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1. Introduction and Motivation 

Let C be the complex plane and f be a complex function on C. The function f is 
called entire if it is (complex) analytic everywhere on C; f is called meromorphic 
if all its singularities (i.e., points of C where f fails to be analytic) are poles. 

In this paper, f is always a nonconstant meromorphic function. By N(f )  (P(f)) 
we denote the set of all zeros (poles) for f. If f '  stands for the usual derivative of 
f, we call C(f)  := N(f ' ) \N( f )  the critical set of f; its elements are called critical 
points for f. If f(zo) = f'(zo) = 0 or if Zo c P(f),  the singularity for f / f '  can be 
removed by defining f/f'(zo) = 0. In general, a meromorphic function, which has 
a removable singularity at Zo will be interpreted as to be analytic at z0 (a same 
convention holds w.r.t, removable singularities of real analytic mappings). 

This paper is concerned with the study of dynamical systems of the form 

dz(t) _ f(z(t)) 
dt f'(z(t)) (1.1) 

Obviously, the system (1.1) is not defined at critical points for f. However,  it is 
possible to 'desingularize' (1.1) by introducing a real analytic dynamical system 
which is defined on the whole C such that, on C \C( f ) ,  its maximal trajectories 
coincide with those of (1.1). In some special cases, it is even possible to extend 
this system to a real analytic system on the 2-sphere S 2, viewed as a one-point 
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compactification of the complex plane. Once we have obtained such a desin- 
gularization and extension, we can use the whole machinery of the theory on (real 
analytic) dynamical systems on the plane and sphere (as well as the theory on 

functions of a complex variable). 
In order  to motivate the work presented here, we indicate how it fits into a 

more general framework and give some references to the literature. 
Let  us consider differential equat ions of the form 

d x ( t ) _  DF_I(x(t)). F(x(t)) (1.2) 
dt  

where F ~ C ( R  n, Rn), the space of twice continuously differentiable mappings 
from R n to R n, and DF(x )  stands for the matrix of partial derivatives at x. 

Apparently, the r.h.s, of (1.2) is not defined on the set C := {x ~ R n I det DF(x)  = 
0}; so we have to assume that x(t) ~ C. 

If we write down Euler 's  approximation [16] to system (1.2), then we find: 

Xk+I = Xk -- hk" DF-I(xk)  • F(xk), k = 0, 1, 2 . . . . .  (1.3) 

where hk are positive reals which may be suitably chosen. This is the well-known 
(relaxed) Newton-Raphson iteration method for finding zeros for F. Therefore ,  
the system (1.2) may be considered as a 'continuous'  Newton method. 

The fact that (1.2) is not defined on the set C causes a lot of trouble, both from 

the theoretical and computational points of view; in fact, C may be very irregular 
and near C the r.h.s, of (1.2) may blow up. Following Branin [3], Gomulka [7], 
Hirsch and Smale [14], and Smale [31], we may overcome this difficulty by 
considering the system 

d x ( t ) _  I)F(x(t)). F(x(t)) (1.4) 
dt  

where DF(x) stands for the well-known adjoint matrix of DF(x )  and, 

hence 

DF(x). DF(x)  -- det DF(x)  • In, (1.5) 

In being the n × n unit matrix, cf. [7]. System (1.4) is well-defined on the whole 
R n. Outside the set C we have I)F(x). F(x) = det DF(x )  • D F - I (x )  • F(x). Thus, 
on Rn\C the phase portraits of (1.2) and (1.4) are 'equal' (eventually - depending 
on the sign of det DF(x)  - up to orientation). That  is why the system (1.4) will be 
referred to as to a 'continuous, desingularized' Newton method. 

As it is clear from the literature on (chaotic) discrete dynamic systems, in 
connection with Newton's method (cf. [17,27]),  the global convergence 
behaviour of (1.3) can be very wild and unsurveyable, even in the case of simple 
mappings F. In order to get a better  insight into the global aspects of Newton's 
iteration method (1.3), it is not, therefore, unreasonable to treat - as a first step - 
a continuous, desingularized version (such as (1.4)). A key fact is the following 
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observation: multiplying both sides of (1.4) by DF(x(t)) yields, in view of (1.5) 
and applying the chain rule: 

d 
dt F(x(t)) = - det DF(x(t)). F(x(t)). 

Hence, F maps trajectories of (1.4) to half-lines in R". This fact makes it 
possible to cast the investigation of the phase portrait of (1.4) in a differential- 
geometrical setting, namely the study of the inverse images under F of half rays 
in R". On the basis of these ideas, Smale obtained interesting results on the global 
convergence behaviour of the discrete and the continuous (desingularized) 
Newton method. However, Smale's results deal with special aspects and, 
moreover, require rather strong conditions on F and DF. (For example, in [14] 
an algorithm is proposed for finding the zeros for mappings F which must be, 
among other conditions, real analytic and proper [8].) Especially, in the general 
case of mappings F c C 2 (R",R") with n > 2, there is no hope of a powerful 
theory which holds under mild conditions and by means of which it is possible to 
describe the phase portrait of (1.4) in detail. Nevertheless, the approach given 
above maintains a certain intrinsic value, since it clarifies the geometrical 
background of various algorithms for finding zeros for F (see, e.g., [5]). 

So, in order to obtain a more or less general theory, we have to restrict 
ourselves to certain subsets of C2(R n, Rn), r />  2, or to the case n = 2. As a 
matter of fact, the results obtained by Hirsch and Smale [14] and Smale [31] do 
hold for a generic subset of C2(R ", R"). In our paper [18], we studied systems 
(1.4) for 'gradient mappings' (i.e., mappings F of the form grad g, where g is a 
smooth function from R" to R) and introduced a generic subset E(n) of the space 
of all smooth functions on R", such that: (1) For g c E(n), the set C is a closed 
Whitney stratified subset of R" of dimension <~(n- 1); (2) the equilibrium states 
of (1.4) which are contained in C (the so-called extraneous singularities) con- 
stitute a Whitney stratified set of a dimension <~(n- 2); (3) global convergence 
properties in the same spirit as those obtained by Smale in [31] do hold; (4) in the 
case n = 2 a fairly complete description fo the phase portrait of (1.4) is given, 
including a statement on structural stability. 

Now, let us return to the case of entire functions f (considered as C2-mappings 
R2---~R 2, the components of which are related by the Cauchy-Riemann equa- 
tions). Then, (1.2) takes the form of (1.1), whereas for (1.4) we find 

dz(t) 
- f ' ( z ( t ) ) "  f ( z ( t ) ) .  (1.6) dt 

m 

Here, f'(z(t)) stands for the complex conjugate of f'(z(t)). Note that, in this 
case we have C = N(f'), so if f has multiple zeros, then C(f) is a strict subset of 
C. 

The polynomial case, where everything is relatively simple (e.g., N(f) and 
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C(f)  are finite sets; P(f)  = 0) is treated by Braess [2] and by Hirsch and Smale 
[14], and Smale [32]. Note that the only proper, entire functions are the 
polynomials. 

In our papers [19, 20] we extended most of the results obtained in [2] to the 
case of meromorphic functions. Note that a strictly meromorphic function (i.e., f 
has at least one pole) is not contained in C2(R 2, R2). Therefore, another 'desin- 
gularization' step is needed, similar to the change-over from (1.1) to (1.6). 

This study is organized as follows: Section 2 treats local and global properties 
of the phase portrait of (1.1) in the general case of meromorphic functions, 
including the desingularization result. For some special classes of functions, an 
extension of (1.1) to the sphere is presented. Sections 3 and 4 deal with the case 
of rational functions. In Section 3, we select a generic subclass of the set of all 
rational functions, such that the phase-portraits of the corresponding systems 
(1.1) behave regularly under small perturbations of the coefficients (of these 
rational functions). We call these functions nondegenerate and the corresponding 
systems (1.1) structurally stable. With any nondegenerate function, with degree 
(denominator) < degree (numerator), a connected plane graph is associated 
which fulfils a simple combinatorial condition. Conversely, any connected plane- 
graph with this property represents a system (1.1) corresponding with a non- 
degenerate rational function with degree (denominator) < degree (numerator). 
This is shown in Section 4. Using this result, in Section 5 we obtain a complete 
classification of all structurally stable systems (1.1). Finally, in Section 6, we 
present (as an application) some results on the asymptotic behaviour of entire and 
meromorphic functions. 

This present work is close to our papers [19, 20]. As a matter of fact, Sections 
2, 3 (partially), and 6 merely constitute a survey of results obtained in [19], the 
proofs being very roughly sketched or deleted. Finally, we refer to Twilt [33] 
where most of the results reported here are to be found in full detail. 

2. The General Case 

In this section we summarize the local and global properties of dynamical systems 
of the form (1.1). For proofs and more details we refer to [19]. 

The right-hand side (-(f(z))/(f '(z)))  of (1.1), considered as a complex analytic 
vector field on C\C(f) ,  is denoted by N(f) ;  it is referred to as to 'the Newton 
flow for f'. Throughout this paper, a trajectory of N( f )  through Zo( 6 C(f)) is 
always interpreted as maximal and will be denoted by 7(Zo). 

Apparently, the only equilibrium states for dV(f) are the zeros and poles for f, 
i.e., if Zo ~ N( f )  U P(f)  then 3'(Zo) -- {Zo}. 

In the case where Zo~ C ( f ) U N ( f ) U P ( f ) ,  the trajectory 7(Zo) is called 
regular and is given by the solution 

z(t), Zo = z(O), t ~ ]a, b[, eventually a = - ~ ,  b = +~. 
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By direct integration, we find 

f (z ( t ) )  = e-'f(Zo), t6  ]a, b[. (2.1) 

Thus, on 7(Zo) we have arg f ( z )=cons tan t  (=arg f(zo)). Hence, 7(Zo) is con- 
tained in the inverse image under f of the line arg w = arg f(zo), cf. Section 1. 

From this and from the elementary properties of (multifold) conformal map- 
pings, one immediately concludes that the local phase portrait of 2¢'(f) around a 
point (say z0) is of one of the four types (cf. [23]) shown in Figure 1. 

In Figure lb (Figure lc), let l = multiplicity of Zo as a zero (pole) for f, 1 i> 1. 
Adopting the terminology of Hartman [12], Zo is a stable (unstable) proper node 
for W(f), i.e., for every 0 ~ [0, 2r  r[, a unique trajectory 7 exists such that if z 
tends to z0 along 7, then arg(z - Zo) tends to O. The angle th in Figure lb (Figure 
lc) equals 

1 f(za) (/(Zz))~ 
~ a rg / -~z  ) ( / a r g  ~ ] .  

In Figure ld, let k = multiplicity of Zo as a zero for f ,  k/> 1. Then, the angle 
between two subsequent trajectories, one of which tends to Zo, the other leaves 
from Zo, equals 7r/(k + 1). In this case, we call Zo a critical point of order k for f 
(or k-fold saddlepoint for W(f)). In the figure, we obviously have k = 2. 

Now, we focus our attention to the global aspects of the phase-portrait of W(f). 
The limiting set of a (regular) trajectory 7(Zo) is extremely simple, as is pointed 
out in the following lemma. 

LEMMA 2.1 (The limiting sets of trajectories). 
(1) Either limab z ( t ) = ~  or limab z ( t )=  z ,  e C; in the latter case we have 

z ,  c N ( f )  i f b = ~  and z , e  C( f )  i[b<oo. 
(2) Either limaa z ( t ) = ~  or lim,+a z ( t )=  z ,  eC;  in the latter case we have 

z ,  ~ P ( f )  if a = - ~  and z ,  e C ( D  if a > - ~ .  

We emphasize that, although Lemma 2.1 is in the same spirit as Bendixon's 
theorem on limiting sets of trajectories in the plane, it requires an independent 
proof (cf. [19]). However, in the (special) case where N(f )  can be extended to the 

ZoCN(f)UP(f)UC(f) 
(regular point] 

(o) 
(stable proper node] [unstable proper node) (k-fold saddle- 

(b) (c) (d) point] 

Fig. 1. 
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whole Riemannian sphere (in the sense of the forthcoming Lemma 2.2), Lemma 
2.1 is a straightforward consequence of the Poincar6-Bendixon-Schwartz 
theorem for dynamical systems on the sphere and the fact that in view of relation 
(2.1) periodic trajectories and a so-called path polygon with trajectories spiralling 
to it, cannot occur (see also [22]). 

Intuitively speaking, the basin B(z , )  of a zero (pole) z ,  for f is the set of 
points 'moving' to (from) z ,  along a trajectory of N(f).  More precisely, 

B(z , )  := {z,} 13 {Zo c C ] lim z(t) = z ,  ; zo = z(0)}, 

where the limit is taken t---> + ~  if z ,  c N(f ) ,  respectively t--->-oo if z ,  c P(f).  
Let aB(z , )  be the boundary of B(z , ) .  Then, we have 

OB(z,) = 0 iff f is of the form f(z) = a(z - z , )  n, 

where a c C and n is a positive (negative) natural number if z ,  is a zero (pole). 
The crucial point in the proof (cf. [19]) is to reject the possibility that - aB(z , )  

being nonempty - for z ,  e Az(f) (resp. e P(f)), the function f (resp. 1/f) is 
transcendental entire and possesses only one zero (pole) and no critical points. 
This follows by application of the Casorati-Weierstrass theorem and Relation 
(2.1). 

In the case where 0B(z,) is nonempty, it is the union of the (topological) 
closures of regular trajectories of N(f) .  This follows from a careful analysis of 
what happens to points in a sufficiently small neighbourhood of 0B(z,),  which is 
essentially based on the continuous dependence of solutions of (1.1) on the initial 
conditions (cf. [12]) and on relation (2.1) again. 

In the case where B(z,)  is bounded (thus aB(z,)=/: 0), on the boundary of 
B(z , )  there lies at least one pole (zero) if z* is a zero (pole) for f. Note that this 
result implies that the basin of a zero for an entire function is unbounded 
(compare also Braess [2], who treated the polynomial case). 

If we try to exploit the theory on two-dimensional dynamical systems at full 
strength, we encounter the problem that N(f)  is not defined on the whole C. We 
overcome this difficulty by means of the following 'desingularizatiou' lemma: 

LEMMA 2.2 (Desingularization Lemma). For each nonconstant meromorphic 
[unction f, a real analytic vector field - say N( f )  - exists, defined on the whole C, 
with the properties: 

(1) Trajectories for N( f )  are also trajectories for N( f )  
(2) A critical point for f is an equilibrium state ]:or N( f )  
(3) Kc(f)=-./TC'(1/f) 

Here, we merely give the explicit formula for .At(f), namely 

~ ( f )  = -(1 + I/(z)14) - ' "  f '(z)" f(z) 

(compare also the change-over from (1.1) to (1.6) in Section 1). 
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For special choices of the func t ion / ,  it is even possible to extend ~ ( f )  - by 
means of the transformation w = 1/z - to a real analytic vector  field on the 
2-sphere S 2. Here, we treat two choices: 

(1) The set (~ )  of all nonconstant rational functions f (i.e., f = p,/q,., with p, 
(resp. q,,) polynomials of degree n(m) which are relatively prime) and 

(2) The set (~) of all transcendental entire functions f of order I(<oo) with 
finitely many zeros (i.e., f = u, • exp vl; with u, (resp. vl) polynomials of 
degree r (resp. l); note that 1 t> 1 since f is transcendental). 

L E M M A  2.3_ (Extension to $2). For each f e ~ t] ~, there exists a real analytic 
vector field f f( f) ,  defined on the whole S 2, such that on the z-chart of S 2 (i.e., 
S2\{z = 0o}) the phase portrait of fC'(f) equals the phase portrait of £ ( f )  (up to a 
stereographic projection). Moreover, for f e ~ ,  we have .~'(f) = - ~'(1/f).  

For later use we give the explicit expressions for ~c(f) w.r.t, the z-chart and the 
w-chart (~z( f )  resp. )~,(f)) :  

I f f e ~ ,  n ~ m  

~ ( f )  = - ( 1  + Izl ) • (1 + [f(z)14) - ' .  IV(z)- f(z), 

~w(f) :--(1 "~-IwI2) 'n-rn[+'" IW[ -2'n-rn]+2 " (1-{-[f(1)14)-1 d 

I f f e ~ ,  n = m  

• J~z ( f )  = - ( 1  + Iz]2) 2. (1 + If(z)]4) -1- y ( z ) -  f(z), 

I f f e ~  

2~ (f)  = - ( 1  + Izl2)-'-~+l(-~,(z) +-~z(z)"-~(z))" u,.(z) 

 w,w, 

In all these cases, the pair (~z(f ) ,  ~w(f ) )  constitutes a real analytic vector field 
on S 2. For a verification of this statement (especially of the fact that the 
singularity of ~ , ( f )  at w = 0 is removable), we refer to [19]. 

Note that, in general, an extension of £ ( f ) ,  with f meromorphic, to a real 
analytic a~(f) on S 2 (as demonstrated in the preceding lemma) is not possible. 
This follows from the existence of meromorphic functions, whose finite zeros do 
accumulate at z = ~ (e.g., tan z). 

As in the case of the finite equilibrium states for N ( f )  (cf. Figure 1; Lemma 
2.1) for those functions f for which Lemma 2.3 is valid, we can also give a 
complete description of the local phase portrait of a~(f) around z = o~. To this 
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aim; we introduce for [ ~  ~ ,  f = p , / q , . ,  the following integers: s = total number 
of critical points for f,  each counted a number of times equal to its order, and if 
n = m, we define k = 2n-degree  ( p ' .  q, - p,  • q ' )  - 2. 

L E M M A  2.4. (The local phase-portrait  around z = ~). (a) For f c  ~ ,  f =  p . / q , , ,  

we have 

- I f  n < m (resp. n > m): z = oo is an (un-)s table nondegenerate node for ~c( f )  

- I f n  = m: z = ~  is a r e g u l a r p o i n t f o r N ( f )  (in the case k = 0 ) ,  or 

z = oo is a k - fo ld  saddlepoin t for  fC'(f) (in the case k >- 1). 

Moreover,  k = # N ( f )  + # P ( f )  - s - 2, where 4¢ denotes cardinality. 

(b) For f E ~, f = u, exp v~, we have: 

- z = oo is an isolated, degenerate equilibrium state for ~r( f )  with - apart f rom 

the (eventual)  parabolic sectors - exactly 21 elliptic sectors, denoted by Ej, 

] = 1 , . . . ,  2 l, and  no hyperbolic sectors. 

- for each j ,  there exist two rays, say  Li,1, Li,2 emanat ing  f rom w = O, determin- 

ing the angle 7r/l and  with the property that each trajectory in ~i emanates  f rom 

w = 0 tangent to Lj, l and  trends to w = 0 tangent to L/,2. 

The proof of Lemma 2.4 follows from a straightforward (but quite technical) 

analysis of the expressions for ~ ( f )  proceeding Lemma 2.3, an application of the 
theorem of 'Poincar6-Hopf on dynamical systems on S 2 with only isolated 

equilibrium states' (cf. [25]) and 'Bendixon's formula for the Poincar6 index of an 
isolated, nonrotational equilibrium state' (cf. [12]). 

R E M A R K  2,1. The fundamental theorem of algebra follows directly - by 

considering f ( z )  = ( p , ( z ) ) / z "  - from the second statement of Lemma 2.4a and the 
facts that k/> 0 and s/> 0. 

b 

"-E z=O 

N(f); ac=l:O ,N'{ f}; a=O .A~'( f); b=c=O 
(a) (b) (c} 

Fig. 2. 
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Fig. 3. 
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For more results on the structure of (the boundary of) a basin of a node for 

~ ( [ ) ,  with f e  ~ U ~, we refer to [19], and to Section 3. 

E X A M P L E  2.1. Let  

[ az + b~" 
f (z)  = \ c~-z~]  ' 

with a d s  bc and n = 1, 2, 3 . . . .  In the case where ac¢ 0 we have: 

and z = oo is a regular point of ~ ' ([) .  If a = 0, then z = ~ is the only zero for f ;  

P(f)  = {-(d/c)};  C ( f ) =  0. If c = 0, then z = oo is the only pole for f ;  N ( f ) =  

{ - (b/a)}; C( f )  = O. 
The system dW(f) (or ~ ' ( f ) )  is called 'north-south flow' (cf. Figure 2). Note that 

the cases a -- 0, resp. c = 0, provide the only examples of Newton flows with the 

property that the boundary of the basin of one of its nodes is empty. 

E X A M P L E  2.2. Let  f ( z ) = z e x p ( z + 8 )  z. Obviously, f c  ~; order f = 2 .  One 
easily verifies that the intervals into which the real axis is subdivided by the zero 
(z = 0) and the two simple critical points - 4 - ½ , f ~ _ ,  - 4  + ½ ~  constitute tra- 

jectories for N( f ) .  Hence,  it follows that the system N( f )  has exactly four elliptic 
sectors at z = 0o (cf. Lemma 2.4b and Figure 3). 

3. The Case of Rational Functions and Structural Stability Aspects 

In this section, we restrict ourselves to the (nonconstant) functions f in ~ .  Such 
functions can be extended (in the usual way) to meromorphic functions on the 
sphere $2; the set of all these extensions will also be denoted by ~ .  The point 
z -- ~ is called (infinite) zero, pole, critical point for f if w = 0 is, respectively, a 
zero, pole, critical point for the function f(1/w), where w = l / z .  

As in Section 2, a function f ~ ~ will always be represented by p,,/q.,, where 
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p, ,  qm are relatively prime polynomials of degree n, m. Note that in this 
representation, p, and qm are unique up to a common scalar. By ~÷,  ~to, 9~_ we 
mean the set of functions f = p,/q,,, with, respectively, n > m, n = m, n < m. 

The aim of this section is to select a 'generic' subset (~)  of functions f, such 
that small perturbations of the coefficients of f (not changing the degree of 
numerator, denominator) do not alter the qualitative features of the phase 
portraits of the resulting Newton systems ('structural stability'). To make this 
more precise, we have to introduce a topology (~-) on ~ and an equivalence 
relation ( - )  on the set of all rational Newton flows (i.e., systems of the form )?(f), 
with f ~ 9~). 

We conclude this section by associating with each f(=Pn/qm) in ~ for which 
n > m, a plane-graph (~(f), which fulfils the so-called Cycle Property. 

3.1. THE TOPOLOGY ~" 

The set ~ may be endowed with a topology (~') which is natural in the following 
sense: Let f e N be represented by pn/q,,. Given E > 0 sufficiently small, then 
there exists a ~--neighbourhood f~ of f such that for each g e FL the function g 
can be represented by /3,/0,~ such that the coefficients of /3,,, 0,, are in a- 
neighbourhoods of the corresponding coefficients of pn, qm. For a precise 
definition of T, we refer to [19]. 

Let x(S 2) stand for the set of all Cl-differentiable dynamical systems on S 2 
endowed with the C_l-topology (c), cf. [1]. In view of Lemma 2.3, the map T: 
~---) x(S2):T(f)= N(f )  is well-defined. We proved in [19] the following useful 
result which 'connects' the topologies ~- and c. 

LEMMA 3.1. T is (r, c)-continuous. 

3.2. EQUIVALENCE OF (RATIONAL) NEWTON FLOWS AND STRUCTURAL STABILITY 

ASPECTS 

The systems E and E' in x(S 2) are called topologically equivalent ( X - E ' )  if a 
homeomorphism from S 2 to S 2 exists which maps the trajectories of E onto those 
of X' and preserves the orientation of the trajectories. (Informally, this means X 
and X' have the same qualitative behaviour.) 

The system E is called structurally stable if a c-neighbourhood ~7 of E exists 
such that for each E' ~ ~7 we have E - E'. 

The following characterization of structural stability is due to de Baggis and 
Peixoto. 

A system E c x(S 2) which does not exhibit periodic trajectories is structurally 
stable itt the following two properties hold: (1) Each equilibrium-state for ~ is 
hyperbolic, cf. [13] p. 187, and thus nondegenerate; (2) no two saddlepoints of E 
are 'connected' by a trajectory. 



THE NEWTON METHOD FOR MEROMORPHIC FUNCTIONS 91 

In the special case of rational Newton flows on the sphere, we introduce a 
concept of structural stability which takes into account small perturbations of the 
coefficients of the underlying functions: 

The system ~c(f) is called structurally stable (as a rational Newton flow) if a 
-r-neighbourhood f / o f  f exists such that for each g ~ gl we have ~ ( f )  ~ ~(g). 

So, we have introduced two concepts of structural stability for systems £ ( f ) .  
However, it turns out that both concepts coincide, in fact, from Lemma 3.1 it 
follows that if ~ ( f )  is structurally stable (as an element of x(S2)), then it is also 
structurally stable as a rational Newton flow. The converse is also true. This 
follows from the forthcoming Theorem 3.1(ii), Lemma 3.2 and the de Baggis- 
Peixoto characterization of structural stability mentioned above. (Note that in 
view of Relation (2.1), the system ~ ( f )  has no periodic trajectories.) 

Under a global boundary condition, structural stability may also be defined for 
systems in the plane. In the following context, it plays an important role in 
Section 4. 

For R > 0 we define DR(CR) as the disc (circle) in C given by [zl ~< R ([z I = R). 
We define x(R) as the set of restrictions to DR of Cl-vector fields on a 
neighbourhood of DR for which CR is a global boundary (i.e., the vector fields 
are transversal to CR). The space x(R) is endowed with the cl-topology. With 
respect to x(R), we may introduce structural stability (including the above 
characterization results) in the same way as in the case of x(S2), cf. [1]. 

Moreover, if X ~  x(R) is structurally stable and E > 0 arbitrary, then for 
Y~ x(R), 'sufficiently' C l - c l o s e  to X, an e-homeomorphism W: DR ~ DR exists 
(i.e., $ is a homeomorphism and moreover, [IS(x) - x[I < E, all x ~ DR) such that 
maps the trajectories of X onto those of Y (respecting their orientations), cf. 
[29]. Therefore, X is also called e-structurally stable. 

3.3. THE SET (~) OF NONDEGENERATE RATIONAL FUNCTIONS 

The function f ~ ~ is called nondegenerate if 

(1) All finite zeros and poles are simple. 
(2) All critical points for f -  eventually including z = oo - are simple (as zeros 

for f'). 
(3) No two critical points for f are 'connected' by a trajectory of ~'(f). 

The subset of ~ consisting of all nondegenerate functions is denoted by ~ .  
Moreover, ~+ := ~ f') ~+, whereas ~o and ~_ are defined in a_ similar way. 

By direct inspection of the expressions of the vector fields dV(f), cf. Lemmata 
2.3 and 2.4a, we find 

LEMMA 3.2. If f c ~t, then, all equilibrium-states of ~'(f) are hyperbolic. 

Using this result, the de Baggis-Peixoto characterization of structural stability as 
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mentioned above, as well as the very properties of the topology ~-, we come to the 
main result of this section (cf. [19]). 

Theorem 3.1 (Genericity and characterization of rational Newton flows). 

(i) ~ is r-open and r-dense in ~ .  
(ii) ~ ( f )  is structurally stable iff f e Jr. 

R E M A R K  3.1. There is a physical interpretation of this result: one easily sees 
that (1.1) yields the differential equation for the streamlines of a steady stream 
with complex potential -log f(z) ,  cf. [23]. So, we may expect that in the case 
where, extended to the sphere, the stream has only finitely many 'sources' and 
'sinks' (this corresponds to f c ~) ,  in general, the phase portrait of At(f) behaves 
extremely regular w.r.t, small perturbations of the coefficients of f.  

3.4. THE GRAPH (~(f) AND THE CYCLE PROPERTY 

Let us consider a function f ~  ~÷ ,  i.e., f ( =  p,/q,,) is nondegenerate and n > m. In 
view of the nondegeneracy of f,  there are exactly n zeros and m finite poles for f 
(all simple) denoted by resp. toi, i = 1 . . . . .  n and aj,  j = 1 , . . . ,  m. For z = 0% f 

has a pole (and thus N( f )  has an unstable node at z = oo). 
The Poincar6 indices (cf. [8]) of the (un-)stable nodes resp. the saddlepoints of 

~ ( f )  equal +1 resp. - 1 .  Application of the Poincar6-Hopf Theorem ([25]) to 

~ ( f ) ,  yields 

n + (m + 1) - 4. C(f)  = 2. (3.1) 

Hence, C ( f ) =  0 iff n = 1; in that case ~ ( f )  is a 'north-south flow', cf. Example 
2.1. 

If n > l ,  the critical points for f are denoted by O'k, k =  1 , . . .  s, where 
s = 4-C(f). The (un-)stable manifold at cr k of ~ ( f )  (cf. Lemma 2.2) is defined as 
the union of {o-k} and both (un-)stable separatrices at ok. 

Now, we are in a position to associate with f a plane graph G( f )  (i.e., a 
realization of an abstract graph, say G(f),  in the plane). 

DEFINITION 3.1. For f e  ~+,  the plane-graph G( f )  is defined as follows: 

- The vertices are the zeros for f. 
- The edges are the (topological) closures of the unstable manifolds at the 

saddlepoints of 2~(f). 

Note that this definition makes sense in view of Lemma 2.1 and because f ~/~+. 
From the nondegeneracy of f and from Relation (2.1), it follows that each 
unstable manifold at a saddlepoint connects two different zeros (of f) ;  this means 
that G( f )  does not admit edges joining a vertex to itself ('loops'). Multiple edges 
(i.e., two vertices joined by more than one edge) may occur; see the forthcoming 
Examples 3.2 and 3.3. 
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If we delete from the plane all edges and vertices of the graph (~(f), the 
connected components  of the resulting set are called the regions of G(f) .  These 
regions are just the basins of the poles for f (see Section 2) and will be denoted by 
a o , . . ,  am. Here,  ao stands for the unbounded region (the basin of the infinite 
pole z = oo) and a; is the region containing aj,  j = 1 . . . . .  m. The number of the 
bounded regions (cyclomatic number) is denoted by /x(G(/)) ;  apparently, we 
have ~ ( G ( / ) ) =  m. The weU-known Euler 'polyhedron-formula'  (cf. [6]), for 
plane graphs: 

# (regions) - 4~(edges) + ~:(vertices) - # (components) = 1 

yields in our case 

(m + 1 ) -  s + n - ~:(components of G(f ) )  = 1. (3.2) 

Together  with (3.1), this yields ~: (components of G ( f ) ) =  1, i.e., G( [ )  is a 
connected graph. 

The vertices of G( f )  are the stable proper nodes of i f ( f ) .  Consequently, the 
angle between two different edges of G ( f )  at a common vertex is well-defined 
and does not vanish. 

Let C be a cycle of G(f ) ,  i.e., C is a closed Jordan curve which is built up 
from an alternating sequence of vertices and edges. We define the numbers nc,  
rc and lc as follows 

nc := number of G(f)-ver t ices  in Int(C) ( = ~ N ( f )  fq Int(C)), 
rc := number of t~(f)-regions in Int(C) ( = ~ P ( f )  f-I Int(C)), 

where Int(C) stands for the interior of C, 

Ic := number of G(f ) -edges  on C (= number of G(f)-ver t ices  on C). 

The vertices of C are denoted by tOc(~), l--- 1 . . . . .  lc. The angles between two 
consecutive edges of C spanning a sector of Int(C) at tOc,) are given by 2rr~bc,), 
where 0 < ~bc,) < 1, l = 1 . . . . .  lc (see Figure 4). 

J'Jc f3l 

Fig. 4. 
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The Cauchy principal value (cf. [23]) of 

is well-defined, and since the zeros and finite poles for f are simple, we find for it 

~c f'(Z) dz = 2qri [ (  ~=l 4~c(,)) + n c -  rc] (*) 
f(z) 

Since C is built up by trajectories of the system 

d z _  f(z(t))  (el.(1.1)) 
dt f'(z(t)) 

one easily derives that the 1.h.s. of (*) is a real value and consequently: 
lc 

r c -  no.  
l=l 

In view of the inequalities 0 < 4~c~t)< 1 for each 4~c¢t), we have proved the 
following lemma. 

LEMMA 3.3 (Cycle Property). Let [ ~ R+, then ]:or each cycle C in (~J(]:) we have 

nc < rc < nc + lc. 

Note that, although in G(f)  multiple edges may occur, from the above Cycle 
Property we see that it is impossible for two G(f)-vertices to be connected by 
more than two edges. 

EXAMPLE 3.1. In the case where f ( e ~ )  is a polynomial, G(f)  is a connected 
plane graph without cycles (a so-called tree). This easily follows from the 
properties of G(f)  which were derived above. 

Let us consider p(z) = (z - zO(z - zz)(z - z3), with Zl, zz, z3 noncollinear. By 
elementary means, one proves (cf. [2, 19]) that p e ~ iff the triangle with zl, z2, 
z3 as its vertices has exactly one longest side. From this it follows that the 
polynomial p, given by 

1 4 
p(z )= z ( z - 1 ) ( z - a ) ,  a = - ~ + - ~ i  

is nondegenerate. In Figure 5a some of the trajectories of the phase-portrait of 
N(p) are depicted; the graph t~(p) is indicated by the solid line in Figure 5b. 

EXAMPLE 3.2. Consider the system 

z n - - 1  
X(/.);  f , (z)  = , n >I 2. 

7 
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0.5 

0 .4  

0,.3 

0 2  

0.'1 

0,2 0.4 O,G 08  1.0 

(o) (b) 

Fig. 5. 

Obviously, 

N ( f . )  = [exp~---n---] k = 0 . . . .  , n - 1 ; P ( / . )  = {0}, 

C(f,,) = { (n-1) - l / "  " exp[ (n+2knrr) i] l k = O, . . . , n - 1  }. 

One easily verifies that arg [ ,  (~r~)~k arg f.(o)) if i~  j where o'i, o" i ~ C ( [ , )  and 
that all finite poles and all zeros for f ,  are simple. It follows that f ,  c ~+ and that 
(~(f,) has one cycle. From a symmetry argument one deduces that all vertices of 
(3([,) are on its cycle. 

In Figure 6a, b the phase-portraits in the case n = 2, resp. n = 5, are indicated 
(the dotted lines give (~([.)). Case n = 2 delivers an example of a graph (~(f) 
with multiple edges. 

(o) 
Fig. 6. 

[-2,2J [2,2} 

{-2,-2) {2,-2) 
(b) 
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EXAMPLE 3.3. Consider the function 

[(z + 2) 2 - 1][(z - 2) 2 - 1] 
f (z)  = (zU 4) 

Obviously, 

H. TH. JONGEN ET AL, 

/v(f)  = {-3,  - 1 ,  1,3}; P(f) = {-2,  2}; 

C(f) = (+ x/ -~ iv/-~, + ~ ix/-~, 0}, 

where x/--- stands for the usual principal value of the square root. 
One easily shows that the positive and negative imaginary axes are (regular) 

trajectories of N(f) .  This is also the case for the intervals into which the real axis 
is subdivided by the zeros, poles and critical points for f. Using a symmetry 
argument, one finds that the phase-portrait of 3;(f) is of the form as depicted in 
Figure 7a; especially one finds that f is nondegenerate. In Figure 7b, the graph 
G(f)  is depicted. 

EXAMPLE 3.4. Let 

(z + 1)(z + 2) 
[(z)  

z 

One easily shows that both unstable separatrices at the (simple) critical point 42 
as well as both stable separatrices at the (simple) critical point -,,/2 lie on the 
circle with center z = 0 and radius 42. From this, one concludes that f is 
degenerate. In Figure 8 some of the trajectories of X(f)  are drawn. 

REMARK 3.2. The phase portraits in Figures 5a, 6a,b and 8 are obtained by 
plotting-out, using a PDP-11 computer, the approximate trajectories of the 
Newton flows involved, w.r.t, a suitable discretization (cf. (1.3)). 

Obviously, the Cycle Property (see Lemma 3.3) may be formulated for any 
connected plane graph. Two plane graphs (~1, (~2 are called equivalent (GI ~ (~2) 
if a homeomorphism 4) from the plane onto itself exists such that under 4, the 
edges and vertices of (~ are mapped onto the edges and vertices of (~2. 

(a) 

Fig. 7. 

(b) 
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(-5,5) 

l 

i h I I I I 

15,5) 

(-5,-5) 15,-5) 

Fig. 8. 

Apparently, this induces an equivalence relation on the set of all connected 
plane-graphs, which respects the Cycle Property. 

REMARK 3.3. A necessary condition for the above-introduced equivalence 
t31-  Gz is that the underlying (abstract) graphs G1, G2 are isomorphic, the 
isomorphism being such that either at each vertex the cyclic order of the edges 
incident with this vertex is preserved or is, at each vertex, reversed. One can 
prove that this condition is also sufficient under the additional claim that the 
boundaries of the unbounded regions (considered as subgraphs) correspond 
under the isomorphism (ef. [33]). 

REMARK 3.4. In the general case of functions f e ~ ,  one can define a sphere 
graph /~(f) with as vertices the zeros and critical points for f (eventually 
including z = ~) and as edges the closures of the unstable separatrices of N([)  at 
its saddlepoints. As in the case of (~([), one can prove, by using_ Poincar6's index 
theorem and Euler's polyhedron formula on the sphere, that H( f )  is connected 
(cf. [33]). In the special case where f e ~ ,  we can define the spherical analogue of 
G([),  i.e., a sphere graph ~([)  with as vertices the zeros for [ on S z and as edges 
the closures of the unstable manifolds of ~ ( f )  at its saddlepoints (cf. [33]). Note 
that ~ ( [ ) ,  f ~  ~ .  may be obtained from (~([) by subdividing each edge into two 
edges. Hence, (~(f) is connected. If f e  ~+,  then (3(f) is the image of (3(f) 
under the stereographic projection from C o n t o  S2\{z = ~}, cf. Lemma 2.3. In 
view of the Relation Y(f)  = - ~ ( 1 / / ) ,  we have: Cr(I//) is the geometrical dual of 

~(f). 

4. The Representation Theorem 

In this section we introduce a special type of plane graph: the Newton graph. We 
show that t~(f), f e  ~+,  is such a Newton graph (Lemma 4.2). Conversely - and 
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this requires a much harder proof - any Newton graph is equivalent to a graph 
G(f) ,  some f e ~+ (Corollary 4.2). 

Let G be a connected plane graph with vertices o)i, i = 1 , . . . ,  n, and regions 
ri, j = 0 , . . .  lZ, where ro stands for the unbounded region. The boundary of rj, 
considered as a subgraph of G, is denoted by 0rj. By deg o)i we denote the degree 
of oJi (= number of edges, incident with ~oi). 

We assume that the concept of angle between any two edges with a common 
vertex is well defined. This assumption is reasonable since an arbitrary plane 
graph is always equivalent to a plane graph with polygons as edges (cf. [6]) and 
since our ultimate aim is to characterize, up to equivalence, certain rational 
Newton flows in terms of plane graphs. Moreover, we exclude the case of a 
'one-vertex graph', so we assume n ~> 2. 

For each wi, with deg o)~ > 1, the embedding of (3 in the plane induces a cyclic 
anticlockwise order on the edges at ~0~. By 

2 7reOi(k), k = l  . . . .  , deg oJi, 0 ~< o~(k) ~< 1, 

we denote the angles at eoi of two edges which are consecutive with respect to 
this order (and measured from the first edge to the second one in an anticlock- 
wise sense). If deg o)i = 1, then we define co~(1> = 1. 

The set 

A(G) :=  {O.)/(k) I i = 1 . . . .  , n; k = 1 . . . .  , deg ~oi} 

is called the set of angles for G. We define for each j, j = 1 . . . .  /x: 

a(Or i) := {oJi<k> c A(G) I ~o~ c Orj; oJick~ spans a sector of r~}. 

DEFINITION 4.1 (Newton graph). (~ is called a Newton-graph if 

(i) 0 < coi(k) < 1, for all i with deg co~ > 1 and all k e {1 . . . . .  deg ~0~}, 

(ii) ~,(0r,) ~O~(k)= 1, for j = 1 , . . . ,  ~. 

Note that, if G is a tree, i.e., ~ = 0, then condition (ii) is trivially fulfilled. It is 
easily seen that a Newton graph G contains no loops and, moreover, we have 
Ix < n. (In the case of a tree the last assertion is trivial; if G is not a tree, it 
follows by observing that 

d e g  ~o i 

j~l(a~(Orj) O)i(k))"~'l~,i~=l\k~l £Oi(k') :n 
for all i e { 1 , . . . ,  n} and Oro =/= t~.) 

R E M A R K  4.1. From a graph-theoretical point of view, the definition of Newton 
graph is not very satisfactory, since it deals with the concept of angle. However, 
it is possible to give a purely combinatorial criterion for an arbitrary plane graph 

to be equivalent to a Newton graph, namely (~ must fulfil the Cycle Property 
(see Lemma 3.3). One side of the assertion follows directly from Definition 4.1. 



T H E  N E W T O N  M E T H O D  F O R  M E R O M O R P H I C  F U N C T I O N S  99 

The proof of the other side, see [33], would blow up the size of this paper, and 
will be published separately (cf. [21]). 

Let (~ be a Newton graph with /z ~> 1. Then, for each j e{1 . . . . .  /~}, the 
subgraph 0r i is Eulerian (i.e., a closed eulerian trail (~) exists: an alternating 
sequence of vertices and edges beginning and ending with the same vertex and 
containing all vertices and edges of Orj, but each edge only once; see Figure 9). 
We construct such a trail ~'i as follows: choose an arbitrary edge, say x~, of Or i. 
Then, Xl is incident with two different vertices of degree > 1. This follows from 
the facts that x~ is not a loop, rj is bounded and the very definition of the Newton 
graph. Only one of these vertices, say to1, has the property that the angle at to1 
between xl and the G-edge proceeding x~ (w.r.t. the anticlockwise ordering of 
edges, incident with to1) belongs to a(Orj). The other vertex in x~, say to2, has the 
exclusive property that the angle at to2 between x~ and the (~-edge at to2, say x2, 
preceding x~ belongs to a(Orj). Note that the uniqueness is a consequence of 
Condition (i) in Definition 4.1. Now, we let x2 play the role of Xx above. We find 
two (different) x2-vertices: to2 and to3 (in the role of to1 resp. to2 w.r.t, x~) and an 
edge x3 (in the role of x2). So, we can go on. The procedure stops if we achieve 
the edge x~ again. The resulting sequence of vertices and edges is an Eulerian 
trail (in fact here we need Definition 4.1 again). Using the Cycle Property, a 
more formal construction of ~ is given in [33], compare Remark 4.1. The 
uniquely determined angle between two consecutive edges in rj at a common 
vertex which spans a sector of rj is referred to as to 'the angle of r~ of this 
consecutive pair at the common vertex'. 

Let us consider a function f e ~÷ which is not a polynomial of degree _1 (thus 
N(f )  is not a north-south flow, cf. Example 2.1). We recall that £ ( f )  is 
structurally stable. Moreover, N(f )  has an unstable, nondegenerate proper node 
at z = ~ and does not exhibit periodic trajectories. 

The canonical regions of N(f )  are the connected components of the set which 
is obtained by deleting from C the (topological) closures of the stable and 
unstable manifolds at the saddlepoints of N(f) .  

As a direct consequence of the results of Peixoto [28, 30] on structurally stable 

x 1 

12 

The  labels 1 . . . .  , 12  give the orientation of 

the Euler  trail ~'i of arj. 

Fig. 9. 

Or k is not  an Euler trail. 
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(a) ~i¢k) (b) ' ~  C) critical 
, ,o , , .oo, .  z .o . . . o  

tical I 
(d point (el T point 

Fig. 10. 

systems o n  S 2, a canonical region of ~ ( f )  is, a priori, one of the types as depicted 
in Figure 10. 

However, since we deal with systems £ ( f ) ,  f e  ~+, canonical regions of the 
type as depicted in Figure 10d,e do not occur. This follows from the facts that 

(1) In view of the Relation (2.1), we have on trajectories of £ ( f ) :  arg 
f ( z )  = constant. 

(2) The zeros and finite poles for f are simple. 
(3) The zeros and poles for f provide proper nodes of JV'(f). 

The existence of the other types follow from the examples given in Section 3. 
In an obvious way (see Figure 10) each angle ~Oi(k) e A ( G ( f ) )  determines 

exactly one of the canonical regions of JV'(f). We denote this canonical region by 
A~(k)(f) or, if no confusion is possible, by Ai(k). 

Let ~% be a zero for f (=vertex of G(f))  such that deg ~% > 1 (see Figure 
10a,b). Then there are exactly two critical points for f on the boundary of each 
Ai,,tk), k = 1 , . . . ,  deg oJ~,. For later use we introduce the following notation: if 
oJ~,(k) is measured (in an anticlockwise sense) from the G(f)-edge xl to the 

(2) G(f)-edge x2, then the critical point on xl(x2) is denoted by "i,,(k)--(1) (O'i,,(k)). 
Next, let to~, be a zero for f (= vertex of G(f)) such that deg ah, = 1 (see Figure 

10c). Then, there is exactly one critical point for f on the boundary of A~,o ~ . This 
critical point is denoted by o%(1). 

LEMMA 4.1. Let f e ~+ and f ~  (polynomial of degree 1). For each zero oJi with 
deg toi > 1 we have 

1 f(o'~#~)) 
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where arg stands for the principal value of the argument function with the cut along 
the positive real axis. 

Proof. The function f is conformal at to~ (since to~ is a simple zero for f).  
Consequently, f is angle-preserving at to~. From this, the assertion follows since 
on trajectories of N ( f )  we have arg f (z)  = const. 

Note that the argument of the quotient in Lemma 4.1 are taken over complex 
numbers which are not contained in the interval [0, oo[. []  

C O R O L L A R Y  4.1. If Ai(k) is a bounded canonical region (see Figure 10a) then 
the angle at the pole equals the angle at the zero. 

Proof. This follows from the previous lemma and the Relation ~ ( f ) =  
- ~ (1 / / ) .  [ ]  

L E M M A  4.2. Let f e ~t+ and f ~  (polynomial of deg. 1). Then, G(f)  is a Newton 
graph. 

Proof. The bounded region rj of (~(f) contains the pole otj. All canonical 
regions of ~ ( f )  in rj are of the form as depicted in Figure 10a with a i as a pole. 
Condition (ii) of Definition 4.1 therefore follows directly from Corollary 4.1; 
condition (i) of Definition 4.1 is fulfilled since the zeros for f are proper stable 
nodes of )¢'(f) (see Section 2). []  

For R > 0, we consider again the circle CR := {z I lzt = R}. Since z = ~ is an 
unstable proper node for the system ~ ( f )  (Lemma 2.4) an Ro > 0 exists such that 
for all R,  R > Ro, we have that CR is global boundary for ~ ( f ) .  This implies that 
N(f)  t_J C(f)  U P(f)  is contained in Int(CR). 

Let R > Ro. 
For unbounded canonical regions A~(k) (see Figure 10b,c) the intersection 

Ai(k) fl CR is a connected open arc, denoted arc!~)). The positive angle spanned 
by this arc is denoted by 2¢rC~k). 

L E M M A  4.3. Let Ai(k) be an unbounded canonical region determined by the 
G( f )-angle ¢o i(k) . 

(i) For all 6, E > 0, a n  R1, R1 > Ro, exists such that R > R1 implies 

6oi(k)-- Ci(k) < 6. 

(ii) In the situation of Figure lOb we have that for each partition 

- ' ' " > O ,  COi(k) -- OJi(k) + ~O'/(k) with Oa~(k), ~O~(k) 

exactly one z* ~ a r c ~  )) exists such that the trajectory of ~'(f) through z* (and 
tending to oJi) subdivides the angle ~oi(k) into two angles namely ~o'i(k) and 
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O~'i'~k), ~'i(k) being measured in an anticlockwise sense from the G(f)-edge 
containing ~r!~) to this trajectory. 

( A similar property holds in the situation of Figure 10c.) 
Proof. 

(i) It is not hard to see - use the Relation (2.1), the fact that f is conformal at 
oJ~ and the very definition of a rc l~  - that 

Im[ 1--- 1.27r Ja~¢,,~ f f'(z) dz].  OJ,(k) = f(z) 

Note that for 

izl> Ro: f ' ( z ) -  n -  m ~- o(1).  
f (z)  z 

This is easily seen, e.g., by considering the Laurent series of 

f'(z) 
on {z I lzl > Ro}. 

f(z) 

The assertion follows immediately (by estimating the integral). 
(ii) Since oJi is a stable proper node of )7(f), exactly one trajectory of ~ ( f )  

exists which exhibits the partition of 0Ji(k). Since each trajectory in A~ck) 
intersects a r c ~  exactly once - CR being global boundary - the point z* is 
uniquely determined. [ ]  

Now, we turn over to the main result of this section, namely the converse of 
Lemma 4.2. We need some more definitions: 

Given two connected plane graphs 01, G2 for which the angles are well- 
defined. Suppose that: 0 1 -  02, the isomorphism being induced by the orien- 
tation preserving homeomorphism ~b. Let oJ~ck ) be an angle for 01 between the 
Gredges  x~ and x2 containing 0~ - measured from xl to x2. Then, the angle 
between the G2-edges ff/(Xl) and ff/(X2) -- measured from ff/(X1) to O(x2) - is 
denoted by ~0*(oJick)). 

DEFINITION 4.2. Let e > 0 be arbitrary. The function f ~ ~+ is said to 'realize 
the Newton graph G w.r.t. •' if an orientation preserving homeomorphism q,: 
C--> C exists such that 

(i) ~0 induces an isomorphism 0 -  G(f)  
(ii) ]o)i(k)- ff/*(0)i(k))l < E, for all angles oJi(k) c A(G). 

THEOREM 4.1 (e-Representation Theorem). Let G be a Newton graph and let 
• > 0 be given. Then, a function f ~ ~+ exists which realizes G with respect to •. 

COROLLARY 4.2 (Representation Theorem). Given an arbitrary Newton graph 
G. Then, there exists an f c ~+ such that G ~ G(f). 
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~orbitrary plo~ne tree 
(o) (b) (c) (d) 

Fig. 11. 

A function f e  ~+ is said to realize a given plane graph t3 if ( ~  (~(f). From 
Lemma 4.2, Corollary 4.2 and Remark 4.1 it follows that plane graphs as 
depicted in Figure 11 may be realized by a function in ~+, whereas this is 
impossible in the case of the plane graphs as depicted in Figure 12. 

Proof (o f  Theorem 4.1). We give the proof by induction on n(=order of t~) 
and/~(= cyclomatic number of t~). 

Step 1. Suppose that t z = O ,  so G is a tree. If n = 2 ,  then the function 
f ( z )  = (z  - tol)(z - to2), with wl :~ to2, realizes (~ w.r.t. (any) e > 0. 

Under the assumption that the assertion is true for trees of order n, n I> 2, we 
consider a (Newton) tree (~ of order (n + 1). 

Graph t~ ° is a plane tree which is obtained from t~ by removing all points of a 
G-edge, say x,  corresponding with a vertex of degree 1, with the exception of the 
x-vertex which has degree >1 (use the fact that n 1> 2). Obviously, (~0 is a 
Newton tree of order n. 

The vertices (angles) of G are denoted by toi(toi(k)), i = 1 , . . . ,  n +  1, k = 
1 , . . . , d e g  toi. The labelling is arranged in such a way that x is the edge 
determined by to, and to,÷1, deg to,+~ = 1 (thus deg to, > 1). The (~-angle at to. 
between x and the edge preceding (proceeding) x w.r.t, the anticlockwise order 
induced by the embedding of t~ is denoted by 60.(ko)(tott(k,,+l)). ko = deg to,, - 1. It 
follows that o3,(~,,):= to-(ko) + to-(ko+~) is an angle for ~o (at to,). For the other 

(a} (b} (cl (d) 
Fig. 12. 
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G°-angles, denoted by O31(k), we find 

t~i{k) = a~i(k), i = 1 , . . . ,  n; k = 1 , . . . ,  d(i); i(k) ~= n(ko); d(i) = deg to~ if 
i ~ n; d(n) = ko. 

Without loss of generality we may assume that 

0 < E < min A(G), (1) 

where rain A(G) stands for the minimum taken over all angles for (~. 
By induction-assumption, t3 ° is realized w.r.t. E/3 by a polynomial p in ~÷ of 

degree n, by means of an orientation preserving homeomorphism ~b: C--->C. We 
shall construct from p a polynomial, again in ~÷,  of degree (n + 1) which realizes 

with respect to e. 
Obviously, we have N(p)= { ~ ( w , ) l  i = 1 . . . . .  n}, and 

o .k l< 3, i =  1 . . . .  , n ;  k = 1 . . . . .  d(i). ( 2 )  

We choose R0, Ro > 0, such that for all R, with R > Ro 

N(p) U C(p) is contained in the disk DR :---- {Z I lzl ~< R}, (3) 

The circle CR := {z ][z] = R} is global boundary for N(p). (4) 

Let R, R > R0 be arbitrary but fixed. 
Since p is a polynomial (thus p has no finite poles) all canonical regions of p 

are of the types as depicted in Figure 10b,c. Consequently, with respect to p, the 
arcs arc~k )) are well-defined, i = 1 , . . . ,  n; k = 1 , . . . ,  d(i). See also Figure 13. 

Let z*earc(,~,) be the (uniquely determined) point such that the ~(p)-  
trajectory through z* subdivides the (~(p)-angle ~*(t~,{ko~) into the angles t~l, a2 
(the order being in accordance with the anticlockwise ordering on the angles at 

Z "!~ 

Grc (R) 
n ( k  o ) 

Fig. 13. 
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~b(~o.)) such that 

aa = 00.~,), a :  = q,*(o3.~,)) - co.c~ ) . 

Such z* does always exist as a consequence of Lemma 4.3(ii); note that in view of 
(1) and (2), we have C~z > 0. 

From (2) we obtain 

E 
lot2 -- (On(k,,+1)[ < ~-  (5) 

The angles spanned by the arcs into which z* subdivides arc(.~,) are denoted 
by 2~rCl, 2rrc2, ca, c 2 > 0  (the order being in accordance with the positive 
orientation of CR). We define: @ = min{2~rcl, 2qrc2}. 

For r />  0 and v 6 R we define the polynomials q., .  as follows 

qn,,,(z) = ( -  r~ e-i" z + 1)p(z) 

As a consequence of the forthcoming Lemma 4.4(i), we have 

Taking r/, with r />  0, sufficiently small, the vector  field ~q,~.v) l DR 
will be - u n i f o r m l y  in v - arbitrary Ca-close to N(P) I DR. (6) 

Since p ~ ~+ and CR is a global boundary for N(p), it follows from Theorem 3.1 
and the characterization theorem of de Baggis and Peixoto on structural stability 
in the plane (cf. Section 3): 

The system -~(P) I DR is E-structurally stable. (7) 

From (6) and (7) it follows that an 771, 0 <  rh < 1/R,  exists such that for all rl, 
0 < r / <  rh, and all ~,cR there are orientation preserving homeomorphisms 
• .,~ : DR ~ DR fulfilling the following properties: 

CR is global boundary for )((qn.v), all v c  R (8) 

The (maximal) trajectories of a~(p) I DR are mapped by ~,~,v onto (maximal) 
trajectories of ~'(q,.~) I DR ; in particular zeros and eritical points for p are 
mapped to zeros and critical points for q,~.., respectively. (9) 

• For all z c DR and all v e R, we have I~.,~(z) - z I < 61, where 

6a = m i n { - ~ , ,  ~O(~o,)- ~b(~o~,)l; i , i ' = l  . . . .  , n ; i ~ i ' }  (10) 

Note that the maps ~.~.~ are orientation preserving in two senses: 

- Any positively oriented closed Jordan curve in DR is mapped by ~ , . v  onto 
such a curve. 

- The homeomorphisms ~ , .~  map trajectories onto trajectories respecting the 
orientations of these trajectories. 

The properties (8), (9) and (10) yield the following conclusions which hold for all 
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7 with 0 < 7 < 171 and for all u ~ R: 
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(a) The n different zeros for p are fixed points for *n,~. In fact, the zeros for p 
are also zeros for qn,v. 

(b) The polynomials qn,v have (n - 1) simple critical points inside Ca.  
(c) The polynomials qn,. have exactly one zero (namely 1 /7 )e  i~) and exactly 

one simple critical point, denoted o-n,v, on C \ D a .  
(d) An unstable N(p)-manifold (at a critical point for p) which 'connects '  $(oJi) 

and qJ(toi,), i ~  i', is mapped under ~n,v onto an unstable N(q,7,~)- 
manifold which also 'connects '  ff(toi) and qJ(to~,). 

(e) The ~(qn,v)-trajectory through z* is regular and tends to ~(to,). 

If we denote by 7+(~rn,~), 7-(o'~,~), respectively, the stable, unstable manifold at 
o-~,~ of N(q,7,~), then (a)-(d) yield (cf. Figure 14): 

(f) v+(tr~,~) N c a  = 0. 
(g) One of the separatrices in %(o%,~) tends to (1 /7 )e  i~ and does not cross 

Ca.  The other separatrix in 7_(o'n,~) crosses Ca only once and tends to a 
zero or to a critical point for q,~,~ inside Ca.  (Use also Lemma 2.1.) 

(h) The polynomials qn,~ are nondegenerate iff the only separatrix in 7-(0%,,) 
which crosses Ca tends to a zero for p. (Use also (f), (g).) 

From now on we restrict ourselves to 7 with 0 < a 7 < 71. 
- -O We define the plane graph G~n,, ) as follows: 

- -O - The vertices of G~n,v ) are all zeros for qn,~ inside Ca. 
- The edges of G~,~,v)-° are all (topological) closures of the unstable ~(q~, , ) -  

manifolds at the critical points for qn,, inside Ca.  

~ 7. (o'~, v ) 
z / 

I 

CR 
Fig. 14. 
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In view of (a) and (d) it follows that G ( p ) ~  -° G~n,~), the graph isomorphism being 
induced by ~n,~- Consequently, -° G~.,~) is a plane tree. 

- -O Obviously, the angles for Go~,~ ) are well-defined. 
The angle of -o G~.,~) corresponding (under ~n,~) with the (~(p)-angle qJ*(OSitk)) 

is denoted by 

• ,~,~ o ~O*(~b~tk)), i = 1 . . . . .  n; k = 1 . . . .  , d(i). 

In the case that d(i) = 1 we have: 

~0"(~i~1)) = ~ *  o ~b*(~io)) = 1. (1 la) 

If d(i) > 1 then Lemma 4.1 and (d) yield 

qn,~(.,7,~(o.!~)) ] 1 p(o-!~))_ arg ~ . (1 lb) 
~l*(Oi(k)  ) -- XIf~, v o ~J*(6Oi(k)) = - ~  arg p(tr!~)) qn..(~n,~(o',t~))] 

In view of the e-structural stability of 27(p) [ D~ and (6) it follows from (1 1) that, 
uniformly in v: 

lim (~b*(03 ~k)) * - ~ , ,~  o qJ*(03~k))) = 0, i --- 1 , . . . ,  n; k = 1 . . . .  , d(i). 
n~o 

We conclude that an */2 with 0 <  ,72< */~ exists such that for all */, with 
0 < */< */2, and all v c R we have: 

- o  E 
Go~,.) is realized by p with respect to ~. (12) 

Suppose 0 < 7/< "02. 
Consider the ~(q,,~)-trajectory through z*. This trajectory subdivides the 

- o  * o * - 1 2 Gtn,~o)-angle ~,7,- ~b (tOntk,,)) into the nonvanishing angles flt~,.) ,g~,.) ,  the order 
being in accordance with the anticlockwise ordering on the set of angles at ~b(ton). 
This is an easy consequence of (e). 

Using essentially the same techniques as needed for (11) and (12) we derive 

There exists an ,13, with 0 < */3 " ~  "O2 such that: 

i 3, i=  1,2; all u e R .  (13) 

From (12) and (13), the induction assumption on ~o and (e), (h), it follows that (7 
is realized w.r.t. ~ by the nondegenerate polynomial q,~ ... .  0 < 77 < "03, if we are 
able to prove that an vo ~ R exists such that ,/_(o',,v,, ) contains z*. The existence 
of such Vo is shown as follows 

Let "0 with 0 < */< *13, be chosen. 
In view of (g) it follows that y_(o-n,v ) has exactly one point in common with 

CR, say z~,~. Consequently, the following map is well-defined (see Figure 14). 
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= ~ CR w h e r e  X1 e iv = z,~,v.* 

In Lemma 4.5.(i) we shall prove that X1 is surjective. This concludes the proof of 
Step 1. 

Step 2. Suppose that the theorem is true for Newton graphs with cyclomatic 
number m with m>~O arbitrary. We prove that, under this assumption, the 
theorem is also true for a Newton graph G with/~((~) = m + 1. 

Since this proof, for a large part, runs along the same lines as the proof exposed 
under Step 1, we just focus our attention to those aspects which are different. 

As usual we denote the regions of 1~ by r0, r l , . . . ,  r,,+l where ro is the 
unbounded region. 

Let x be a (5-edge with x c Orof')Or~,, some ]o~ { 1 , . . . ,  m +  1}. Such x always 
exists, since ~ ( G ) =  m + 1 > 0. 

If we delete from (~ all points of x with the exception of the (~-vertices in x, 
then we obtain a Newton graph t5 °. 

Obviously we have/.L((5 °) = m and order (~o = n. 
Without loss of generality we assume that jo = m + 1, thus rl , .  • . ,  rm are the 

bounded regions of (~o. 
The orientation of the Eulerian trail ¢,,÷1 of Orm+~ induces an orientation on x. 

(Recall the uniqueness of the construction of "rm+l in view of the fact that (~ is a 
Newton graph.) The labeling of the (~-vertices toi, i =  1 . . . . .  n is arranged in 
such a way that tOl(tO2) is the begin (end) vertex of x. By to1(2), o92(1) we denote 
the angle of ~-,,÷~ between x and the edge preceding (proceeding) x in r,,+l. See 
Figure 15. 

The angles of 'r,,+l are denoted by (~)1(~---0)1(2)), (~)2(=0)2(1)), (~)3 . . . . .  (])s, the 
order being in accordance with the orientation of ¢,,+~. Thus, s = the number of 
edges in ~,.÷1 ; since there are no loops in (~, we have s >I 2. 

Without loss of generality we may assume 

0 < • < min A((5). (1') 

By induction assumption, an f in ~÷ (again represented by pJq,,,) exists which 
realizes (~o with respect to •/6s by means of the (orientation preserving) 

Cs  " "rm'~ w~ 

f , , ,  _ 
r 

f 

W1 ~ - " ~  Wl111 

Fig. 15. 
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homeomorphism ~0: C ~  C 
Since f ~ ~+ an Ro, Ro > 0, exists such that for all R > Ro: 

N(f)  [.J P(f) U C(f) ~ DR, (3') 

C(R) is global boundary for W(f). (4') 

Let R, R > Ro, be arbitrary. In the case that s > 2, the (~-angles ~bi, l = 3 . . . .  , s, 
are also c~°-angles. By A we denote the union of all canonical regions - A,,  - of 
N ( f )  determined by the angles ~b*(~bi), l = 3 . . . .  , s. If s = 2, we define A = 0. All 
canonical regions A,~, l ~ 1, 2, are of the form as depicted in Figure 10b. 

One easily verifies that, in the case s 1> 4, each intersection .Y~, f) fi~,÷,, is just 
the closure of one of the trajectories in the stable £ ( f ) -mani fo ld  at the critical 
point for f on the G(f) -edge between the zeros for f corresponding with thl and 
~bz+l ; l = 3 . . . .  , s - 1. See Figure 16. From this it follows (use (3')) that A (3 CR is 
a closed connected arc (eventually empty), denoted by arc(n)(A). The t~(f)- 
angles  ~*(tOl(1) + tOl(2)), ~/*(0)2(1) -~- 602(2) ) determine the canonical regions A1, A2. 
These regions are of the form as depicted in Figures 10b or c. The arc A1 n CR is 
oriented in accordance with the positive orientation of Cn ; the begin(end)-point 
of this arc is denoted by A~n)(A~m); see Figure 16. 

We define: A ' =  A~ U A O A2. One easily checks that ~,'fq CR is a closed, 
connected, nonempty arc. This arc is denoted by arc°~)(A'). 

As in Step 1, we can choose in the arc(AEn CR) an Z~R) such that the 
W(f)-trajectory through Z~'R) subdivides the G(f)-angle  ~*(to2(1) + tOE(E)) at ~b(to2) 
into any two nonvanishing angles a l ,  a2. We choose a l  = to2(1)( = ~b2), where this 
angle is measured in an anticlockwise sense from ~b(y), y = ((~-edge proceeding x 

Fig. 16. 
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in T,,÷I), to this trajectory. The positively oriented arc with beginpoint A! R) and 
endpoint z~'R) is spanned by a positive angle, say 2wc(m(ai, z*); i = 1, 2. 

We are going to fix R in a suitable way. 
Since t3 is a Newton graph and t~ ° is realized by f w.r.t, e/6s we have 

~*(4 , , )  + 4,2 - (1 - 4,1) < g ,  

~*(4~z) + 4~ + 0*(~om) + ~o1(2)) - (1 + ~o,O) ) < 6 (14) 

where ~=3 0*(40 := 0 if s = 2. 
There exists an R1 with R1 > Ro such that for all R with R > R~ 

1 ( 3) c(R)(A1, Z*) > - - "  1 + ~x(i)- , 
n - - t ? 1  

C(R)(A2, Z * ) <  • 1 - - t o 1 ( 2 ) +  . (15) 
71--/I'1 

This follows from (14) and from Lemma 4.3(i) as well as from techniques as used 
in the proof of latter lemma. 

Put qb(z)= z-"+' f (z) .  Without loss of generality, we may assume that 
lim~__~ 4~(z)=-1 .  Consequently, there exists an R2 with R2 > Ro, such that for 
all R > R2 we have arg O(z) depends continuously on z if z traverses the circle 
CR and, moreover (for all z e CR): 

6 
larg ~ ( z ) -  ~ <]-6 (16) 

We fix R such that R > max(Rl, R2). 
We consider, for all ~/> 0, v e R, the functions 

gn.~(z) = ( -  rl e -iv z + 1)-If(z). 

Since t3 is a Newton graph and thus m + 1 < n, we have gn,v e ~+. 
Properties (6) and (7) of Step 1 also hold if f(g,,v) plays the role of p(q,, ,)  in 

Step 1. We refer to these properties as (6') and (7'). The validity of (6') follows 
from the forthcoming Corollary 4.3, whereas (7') follows from the facts that f e 
and CR is global boundary of £(]) .  

Although it will not be explicitly stated, the following properties and state- 
ments hold (as in the case of their analogues in Step 1) for all v c R and for all 
positive, sutticiently small -q. 

In analogy to (c) in Step 1 we have: 

(c') On C\DR, the functions g,~,v have exactly one simple finite pole (namely 
(1/7) el"), one simple critical point (denoted o',~,~) and no zeros, 

Moreover: all critical points for gn,, are simple; N(f) = N(g,~,,). 
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As in Step 1, we define the plane graph (~,~,v) as follows: 

The vertices of -o - G(,,v) are the zeros for g,~,~ inside Ce. 
- The edges of ~(o ,,) are the (topological) closures of the unstable N(g~,v)- 

manifolds at the critical points for gn,v inside CR. 

As in Step 1 we have: 

The function f realizes -° G(n,~ ) with respect to e/6s. 
The graph isomorphism underlying t g ( f ) -  -° G(n,~ ) is induced by 
orientation preserving homeomorphic 'perturbations' ~,~,~: De--~ DR. (12') 

(The proof of (12'), which is essentially based on (6') and (7'), runs along the same 
lines as the proof of (12) and will be omitted.) 

The stable (unstable) ~(gn,~)-manifold at o-~,~ is denoted by %(o-n,~) 
(7_(tr,,~)). Both separatrices in 3,-(trn,v) cross the circle CR only once. This 
follows from the fact that CR is also a global boundary for ~r(gn,~), outside C~ 
there are no critical points (different from o'~,~) and no zeros for g,~,~, z = 00 is a 
pole for gn.~ and Lemma 2.1. (See also Figure 17). 

The intersection points of 7_(o-n,~) and CR determine two open arcs of CR. 
For exactly one of these arcs the following property holds: the ~(gn,~)-trajectory 
through any of its points emanates from (I/r /)e i~. 

We denote this arc by arc/~,)~) and orient it in accordance with the positive 
orientation of CR. By zn,,,(zn,,,)* ** we denote the end (begin) point of arcln,~ ) .m The 
positive angle spanned by arc /nR)v) is denoted by 2 Irc/R?,). 

Since for each suitable pair (~/, v) the point z*,~ is uniquely determined, the 

- "  7+[ 

' z** . .  / - ~,Vo 

Fig. 17. 

°'R.v o) 
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following map ( ' / f ixed) is well-defined: 

x z :  z llzl = --, CR where X2 e iv -- z,~.~.* 

It turns out (see Lemma 4.5) that )(2 is surjective. Therefore,  we may choose 
Vo c R such that z*~.v,, = Z~R). (Note that Uo depends on the choice of 7/.) As in 
Step 1 the separatrix in 3,_(o-n,~o) through z~' m tends to @(to2) and moreover  for 

1) - o  the angles ¢l/n,vo),/31~),v,,) into which this separatrix subdivides the G(,~,~,,) angle at 
¢(to2), we have: 

It~i o . )  , < - p ( . .  ~,,)1 6 s '  i = 1 ,  2 .  ( 1 3 ' )  

Note that: 

- If the separatrices in 7-((%,v) tend to zeros for gn,~ (inside CR), then, in view 
of Relation (2.1), these zeros must be different. 

- Since CR is a global boundary for ~(gn,v) the separatrices in N(o-,~,~) cannot 
cross CR. One easily shows that one of these separatrices emanates from 
(1/7/) e i~ and the other from z = ~ (see Figure 17). 
Similar to (h) in Step 1 we can prove: 

(h') The functions gn.~ are nondegenerate if[ both separatrices in y_(o-n.,) tend 
to zeros for g,,,~. 

We are going to fix , / i n  a suitable way. Let ' / , ,  'h  > 0, be such that for all " / •  
] 0, ,h[, the properties and statements above which depend on the choice of "/ 
hold. 

In view of (6') and (7') we may choose an ,/2, "/2 < "/,, such that, for all z • DR, 
v • R and for all 7/•  ] 0, "/2[, w e  have 

laP,~ v(z) - z] < ~rR • (17) 
' / 1 - - m ' 6 "  

"A(R)~ The positively oriented arc of CR with ~n,~t i y as the beginpoint and z~m as 
the endpoint is spanned by the positive angle 21rc(~R~(A~, z*), i = 1, 2. From (15) 
and (17) it follows (for all 7/•  ] 0, '/2[ and all v • R) 

c(R')( /~I '  Z * ) > '  - -  n - m  1 ( 1 + t ° 1 ° ) - 2 )  

. ( R ) t x  z * ) < - - I  (1 - -  to1(2) + 2)  (18) t~ "hVk"x2' n -- m 

If z traverses arcl~!~ ) from zn,~** to z..~* then the argument of gn,~(z) increases 
continuously by 2 It. 

This follows from: (1) (1/'/) e i~ is a simple pole for g~,~ ; (2) Relation (2.1); (3) 
Each 2~(g,.~)-trajectory through arc/nR)~) emanates from (l/r/) e ~v. 
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Suppose that if z traverses  arc^^,$ from z*,: to z*,,,, the argument of f(z)  
increases continuously by A,,, . 

Since lim ,lo g,,,(z) = f (z) (uniformly in v) we have: lim ,,lOAq,u = 2 T (uni- 
formly in v). From this it follows (in view of (16)) that for 17 (>0) sufficiently 
small and all v: 

We conclude (use also (18)) that, putting v = vo, we may choose a number 
q3 E 10, q2[ such that 

In view of the choice of q3 and vo, (19) and h' we have: g, , , , ,~  @+. Con- 
sequently, the plane-graph %(g,,,,) is well-defined. The bounded region of 
G(g,,,,,) which is determined by (1/q3) ei"ll is denoted r',+, . Since we have 
(q,,,,, is orientation preserving): 

it follows that the vertices in dr',+, are just the c:,,,,,,-vertices which correspond 
(under P,,,,, 0 $) with the vertices in arm+l. 

- 
By induction assumption and in view of (12') we have G" - G:,,,,,) and the 

underlying graph isomorphism (say 5) is induced by q,,,,, o JI. 
Obviously, we can extend this equivalence to an equivalence between and 

C?(g,,,,,) by defining l ( x )  : = y-(a,,,,,); cf. Remark 3.3. 
The angle of corresponding with the T,,,+~-angle +I is denoted by +;, 

I = 1, .  . . , S .  For I = 2,3 , .  . . , s we have: 

This is a consequence of the induction assumption, (12') and (13'). Since G as 
well as G(g,,,,,) are Newton graphs, it follows, in view of (20), that 

This completes the proof of Step 2 and thus the proof of the theorem. 0 

We conclude this section by deriving (separately) some results which we have 
already used in the proof of Theorem 4.1. 

As usual, we denote by DR the disc {z )1z16 R} in the z-chart of S2, whereas 
f)E stands for the disc { w  \ \w \  S 1iR) in the w-chart of S2; w = 112, R > 0. Let f 
be a function in 3 (not necessarily in 3,) and define g,,, as follows: 

g,,,(z) = (- 17 e-'"z + 1) - f (z) q, v E R. 
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Then we have: 

LEMMA 4.4. For any fixed, positive R: 

(i) limn,oll(~(f) - 27"(g~,~)) I Ds~l = 0, uniformly in v. 

(ii) lim . . . .  ,[[(a~(g,,,,v)- ~(g,,,,,~o)) I DWll = 0, for each fixed pair (~o, Vo). 

Here II II stands for the Cl-norm on the set of CLvector fields defined on DR, 
respectively D ~ . 

Proof (Compare the formulae proceeding Lemmata 2.2 and 2.3; f = p,/q,,). 

(i) One easily verifies that: 

~ ( f )  = Iqm(z)l 2. p~(z), p ' ( z ) - l p . ( z ) l  2. q. ,(z) ,  q "(z) 
Iq,.(z)l 4 + [ p,(z)l 4 

and 

~ )r"g,," = Iq,,(z)l 2" p, (z ) ,  p',(z) -[p,(z) l  =- q,,(z),  q ' ( z )  + ~ .  El(Z , Z., 77, 1J) 

[qm(z)l 4 + l -  ~ e-'~z + 1['*. Ip (z)l 4 

where F1 stands for a polynomial in z, 2, ~, e i~ and e -iv. 

Consequently, we have: 

F~(z, 2, ~, v) 
~'( f)  - ~(gn,~) = - ~ (Iq,,(z)[4 + ip,(z)14). ([q,.(z)l 4 + l -  n e- '"z + 114. Ip,(z)[4) ' 

where F2 stands for a polynomial in z, 2, 7q, e i" and e -i~. 
Note that the denominator of the r.h.s, of the last expression is a polynomial in 

z, ~?, ~t and e ~=i" which - for z c DR and r /c  [0, ~1], rh > 0 sufficiently small - 
does not vanish. (Use the fact that p , ,  q,, are relatively prime.) 

It follows that: 

lim ~ ( f )  - ~(g, ,~) I DR = 0. 
n J,0 

Since the expression for ~ ( f ) - ) ( (g ,7 ,v )  is a rational function in z and 2, the 
components of this vector field are rational functions in x and y (x = Re z, 
y = I m  z), with denominators which do not vanish if ~/is chosen sufficiently near 

t o  0 .  

The assertion follows immediately from this (the uniform convergence being a 
consequence of the fact that v only appears in terms of the form e~:i~). 

(ii) The proof follows by inspection of the expression for the vector field 

Note that we must distinguish between the cases n ¢: m, n = rn; compare 
Lemma 2.3. Since the proof runs along the same lines as the proof of (i), we omit 
the tedious details. [] 

C O R O L L A R Y  4.3. Let ~,n,v be of the form ~,n,v(z) = ( -  ~! e-i~z + 1) -1" f(z) .  



THE NEWTON METHOD FOR MEROMORPHIC FUNCTIONS 

Then we have: 

(i) l i m ~ o  I1(:~([)- :7"(~,,~)) I D~I--- 0, uniformly in v. 
(ii) lim,.__,~o I1.~(~,o,~) - :?(~,o,~o)) I D~II = 0, /or each fixed pair (no, Vo). 

Proof. This  fo l lows  direct ly  f r o m  the preced ing  l e m m a  and the relat ions 
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interchange the roles of Pn and q,,,. [] 

LEMMA 4.5. The mappings X,, X2 (defined in the proof of Theorem 4.1) are 
continuous and surjective. 

Proof. We only give the proof for Xl since the proof for X2 is similar. We 
emphasize that (see the proof of Theorem 4.1, Step 1) the numbers R and '0 are 
chosen in such a way that for all v: 

(1) Ca is global boundary for ~(q, ,v) .  
(2) The functions q n,v have only one zero and one critical point (both simple) 

on D ~ .  

Moreover (see Lemma 2.4 and use: q,,~ ~ ~+), the systems ~(q, ,~)  have at z = oo 
%. nondegenerate (unstable) node. We conclude that for each v, the system 
)¢'(q,~,~) I D~  is a-structurally stable. In view of Lemma 4.4 (ii) and the definition 
of a-structural stability, one immediately derives the continuity of Xl- 

Suppose X~ is not surjective, i.e., ~ c Ca exists such that ~ ¢ Im X~. Let 
(1/'0) e iv,, be an arbitrary, but fixed point on {z I lzl = 1/'0}. 

The closed oriented continuous curve yv is defined - for each v, v :~ Vo (mod 
27r) - as the union of: 

- , 

- (y_(o- , , J )  f'l {z I lzl >i R} oriented from (1/rl) e '~,, to z,,,~o; 
- the arc of Ca from z,,.~ o *  to z,,.~* which does not contain 2; 
- (~-(~,,v)) n{zllzl t> R} oriented from z,,.~* to (1/'0) e'~; 
- the arc of {z t l z l  = 1/'0} from (1/rl) e ~ to (1/'0) e ~o with orientation in 

accordance with the anticlockwise orientation of {z I Izl-- 1/'0}. 

Note that 7v is well-defined' in view of the fact that ~ ¢ I m  X,. See Figure 18. 
The winding number ~0o(3,~) of 3'~ around z = 0 is well-defined: 

1 ~ dz 
~o(~.) = y-~ j~ T 

In view of the e-structural stability of the system: .~(q,~.~) I D ~  (and the fact that 
CR is global boundary for .~(qn.~)), it follows that COo(3,v) depends continuously 
on v (see [4]). Since O~o(y~) is an integer we conclude, using the connectedness of 
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that eOo(3,~)= constant. But this is in contradiction with the fact (use again the 
N(q.,.o) ID ) that e-structural stability of - w 

1 I" dz 
lim 0Oo(7,)- lim OJo(%)= - -  ¢ - - =  1. [] 

5.  T h e  Class i f icat ion  T h e o r e m  and  S o m e  of  Its C o n s e q u e n c e s  

In this section we classify the systems W(f), with f ~  ~÷,  in terms of Newton 
graphs. This classification involves a classification of all structurally stable 
rational Newton flows. 

Let us consider a function f c ~ ,  such that N(f)  is not a north-south flow. The 
(directed) sphere-graph/~(f) ,  i.e. a realization of an abstract graph - say K( f )  - 
in the sphere S 2, is defined as follows: 

- The vertices of_/~(f) are equilibrium-states of ~( f ) .  
- The edges o f /~ ( f )  are the closures of the separatrices at the saddlepoints of 

~ ( f )  (the orientation being induced by the orientation of the trajectories of 

N ( f ) ) .  

Note that /-~(f) and / ] ( l / f )  are connected subgraphs of /~(f), compare 
Remark 3.4. Consequently, the sphere graph/~( f )  is connected. 

Given a labeling of the edges of the abstract graph K(f) ,  underlying/~(f) ,  the 
regions of K( f )  may be described by certain subsets of the set of labels. 
Following Peixoto[30], we call these subsets distinguished sets of K(f) .  The 
graph K(f) ,  together with its distinguished sets is called the distinguished graph 

Kd(f).  
Two distinguished graphs are called isomorphic if they are isomorphic as 

abstract graphs and the isomorphism preserves the distinguished sets. 
The following result is a direct consequence of Peixoto's classification (cf. [28], 

[30]). 

LEMMA 5.1. Two structurally stable Newton flows on the sphere S 2 are equivalent 
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iff either both the systems are north-south flows or the corresponding distinguished 
graphs are isomorphic. [] 

The systems N(fl)  and 3c(f2) are called topological equivalent ( - )  if a 
homeomorphism C---> C exists, which maps the trajectories of 3c(/1) onto those of 
3c(f2) and preserves the orientations of the trajectories; compare the 'topological 
equivalence on x(S2) ' defined in Section 3. 

LEMMA 5.2. Let f l ,  f2 E ~+ be given. Then Jr(f1)~.N(f2) iff G(fl)-- G(f2). 
Proof. If at least one of the systems 3c(fx), )¢'(f2) is a north-south flow, then the 

theorem is obvious. Hence, we may assume that neither At(f0 nor 3c(f2) is a 
north-south flow. 

As a direct consequence of the definitions of (topological) equivalence between 
Newton systems in the plane and between plane graphs (el. Section 3), we have 
N ( f l ) -  N(f2) implies ffr(fa)~ G(f2). Now, suppose that (~ ( f l ) -  G(f2) with the 
underlying homeomorphism being denoted by qt. Let ~r be the sterographic 
projection f_rom C onto S2\{z = o0} which maps the phase portraits of ~(fi)  onto 
those of a~(~), el. Lemma 2.3. Then, ~roqtolr -~ can be extended to a 
homeomorphism qJ* from S 2 to S 2 which induces an equivalence between (~(f~) 

and ~(f2), el. remark 3.4. 
A careful analysis (el. [33]) of the properties of geometrical duals of sphere 

graphs, qJ* and ~(~),  yields that ~b* induces an isomorphism between Ka(fO and 
Ka(f2). Applying Lemma 5.1, we find that ~ ( f ~ ) -  ~(f2), the equivalence being 
induced by a homeomorphism 4~: $2>$2. Finally, the mapping zr-~o4~o~ " in- 
duces a homeomorphism between )¢'(f0 and ,A/'(f2). [] 

FHEOREM 5.1 (Classification Theorem). Let G be a plane graph which either 
consists of only one vertex or fulfils the cycle property. Then, there exists a rational 
Newton flow )¢'( f)with f ~ ~+, such that G ( f ) - G .  This correspondence is 
bijective up to equivalence between rational Newton-flows and plane-graphs. 

Proof. This follows directly from Remark 4.1, Corollary 4.2 and the Lemmata 
4.2 and 5.2. [] 

In the case of functions f ~ ~_,  the above theorem also provides a charac- 
terization of the systems N([).  This follows from the relation N(f )=- .N ' (1 / [ ) .  

In the case of functions [ c Jto, formal 'substitution' of f (resp. l / f)  in Definition 
3.1 does not generally yield a plane graph. This is due to the fact that z = 00 may 
lie on an unstable manifold of a saddlepoint for .~(f) (resp_ ~(1/f)). Moreover, if 
z = o0 is a critical pointfor  f, the saddlepoint z = ~ for ~ ( f )  can 'move' into a 
finite saddlepoint for ~ ( f ) ,  where f is obtained from [ by an arbitrary small 
perturbation of the coefficients of [. It follows that, although ~ ( f )  is structurally 
stable on the sphere, a similar regularity property is not necessarily true for the 
system N(f)  on the plane. This is a reflection of the fact that the 'natural way' of 
looking at rational Newton flows is to look at their spherical phase portraits (not 
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the planar ones). Compare also Remark 5.1 below. So, let us consider ~ ( f ) .  
Since f c ~0, there is at least one zero, say to, and one pole, say o~. Under the 
transformation 

1 1 
w = resp. w = - - ,  

z - - a }  z - - o r  

the system ~ ( f )  changes over to the system ~'(g) resp..~'(h) where g (resp. h) is 
of the form 

P"----2~_(resp. P" c ~ + ) .  
q. q.-1 

Thus, .~(f) is equivalent with both ~(g) and ~'(h), the latter systems - in their 
planar form - already being classified. 

REMARK 5.1. Although, in Theorem 5.1 the very marrow of the classification 
of structurally stable rational Newton flows is presented, a more sophisticated 
approach by means of the sphere graphs ~ ( f )  is possible (cf. [33])_In this 
context, systems ~ ( [ )  with f ~  ~+ are classified by sphere graphs G which 
exhibits a region r such that the stereographic projection, w.r.t, a point in r, 
transforms G onto a plane graph which fulfils the cycle property. We call these 
graphs ~ admissible (w.r.t. the region r)._The geometrical duals of such ad- 
missible graphs characterize the systems ~'(f) with f c  ~_ .  The systems ~ ( f )  
with f ~  J~o are characterized by those admissible sphere graphs for which the 
geometrical dual is also admissible (balanced graphs). One easily sees (cf. [33]) 
that a sphere graph is balanced iff it is admissible w.r.t, each of its regions and, 
moreover, the number of its regions equals the number of its vertices. 

By E°(S 2) we denote the subset of all structurally stable systems in x(S 2) which do 
not exhibit periodic trajectories. For a system X ~ E°(S2), a sphere graph G(X) 
and a distinguished graph Ka(X) can be introduced in the same way as we 
defined G(f)  and Ka(f) for f e  ~ .  By means of these graphs, Peixoto [30] has 
given a complete characterization of the systems in E°(S2). Using this result as 
well as our characterization theorem, one easily shows that any system X e E°(S2) 
which has only one unstable and n stable nodes, is equivalent with a Newton 
system ~(p , ) ,  where p, is a polynomial in ~ of degree n. For details and another 
result in the same spirit we refer to [33]. 

Harary et al. (cf. [9-11]) have counted the number of various kinds of plane 
graphs (especially plane trees) up to orientation-preserving plane homeomor- 
phisms. In view of Theorem 5.1, it is therefore reasonable to ask for the number 
(~N(f) )  of systems W(f), f ~  ~ ,  up to topological equivalence. It turns out that in 
the special cases where p, is a polynomial in ~+ of degree n and where f , (e  ~)  is 
of the form 

f,,(z) : p.(z_____)), with p.(zo) # O, 
Z - -  Z 0 
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Table I 
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n 1 2 3 4 5 6 7 8 9 10 11 -.- 

#N(p,) 1 1 1 2 3 6 12 27 65 175 490 . . .  

~N(~) 1 1 2 5 11 30 79 237 730 2388  8021 ..- 

we have: 

1 
:~N(p,)  = ~ ((o~ + / , )  and :~: J~(fn) = 1 (~n+l "~ '~n+l -- ~+1 --/In+l), 

where un, f , ,  ~ , ,  ~ and ,~. stand for, respectively, the number of achiral-, 
rooted-,  achiral rooted-,  planted- and achiral planted-, plane trees on n vertices, 

and where ~, is the number of the plane trees on n vertices (all counted up to 
orientation-preserving plane homeomorphisms). Note that complications arise, 
since Harary's  concept  of equivalence between plane graphs is more restrictive 
(orientation is preserved) than our concept. Here,  we merely present our results, 

cf. Table I. 

6. Asymptotic Values tor Meromorphic Functions 

There  is a strong relationship between (some aspects) of the theory on asymptotic 
values of meromorphic functions and the theory on Newton flows (cf. Section 2). 

This is not surprising since the trajectories of N ( f )  are contained in the lines 
arg f ( z ) - - c o n s t ,  and, moreover ,  on a trajectory, If(z)[ is strictly monotone (cf. 
Relation (2.1)). In this section we merely state our results; for the proofs we refer 
to [19]. 

Let  f be a meromorphic  function. An asymptotic path for f,  with asymptotic 
value ot is a continuous curve T, tending to z = 0% and such that if z --~ oo along T, 
then f ( z )  --~ a. (Here, a = oo is possible). An asymptotic path for f which is also a 
trajectory for N(f)  is called a Newton asymptotic path. 

We begin by presenting a result which - for a simple class of entire functions - 
constitutes a refinement of the classical theorem of Denjoy-Ahlfors  and of 
Julia[24, 33] and which is an application of Lemma 2.4b. To this aim, we 
introduce the concept  of Julia-line: 

Let g be an entire function. A ray p, emanating from the origin z -- 0 is called 

a Julia-line for g if: given any z e C (with eventually one exception) and any 
angle with p as its bisector, g takes the value z at every point of an infinite 
sequence, converging to z --oo and lying within this angle. 

T H E O R E M  6.1. Let g be an entire function of order l ( oo and with a(~C) as its 
Picard exceptional value, i.e., (g - a) e ~; cf. [15]. Then 
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There are exactly 21 Julia-lines for g; two adjacent lines intersect under equal 
angles 1r/ l. 
The only asymptotic values for g are ct and oo. [] 

We proceed by stating a result on Newton asymptotic paths for meromorphic 
functions. 

THEOREM 6.2. Let f be a nonconstant meromorphic function. Suppose that 
z* ~ N(f) and aB(z*) ~ 0 (i.e., f is not of the form a(z - z*)', a ~ 0; compare 
Section 2). Then, at least one of the following properties holds: 

(1) There is at least one (finite) critical point on the boundary OB(z*). 
(2) There exists a Newton asymptotic path for f - say 7(Zo) - with Zo E B(z*) 

which has a finite, nonzero asymptotic value. [] 

Using Theorems 6.1 and 6.2 we derived the following result in [19]. 

THEOREM 6.3. Let g be as in Theorem 6.1 and a ~ 0 (thus g has infinitely many 
zeros). Then, with the eventual exception of a finite number, for all zeros z*, there 
are at least one and at most k Newton asymptotic paths for g, issuing from z* with 
asymptotic value a. Here k stands for the multiplicity of z* (as a zero of g). 

[] 
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Added in proof. In the special case of plane trees, an independent proof of the 
Representation Theorem (Corollary 4.2) is given by M. Shub and B. Williams, 
The Newton graph of a complex polynomial, Preprint (1985), and by ourselve~ 
[19]. See also D. Braess [2] and S. Smale, On the efficiency of algorithms in 
analysis, Bull. Am. Math. Soc. 13-2 (1985), 87-121, who posed this result as an 
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