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Abstract. This paper focuses on multi-scale approaches for variational
methods and corresponding gradient flows. Recently, for convex regular-
ization functionals such as total variation, new theory and algorithms
for nonlinear eigenvalue problems via nonlinear spectral decompositions
have been developed. Those methods open new directions for advanced
image filtering. However, for an effective use in image segmentation and
shape decomposition, a clear interpretation of the spectral response re-
garding size and intensity scales is needed but lacking in current ap-
proaches. In this context, L1 data fidelities are particularly helpful due
to their interesting multi-scale properties such as contrast invariance.
Hence, the novelty of this work is the combination of L1-based multi-
scale methods with nonlinear spectral decompositions. We compare L1

with L2 scale-space methods in view of spectral image representation
and decomposition. We show that the contrast invariant multi-scale be-
havior of L1 − TV promotes sparsity in the spectral response providing
more informative decompositions. We provide a numerical method and
analyze synthetic and biomedical images at which decomposition leads
to improved segmentation.

Keywords: L1-TV, denoising, scale-spaces, nonlinear spectral decom-
position, multiscale segmentation, eigenfunctions, calibrable sets

1 Introduction

In imaging science, the solution of inverse problems is often addressed by the
modeling and analysis of variational methods of the form:

min
u

1

p
‖u− f‖pLp + αJ(u) (1)

where f denotes a noisy signal, u is a desired image function defined on Ω in R2.
The data fidelity measures the residual in the Lp norm and J is a regularization
functional that has a weighting parameter α ≥ 0. In this paper, we concentrate on
image denoising methods with convex and one-homogeneous regularization func-
tionals J which can address image decomposition and segmentation adequately.
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More specifically, we focus on total variation regularization J(u) = TV (u) and
norms with p = 1 versus p = 2. One option to generate a scale-space method is
a gradient flow, based on the functional (1) with initial condition u(0, x) = f(x)
and subdifferential inclusions forming the doubly nonlinear evolution equation:

0 ∈ ∂ ‖∂tu(t, x)‖Lp + ∂J(u(t, x)). (2)

In the case of p = 2, this simplifies to well-known gradient flows of the form:

∂tu = −q(u) with q ∈ ∂J(u). (3)

The regularization parameter α is now hidden in the time dependency. Cor-
responding inverse scale space gradient flows can be constructed via Bregman
distances [1,2]. The analysis of linear eigenvalue problems and spectral decom-
positions, e.g. via the Fourier transform, is a well-known and widely used theory
in the fields of signal, image and graph-based data processing. Due to the con-
tinuing success of nonlinear regularization functionals in imaging, there is strong
interest in generalizing spectral theory to the nonlinear case. The general idea
is to examine solutions to the nonlinear eigenvalue problem:

λu ∈ ∂J(u). (4)

In [3,4], Gilboa introduced the idea of nonlinear spectral decompositions for the
TV transform. By transferring solutions (eigenfunctions) of (4) to sparse peaks
in a spectral domain, the idea of advanced filters, suppressing or enhancing
image components similar to the Fourier transform, came about. This concept
was studied for one-homogenous functionals [5,6,7] and scale-space flows of the
form (3) with p = 2. In this way, a decomposition of the input signal f into
significant components is possible while an exact representation of f can still be
guaranteed.

For p = 1, the gradient flow in (2) is interesting and more challenging than
for p = 2. Another way to obtain a forward scale-space is to construct a sequence
of variational problems of the form (1) with increasing regularization parame-
ter tα replacing the fixed α. Here, the scale parameter tα corresponds to the
time variable t used in (2). In this paper, we will focus on this type of model
particularly in view of p = 1. From pioneering works on nonlinear L1 filtering
[8,9,10,11], it is well known that such variational reconstruction methods share
interesting multi-scale properties including contrast invariance. For this reason,
L1 data fidelities have been successfully used for advanced image reconstruc-
tion techniques [12,13,14], vector field estimation [15] and image decompositions
regarding texture [10,16]. The special multi-scale behavior becomes clear in Fig-
ure 1. In the L1 − TV case shown on the right, the contrast invariance leads
to plateaus in the scale-space graph indicating an abrupt disappearance of TV-
eigenshapes regarding the input image on the left.
Motivated by [9,11,17] and nonlinear spectral methods [7,18], the main goal of
this work is to study L1 versus L2 in view of the sparsity of nonlinear spectral
decompositions. Does L1 imply sparsity and hence a more informative spectral
response? Can we expect more reliable image decompositions via backtransfor-
mation facilitating improved image segmentation? What happens if complex
shapes, e.g. nonconvex or compositions of eigenfunctions, are involved?
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Fig. 1: Scale-spaces. (left) input image f , (middle) L2 − TV , (right) L1 − TV .

2 Modeling

In the following section we first give a short overview of the eigenshapes of the
total variation functional and calibrable sets before we introduce the spectral
framework for L2−TV denoising in more detail. Finally, we show why a combi-
nation of the spectral framework with L1 − TV denoising seems promising and
how the spectral framework can be adapted in this case.

2.1 Geometry: Eigenfunctions and Calibrable Sets

In the introduction in Figure 1 we have already seen an input image composed
of TV eigenfunctions. A general geometric description of TV eigenfunctions is
given in [19,20,21] in terms of calibrable sets, more precisely by convex sets which
are Cheeger in themself. An indicator function χC(x) of a convex and connected
set C with finite perimeter Per(C), for which C admits

ess sup
x∈∂C

κC(x) ≤ Per(C)

|C|
(C is Cheeger in itself)

where |C| denotes the area and κC the curvature of ∂C ∈ C1,1, is a solution of
(4) with unit norm and therefore an eigenfunction of TV. With this geometric
interpretation of eigenfunctions for TV as Cheeger sets, the role of perimeter
and volume is significant for contrast invariant image decompositions. In the
convex case, Duval and collaborators [17] proved that exact solutions of the
L1 − TV problem are given by an morphological opening followed by a simple
test over the perimeter-area ratio. This fact was first published but not proved
in [22]. For more complex shapes, formed by compositions of eigenfunctions, a
better understanding of the L1 scale-space flows is therefore a very promising
direction.

2.2 L2 − TV based Spectral Analysis

The nonlinear spectral analysis framework was first introduced by Gilboa in
[3,4] for the total variation regularization functional. A forward scale-space was
constructed via the TV flow (3). Here, the first iterate is the original data f
which is then smoothed in every time-step such that increasingly fine scales are
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removed. This concept was later generalized to more general one-homogenous
regularization functionals J(u) in [5,6,7]. Moreover, it was shown that the for-
ward scale-space can also be constructed via a variational approach by iteratively
solving the ROF model (1) for p = 2 and J(u) = TV (u) using increasing regular-
ization parameters tα. The idea of the spectral filtering approach is to transform
the signal f into a spectral domain, where both filtering of certain scales and
decomposition of f into significant signals is possible. Thus, eigenfunctions will
be mapped onto a peak in the spectral domain. The shape of the eigenfunction
is determined by the chosen regularization functional, for J(u) = TV (u) the
most prominent eigenfunction is a disc with radius r surrounding the origin. In
[23], Strong and Chan analyzed how the solution of the ROF model behaves for
increasing tα if f is an eigenfunction. Thus, let f(x) = c · 1Br(0)(x) be a disc of
constant height c and radius r surrounding the origin and with a background of
zero. Then the solution of the L2 − TV model is given as:

u(tα, x) =

{(
c− 2

r tα
)
· 1Br(0)(x) if 0 ≤ tα < cr

2

0 otherwise.
(5)

That means that even in the noise-free case, the reconstructed solution u(tα, x)
never reaches the true value f and for increasing regularization parameter tα
the disc height decreases. Solutions are corrupted by a systematic contrast loss
that is dependent on the regularization strength but also on the radius r and
the height c of input data f . To transform such eigenfunctions to a peak in the
spectral domain, Gilboa defined the spectral transform function φ(t, x) and the
spectral response function S(t) as:

φ(t, x) = utt(t, x) · t and S(t) = ‖φ(t, x)‖L1 . (6)

The definition of φ allows, under certain conditions, that the original signal f
can be reconstructed via:

f(x) =

∫ ∞
0

φ(t, x)dt+ f̄

where f̄ is the mean of f . Filtered versions of f can be constructed by applying:

fH(x) =

∫ ∞
0

H(t)φ(t, x)dt+H(∞)f̄

where H(t) is the filter function.
However, a disadvantage of the L2 based spectral framework is ambiguity

with respect to size and intensity scales. The method is not able to clearly
differentiate size and intensity scales since the timepoint td at which a disc
disappears and a peak occurs is determined by both values together.

2.3 L1 − TV based Spectral Analysis

In the following section we want to combine the idea of nonlinear spectral TV
analysis with the L1 denoising model:

min
u
‖u− f‖L1 + tαTV (u). (7)
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As mentioned earlier, this model shows very interesting multi-scale decomposi-
tion behavior and seems therefore very suitable to be combined with the spectral
approach. In [9], Chan and Esedoglu showed that the behavior of solutions of the
L1 − TV model if f is the TV eigenfunction f(x) = c · 1Br(0)(x) is significantly
different from the L2 case. Here, the solution is given by:

u(tα, x) =


f if 0 ≤ tα < r

2

c′ · f with c′ ∈ [0, 1] if tα = r
2

0 otherwise .

(8)

An interesting observation is that the solution u(tα, x) is not dependent on
the height c of the disc but only on the radius r. That means that the L1 −
TV denoising approach is contrast-invariant and therefore highly suitable for
decomposing a signal f based on size scales. Note that the solution of (7) is not
unique; for f defined as above and tα = r

2 there exist, for example, an infinite
number of solutions.

Since the gradient flow (2) is more challenging for p = 1 rather than p = 2
(due to non-smoothness of the data-term), we construct a forward scale-space
by taking a variational approach; in other words, we solve (7) for increasing
regularization parameters tα1

< tα2
< ... < tαN

. To transform an eigenfunction
of TV (u) onto a peak in the spectral domain, a suitable spectral transformation
function is now given by:

φ(t, x) = −ut(t, x) fulfilling f(x) =

∫ ∞
0

φ(t, x)dt+ ĉ. (9)

Here, the first time derivative of u(t, x) is in a distributional sense and the
constant ĉ is the median of f . Since the disc’s height does not decrease in every
time step but remains the constant c until it immediately decreases to 0, already
the first time-derivative leads to a delta peak in the spectral transform function
defined via:

S2(t) = 〈φ(t, x), f(x)〉. (10)

This definition was first introduced by Burger and collaborators in [6] and leads
to an analogue to Parseval’s identity:

‖f‖2 = 〈f, f〉 =

∫ ∞
0

〈φ(t, x), f(x)〉dt =

∫ ∞
0

S2(t)dt. (11)

The signal can be filtered based on size via:

fH(x) =

∫ ∞
0

H(t)φ(t, x)dt+H(∞)ĉ (12)

where H(t) is again the filter function. A segmentation of objects in a certain
size range (nearly independent of their intensity; only objects with intensity ĉ
cannot be found) is given by:

fseg,H(x) =

(∫ ∞
0

H(t)φ(t, x)dt > 0

)
. (13)

Applications where this intensity-independent segmentation approach is espe-
cially helpful are described in section 4.
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3 Numerical Approach

The following section introduces the numerical realization of the spectral L1−TV
framework presented previously. The main component is the numerical solution
of the denoising problem. To find solutions of this purely primal nonlinear min-
imization problem (7), we make use of the first order primal dual algorithm
proposed by Chambolle and Pock [24]. As the name already suggest, the mini-
mization scheme works with a primal dual version of (7) given by:

〈∇u, g〉+ ‖u− f‖L1 − tαδP (g) −→ min
u

max
g

(14)

where P = {g : ‖g‖∞ ≤ 1} and δP (g) equals 0 if g ∈ P , and equals ∞ if g /∈ P .
We define K(u) = ∇u, F (u) = ‖u‖L1 and G(u) = ‖u− f‖L1 . The minimization

Algorithm 1 First-order primal-dual algorithm to solve (7).

Parameters: data f , reg. param. 0 < tα1 < tα2 < ... < tαN , τ, σ > 0,
θ ∈ [0, 1], maxIts ∈ N

Initialization: n = 0, u0 = 0, p0 := 0, ū0 = u0

Iteration:

for
(
i = 1 : N

)
do

1. Set α = tαi .

while
(
n < maxIts

)
do

a) gn+1 = Proj{{g:‖g‖∞≤1}} (gn + σ∇ūn).

b) argu = un + τ∇ · g.

c) un+1(x) =


argu(x)− τ

α
if argu(x)− f(x) > τ

α
argu(x) + τ

α
if argu(x)− f(x) < − τ

α
f(x) if |argu(x)− f(x)| < τ

α

.

d) ūn+1 = un+1 + θ(un+1 − un).

e) Set n = n+ 1.

end while

2. Set u(tαi , x) = un.

3. Set φ(tαi , x) = u(tαi−1 , x)− u(tαi , x).

4. Set S(tαi ) = 〈φ(tαi , x), f(x)〉.

end for

return u(tα1 , x), ..., u(tαN , x), φ, S.

algorithm proposed by Chambolle and Pock consists of three update steps: the
first step is a dual update using the resolvent operator of F ∗ and the second
is a primal update using the resolvent operator of G. These are followed by
a simple weighting step between the previous two primal iterates. See [24] for
more details. The resolvent operators for G and F ∗ are presented in [24, chpt.
6.2]. To construct a forward scale space, we solve the L1 − TV denoising model
with increasing regularization parameter tα1 < tα2 < ... < tαN

and compute the
spectral transform function φ(t, x) via backward-differences and the response
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function S(t) based on these solutions. Both the resulting primal-dual algorithm
to minimize (7) and the computation of the spectral functions are embodied in
Algorithm 1. Note that to receive a very high degree of convergence we needed
a very large number of iterations resulting in a long computational time. With
fewer iterations, the algorithm did not converge completely and eigenfunctions
lost contrast altough, according to (8), this should not be the case.

4 Results

In this section, we describe the main properties and advantages of the L1 − TV
based spectral approach introduced above. We discuss both several synthetic ex-
periments and real experiments from biological cell imaging and retina imaging.
For some examples, the results are compared to results from the L2 based spec-
tral framework to illustrate the differences between both models. For all results,
we applied the framework summarized in Algorithm 1 and cluster the spectral re-
sponse function afterwards. In our experiments, we set τ = 0.2, σ = 0.625, θ = 1
and maxIts = 50.000. For synthetic datasets we used N = 20 linearly spaced
tαi

and increased N to 50 for the experimental datsets. After solving the vari-
ational model with increasing regularization parameter, we manually clustered
S but comparable results can be achieved with common histogram thresholding
methods such as Otsu’s method, the Triangle method or methods designed for
more than two classes. The different classes in the histogram are always visual-
ized by different colors. Reconstruction of the filtered signal was performed via
(12) where H(t) was defined as an indicator function of the filtered time interval
and the resulting signal was color-coded with the same color as in the spectral
response and multiplied with the original gray values so that intensity changes
in the input signal remain detectable.

(a) Input Data. (b) Spectral Response. (c) Color-coded
Reconstruction.

Fig. 2: Detection of size scales for eigenfunctions with constant intensity. (a)
shows the original input data, (b) the resulting spectral response function of the
forward L1 − TV denoising approach. Every peak in S corresponds to one disc.
The color-coded reconstruction is shown in (c).
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(a) Input Data. (b) Spectral Response. (c) Color-coded
Reconstruction.

Fig. 3: Invariance w.r.t. to intensity scales. (a) shows the input data consisting
of four TV eigenfunctions of similar size but various intensities. The correspond-
ing spectral response is shown in (b). All discs vanish at the same moment,
independent of their contrast. (c) The reconstruction of the peak is shown in
red.

Detection of Varying Eigenshapes: Size versus intensity. In this set of ex-
periments, we focus on circular objects that are all eigenfunction of the total
variation functional. The aim of these experiments is to investigate which scales
can be detected and reconstructed using our method and where the differences
to an L2 based approach are. Figure 3 shows an example with four discs in front
of a uniform background, all showing the same intensity level. The corresponding
spectral response function (b) clearly shows the four peaks each corresponding
to one disc, as can be seen in the color-coded reconstruction in (c). Since L1 is a
purely size-based approach, it decomposes these eigenfunctions clearly. The op-
posite case is shown in Figure 3. Here, the input data is again composed of four
discs but now with only one size and various intensity levels. Although an L2

based approach would again show four peaks in the spectral response function
due to its size/intensity ambiguity mentioned previously, we now see only one
peak in the response (b). Filtering only the signal belonging to this red peak
returns all four discs; see (c). This example clearly shows the contrast invariance
of the L1 data fidelity term which is a major difference between p = 2 and p = 1.

A direct comparison of both spectral frameworks is shown in Figures 4 and
5. Figure 4 shows as input data (a) two discs with different sizes and intensities.
From a visual perspective, this would be clearly identified as two different scales
but the L2 − TV denoising approach is not able to distinguish between the
objects. The scale that this approach uses is always a mixture of the size scale
(small for the disc on top and large for the other one) with the intensity scale
(large for the one on top and small for the second disc) and therefore it can occur
that they both end up with the same “medium” scale. In the spectral domain,
they are represented by one peak (b) and can therefore not be reconstructed
separately. However, this is different for the contrast invariant L1−TV approach
since it is purely size based. The spectral response function shows two easily
separable peaks (d) that can be reconstructed one by one (e). A similar behavior
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(a) Input Data. (b) Spectral Response of
L2 − TV denoising.

(c) Color-coded Re-
construction (L2).

(d) Spectral Response of
L1 − TV denoising.

(e) Color-coded Re-
construction (L1).

Fig. 4: Detection of size and intensity scale mixtures. (a) shows the input data
with two eigenfunctions with differing sizes and intensities. Results of an L2

based spectral approach are shown in (b) and (c). The method is not able to
separate the objects. (d) and (e) show the results of the contrast invariant L1

based spectral analysis. The two discs are clearly separable based on size.

can be seen for two discs on top of each other (see Figure 5(a)). Although these
two discs are represented by two separate peaks in both approaches, the L2 based
approach mixes them if they are on top of each other. In this case, the peaks
become less sparse and apart from each other (b) and in the reconstruction of
the small scales (c) we see some artifacts of the larger disc (bluish ring around
red disc). This is not the case for L1. Both peaks are clearly separable (e) and
the reconstruction gives a clear separation of both discs. The larger red circle in
(f) is just a discretization artifact.

Segmentation of Experimental Cell Data. In Figure 6, we present a dataset
that was also used in [18]. The experimental dataset (a) shows a fluorescent mi-
croscopy image of Circulating Tumor Cells. Here, the goal is to reliably segment
all cells although they differ much in size and intensity. A multi-scale segmenta-
tion approach was presented in [18], see (d), but due to the intensity dependency
of this approach, the method was not able to detect those cells that are very
dim (highlighted with red boxes). Since our new L1 based spectral approach
ignores intensity differences, the method also finds the very dim cells. When re-
constructing the orange part of the spectral response function (b) and using the
thresholding formula (13), we obtain a segmentation that contains all four cells
highlighted with a red box.
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(a) Input Data. (b) Spectral Response
of L2 − TV denoising.

(c) Color-coded
Reconstruction of
red peak (L2).

(d) Color-coded
Reconstruction of
orange peak (L2).

(e) Spectral Response
of L1 − TV denoising.

(f) Color-coded
Reconstruction of
red peak (L1).

(g) Color-coded
Reconstruction of
orange peak (L1).

Fig. 5: Overlapping mixtures of size and intensity scales. (a) shows the input
data with two discs with different size and intensity on top of each other. (b)
- (d) shows the spectral response and the reconstructions of both peaks using
an L2 dataterm and (e) - (g) for an L1 dataterm. In (c) we see artifacts of the
larger disc already appearing at the fine scales while (f) and (g) clearly separate
the two discs.

Experimental Data of Network Structures. In Figure 7 (a), a manually seg-
mented blood vessel network taken from the STARE dataset [25] is shown. A
problem often occurring in retinal blood vessel segmentation is that small ves-
sels are also very dim and therefore even more challenging to detect. In (b),
we added an intensity bias to the original data to test whether this influences
our segmentation/clustering approach or not. In (c)-(f), the spectral response
functions and reconstructions for L2 denoising are shown. We see that there
are fewer clear peaks in the spectral response function, especially in the case
of intensity biased input. Another problem that we observe is that the vessels
are not removed while retaining their original shape but are reshaped to more
circular objects. This leads to a mixing of all scales in the reconstruction and
the dim appearance of the visualization. For L1 based denoising, the spectral
responses are much sparser in (h) and (j) and therefore easier to cluster. The
reconstructions (g) and (j) are also much easier to interpret since the vessels
are not reshaped but removed in one step based on their diameter. Thus, for
both networks (even for the one with an intensity bias) we see a clear clustering
of blood vessels based on size. The difference between both methods is clearly
shown in the magnified box. While in the top row the largest scale is just a
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(a) Input Data. (b) Spectral Re-
sponse.

(c) Color-coded
Reconstruction.

(d) Segmenta-
tion using the
Bregman-CV.

Fig. 6: Segmentation of cells of multiple sizes and intensities. (a) shows an exper-
imental dataset of tumor cells under a fluorescent microscope; (b) the resulting
spectral response function; and (c) the color-coded reconstruction. A segmen-
tation result taken from [18] is given in (d). Wee see that both methods can
be used to obtain a multi-scale segmentation but very dim objects (red boxes)
might be lost when taking an intensity based approach as in (d). In taking our
purely size-based approach the dim cells are also found.

turquoise shadow around the thickest blood vessels, the blood vessel is clearly
reconstructed in the bottom row.

5 Conclusion and Outlook

In this paper, we have described the study of contrast-invariant L1 data fidelities
for variational multi-scale methods in combination with nonlinear spectral im-
age analysis. We have shown that the contrast invariance results in an improved
sparsity of spectral responses. In comparison to standard L2, this allows a more
informative spectral image representation to be obtained. We presented a model,
an efficient algorithm and numerical results. In the particular case of experimen-
tal data sets that have complex shapes and strong intensity variations of objects
or the background, our method outperforms the current standard method for
nonlinear spectral decomposition. For future studies, it will be important to ex-
tend the ideas to nonlocal graph-based problems such as L1 with nonlocal TV ,
and further analyze the relationship of the doubly nonlinear scale-space flow to
the proposed scale-space procedure.
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(a) Unbiased Input. (b) Biased Input.

(c) Spectral Resp.
(L2, Unbiased)

(d) Color-coded
Reconstruction.
(L2, Unbiased)

(e) Spectral Resp.
(L2, Biased)

(f) Color-coded
Reconstruction.
(L2, Biased)

(g) Spectral Resp.
(L1, Unbiased)

(h) Color-coded
Reconstruction.
(L1, Unbiased)

(i) Spectral Resp.
(L1, Biased)

(j) Color-coded
Reconstruction.
(L1, Biased)

Fig. 7: Decomposition of network structures without and with intensity bias. (a)
shows the binary input network of blood vessel [25] and (b) the same network
with an intensity bias. (c)-(f) show spectral response and reconstruction results
using L2 and the unbiased (c)-(d) resp. biased data (e)-(f). In (g)-(j), the results
with L1 are presented. Reconstructions (d) and (f) appear very dim since vessels
are not removed in one step but are reshaped over time, resulting in a mix of
(colored) scales. This is more clear in the magnification. The turquoise part in
(d) and (f) is no longer vessel-shaped but more a roundish shadow around the
original shape while the structure remains unchanged for L1 based reconstruction
(h) and (j). This network structure is also not affected by an intensity bias.
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