Zhu et al. Reply: In their Comment [1] Doering et al. question our numerically found [2] onset of a transition to the ultimate regime of 2D Rayleigh-Bénard (RB) convection. We disagree with their reasoning.

To irrefutably settle the issue, we have extended our numerical simulations of Ref. [2] to even larger Ra, namely, now up to Ra = 4.64 × 10^{14}, sticking to the same strict numerical resolution criteria of both boundary layer (BL) and bulk. The simulation at the highest Ra was performed with a grid resolution of 31 200 × 25 600 with 28 points in the boundary layer. The evidence for the transition to the ultimate regime remains overwhelming:

1. On the global heat transfer: Nu (Ra), compensated with Ra^{0.357}, is shown in Fig. 1(a). An objective least squares fit of an effective power law Nu ∼ Ra^γ to the last 6 data points gives a scaling exponent γ = 0.345; the last 5 data points give γ = 0.354, the last 4 data points give γ = 0.352, the last 3 data points give γ = 0.357, and the last 2 points give γ = 0.358; i.e., no matter how the data are interpreted, the scaling exponent is always larger than 1/3 and monotonically increasing with Ra.

2. The key part of Ref. [2] deals with local properties of the flow; see Figs. 2–4 of that Letter. For the local heat flux in the plume ejecting regime, beyond 10^{13} the effective scaling exponents are close to γ = 0.38, see Fig. 1. In contrast, it remains ≤ 1/3 in the plume impacting regime, which therefore with increasing Ra loses more and more relevance for the overall heat transfer.

3. Beyond 10^{13}, the horizontal velocity profiles u^+ (y^+) in the BLs become logarithmic (see Fig. 2 of Ref. [2]), signaling a turbulent BL, which is characteristic for the ultimate regime (as a presumption to derive the ultimate regime scaling in Refs. [3,4]), rather than one of laminar type as in the classical regime.

4. Finally, the transition to ultimate RB turbulence in the numerical data of Ref. [2] has also been confirmed through an extended self-similarity (ESS) analysis of the temperature structure functions; see Ref. [5]. In that paper we find no ESS scaling before the transition. However, beyond the transition and for large enough wall distance y^+ > 100, we find clear ESS behavior, as expected for a scalar in a turbulent boundary layer. Therefore, also that analysis provides strong evidence that the observed transition in the global Nusselt number around Ra = 10^{13} indeed is the transition from a laminar type BL to a turbulent type BL.

Since beyond the transition, for sufficiently large Ra, the local scaling exponents are always close to 0.38, we fit the data with a power law. The inset shows the effective scaling exponent γ, obtained from a power law, fits Nu ∼ Ra^{0.38} to the last k data points in the main figure. It is always larger than 1/3, no matter how one interprets the data. (b) The local heat transfer in the plume emitting region (with effective slope 0.38) and in the plume impacting region.

FIG. 1. (a) Nusselt number compensated by γ = 0.357, i.e., a scaling exponent larger than the γ = 1/3 necessary to prove the transition. We took γ = 0.357 for the compensated plot as with that value the last three data points show a plateau. The error bars for the data are smaller than the symbols. The inset shows the effective scaling exponent γ, obtained from a power law, fits Nu ∼ Ra^{0.38} to the last k data points in the main figure. It is always larger than 1/3, no matter how one interprets the data. (b) The local heat transfer in the plume emitting region (with effective slope 0.38) and in the plume impacting region.

