simple plug-
in-functionality (using Java’s dynamic class loading
capability). It maintains information about the va-
lidity of atomic propositions and of sub-formulas for
each state. After checking a sub-formula, this sub-
component stores the results, to be used later. In
the current version of the tool, the state space is rep-
resented as a sparse matrix [22]. All real values are
stored in the IEEE 754 floating point format with dou-
ble precision (64 bit).

D. Case studies

Even though the tool is still a prototype, it has al-
ready been used in a number of non-trivial case stud-
ies, including
• validation and performance assessment of a cyclic
server polling system [12],
• reliability estimation of the Hubble space tele-
scope [13],
• dependability analysis of a workstation cluster [14],
• performance and availability analysis of a dis-
tributed database server [15].

V. Conclusion

This short paper described the Markov chain model
checker E T MC2. For more information about the
tool, the reader is invited to consult [12], or http:
//www7.informatik.uni-erlangen.de/etmcc/. For
academic purposes the tool can be downloaded free of
charge via this web-site. The tool is currently being
extended towards verifying action-oriented properties
expressed in the logic aCSL [15], [16].
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