Copyright © 1996 IFAC .
13th Triennial World Congress, San Francisco, USA

3b-13 2

FUZZY AND LEARNING CONTROL OF FES INDUCED GAIT
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Abstract: Research is done to restore gait by means of functional electrical stimulation for
people suffering from paraplegia. Difficulties are that muscle fatigue and heavily changing
patient conditions deteriorate the performance of such systems. The design of feedback
controllers is considered that adapt stimulation parameters to compensate for this
deterioration. Conventional control (PID) gives good performance when muscle and leg
dynamics are known, but requires recurring identification. By using fuzzy controllers based
on general, qualitative knowledge, and by providing self-tuning capabilities through
learning, identification might be avoided. Simulation studies confirm this.

Keywords: fuzzy control, learning control, adaptation, neural networks, splines, biomedical

systems

1. INTRODUCTION

An injury of the nervous system in the spinal cord of a
human being may result in paralysis of the muscles in the
legs. The muscles are still able to function, but do not
receive any electrical stimulation signals. They can be
activated by artificially generating and delivering an
electrical stimulation signal; this is referred to as functional
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Fig. | Feedback control of FES induced gait

electrical stimulation (FES; Veltink, 1993). Research is

done to restore human gait using FES (Petrofsky, 1986).

FES induced gait has to satisfy 3 swing phase objectives

(Franken et al., 1995):

— The range of the angle of the hip joint, the hip range,
has to be sufficient to obtain a desired step length.

—  The knee extension has to be such that upper and lower
leg are in line with each other at the moment the foot
touches the ground.

— In the forward swing, the minimum distance between
heel and ground, the foor clearance, has to be
sufficient.

The relation between the electrical stimulation signals and
the resulting leg movement depends on the leg and muscle
dynamics. To obtain a satisfactory movement, a feedback
controller is used to determine the stimulation parameters
(figure 1). After each step taken, the controller may adapt
parameters of the stimulator on basis of measurements of
the movements of the leg.



In control of FES induced gait the following two
difficulties arise:

Due to muscle fatigue, the muscle dynamics change
during gait. Conventional control (PID) is able to give
good performance when the muscle and leg dynamics
are known (Franken et al.. 1995). Hence, time-—
consuming identification is required before such
controllers can be applied.

The leg and muscle dynamics differ from patient to
patient, and even from day to day for one patient. This
implies that the above mentioned identification
procedure needs to be done often.

General (qualitative) knowledge about which control action
to take for particular situations is available beforehand.
Such knowledge can easily be incorporated in a fuzzy
controller (Lee, 1990). Therefore, use of a fuzzy controller
might make identification superfluous. This is the first idea
pursued in this paper.

It is well known that fuzzy controllers often require
considerable tuning activities before a satisfactory
performance is obtained. This can be avoided by making
the controller self—tuning. One approach to obtain this, in
line with the above, is to make use of a spline network
(Brown and Harris, 1994) which has learning capabilities.
This is the second idea that is discussed in this paper.

In section 2, the process is described shortly, i.e. the FES
unit and leg and muscle dynamics. The design of the fuzzy
controller and the learning controller are discussed in
sections 3 and 4, respectively. Section 5 deals with
simulation results obtained with both controllers.
Conclusions are listed in section 6, finally.

2. FES UNIT AND LEG AND MUSCLE DYNAMICS

The FES unit and the muscles that are stimulated during
gait are presented in figure 2. The FES unit consists of:
Sensors, measuring the angles of the knee and hip joint.
A controller determining stimulation parameters

A stimulator that generates stimulation signals
Electrodes, delivering the stimulation signals to the
muscles.

To enable gait the following muscles have to be stimulated
(figure 2):

1. Hip flexors. By stimulating these muscles, the hip range
can be influenced

Hamstrings. Contraction of the hamstrings causes hip
extension and knee flexion. Stimulation of these
muscles gives control over the foot clearance in the
forward swing
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Fig. 2 FES unit and stimulated muscles

3. Quadriceps. The quadriceps mainly provide knee
extension.

For each swing phase objective a particular muscle group
needs to be stimulated. Therefore, 3 decoupled controllers
are used, each determining the stimulation of one muscle
group. The stimulation consists of a series of electrical
pulses (figure 3). In this research, the controller can adapt
the wait time (WT) and/or the burst time (BT). The
stimulation signal is generated when the angle of the hip
joint reaches a reference angle.

3. DESIGN OF THE FUZZY CONTROLLERS

The task of the fuzzy hip range controller is to obtain a
desired hip range (hr). Initially the patient stands still, i.e.
hr=0. The patient now has to accelerate until the desired
step length is reached. This is done by increasing the
desired hip range according to a trajectory such that the
ultimately desired hip range (0.8 rad) is reached after the
patient has taken a number of steps. So when starting to
walk, the step lengt of the patient will increase smoothly.
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Fig. 3 Stimulation pattern.
1 = wait time (WT)
2 = pulse amplitude
3 = pulse width

4 = burst time (BT)
5 = interpulse interval (IPI)
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Fig. 4 Premise sets for the hip range controller

At the end of a step k the burst time BT of the hip flexors
stimulation is adapted in order to let Ar follow the desired
trajectory. The response of Ar to adaptations of BT is slow.
Therefore, hAr(k+1) will not only be affected by the
adaptation of BT at the end of step k, ABT(k), but also by
ABT(k-1), ABT(k-2) ... The effect of previous adaptations
of BT on hr(k+1) can be accounted for properly by taking
hr(k), hr(k-1) and hr(k-2) as input variables for the hip
range controller. Each of these 3 input variables is covered
by 7 fuzzy premise sets, as shown in figure 4. The large
number of fuzzy premise sets and the specific placement is
chosen to enable sensitive control. The output of the fuzzy
logic controller is ABT(k). The output variable is covered by
5 fuzzy consequence sets (figure 5).

Now that the fuzzy premise and consequence sets are given,
the rules that define the relation between them can be
discussed. A fuzzy consequence set has to be assigned to
each combination of fuzzy premise sets. Therefore, the total
number of rules will be 7-7-7=343. For each rule the
following procedure was followed:

1. Take a combination of 3 fuzzy premise sets (one for
each input variable). Consider hr(k-2), hr(k—1) and
hr(k) to be equal to the input value where the grade of
membership g of the respective fuzzy sets equal |

2. Predict Ar(k+1) in case the burst time BT is not adapted.
This is done by considering a slow response of the hip
range and damping in the hip joint

3. Determine the fuzzy consequence set on the basis of
the difference between the desired and the predicted
value of hr(k+1). In case the desired value is
larger/smaller than the predicted value, BT needs to be
increased/decreased.

In figure 6 an example of the determination of the fuzzy

ABT(k) [sec]

Fig. 5 Consequence sets, hip range controller
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Fig. 6 Prediction of next hip range hr(k+1)

consequence set is given. In this example the predicted
value of Ar(k+1) is somewhat smaller than the desired
value. Therefore, the fuzzy consequence set ‘pos’ will be
assigned to the combination of fuzzy premise sets.

Due to the large number of rules, tuning of the fuzzy hip
range controller becomes time—consuming and complex.

The fuzzy knee extension controller has to guarantee that
the upper and lower leg are in line with each other at the
moment the foot touches the ground. Therefore, two
conditions have to be fulfilled:

The rate of extension re, Pypper leg, max — Plower leg, max>
has to be 0.

Pupper leg, max ~— Pupper leg, plower leg = max, & Measure for
the timing of extension te, has to be 0.

These conditions can be fulfilled by adapting both the burst
time BT and the wait time W7 of the stimulation of the
quadriceps. The qualitative knowledge about knee
extension needed to control the stimulation of the
quadriceps, is summarised in table 1. This knowledge can
be incorporated in two fuzzy logic controllers:

One for controlling the rate of extension by adapting
BT. The input variable is the rate of extension, covered
by 3 fuzzy premise sets {too small, ok, too large}. The
output variable, ABT(k), is covered by 3 fuzzy
consequence sets {neg, zero, pos}

One that controls the timing of extension by adapting
WT. The input variable is the timing error of extension
and is covered by 3 fuzzy premise sets {too early, ok
too late}. The output variable, AWT(k), is covered by 3
fuzzy consequence sets {neg, zero, pos}.

The fuzzy foot clearance controller has to provide for a
minimum foot clearance in the forward swing. The

Table 1: Qualitative knowledge about the knee extension

too small

ok too large|tooearly ok too late
increase - decrease | increase - decrease
BT BT wT wT



Table 2: Qualitative knowledge about the foot clearance

too small ok too large
increase - decrease
BT BT

qualitative knowledge needed to control the foot clearance
is shown in table 2. The input of the controller is the foot
clearance; the output is the adaptation of the burst time BT
of the hamstrings.

4. DESIGN OF THE LEARNING CONTROLLER

Above, it was shown that the design of the fuzzy knee
extension and the fuzzy foot clearance controller is
relatively simple. Therefore, these controllers do not need
to be self tuning. The design of the fuzzy hip range
controller is time consuming and complicated though, due
to the required tuning. This is why a learning controller is
considered for control of the hip range. The learning
controller has the same input and output variables as the
fuzzy controller. However, each input variable is covered
by a larger number of fuzzy premise sets (i.e. second order
splines) as shown in figure 7. The output is obtained as a
weighted summation of the grades of membership of the
inputs. This structure resembles that ot a neural network,
and hence is referred to as a spline nerwork.

Before operation, the weights of the network have to be
initialised. This is done by learning the input—output
relation of fuzzy controller discussed in the previous
section. In this way, a-priori knowledge of process control
is incorporated in the spline network.

The real time control and learning proceeds as follows:
1. Determine the adaptation of the burst time, ABT(k).

2. Stimulate with the adapted BT and evaluate the effect
on the hip range at the end of the step by comparing the
actual and the desired value of Ar(k+1). If actual value
<< desired value (actual value >> desired value), the
error in the applied output of the network, ABT(k), is

1
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Fig. 7 Premise sets, learning hip range controller
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considered to be + () one interpulse interval .

3. Adapt the weights of the network on basis of the error
in the output (Brown and Harris, 1994; Van Luenen,
1993).

5. SIMULATION RESULTS

In the simulations discussed here a setup is considered that
will be used in future for real world experiments as well.
The setup guarantees safety for the patient, yet resembles
the pose during normal gait. The patient sits on a saddle,
with one of his legs supported by a block. The other leg
cannot touch the ground and is able to swing freely. The
muscles of this leg are stimulated by electrodes. The FES
system is started by softly pushing the free leg.

All results presented here are obtained through simulation
of a model of this setup of mediate complexity (Velthuis,
1995). Included are time variations (muscle fatigue) and
non-linearities (muscle dynamics, activation limits). A 4th
order Runge—Kutta integration method was used.

5.1 Fuzzy controllers

First the fuzzy controllers are applied to the nominal
process (for which the hip range controller has been tuned).
Figure 8 shows the obtained step characteristics for
subsequent steps of the patient. This clarifies that in
simulation, the fuzzy controllers are able to control the
stimulation process, such that the swing phase objectives
are satisfied. Compared with PID control (Franken et al.,
1995), the fuzzy controllers perform better; they cause less
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Fig. 8 Performance when fuzzy controllers are applied to
the nominal process
a) hip range (hr) b) foot clearance (fc)
c) rate of extension (re) d) timing of extension (fe)
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Fig. 9 Fuzzy controllers outputs
a) BT hip flexors
¢) BT quadriceps

b) BT hamstrings
d) WT quadriceps

overshoot. However, results for PID control were obtained
through actual experiments with patients, and hence are
influenced by unmodelled disturbances like noise and
muscle spasm. Therefore, a fair comparison between the
PID controllers and the fuzzy controllers is not yet possible.

The stimulation parameters determined by the controllers
are shown in figure 9. Parts a) and b) show that the
controllers, after initialisation, indeed compensate for the
effect of muscle fatigue.

In additional simulations, the robustness of the perform—

ance of the fuzzy controllers has been examined in the

following situations:

1. Decreased maximum torque that the hip flexors can
generate

2. Decreased mass and damping of upper and lower leg

3. Increased mass and damping of upper and lower leg.

It appeared that the performance was most sensitive for the
3rd test. Performance obtained then is shown in figure 10.

Due to the large damping and increased mass, the hip range
no longer follows the desired path. Once the desired hip
range is reached, it is maintained until about step 48. Foot
clearance and knee extension do not change significantly.
Altogether it seems that the performance obtained with the
fuzzy controllers is reasonably robust; deterioration due to
process variations is present but not significant.

The fuzzy controller outputs for the hip flexor and
quadriceps in this case are shown in figure 11. It appears
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Fig. 10 Performance of fuzzy controllers when masses and
dampings are larger
a) hip range (hr) b) foot clearance (fc)
c) rate of extension (re) d) timing of extension (te)

that the burst time of the hip flexor stimulator becomes
equal to the maximum burst time in step 48; the effect of
muscle fatigue can no longer be compensated, which
explains why the desired hip range is not maintained from
then on. A second interesting effect is that between steps 12
and 28, the burst time determined by the knee extension
controller is 0; apparently, knee extension is obtained
without using the quadriceps. This implies that the fuzzy
controller has no control over knee extension in this period.

5.2 Learning hip range controller

All simulations mentioned above were repeated with the
fuzzy hip range controller replaced by the learning hip
range controller. In figure 12, results that can be compared
to those of figures § a) and 10 a) are shown.

Figure 12 a) clarifies that the learning controller is not able
to improve upon the well-tuned fuzzy controller, but also
does not deteriorate the performance. Figure 12 b) shows
that the learning controller is able to optimise its
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Fig. 11 Fuzzy controller outputs, off-nominal process
a) BT hip flexors b) BT quadriceps
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Fig. 12 Performance of the learning hip range controller
a) nominal process b) off-nominal process

performance; unlike the fuzzy controller, it allows the hip
range to follow the desired trajectory (until the maximum
BT is reached again, of course). Other simulations
confirmed as well that the learning controller is able to
outperform the fuzzy controller.

To research the learning abilities and the rate of learning
under bad conditions, an additional experiment was done.
The learning controller was initialised with a fuzzy
controller in which several fuzzy implications were
sabotaged: they were given fuzzy consequence sets that did
not correspond with the guidelines given before. In figure
13, the performance of the hip range controller is shown
both without and with learning.

This experiment indicates that the learning controller is able
to restore a satisfactory pertormance for a badly tuned
initialisation. During learning. only small adaptations of the
input-output relation of the spline network were allowed
(one interpulse interval per learning step). This has two
effects:

1. Learning is robust; ‘limit-cycle-like’ effects are
avoided. This is desirable.
2. Learning is slow: adaptation to patient specific

characteristics takes time. This is less desirable.

6. CONCLUSIONS

The design of fuzzy controllers for knee extension control
(both rate of extension and timing) and for foot clearance
control is straightforward. Simulation experiments indicate
that general, qualitative knowiedge is sufficient to obtain
well-performing controllers: muscle fatigue and changing
leg and muscle dynamics are properly cancelled. Thus,
identification is no longer needed here.

The design of a well-performing fuzzy controller for hip
range control is more involved. The determination of fuzzy
rules on basis of a-priori knowledge 1s simple, but tuning
of these rules is quite complicated and time—consuming.
This is caused by the fact that there are several input
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Fig. 13 Performance of the learning controller when
initialised with sabotaged rules

a) no learning  b) learning, 10th trial (of 60 steps)

variables for this controller, each covered by a large
number of fuzzy premise sets, leading to many rules.

If leg and muscle dynamics of a patient change, the fuzzy
hip range controller no longer performs optimally.
Simulation results indicate that a spline network is able to
adapt to the patient, such that after learning it performs well
again. Hence, by using a spline network that is initialised
with a fuzzy controller that has been tuned in simulations,
identification may be avoidable altogether.
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