
Octopus – an energy-efficient architecture for wireless
multimedia systems

Paul J.M. Havinga
University of Twente

department of Computer Science
the Netherlands

+31 (0)53 4894619
havinga@cs.utwente.nl

Gerard J.M. Smit
University of Twente

department of Computer Science
the Netherlands

+31 (0)53 4893734
smit@cs.utwente.nl

Abstract – Multimedia computing and mobile computing are
two trends that will lead to a new application domain in the near
future. However, the technological challenges to establishing this
paradigm of computing are non-trivial. Personal mobile
computing offers a vision of the future with a much richer and
more exciting set of architecture research challenges than
extrapolations of the current desktop architectures. In particular,
these devices will have limited battery resources, will handle
diverse data types, and will operate in environments that are
insecure, dynamic and which vary significantly in time and
location.

The approach we made to achieve such a system is to use
autonomous, adaptable modules, interconnected by a switch
rather than by a bus, and to offload as much as work as possible
from the CPU to programmable modules that is placed in the
data streams. A reconfigurable internal communication network
switch called Octopus exploits locality of reference and eliminates
wasteful data copies.

Keywords – Handheld computers; energy efficiency; switching
fabric; multimedia; Quality of Service

I. INTRODUCTION

Recent advances in wireless networking technology and
the exponential development of semiconductor technology
have engendered a new paradigm of computing, called
personal mobile computing or ubiquitous computing. Two
trends – multimedia applications and mobile computing – will
lead to this new application domain and market in the near
future. Users carrying portable devices will have access to a
shared infrastructure independent of their physical location.
The technological challenges to establishing this paradigm of
computing are non-trivial, however. Personal mobile
computing offers a vision of the future with a much richer and
more exciting set of architecture research challenges than
extrapolations of the current desktop architectures. In
particular, these devices will have limited battery resources,
will handle diverse data types, and will operate in
environments that are insecure, dynamic and which vary
significantly in time and location.

A key challenge of mobile computing is that many
attributes of the environment vary dynamically. Mobile
devices face many different types of variability in their
environment. Therefore, they need to be able to operate in
environments that can change drastically in short term as well
as long term in available resources and available services.

Some short-term variations can be handled by adaptive
communication protocols that vary their parameters according
to the current condition. Other, more long-term variations
generally require a much larger degree of adaptation. Merely
algorithmic adaptations are not sufficient, but rather an entirely
new set of protocols and/or algorithms may be required. For
example, mobile users may encounter a complete different
wireless communication infrastructure when walking from
their office to the street. They might require another air
interface, other network protocols, and so forth. A possible
solution is to have a mobile device with a reconfigurable
architecture so that it can adapt its operation to the current
environment and operating condition.

Outline

In this paper we first motivate why there is a need to revise
the system architecture of a portable computer. Then we
present our approach in Section III. In Section IV we will give
an architectural overview of the Mobile Digital Companion,
and give a short overview of the state of the art in mobile
multimedia computing. We then present in Section V the
architecture and design of the interconnection network, the
Octopus switch. Topics of special interest are the buffer
organisation, the scheduling techniques used, and the internal
communication protocol. In Section VI the testbed
implementation of the Octopus switch is described, and
performance and energy consumption measurements are
presented. Finally, we present the summary and conclusions in
Section VII.

II. MOTIVATION

The research community and the industry have expended
considerable effort toward mobile computing and the design of
portable computers and communication devices. These devices
now support a constantly expanding range of functions, and
multiple devices are converging into a single unit. The
emergence of wireless communication and the enormous
improvements in technology that allows us to integrate many
functions in one chip has opened up many possibilities for
mobile computing. Communication, data processing and
entertainment will be supported by the same platform,
enhanced by the world-wide connectivity provided by the
Internet. The trend in data processing terminals has been to
shrink a general-purpose desktop PC into a package that can

be conveniently carried. Even PDAs have not ventured far
from the general-purpose model, neither architectural nor in
terms of usage model.

Basically, there are two types of computer devices for use
on the road: the palm-top computer and the notebook
computer. Notebook computers are battery powered personal
computers, and the current architectures for mobile computers
are strongly related to the architecture of high-performance
workstations. Both the notebook and the personal computer
generally use the same standard PC operating system such as
Windows or Unix, same applications, use the same
communication protocols and use the same hardware
architecture. The only difference is that portable computers are
smaller, have a battery, a wireless interface, and sometimes use
low power components. The problems that are inherent to
mobile computing are either neglected (e.g. the
communication protocols are still based on TCP/IP, even if
these behave poor in a wireless environment [2]), or tried to
solve with brute force neglecting the increase in energy
consumption (e.g. extensive error control, or software
decompression). Adaptability and programmability should be
major requirements in the design of the architecture of a
mobile computer.

The future: Mobile Digital Companion.

Topic of this paper is the architecture of a future handheld
device, called Mobile Digital Companion (also referred to as
Companion), which provides support for handling multimedia
applications energy efficiently. A Mobile Digital Companion
will be a personal machine, and users are likely to become
quite dependent on it.

The Mobile Digital Companion is envisioned to be a small
personal portable computer and wireless communications
device that can replace cash, cheque book, passport, keys,
diary, phone, pager, maps and possibly briefcases as well [9].
It is resource-poor, i.e. small amount of memory, limited
battery life, low processing power, and connected to the
environment via a (wireless) network with variable
connectivity. An important feature is the interface and
interaction with the user: voice and image input and output
(speech and pattern recognition) will be key functions. The use
of real-time multimedia data types like video, speech,
animation and music greatly improve the usability, quality,
productivity, and enjoyment of these systems. Multimedia
applications are characterised by their requirement for
transport of multiple synchronised media streams. Some of
these streams (typically video streams) have high bandwidth
and stringent real-time requirements. Most of the applications
we consider require not only a certain Quality of Service for
the communication, but also a significant amount of
computing power. The compute requirements stem from
operations such as compression/decompression, data
encryption, image and speech processing, and computer
graphics.

The Mobile Digital Companion will be a versatile device
that combines multimedia and communication functionality in
one single portable device. Nevertheless these functions have

to be provided by relatively little hardware and consume little
energy because a main requirement for the Companion is small
size and weight.

We are entering an era in which each microchip will have
billions of transistors. One way to use this opportunity would
be to continue advancing our chip architectures and
technologies as just more of the same: building
microprocessors that are simply complicated versions of the
kind built today. However, simply shrinking the data
processing terminal and radio modem, attaching them via a
bus, and packaging them together does not alleviate the
architectural bottlenecks. The real design challenge is to
engineer an integrated mobile system where data processing
and communication share equal importance and are designed
with each other in mind. Connecting current PC or PDA
designs with an off-the-shelf communication subsystem, is not
the solution. One of the main drawbacks of merely packaging
the two is that the energy-inefficient general-purpose CPU,
with its heavyweight operating system and shared bus,
becomes not only the center of control, but also the center of
data flow in the system [11].

Clearly, there is a need to revise the system architecture of
a portable computer if we want to have a machine that can be
used conveniently in a wireless environment. A system level
integration of the mobile’s architecture, operating system, and
applications is required. The system should provide a solution
with a proper balance between flexibility and efficiency by the
use of a hybrid mix of general-purpose and the application-
specific approaches.

III. APPROACH

In the traditional design of a mobile, a number of problem
areas in hardware and software architectures can be identified
concerning the energy consumption. The major reason is that
current operating system software and networking software
emphasises flexibility and performance, and is constructed
from components developed by independent groups. A good
working practise is to define interfaces in a hierarchical way,
since it reduces the complexity of the system to manageable
proportions. However, the result of this flexibility and this
development approach is that numerous unnecessary data
copies occur between different modules. Operations such as
data copying, servicing of interrupts, context switches,
software compression, are currently often responsible for poor
performance and high energy consumption.

Research has shown that there is no single approach for
reducing energy in systems like the Mobile Digital Companion
[5]. While low-power components and subsystems are
essential building blocks for portable systems, little effort has
been directed towards dedicated low-power hardware
architectures by considering the system as a whole. The ability
to integrate diverse functions of a system on the same chip
provides the challenge and opportunity to do system
architecture design and optimisations across diverse system
layers and functions. Especially a mobile computing device
that combines multimedia computing and communication
functions exemplifies the need for system level integration.

Functions ranging from audio and video processing, radio
modem, wireless interface, security mechanisms, and user
interface oriented applications have to be integrated in a small
portable device with a limited amount of energy. Information
generated by a device or an application has to traverse and be
processed at all these layers, providing the system architect
with a rich design space of trade-offs.

The vision in the MOBY DICK project is that there is a vital
relationship between hardware architecture, operating system
architecture, applications’ architecture and human-interface
architecture, where each benefits from the others: the
applications can adapt to the power situation if they have an
appropriate operating system API for doing so; the operating
system can minimise the energy consumption by keeping as
many as components turned off as possible; the hardware
architecture can be designed to route data paths in such a way
that, for specific functions, only a minimum of components
need to be active.

The approach to achieve such a system is to have
autonomous, reconfigurable modules such as network, video
and audio devices, interconnected by a switch rather than by a
bus, and to offload as much as work as possible from the CPU
to programmable modules placed in the data streams. In
particular we aim to eliminate the active participation of the
CPU in media transfers between components such as network,
display and audio system. Thus, communication between
components is not broadcast over a bus but delivered exactly
where it is needed, work is carried out where and when the
data passes through, bypassing the memory. We use dynamic
programmable and adaptable devices that convert incoming or
outgoing data streams. Modules are autonomously entering an
energy-conserving mode and adapt themselves to the current
state of the resources, the environment and the requirements of
the user. To support this, the operating system must become a
small, distributed system with co-operating processes
occupying programmable components, among which the CPU
is merely the most flexibly programmable one. The
interconnect of the architecture is based on a switch, called
Octopus, which interconnects a general-purpose processor,
(multimedia) devices, and a wireless network interface.

IV. SYSTEM ARCHITECTURE OF A MOBILE

DIGITAL COMPANION

The proposed architecture of the Mobile Digital
Companion is shown in Figure 1. The figure shows a typical
system with Processor module, Network module, Display
module, Camera module, and Audio module, all
interconnected by a switching fabric. The switch interconnects
the modules and provides a reliable path for communication
between modules. Addressing is based on connections rather
than memory addresses. This not only eliminates the need to
transfer a large number of address bits per access, it also gives
the system the possibility to control the QoS of a task down to
the communication infrastructure. This is an important
requirement since in a QoS architecture all system
components, hardware as well as software, have to be covered
end-to-end along the way from the source to the destination. In

our infrastructure all connections are associated with a certain
QoS.

Octopus
switching

fabric

Display
module

Processor
module

CPU memory

Network
module

Wireless
interface

MAC and
data link
control

buffering

Camera
module

Audio
module

Figure 1: A typical Mobile Digital Companion architecture

Note that although our design assumes a low power,
wireless multimedia computer, most of our ideas are
applicable (perhaps with some modification) to many other
types of computer (sub)systems, including high performance
workstations and network interfaces.

A. Application Domain Specific Modules

The Mobile Digital Companion architecture comprises
many devices normally found in multimedia workstations, but
since our target is a portable computer, these devices generally
do not have the performance and size of their workstation
counterparts. Note that our devices are not merely that of
dedicated I/O devices in the traditional sense. We prefer to call
the devices modules, or I/O subsystems, to emphasise the fact
that they provide more functionality than a simple device. The
modules differentiate to these devices in multiple ways. First,
each module is an autonomous sub-system that can operate
without intervention from the main CPU. Secondly, it has a
control processor that performs diverse operations, including
connection management and energy management. Finally,
most modules are able to adapt their behaviour to the ‘wishes’
of the client or application, and try to operate in the most
efficient way.

Advantages – The main advantages of this approach with
multiple autonomous modules are:

• Efficient processing – Instead of executing all
computations in a general-purpose datapath, as is
commonly done in conventional architectures, the energy-
and computation-intensive tasks are executed on
optimised modules. The modules are capable of efficiently
performing device or application specific tasks.

• Eliminate useless data copies – When the data flows
directly between the modules that need to process them,
unnecessary data copies can be eliminated. For example,
in a system where a stream of video data is to be displayed
on a screen, the data can be copied directly from the
network into the screen memory, without going through
the main processor.

• Relieve the general-purpose CPU – In our system the data
can flow between modules without any involvement of the
main CPU and without using any processor cycles. The
main CPU is also relieved of having to service interrupts
and to perform context switches every time new data
arrives, or communicate with a local device.

• Adequate energy management – Each module contains
specific knowledge about the usage patterns and the
specific requirements for a device. Therefore, each
module has its own responsibility and has some autonomy
in deciding how to manage its state of operation to
minimise its energy consumption without compromising
its quality of service.

• Flexible and adaptable – Because the modules are
programmable, they can offer the flexibility to provide
support for various standards that a Companion might
need to use (e.g. different encoding and encryption
schemes), and the adaptability to adapt its mechanisms,
algorithms and techniques to the various operating
conditions. Of all the programmable modules, the general-
purpose processor is merely the most flexible one. The
processor will be used for all tasks that the application
specific modules are not capable of, or when the
implementation would not be efficient.

Of course there are also some disadvantages. The most
apparent disadvantage seems to be that using application
domain specific modules requires more hardware. Instead of
processing all tasks on one general-purpose processor, these
tasks are distributed over several modules. However, it is
expected that the advance in technology give enough
possibilities to take advantage of the increased effective chip-
area and provide more functionality while keeping the energy
consumption low. Another disadvantage is that to make a new
architecture gain wide acceptance, it must run a significant
body of software, which will require a major software
development.

B. Related Work

Different architectures have been proposed to address
mobile multimedia computing. There are few systems that
address energy reduction. Systems like the InfoPad [15] and
ParcTab [9] are designed to take advantage of high-speed
wireless networking to reduce the amount of computation
required on the portable. These systems are a kind of portable
terminal and take advantage of the processing power of remote
compute servers. This approach simplifies the design and
reduces power consumption for the processing components,
but significantly increases the network usage and thus
potentially increases energy consumption because the network
interface is energy expensive. These systems also rely on the
availability of a high bandwidth network connectivity and
cannot be used when not connected. UCLA has constructed a
network testbed that uses a hardware architecture to localise
data for both communication and video in order to increase
performance and reduce energy consumption [11][12]. Abnous
and Rabaey propose an architecture for signal processing
applications that is flexible and uses low power [1]. The

architecture consists of a control processor surrounded by a
heterogeneous array of autonomous, special purpose satellite
processors. The granularity of these tasks is relatively small.
Some examples include address generators, multiply-
accumulate processors for computing vector dot products, etc.

An architecture in which a generalised packet switched
interconnect is used to connect processors, memories, and
devices has widely come to be known as a ‘desk area network’
(DAN) [10]. We have adopted this concept, and believe that
such an architecture is also suitable for low power portable
computers. Our architecture has therefore some similarities to
for example the Desk Area Network from Cambridge [7],
VuNet from MIT [8] and the APIC architecture from the
University of Washington [3]. However, their main motivation
was performance and interoperability between (ATM)
networks and devices. Our main motivation is reducing energy
consumption. Furthermore, another main distinction is that our
primary target is an architecture that can be used for a small
portable computer, and not a high performance networked
workstation. Ultimately, the architecture should be
implemented in just a single chip. Therefore, we would not
call the architecture a Desk-area network, but merely a Chip-
area network.

V. ARCHITECTURE AND DESIGN OF THE

OCTOPUS SWITCH

In this section we will present the architecture and design
of the Octopus switch that is used as the interconnection
network of the Mobile Digital Companion. A key goal
motivating the design has been simplicity, flexibility and
energy efficiency.

Octopus switch

Octopus
switching

fabric

Module
Interface
Controller

Functional
Module

Module
Interface
Controller

Functional
Module

Module
Interface
Controller

Functional
Module

Module
Interface
Controller

Functional
Module

Figure 2: System architecture Mobile Digital Companion

Figure 2 shows an architectural view of the system of a
Mobile Digital Companion. The Octopus switch provides the
interconnection infrastructure between the functional modules
in the system.

A. Octopus architecture

At the heart of the Octopus architecture is the Octopus
switching fabric. The fabric connects eight Module Interface
Controllers (MIC) that interface to the Functional Modules.
These MICs decouple the modules from the Octopus switch
and the other modules. The MICs contain small transmission
and reception queues that store ATM cells. The MICs further

perform operations like connection setup and arbitration for
the connections between the modules. In the architecture we
have chosen to adopt the size and the structure of an ATM cell,
i.e. 5 bytes header and 48 bytes payload. This format has
shown to be sensible for several reasons, among a very
practical one is that it allows for a simple connection to the
ATM network that we are using. The size is small enough to
allow for a fast and flexible scheduling of communication
streams, and large enough to have a relatively small overhead.

B. Octopus Switching Fabric Architecture

The Octopus switching fabric behaves like a reconfigurable
8 port ATM switch. The switching provides a simple
mechanism for the exchange of cells, regardless of their
payload. The Octopus switch simply routes the traffic
according to (a part of) the Virtual Channel Identifier (VCI) in
the header. In contrast to full-blown ATM switching fabrics,
the responsibility for ATM functions, such as VCI mapping
and flow control, has been teased out of the switch fabric and
assigned to the devices that plug into the switching fabric. The
MICs are responsible for translating the VCI to the address of
the destination module, and – when a connection has to be
established – initialises the switching fabric with that address.

The architecture of the switching fabric is therefore
basically very simple; most of the complexities are migrated to
the Module Interface Controllers. A switch consists of 8 input
sections, 8 output sections, and an 8 x 8 interconnection
structure. A MIC is connected to an input section and an
output section. The connection between the MIC and an input
and output section is shared, so the Octopus switch can
support half-duplex connections only.

The input section basically consists of only three registers:
an address register that determines the output section of the
connection, a control register for energy management and
general control, and a status register. The dataflow of a
connection passes the input section transparently. The control
register determines when a request for a connection will be
made. The status register will contain status information about
the current connection. The output section contains two
registers (control register and status register) and a
synchroniser that synchronises the data stream so that the
receiver MIC will handle it correctly in time. The status
register is in fact shared with the input section. All requests for
an output section are stored in this register and can be read by
the MIC. Both the input and the output section share the
control unit. This unit generates the clock signal for the
attached MIC, and generates an attention signal when the MIC
has to perform an operation. The attention signal is used to
wake-up the MIC from sleep mode.

Figure 3 shows one input section and one output section
that are involved in one connection between two modules. The
interconnection network uses the address stored in the address
register of the input section to select the output section it wants
to make a connection to.

Octopus switching fabric

Input section

Status

address

control

address

data

Ack/done

Output section

Status

synchroniser

control

data

Request

Interconnection
network

Ack/doneRequest

Control unit

clk
attention

Control unit

clk
attention

Connection
 with MIC

Connection
 with MIC

Figure 3: Structure of one input section and one output section of
the Octopus switch

C. Module Interface Controller Architecture

The main task of the Module Interface Controller is to
provide a data-path between the modules. The MIC basically
contains the following units (see Figure 4): a transmission
queue that stores ATM cells originating from the module in
transit to the switching fabric; a reception queue receives the
ATM cells coming from the switching fabric; a VCI mapping
table that determines the destination module, and is indexed by
the VCI in the header of the ATM cell; and an arbiter that
performs the actual establishment of a connection and
performs scheduling in case multiple simultaneous requests are
received via the switch.

Using a typical communication stream between two MICs
we will briefly describe the basic functions of these units.

When a MIC receives an ATM cell from the module it is
attached to, it will first store this ATM cell in its transmission
queue. The connection identifier contained in the VCI header
of the ATM cell indexes the VCI mapping table to lookup the
output port. The MIC will then establish a connection with
this destination MIC. Cells with a VCI that is not known will
be forwarded to a default module, which in general will be the
CPU-module. The CPU-module contains the connection
manager (ConMng) that is responsible for the management of
all connections in the system. The ConMng uses special
management cells to communicate with the MICs and the
modules in the system. The VCI mapping table will be
initialised by the ConMng using these management cells.

When the destination MIC receives a request for a
connection, the arbiter determines when and whether the
connection can be established. If there are multiple
simultaneous connection requests, it uses a scheduling
algorithm to determine which request can be honoured first.

Module Interface Controller

VCI mapping table

Transmission
queue

Reception
queue

arbiter

In-data

Out-data

acknowledge

requests

Destination
MIC

address

Module
interface

Switching
fabric

interface

VCI

Figure 4: Module Interface Controller architecture

When the connection is established the source MIC
forwards the data from its transmission queue over the
Octopus switching fabric to the destination MIC. The
destination MIC then first stores the ATM cells in its reception
queue before it is further forwarded to the attached module.
Note that the buffering of cells in the transmission and
reception queue is not always required: when the module is
capable of handling the cells at the required rate, then
buffering can be omitted.

D. Connections

All communication between modules is based on
connections. Prior to a communication transfer between two
modules, a connection has to be set up. The ConMng
schedules traffic between the modules. All connections are
uni-directional. There are basically two types of connections:

• Ad-hoc connections – Modules that need no guaranteed
flow of data use the ad-hoc connections. These type of
connections are thus unreliable, and a higher protocol is
needed e.g. for flow control. Ad-hoc connections are also
used during the connection setup phase in which the
module establishes a guaranteed connection with a
different module.

• Guaranteed connections – Guaranteed connections are
used to transfer data between modules that require
bandwidth guarantees between the modules. Once a
guaranteed connection is established, the actual data
transfer still has to be announced by the source. In this
way, the destination MIC can determine whether the
reserved bandwidth is actually used, or otherwise assign
that bandwidth to other connections.

Individual MICs in the Octopus switch can be remotely
configured by using special control cells. The operating system
running on the CPU-module issues these control-cells.

During connection setup of a guaranteed connection, the
source module contacts the ConMng that it requires a channel
to a module with a certain amount of bandwidth. It therefore
transmits an ATM cell containing the request to the CPU-
module using an ad-hoc connection. Upon receiving the

request, the CPU-module will determine whether there is
enough bandwidth available between both modules involved
and that the connection can thus be established. The ConMng
then might negotiate with the destination module to verify that
this module is capable and prepared to connect. If the
connection is not possible (because either the ConMng knows
that there is not enough bandwidth in the Octopus switch, or
the destination module cannot accept the connection), then the
ConMng will reply to the requesting module that the
connection is currently not possible. If the connection is
possible, then it will inform the destination module and the
source module that it a new connection has been set-up.

The aggregate bandwidth available inside the Octopus
switch allows each module to communicate at a rate that is
probably much higher than it can source or sink. The Octopus
switch allows up to four parallel connections between eight
modules. Given the small number of modules and the rate at
which our present modules are able to generate traffic, this
provides enough bandwidth.

In the prototype of the Octopus switch we use static
scheduling for guaranteed connections, and dynamic
scheduling for ad-hoc connections.

VI. IMPLEMENTATION OCTOPUS SWITCH

A key goal motivating the design has been simplicity and
flexibility. Our goal was to build a testbed from off-the-shelf
VLSI components that was easy to design and test. Therefore,
the prototype interconnection module is build using a Field
Programmable Gate Array of Xilinx (i.e. XC4010XL)
surrounded by six low-end and low-power micro-controllers
(i.e. Microchip PIC 16C66).

A. Implementation

The FPGA can be programmed to operate as the switching
fabric that connects the modules. Each port of the switch is
connected to one micro-controller, so in our testbed we have
six micro-controllers. The micro-controllers implement the
Module Interface Controllers (MIC) as described in the
architecture. The datapath between the micro-controllers and
the FPGA is eight bits wide. The internal datapath in the
switch is also 8 bits wide. All data in the system is based on
the size of an ATM cell. We have implemented the
interconnection as a fully connected crossbar switch. The
switch does not have ATM sized buffers, but just some
synchronisation and pipeline registers.

In the current prototype the MICs perform several tasks:
connection establishment with the other MICs that are
connected to the switch, routing of traffic between the
modules, scheduling of traffic at the output port of the switch
destined for the module, and the actual data-transfer between
the module’s device and the input port of the switch.

The design has been implemented and tested. The design
allows us to do experiment with and make performance
measurements of various architectures and interconnection
protocols. We used VHDL as a design tool.

Figure 5: Testbed implementation Octopus.

B. Performance

We have measured the performance and energy
consumption of the Octopus switch including the MICs. All
measurements are performed with a clock frequency applied to
the switch and MICs ranging from 0.1 to 32 MHz. This is
equivalent to a raw data-rate per connection of 0.1 to 32 Mb/s.
The Octopus switch is capable to support up to three
simultaneous active connections when the connections are
disjoint. This makes the total maximal throughput to be 96
Mb/s. This data-rate is more than sufficient to support all our
expected data-streams on the mobile computer.

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30

power
[mW]

frequency [MHz]

power consumption Octopus 3 dataflows
2 dataflows
1 dataflow

idle

Figure 6: Power consumption Octopus switch

In Figure 6 we have plotted the measurement results for
varying frequencies, and with a different number of
simultaneous data-flows. In this setup a maximum of three
disjoint connections were active, involving six modules, three
sending and three receiving MICs. Since the connections are
disjoint, no congestion can occur and all units are able to
operate at maximum speed. The graphs show clearly that the
energy consumption increases linearly with the frequency,
which was expected. It also shows that the required amount of
energy depends strongly on the number of dataflows in the
switch. This effect is mainly due to our aggressive power
management. All parts of the system that at some moment
have no functionality, are in a low-power mode. The micro-
controllers are in a very low-power mode when they don’t
have traffic, and their contribution to the energy consumption
can be neglected. The switch however has always a large
energy overhead due to the implementation in an FPGA.

The MICs operate in the following sequential phases:

• Module I/O phase in which data is transferred between the
module and the MIC

• Arbitration phase, in which a connection between source
and sink MIC is established

• Data-transfer phase, in which the data is transferred in the
switching fabric

• Release phase, that acknowledges the transfer and releases
the connection.

Note that the phases of both micro-controllers that take part
in the connection operate in parallel, and that the effect is that
there is a pipelined dataflow between the modules.

We have also measured the time in which the individual
phases contributed to the total time needed to transfer one
ATM cell. In the setup the arbitration phase took 9% of the
time, the data-transfer phase, including the release phase, took
27%, and the I/O phase took 64%. Note that the interface with
the switch is highly optimised, and that the interface with the
module is more general, and requires more time.

The measurements show that the costs of having a flexible
dynamic scheduling can be significant. The overhead
introduced by the arbitration and release phase is about 30%
when only one ATM cell is actually being transferred. A
solution can be to have larger packets of multiple ATM cells,
but this will lead to a bigger latency.

VII. SUMMARY AND CONCLUSIONS

In this paper we considered the problem of designing an
architecture for a handheld mobile multimedia computer.
Energy management is the general theme in the design of the
system architecture since battery life is limited and battery
weight is an important factor.

As the Mobile Digital Companion must remain usable in a
wide variety of environments, it must be flexible enough to
accommodate a variety of multimedia services and
communication capabilities and adapt to various operating
conditions in an (energy) efficient way. The approach made to
achieve such a system is to use autonomous, adaptable
modules, interconnected by a switch rather than by a bus, and
to offload as much as work as possible from the CPU to
programmable modules that is placed in the data streams.
Thus, communication between modules is delivered exactly
where it is needed, work is carried out where the data passes
through, bypassing the memory, modules are autonomously
entering an energy conserving mode and adapt themselves to
the current state of the resources and the requirements of the
user. The application domain specific modules offer enough
flexibility to be able to implement a predefined set of (usually)
similar applications, while keeping the costs in terms of area
and energy consumption to an acceptable low level.

The interconnect of the architecture is based on a switch,
called Octopus. In our model, the interconnection network is
transparent and provides only a direct connection between two
functional modules. The switch supports two basic connection

types: ad-hoc connections for traffic with no hard real-time
requirements, and guaranteed connections for traffic with
(hard) real-time requirements.

We have built a testbed of this architecture from off-the-
shelf VLSI components that was easy to design and test. A key
goal motivating the design has been simplicity, flexibility and
energy efficiency. The performance of this prototype provides
bandwidth guarantees and enough bandwidth for many
multimedia applications. The power management that was
used showed to be very effective. We have built the network
module that uses a dynamic error control adapted to the QoS
and traffic type of a connection, and has dedicated connection
queues and flow control for each connection [6]. An energy-
efficient MAC protocol is used that is able to provide near
optimal energy efficiency for the mobile within the QoS
constraints. Both the base station and the mobile use the
operating system Inferno [4] which allows applications and
system functions to be split and migrated dynamically between
client and server.

Future research

The testbed showed that it is already feasible with standard
components to build an energy efficient architecture that
allows many devices in the system to be turned off (including
the CPU), while still providing enough performance to support
multimedia applications. Having an energy efficient
architecture that is capable to handle adaptability and
flexibility in a mobile multimedia environment requires more
than just a suitable hardware platform. First of all we need to
have an operating system architecture that can deal with the
hardware platform and the adaptability and flexibility of its
devices. Optimisations across diverse layers and functions, not
only at the operating systems level, is crucial. Managing and
exploiting this diversity is the key system design problem [14].
A model that encompasses different levels of granularity of the
system is essential in the design of a energy management
system and in assisting the system designer in making the right
decisions in the many trade-offs that can be made in the system
design. Finally, to fully exploit the possibilities offered by the
reconfigurable hardware, we need to have proper operating
system support for reconfigurable computing, so that these
components can be reprogrammed adequate when the system
or the application can benefit from it.

REFERENCES

[1] Abnous A., Rabaey J.: “Ultra-low-power domain-specific
multimedia processors”, VLSI Signal processing IX, ed. W.
Burleson et al., IEEE Press, pp. 459-468, November 1996.

[2] Balakrishnan H., et al.: “A comparison of mechanisms for
improving TCP performance over wireless links”, Proceedings
ACM SIGCOMM’96, Stanford, CA, USA, August 1996.

[3] Ditta Z.D., Cox R.C., Parulkar G.M.: “Catching up with the
networks: host I/O at gigabit rates”, Technical report WUCS-94-
11, Washington University in St. Louis, April 1994.

[4] Dorward S., Pike R., Presotto D., Ritchie D., Trickey H.,
Winterbottom P.: “Inferno”, Proceedings COMPCON Spring’97,
42nd IEEE International Computer Conference, 1997 (more
information on URL: http://www.lucent.com/inferno).

[5] Havinga, P.J.M., Smit, G.J.M.: “Minimizing energy consumption
for wireless computers in Moby Dick”, proceedings IEEE
International Conference on Personal Wireless Communication
ICPWC’97, Dec. 1997.

[6] Havinga P.J.M., Smit G.J.M., Bos M.: “Energy efficient wireless
ATM design”, proceedings wmATM’99, 1999.

[7] Hayter M.D., McAuley D.R.: “The desk area network”, ACM
Operating systems review, Vol. 25 No 4, pp. 14-21, October
1991.

[8] Houh H.H., Adam J.F., Ismert M., Lindblad C.J., Tennenhouse
D.L.: “The VuNet desk area network: architecture,
implementation and experience”, IEEE Journal of Selected Areas
in Communications (JSAC), 13(4):710-121, May 1995 (URL:
http://www.tns.lcs.mit.edu/ViewStation/src/html/publications/JS
AC95.html)

[9] Kantarjiev C. et al.: “Experiences with X in a wireless
environment”, Mobile and location-independent computing
symposium, Cambridge MA, August 1993.

[10] Leslie I., D. McAuley, D. L. Tennenhouse: “ATM
Everywhere?”, IEEE Network, March 1993.

[11] Lettieri P., Srivastava M.B.: “Advances in wireless terminals”,
IEEE Personal Communications, pp. 6-19, February 1999.

[12] Mangione-Smith, B. et al.: “A low power architecture for
wireless multimedia systems: lessons learned from building a
power hog”, proceedings of the international symposium on low
power electronics and design (ISLPED) 1996, Monterey CA,
USA, pp. 23-28, August 1996.

[13] Sheng S., Chandrakasan A., Brodersen R.W.: “A Portable
Multimedia Terminal”, IEEE Communications Magazine, pp.
64-75, vol. 30, no. 12, Dec., 1992.

[14] Srivastava M.: “Design and optimization of networked wireless
information systems”, IEEE VLSI workshop, April 1998.

[15] Truman T.E., Pering T., Doering R., Brodersen R.W.: The
InfoPad multimedia terminal: a portable device for wireless
information access”, IEEE transactions on computers, Vol. 47,
No. 10, pp. 1073-1087, October 1998

.

