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Abstract

We characterise the set of dominant strategy incentive com-
patible (DSIC), strongly budget balanced (SBB), and ex-post
individually rational (IR) mechanisms for the multi-unit bilat-
eral trade setting. In such a setting there is a single buyer and
a single seller who holds a finite number k of identical items.
The mechanism has to decide how many units of the item are
transferred from the seller to the buyer and how much money
is transferred from the buyer to the seller. We consider two
classes of valuation functions for the buyer and seller: Valua-
tions that are increasing in the number of units in possession,
and the more specific class of valuations that are increasing
and submodular.
Furthermore, we present some approximation results about
the performance of certain such mechanisms, in terms of so-
cial welfare: For increasing submodular valuation functions,
we show the existence of a deterministic 2-approximation
mechanism and a randomised e/(1−e) approximation mech-
anism, matching the best known bounds for the single-item
setting.

1 Introduction
Auctions form one of the most studied applications of game
theory and mechanism design. In an auction setting, a sin-
gle seller or auctioneer runs a pre-determined procedure or
mechanism (i.e., the auction) to sell one or more goods to
the buyers, and the buyers then have to strategise on the way
they interact with the auction mechanism. An auction set-
ting is rather restrictive in that it involves a single seller that
is monopolistic and is assumed to be non-strategic. While
this is a sufficient assumption in some cases, there are many
applications that are more complex: It is often realistic to as-
sume that a seller expresses a valuation for the items in her
possession and that a seller wants to maximise her profit.
Such settings in which both buyers and sellers are consid-
ered as strategic agents are known as two-sided markets,
whereas auction settings are often referred to as one-sided
markets.

The present paper falls within the area of mechanism de-
sign for two-sided markets, where the focus is on designing
satisfactory market platforms or intermediation mechanisms
that enable trade between buyers and sellers. In general, the
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term “satisfactory” can be tailored to the specific market un-
der consideration, but nonetheless, in economic theory vari-
ous universal properties have been identified and agreed on
as important. The following three are the most fundamental
ones:
• Incentive Compatibility ((DS)IC): It must be a dominant

strategy for the agents (buyers and sellers) to behave truth-
fully, hence not “lie” about their valuations for the items
in the market. This enables the market mechanism to
make an informed decision about the trades to be made.

• Individual Rationality (IR): It must not harm the utility of
an agent to participate in the mechanism.

• Strong Budget Balance (SBB): All monetary transfers that
the mechanism executes are among participating agents
only. That is, no money is injected into the market, and no
money is burnt or transferred to any agent outside of the
market.

This paper studies the capabilities of mechanisms that sat-
isfy these three fundamental properties above for a very sim-
ple special case of a two-sided market. Bilateral trade is the
most basic such setting comprising a buyer and a seller, to-
gether with a single item that may be sold, i.e., transferred
from the seller to the buyer against a certain payment from
the buyer to the seller. The bilateral trade setting is a clas-
sical one: It was studied in the seminal paper (Myerson and
Satterthwaite 1983) and has been studied in detail in var-
ious other publications in the economics literature. Recent
work in the Algorithmic Game Theory literature (Blum-
rosen and Dobzinski 2016; Blumrosen and Mizrahi 2016;
Colini-Baldeschi et al. 2017b) has focused on the welfare
properties of bilateral trade mechanisms. These works as-
sume the existence of prior distributions over the valuations
of the buyer and seller, that may be thought of as modelling
an intermediary’s beliefs about the buyer’s and seller’s val-
ues for the item.

The present paper studies a generalisation of the classical
bilateral trade setting by allowing the seller to hold multi-
ple units initially. These units are assumed to be of a sin-
gle resource, so that both agents only express valuations in
terms of how many units they have in possession. The fi-
nal utility of an agent (buyer or seller) is then determined
by her valuation and the payment she paid or received. We
focus our study on characterising which mechanisms satisfy
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the the above three properties and which of these feasible
mechanisms achieve a good social welfare (i.e., total utility
of buyer and seller combined).

Due to its simplicity, our setting is fundamental to any
strategic setting where items are to be redistributed or re-
allocated. Our characterisation efforts show that all feasible
mechanisms must belong to a very restricted class, already
for this very simple setting with one buyer, one seller, and
a relatively simple valuation structure. The specific mecha-
nisms we develop are very simple, and suitable for imple-
mentation with very little communication complexity.

Our Contribution. Our first main contribution is a full
characterisation of the class of truthful, individually rational
and strongly budget balanced mechanisms in this setting. We
do this separately for two classes of valuation functions: sub-
modular valuations and general non-decreasing valuations.
Section 3 presents a high-level argument for the submodu-
lar case. A full and rigorous formal proof for both settings
is given in the full version of this paper (Gerstgrasser et al.
2018). Essentially, for the general case, any mechanism that
aims to be truthful, strongly budget balanced and individu-
ally rational can only allow the agents to trade a single quan-
tity of items at a predetermined price. The trade then only
occurs if both the seller and buyer agree to it. This leads to
a very clean characterization and has the added benefit of
giving a robust, simple to understand mechanism: the agents
do not have to disclose their entire valuation to the mecha-
nism, and only have to communicate whether they agree to
trade one specific quantity at one specific price. For the sub-
modular case, suitable mechanisms can be characterised as
specifying a per-unit price, and repeatedly letting the buyer
and seller trade an item at that price until one of them de-
clines to continue.

Secondly, we give approximation mechanisms for the so-
cial welfare objective in the Bayesian setting in Section 4,
for the case of submodular valuations. Theorem 4.1 presents
a 2-approximate deterministic mechanism. For randomised
mechanisms, we show a e/(e − 1)-approximation in Theo-
rem 4.2.

Related Literature. The first approximation result for bi-
lateral trade was presented in (McAfee 2007), where for the
single-item case the author proves that the optimal gain from
trade can be 2-approximated by the median mechanism,
which is a mechanism that sets the seller’s median valuation
as a fixed price for the item, and trade occurs if and only if
p lies in between the buyer’s and seller’s valuation and the
buyer’s valuation exceeds p. The analysis in (McAfee 2007)
is done under the assumption that the seller’s median valua-
tion does not exceed the median valuation of the buyer. The
gain from trade is defined as the increase in social welfare
as a result of trading the item. (Blumrosen and Dobzinski
2016) extended the analysis of this mechanism by showing
that it also 2-approximates the social welfare without the lat-
ter assumption on the medians.

In (Blumrosen and Dobzinski 2016), the authors consider
the classical bilateral trade setting (with a single item) and

present various mechanisms for it that approximate the op-
timal social welfare. Their best mechanism achieves an ap-
proximation factor of e/(e − 1). As in the present paper,
there are prior distributions on the traders’ valuations, and
the quantity being approximated is the expectation over the
priors, of the optimal allocation of the item.

The weaker notion of Bayesian incentive compatibility is
considered in (Blumrosen and Mizrahi 2016), where the au-
thors propose a mechanism in which the seller offers a take-
it-or-leave-it price to the buyer. They prove that this mech-
anism approximates the harder gain from trade objective
within a factor of 1/e under a technical albeit often reason-
able MHR condition on the buyer’s distribution.

The class of DSIC, IR, and SBB mechanisms for bilateral
trade was characterised in (Colini-Baldeschi et al. 2016) to
be the class of fixed price mechanisms. In the present work,
we characterise this set of mechanisms for the more general
multi-unit bilateral trade setting, thereby extending their re-
sult. The gain from trade arising from such mechanisms was
analysed in (Colini-Baldeschi et al. 2017a).

Various recent papers analyse more general two-sided
markets, where there are multiple buyers and sellers, who
hold possibly complex valuations over the items in the mar-
ket. (Colini-Baldeschi et al. 2017b) analyse a more general
scenario with multiple buyers, sellers, and multiple distinct
items, and use the same feasibility requirements as ours
(DSIC, IR, and SBB). (Segal-Halevi, Hassidim, and Au-
mann 2018b) have considered a similar setting but focus on
gains from trade (GFT) (i.e., the increase in social welfare
resulting from reallocation of the items) instead of welfare.
They initially considered a multi-unit setting like ours (al-
beit with multiple buyers and sellers), and they extend their
work in (Segal-Halevi, Hassidim, and Aumann 2018a) to al-
low multiple types of goods. They present a mechanism that
approximates the optimal GFT asymptotically in large mar-
kets. (Balseiro et al. 2018) designs two-sided market mech-
anisms for one seller and multiple buyers with a temporal
component, where valuations are correlated between buyers
but independent across time steps. A good approximation
(of factor 1/2) of the social welfare using the more permis-
sive notion of Bayesian Incentive Compatibility (BIC) was
achieved by (Brustle et al. 2017). Their optimality bench-
mark is different from the one we consider as they com-
pare their mechanism to the best possible BIC, IR, and SBB
mechanism. A very recent work, (Babaioff et al. 2018), pro-
poses mechanisms that achieve social welfare guarantees for
both optimality benchmarks. (Feldman and Gonen 2018)
considers optimizing the gains from trade in a two-sided
market setting tailored to online advertising platforms, and
the authors extend this idea further in (Feldman and Gonen
2016) by considering two-sided markets in an online setting.

The literature discussed so far aims to maximise welfare
under some budget-balance constraints. An alternative nat-
ural goal is to maximise the intermediary’s profit. This has
been studied extensively starting with a paper by Myerson
and Satterthwaite (Myerson and Satterthwaite 1983), which
gives an analogue of Myerson’s seminal result on optimal
auctions, for the independent priors case. Approximately op-
timal mechanisms for that settings have further been studied.
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(Deng et al. 2014; Niazadeh, Yuan, and Kleinberg 2014) The
correlated-priors case has been investigated from a compu-
tational complexity perspective by (Gerstgrasser, Goldberg,
and Koutsoupias 2016), as well as links back to auction the-
ory (Gerstgrasser 2018). An adversarial online model of a
revenue-maximising intermediation problem was studied in
(Giannakopoulos, Koutsoupias, and Lazos 2017).

2 Preliminaries
In a multi-unit bilateral trade instance there is a buyer and
seller, where the seller holds a number of units of an item.
This number will be denoted by k. The buyer and seller each
have a valuation function representing how much they value
having any number of units in possession. These valuation
functions are denoted by v and w, respectively. Precisely
stated, a valuation function is a function v : [k]∪{0} → R≥0
where v(0) = 0. Note that we use the standard notation [a],
for a natural number a, to denote the set {1, . . . , a}. We de-
note by v the valuation function of the buyer, drawn from
f , and we denote by w the valuation function of the seller,
drawn from g. For q ∈ [k], the valuation v(q) or w(q) of an
agent (i.e., buyer or seller) expresses in the form of a num-
ber the extent to which he would like to have q units in his
possession.

A mechanism M interacts with the buyer and the seller
and decides, based on this interaction, on an outcome. An
outcome is defined as a quadruple (qB , qS , ρB , ρS), where
qB and qS denote the numbers of items allocated to the buyer
and the seller respectively, such that qB+qS = k. Moreover,
ρB and ρS denote the payments that the mechanism charges
to the buyer and seller respectively. Note that typically the
payment of the seller is negative since he will get money in
return for losing some items, while the payment of the buyer
is positive since he will pay money in return for obtaining
some items. LetO be the set of all outcomes. For brevity we
will often refer to an outcome simply by the number of units
traded qB .

Formally, a mechanism is a function M : ΣB ×ΣS → O,
where ΣB and ΣS denote strategy sets for the buyer and
seller. A direct revelation mechanism is a mechanism for
which ΣB and ΣS consists of the class of valuation func-
tions that we want to consider. That is, in such mechanisms,
the buyer and seller directly report their valuation function
to the mechanism, and the mechanism decides an outcome
based on these reports. We want to define our mechanism in
such a way that there is a dominant strategy for the buyer and
seller, under the assumption that their valuation functions
are in a given class V . It is well known (see e.g. (Börgers
2015)) that then we may restrict our attention to direct rev-
elation mechanisms in which the dominant strategy for the
buyer and seller is to report the valuation functions that they
hold. Such mechanisms are called dominant strategy incen-
tive compatible (DSIC) for V . In this paper, we consider for
V two natural classes of valuation functions:

• Monotonically increasing submodular functions, i.e., val-
uation functions v such that for all x, y ∈ [k] where
x < y it holds that v(x) − v(x − 1) ≥ v(y) − v(y − 1)
and v(x) < v(y). This reflects a common phenomenon

observed in many economic settings involving identical
goods: Possessing more of a good is never undesirable,
but the increase in valuation still goes down as the held
amount increases. For a monotonically increasing sub-
modular function v and number of units x ∈ [k], we de-
note by ṽ(x) the marginal valuation v(x)−v(x−1). Thus,
it holds that ṽ(x) ≥ ṽ(y) when x < y.

• Monotonically increasing functions, i.e., valuation func-
tions v such that v(x) < v(y) for all x < y, where
x, y ∈ [k].
Besides the DSIC requirement, there are various addi-

tional properties that we would like our mechanism to sat-
isfy.
• Ideally, our mechanism should be strongly budget

balanced (SBB), which means that for any outcome
(qB , qS , ρB , ρS) that the mechanism may output it holds
that ρB = −ρS . This requirement essentially states that
all money transferred is between the buyer and the seller
only.

• Additionally, we want that running the mechanism never
harms the buyer and the seller. This requirement is known
as (ex-post) individual rationality (IR). Note that when v
and w are the valuation functions of the buyer and the
seller, then the initial utility of the buyer is 0 and the
initial utility of the seller is w(k). Thus, a mechanism
M is individually rational if for the outcome M(v, w) =
(qB , qS , ρB , ρS) it always holds that v(qB)−ρB ≥ 0 and
w(qS)− ρS ≥ w(k).

• We would like the mechanism to return an outcome for
which the total utility is high. That is, we want the mech-
anism to maximise the sum of the buyer’s and seller’s util-
ity, which is equivalent to maximizing the sum of valua-
tions v + w when strong budget balance holds.
We characterise in Section 3 the class of DSIC, SBB, IR

mechanisms for both valuation classes. In the formal proof
of our characterisation we describe our class in the form of
direct revelation mechanisms, and we exploit the fact that we
may restrict our attention to this class. However, in this ver-
sion we present a more informal description of our charac-
terization in which we decribe our class as a set of sequential
posted price mechanisms, so as to provide the reader with a
more intuitive understanding of the characterization.

In Section 4, we subsequently provide various approxima-
tion results on the quality of the solution output by some of
these mechanisms. For these results, we assume the standard
Bayesian setting: The mechanism has no knowledge of the
buyer’s and seller’s precise valuation, but knows that these
valuations are drawn from known probability distributions
over valuation functions. Our approximation results provide
mechanisms that guarantee a certain outcome quality (which
is measured in terms of social welfare, defined in Section 4)
for arbitrary distributions on the valuation functions.

Formally, in the Bayesian setting, a multi-unit bilateral
trade instance is a pair (f, g, k), where k ∈ N is the total
number of units that the seller initially has in his possession,
and f and g are probability distributions over valuation func-
tions of the buyer and the seller respectively. Note that we
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do not impose any further assumptions on these probability
distributions.

3 Characterisation
In (Colini-Baldeschi et al. 2016) the authors prove that every
DSIC, IR, SBB mechanism for classical bilateral trade (i.e.
the case where k = 1) is a fixed price mechanism: That is,
the mechanism is parametrised by a price p ∈ R≥0 such that
the buyer and seller trade if and only if the buyer’s valuation
exceeds the price and the price exceeds the seller’s valua-
tion. Moreover, in case trade happens, the buyer pays p to
the seller. In this paper we characterise the set of DSIC, IR,
and WBB mechanisms for multi-unit bilateral trade, and we
thereby generalise the characterisation of (Colini-Baldeschi
et al. 2016).

Theorem 3.1. Any mechanism that satisfies DSIC, IR and
SBB must be a sequential posted price mechanism with a
fixed per-unit price p, potentially with bundling, which we
will refer to as a multi-unit fixed price mechanism. Such a
mechanism iteratively proposes a quantity q of units to both
the buyer and seller simultaneously, which the seller and
buyer can choose to either accept or reject. If both agents
accept, q additional units are reallocated from the seller to
the buyer, the buyer pays pq to the seller, and the mecha-
nism may then either proceed to the next iteration or termi-
nate. If one of the two agents rejects, the mechanism termi-
nates. Quantity q may vary among iterations, but must be
pre-determined prior to execution of the mechanism.

For increasing submodular valuations, any number of it-
erations is allowed. For general increasing valuations, the
mechanism is further restricted to execute only one itera-
tions (or equivalently, it may only offer one bundle for a fixed
price).

In simple terms, our result states that for the submodular
valuations case, the only thing to be done truthfully in this
setting is to set a fixed per-unit price p, and ask the buyer
and seller if they want to trade one or several units of the
good at per-unit price p. This repeats until one agent rejects.
In the general monotone case this is further restricted to a
single such proposed trade. The following is a brief high-
level (informally stated) argument of the proof of Theorem
3.1 for the submodular setting.

Lemma 3.2. All prices must be fixed in advance, and cannot
depend on the bid / valuation of neither the seller nor the
buyer.

Proof. This follows immediately from DSIC and SBB: By
DSIC, for any outcome, the price charged to the buyer can’t
depend on the buyer’s bid, otherwise one can construct sce-
narios in which the price charged by the buyer could be ma-
nipulated to the buyer’s benefit by misreporting the bid. The
same holds for the seller. By SBB the payment of the buyer
completely determines the payment of the seller (the pay-
ment is simply negated) so neither payment can depend on
either’s bid.

Theorem 3.3. Suppose in a DSIC, SBB, IR mechanism the
price for the outcome in which q units are traded is qp for

a fixed per-unit price for all potential outcomes. Then the
allocation chosen for a given pair of valuation functions is
the one arising when asking bidders sequentially if they want
to trade one unit (or a bundle of units), until one rejects.

Proof. To see this, consider the seller’s utility function
us(q) = q · p + w(k − q) and the buyer’s utility func-
tion ub(q) = v(q) − q · p, if q units would be traded at
unit price p. Since both valuation functions are concave, it
is easy to see that both utility functions are concave, and
each has a single peak (one or more equal adjacent max-
ima, and no further local maxima). Furthermore they both
start at 0, and once either of them becomes negative, it stays
negative. Suppose we sequentially ask both bidders if they
want to trade one unit for price p, until one rejects. Then
the quantity traded is min(argmax(us), argmax (ub)), i.e.
the first of the two peaks. If the mechanism iteratively pro-
poses them bundles q1, q2, . . ., then the same expression on
the traded quantity would apply, but with the utility func-
tions restricted to the domain {0, q1, q1 + q2, . . .}. If we ask
them about the big all-k-item bundle, we would choose the
bundle outcome iff u(k) > u(0), for both, and 0 if for either
of them u(0) > u(k), i.e. if one (the first) of the peaks of the
two utility functions restricted to {0, k} is at 0.

Now, DSIC means that for any bid of the opposing agent,
the agent cannot get anything better than what she gets by
telling the truth. If the quantity traded by the mechanism
would be larger than min(argmax(us), argmax (ub)), then
the bidder with the lowest peak could improve her utility by
claiming that all outcomes higher than her peak are wholly
unacceptable (utility less than 0) to them; by IR, the mech-
anism would then be forced to trade the quantity at the first
peak. If, on the other hand, the traded quantity would be less
than the quantity of the first peak, then both players would
gain by lying, in order to make the mechanism choose to
trade a higher quantity (if such a quantity is at all present in
the mechanism’s set of tradeable quantities.)

Theorem 3.4. In a DSIC, SBB, IR mechanism, all potential
outcomes, i.e., (quantity,price)-pairs, must have the same
per-unit price.

Proof. Suppose two outcomes have different per-unit prices.
W.l.o.g. suppose for q1 < q2, p1/q1 < p2/q2, i.e. the per-
unit price is higher in the larger allocation. Then there exists
a valuation function vs1 for the seller in which the seller
prefers outcome q2 over q1, but both give positive utility;
and there exists another valuation function vs2 that gives
negative utility for q1, but the same utility for q2. I.e. 0 <
us1(q1) < us2(q2) but us2(q1) < 0 < us2(q2) = us1(q2).
Now if for a given buyer’s valuation, the chosen outcome
given vs1 is q1, then the seller would have an incentive to
misreport vs2, making outcome q1 unavailable to the mech-
anism due to IR, thus making it choose q2. Vice versa, if
per-unit prices are decreasing, the same argument works for
the buyer.

Together, these three results give a full characterisation of
the class of DSIC, IR, SBB mechanisms in this setting, al-
though in our full formal proof that we provide in the full
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version of this paper, we need to take into account many
further technical obstacles and details. There is, in particu-
lar, a tie-breaking rule present, that takes into account what
should happen when the buyer or seller would be indifferent
among multiple possible quantities, or when they would get
a utility of 0 given the proposed prices and quantities.

For the case of general monotone valuations, any such
mechanism must be further restricted to offering only a sin-
gle outcome (other than no-trades) to the bidders.

We may alternatively view the class of mechanisms we
just described as a class of direct revelation mechanisms. As
direct revelation mechanisms, our precise characterisation is
stated as follows.
Definition 3.1. Let p ∈ R≥0, let S ⊆ [k], and let
τ = (τB , τS , τ∩) be a vector of three tie-breaking func-
tions specified below. The multi-unit fixed price mecha-
nism Mp,S,τ is the direct revelation mechanism that returns
for a multi-unit bilateral trade instance (f, g, k) an out-
come Mp,S,τ (v, w) = (qB , qS , ρB , ρS) on reported valua-
tion functions v and w, where
• τB(v) ⊆ argq max{v(q)−qp : q ∈ S∪{0}} and τB(v) 6=
∅,

• τS(w) ⊆ argq max{w(k − q) + qp : q ∈ S ∪ {0}} and
τS(w) 6= ∅,

• τ∩(v, w) is a tie-breaking function that selects an element
in τB(v) ∩ τS(w) in case this intersection is non-empty,

• qB = k − qS ={
min{max τB(v),max τS(w)} if dB ∩ dS = ∅,
τ∩(v, w) otherwise.

,

• ρB = −ρS = qBp.
Informally stated, the direct-revelation version of our

mechanisms offers the buyer and seller a fixed unit price p
and a set of quantities S. It then asks the buyer and seller
which quantity in S ∪ {0} they would like to trade at unit
price p. The mechanism trades the minimum of these two
demands at a unit price of p. Typically the preferred quan-
tity is unique for both the buyer and the seller, but in case of
indifferences the buyer and seller will specify a set of mul-
tiple preferred quantities. The tie-breaking functions τB , τS
then determine which of these quantities are considered for
trade, and τ∩ is finally used to determine the traded quantity
in case τB and τS intersect. Otherwise, the minimum of the
maximum quantities of τB and τS is traded. This latter defi-
nition is the one used that allows us to give a rigorous proof
of our characterisation, which we present in the full version
of this paper (Gerstgrasser et al. 2018).

4 Approximation Mechanisms
In this section we study the design of DSIC, IR, SBB mech-
anisms that optimise the social welfare, i.e., the sum of
the buyer’s and seller’s valuation. From Theorem 3.1, our
characterization states that such a mechanism needs to be a
multi-unit fixed price mechanism, so that the design chal-
lenge lies in an appropriate choice of unit-price p and quan-
tities offered at each iteration of the mechanism.

We focus on the case of increasing submodular valuations.
Obviously, every item traded can only increase the social

welfare. Therefore, given that the objective is to maximise
it, we repeatedly offer a single item for trade.1 The challenge
lies thus in determining the right unit price p. It is easy to see
that no sensible analysis can be done if absolutely nothing is
known about the valuation functions of the buyer and seller.
Therefore, we assume a Bayesian setting, as introduced in
Section 2 in order to model that the mechanism designer has
statistical knowledge about the valuations of the two agents:
The buyer’s (and seller’ valuation is assumed to be unknown
to the mechanism, but is assumed to be drawn from a proba-
bility distribution f (and g) which is public knowledge. We
show that we can now determine a unit price that leads to a
good social welfare in expectation.

For a valuation function v of the buyer, we write v̂ to de-
note the marginal increase function of v: v̂(q) = v(q) −
v(q − 1) for q ∈ [k]. Thus, v̂ is a non-increasing func-
tion. Similarly, for a valuation function w of the seller, we
write w̌ to denote the marginal decrease function of w:
w̌(q) = w(k − q + 1) − w(k − q), for q ∈ [k], so that
w̌ is a non-decreasing function. Thus, for all q ∈ [k], the
increase in social welfare as a result of trading q items as
opposed to q − 1 items is v̂(q) − w̌(q). Note that therefore
if v and w are increasing submodular valuation functions of
the buyer and seller respectively, then the social welfare is
maximised by trading the maximum number of units q such
that v̂(q) > w̌(q). We measure the quality of a mechanism
on a bilateral trade instance (f, g, k) as the factor by which
its expected social welfare is removed from the expected op-
timal social welfare OPT (f, g, k) that would be attained if
the buyer and seller would always trade the maximum prof-
itable amount:
OPT (f, g, k) =

= E
v∼f,w∼g

w(k) +

max{q′:v̂(q′)>w̌(q′)}∑
q=1

(v̂(q)− w̌(q))


= E

v∼f,w∼g

 k∑
q=1

w̌(q) +

max{q′:v̂(q′)≥w̌(q′)}∑
q=1

(v̂(q)− w̌(q))


For q ∈ [k] and a seller’s valuation function w, we denote by
GFT (v, w, q) the value max{0, v̂(q)−w̌(q)} (where “GFT”
is intended to stand for “Gain From Trade”). Note that
GFT (v, w, q) is non-increasing in q and that OPT (f, g, k)
can be written as

OPT (f, g, k) =
k∑

q=1

Ew∼g[w̌(q) + GFT (v, w, q)].

Note that a social welfare as high as opt OPT (f, g, k) can
typically not be attained by any DSIC, IR, SBB mechanism.
However, it is still a natural benchmark for measuring the
performance of such a mechanism, and we will see next
that there exists such a mechanism that achieves a social
welfare that is guaranteed to approximate OPT (f, g, k) to
within a constant factor. In particular, for a mechanism M,
let qM(v, w) be the number of items that M trades on re-
ported valuation profiles (v, w), and define
SW (M,(g, f, k)) = Ev∼f,w∼g[v(qM(v, w)) + v(k − qM(v,w))]

1Also, with respect to our tie-breaking rule mentioned at the
end of the last section: We simply employ the tie breaking rule that
favours the highest quantity to trade, which is the dominant choice
when it comes to maximising social welfare.
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as the expected social welfare of mechanism M. We say that
M achieves an α-approximation to the optimal social wel-
fare, for α > 1, iff OPT (g, f, k)/SW (M, (g, f, k)) < α.

We show next that the multi-unit fixed price mechanism
where p is set such that

∑k
q=1 Prw∼g[w̌(q) ≤ p] = k/2

achieves a 2-approximation to the optimal social welfare.

Theorem 4.1. Let (f, g, k) be a multi-unit bilateral trade
instance where the supports of f and g contain only increas-
ing submodular functions. Let M be the multi-unit bilateral
trade mechanism where at each step one item is offered for
trade at price p =

∑k
q=1 Prw∼g[w̌(q) ≤ p] = k/2, until

either agent reject the offer (informally: p is the price such
that the seller is expected to accept to trade half of his units
at price p). Mechanism M achieves a 2-approximation to the
optimal social welfare.

Proof. Let v be an arbitrary buyer’s valuation function. We
show that the mechanism achieves a 2-approximation if f is
the distribution having only v in its support, and hence v is
the buyer’s valuation with probability 1. It suffices to prove
the claim under this assumption, because the unit-price p
depends on distribution g only. Hence, if M achieves the
claimed social welfare guarantee for every fixed buyer’s val-
uation function, then it also achieves this guarantee for every
distribution on the buyer’s valuation. For ease of notation,
we will abbreviate SW (M, (f, g, k)) to simply SW and we
let ` = max{q : v̂k(q) ≥ p} be the highest quantity that
the buyer would like to trade at unit-price p. In the remain-
der of the proof, we will omit the subscript w ∼ g from the
expected value operator.

We first observe that SW can be written as follows, where
we write 1[·] to denote the indicator function and Eq for the
event that v̂(q) ≥ p ≥ w̌(q).

SW = E

[
k∑

q=1

(w̌(q) + 1[Eq]GFT (v, w, q))

]

= E

[∑̀
q=1

(w̌(q) + 1[Eq]GFT (v, w, q))

]
+ E

 k∑
q=`+1

w̌(q)


(1)

We will bound these last two expected values separately in
terms of OPT (f, g, k), and subsequently we will combine
the two bounds to obtain the desired approximation factor.

We start with the quantities up to `, for which first rewrite
the expression as follows.

E

[∑̀
q=1

(w̌(q) + 1[Eq]GFT (v, w, q))

]

=
∑̀
q=1

E[w̌(q)] +
∑̀
q=1

Pr[Eq]E[GFT (v, w, q)) | Eq]

=
∑̀
q=1

E[w̌(q)] +
∑̀
q=1

Pr[Eq]E[GFT (v, w, q)) | Eq].

Now, observe that Pr[Eq] = Pr[p ≥ w̌(q)] for quantities
q ≤ `. Since

∑k
q=1 Pr[p ≥ w̌(q)] = k/2 and Pr[p ≥

w̌(q)] is decreasing in q, this implies that
∑`
q=1 Pr[Eq] =∑`

q=1 Pr[p ≥ w̌(q)] ≥ `/2. Using additionally the fact that
E[GFT (v, w, q)) | Eq] is also non-increasing in q, we ob-
tain the following bound.

E

[∑̀
q=1

(w̌(q) + 1[Eq]GFT (v, w, q))

]
(2)

≥
∑̀
q=1

E[w̌(q)] +

∑`
q=1 Pr[Eq]

`

∑̀
q=1

E[GFT (v, w, q)) | Eq]

≥
∑̀
q=1

E[w̌(q)] +
1

2

∑̀
q=1

E[GFT (v, w, q)) | Eq]

≥
∑̀
q=1

E[w̌(q)] +
1

2

∑̀
q=1

E[GFT (v, w, q))]

≥ 1

2

∑̀
q=1

E[w̌(q) + GFT (v, w, q)] (3)

For the quantities higher than `, we first observe that
non-increasingness of Pr[w̌(q) < p] in the quantity
q implies that Pr[w̌(q) > p] is non-decreasing in q.
Moreover,

∑k
q=1 Pr[w̌(q) ≤ p] = k/2 means that∑k

q=1 Pr[w̌(q) > p] =
∑k
q=1 Pr[w̌(q) ≤ p], hence it holds

that
∑k
q=`+1 Pr[w̌(q) > p] ≥

∑k
q=1 Pr[w̌(q) ≤ p]. There-

fore, we derive

E

 k∑
q=`+1

w̌(q)

 =
1

2

k∑
q=`+1

E[w̌(q)] +
1

2

k∑
q=`+1

E[w̌(q)]

≥ 1

2

k∑
q=`+1

E[w̌(q)] +
1

2

k∑
q=`+1

E[w̌(q) | w̌(q)>p]Pr[w̌(q)>p]

≥ 1

2

k∑
q=`+1

E[w̌(q)] +
1

2

k∑
q=`+1

v̂(q)Pr[w̌(q) > p]

≥ 1

2

k∑
q=`+1

E[w̌(q)] +
1

2

k∑
q=`+1

E[GFT (v, w, q)]

≥ 1

2

k∑
q=`+1

E[w̌(q) + GFT (v, w, q)], (4)

where the second inequality holds because w̌(q) conditioned
on w̌(q) > p is always higher than v̂(q) which does not
exceed p. Moreover, the third inequality follows because
E[GFT (v, w, q)] = E[(v̂(q) − w̌(q))1(v̂(q) > w̌(q))] ≤
E[v̂(q)1(v̂(q) > w̌(q))] ≤ E[v̂(q)1(p > w̌(q))] =
v̂(q)Pr[p > w̌(q)].

We now use (3) and (4) to bound (1) and obtain the desired
inequality

SW ≥ 1

2

k∑
q=1

E[w̌(q) + GFT (v, w, q)] =
OPT (f, g, k)

2
,

which proves the claim.

The above 2-approximation mechanism is deterministic.
We show next that we can do better if we allow randomi-
sation: Consider the Generalized Random Quantile Mecha-
nism, or MG, which draws a number x in the interval [1/e, 1]
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where the CDF is ln(ex) for x ∈ [1/e, 1]. The mechanism
then sets a unit price p(x) such that Ew[max{q : w(q) ≥
qp(x)}] =

∑k
q=1 Prw[w̌(q) ≤ p(x)] = xk, repeatedly of-

fering single item trades as before. In words, the price is
set such that the expected number of units that the seller is
willing to sell, is an x fraction of the total supply, where x
is randomly drawn according to the probability distribution
just defined. This randomised mechanism satisfies DSIC, IR,
and SBB, because it is simply a distribution over multi-unit
fixed price mechanisms. Note that this mechanism is also
a generalisation of a previously proposed mechanism: In
(Blumrosen and Dobzinski 2016), the authors define the spe-
cial case of this mechanism for a single item, and call it the
Random Quantile Mechanism. They show that it achieves a
e/(e − 1)-approximation to the social welfare, and we will
prove next that this generalisation preserves the approxima-
tion factor, although the proof we provide for it is substan-
tially more complicated and requires various additional tech-
nical insights.

Theorem 4.2. Let (f, g, k) be a multi-unit bilateral trade
instance where the supports of f and g contain only increas-
ing submodular functions. The Generalised Random Quan-
tile Mechanism MG achieves a e/(e − 1)-approximation to
the optimal social welfare.

Proof sketch. As in the proof of Theorem 4.1, we fix a val-
uation function v for the buyer. The proof works by first
rewriting OPT (f, g, k) as follows:

OPT (f, g, k) =

k∑
q=1

v̂(q)

+

k∑
q=1

(Ew[w̌(q) | w̌(q) ≥ v̂(q)]− v̂(q))Prw[w̌(q) ≥ v̂(b)].

(5)

Then, the proof proceeds by deriving a lower bound of
(1 − 1/e) times the expression (5) on SW , which implies
our claim. It can be derived that SW can be bounded and
rewritten into a sum of three separate summations over the
items.

SW ≥
k∑

q=1

v̂(q)Prw[w̌(q) ≥ v̂(q)]

+

k∑
q=1

v̂(q)Prw,x[p(x) ∈ [w̌(q), v̂(q)] | w̌(q) < v̂(q)]]

·Prw[w̌(q) < v̂(q)] (6)

+

k∑
q=1

(Ew[w̌(q) | w̌(q) ≥ v̂(q)]− v̂(q))Pr[w̌(q) ≥ v̂(q)].

Next, we bound the first part (6) of the last expression, i.e.,
excluding the last summation.

(6) ≤
k∑

q=1

v̂(q)Prw[w̌(q) ≥ v̂(q)] +

k∑
q=1

v̂(q)Prw[w̌(q) < v̂(q)]

·

∫ z:p(z)=v̂(q)
1/e

Prw[w̌(q) ≤ p(x)] 1
x
dx

Prw[w̌(q) < v̂(q)]

=

k∑
q=1

v̂(q)Prw[w̌(q) ≥ v̂(q)]

+

∫ z:p(z)=v̂(q)

1/e

 k∑
q=1

v̂(q)Prw[w̌(q) ≤ p(x)]

 1

x
dx

≥
k∑

q=1

v̂(q)Prw[w̌(q) ≥ v̂(q)] +

∫ z:p(z)=v̂(q)

1/e

k∑
q=1

v̂(q)
kx

k

1

x
dx

=

k∑
q=1

v̂(q)Prw[w̌(q) ≥ v̂(q)] +

k∑
q=1

v̂(q)

∫ z:p(z)=v̂(q)

1/e

1dx

=

k∑
q=1

v̂(q)Prw[w̌(q) ≥ v̂(q)] +

k∑
q=1

v̂(q)(Pr[w̌(q) < v̂(q)] −
1

e
)

= (1 − 1/e)

k∑
q=1

v̂(q), (7)

where for the inequality we used that both v̂(q) and
Prw[w̌(q) < v̂(q)] are non-increasing in q, so that replacing
all the probabilities by the average probability xk/k yields a
lower value. Substituting (6) by (7) and using the expression
(5) for OPT then yields the desired bound.

SW ≥ (1− 1/e)
( k∑

q=1

v̂(q) +

k∑
q=1

(Ew[w̌(q) | w̌(q) ≥ v̂(q)]−

v̂(q))Prw[w̌(q) ≥ v̂(q)]
)

= (1− 1/e)OPT (f, g, k).

For a rigorous proof of this result, we refer the reader to
the full version of this paper (Gerstgrasser et al. 2018).

Currently we have no non-trivial lower bound on the
best approximation factor achievable by a DSIC, IR, SBB
mechanism, and we believe that the approximation factor of
e/(e− 1) achieved by our second mechanism is not the best
possible. For our first mechanism, it is rather easy to see that
the analysis of the approximation factor of our first mech-
anism is tight, and that it is a direct extension of the me-
dian mechanism of (McAfee 2007), for which it was already
shown in (Blumrosen and Dobzinski 2016) that it does not
achieve an approximation factor better than 2: The authors
show that 2 is the best approximation factor possible for any
deterministic mechanism for which the choice of p does not
depend on the buyer’s distribution.

For the more general class of increasing valuation func-
tions, an approximation factor of (2e− 1)/(e− 1) ≈ 2.582
to the optimal social welfare is achieved by a mechanism
of (Blumrosen and Dobzinski 2016): They use a e/(e− 1)-
approximation mechanism for the single-item setting, which
yields a (2e− 1)/(e− 1) approximation mechanism for the
multi-unit setting through a conversion theorem which they
prove. We note that their conversion theorem is more pre-
cisely presented for the setting with a buyer and a seller who
holds one divisible item. However, their proof straightfor-
wardly carries over to the multi-unit setting. It would be an
interesting open challenge to improve this currently best-
known bound of (2e − 1)/(e − 1) for general increasing
valuations.
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5 Discussion
Our results give a full characterisation of truthful mecha-
nisms for the multi-unit bilateral trade setting. This is of
importance not only for theoretical considerations, but also
due to its practical consequences: We have shown that the
class of truthful mechanisms in this setting consists only
of very simple constant unit-price, sequential posted price
mechanisms. These are not only obviously truthful, but also
very easy to implement. They require little computation on
the participants’ side, and the communication complexity of
such a protocol is minimal.

Many interesting open questions remain in this area. In
the simple setting we consider, we do not know matching
upper and lower bounds on the approximation ratio. For the
multi-unit setting studied here, the next step would be to
generalize first to markets with multiple buyers and sellers
and then to indistinguishable agents, each entering the mar-
ket with an endowment of items. In an orthogonal direction,
it is interesting to consider the case with a single pair of a
seller and a buyer, but multiple item types that are substi-
tutes of each other, with more complex valuation functions
as described in e.g. (Kelso Jr and Crawford 1982).
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