
Design and Implementation of
a Method Base Management System for

a Situational CASE Environment

Frank Harmsen, Sjaak Brinkkemper
University of Twente, Department of Computer Science,

IS Design Methodology Group,
P.O. Box 21 7, 7500 AE Enschede, the Netherlands,

tel. +3 1. 53.893690 / fax +3 1.53.339605
E-mail {harmsen, brinkkemperflcs. utwente. nl

Abstract

Situational Method Engineering focuses on
configuration of system development methods (SDMs)
tuned to the situation of a project at hand. Situational
methods are assembled from parts of existing SDMs, so-
called method fragments, that are selected to match the
project situation. The complex task of selecting
appropriate method fragments and assembling them into
a method requires effective automated support. This
paper describes the architecture of a tool prototype
offering such support. We present the structure of its
central repository, a Method Base containing method
fragments. The functions to store, select and assemble
these method fragments are offered by a strat$ed Method
Base Management System tool component, which is
described as well.

1 Introduction

Current systems development methods are situation
independent, and claim to be applicable in virtually any
application domain. However, due to the ever increasing
complexity and diversity of information systems, software
development projects do not require general purpose
systems development and management methods, but
specialised, dedicated approaches [1 ;2;3;4]. These so-
called situational methods should take at least the
situarion in which they are applied into account, for
instance the system type, the DBMS platform, the
experience of the project members, etc., thus obtaining a
better fit between approach to be followed and the
required tasks and deliverables.

Situational Method Engineering [5] is the research
area having the philosophy, that system development
projects should strive for controlled jlexibiliry, being the
balance between rigid general-purpose methods and ad-
hoc, flexible development. To engineer a project-specific
or situational method. first a characterisation of the

situation in which the method will be applied, often a
project, is made. This characterisation is input to the
selection process, where parts of existing system
development methods are retrieved.

Such parts, called method fragments, stored in a
Method Base, address both the method process
perspective, such as modelling steps and stages, and the
method product perspective, such as descriptions of
reports, models, and diagrams. Method fragments
addressing the process perspective are called process
fragments, fragments addressing the product perspective
are called product fragments. The unrelated method
fragments are then assembled into a situational method,
using a large number of assembly rules [6] to ensure
internal consistency and completeness. Finally, the
situational method is forwarded to the systems developers
in the project. As the project may not be definitely clear at
the start, a further elaboration of the situational method
can be performed during the project. Similarly, drastic
changes in the project require to change the situational
method by the replacement of inappropriate fragments.

The complexity of this process requires support by a
CAME (Computer Aided Method Engineering) tool [11.
Several authors have acknowledged the need for
computerised support for Method Engineering. One of the
academic tool prototypes is the Method Base tool [7] . The
database associated with this tool contains information
about documents to be produced and activities to be
performed. Method Base enables the software engineer to
select a method that fits the project at hand, is able to
guide and navigate the user through the method, and
allows for multi-view representation. The tool does not
specifically aim at assembling situational methods, but
offers facilities for method customisation. Hidding et al.
have proposed the Solution Configuration Tool (SCT),
from which parts of a comprehensive method can be
retrieved [8]. SCT should be regarded as an on-line
knowledge base enabling a methodology department to
accumulate experience about method application. The
Method Engineering Tool, offering facilities to construct
diagram editors, textual reports and repositories [9],

430
0-8186-7171-8/95 $04.00 0 1995 IEEE

supports method specification. It consists of a so-called
Meta Repository, containing all the necessary
specifications and rules to generate a CASE workbench.
MetuEdit [101 provides facilities to specify and construct
single diagram editors, for instance a DFD editor, and an
associated repository in a simple way.

Besides academic prototypes, some commercial tools
are available, most notably Emst & Young’s Navigator
and James Martin & Co.’s Architect. Navigator consists
of an “Automated Methods Environment”, which enables
the project manager to select descriptions of activities and
deliverables according to a project description, to link
company standards with product descriptions, and to
combine all these into a project plan. The project plan can
contain links to tools, such as a word processor or a
CASE tool’s diagram editor. Architect is similar to
Navigator, but provides more facilities to modify the
descriptions of activities and products. It contains less
support for project characterisation. Both tools are based
on the Information Engineering method [111.

None of these Method Engineering support tools offers
an integrated set of functions facilitating Situational
Method Engineering. A CAME tool should support the
uniform and high-level specification of ~ system
development methods, and should allow for the
construction of systems development tools. It should
support the method engineer in selecting appropriate
method fragments, in assembling the method fragments,
and in transfering the resulting situational method to the
systems development project.

The requirements mentioned above were the
motivation for developing a CAME tool, which we called
Decamerone. This paper focuses on the design and
implementation of the kernel of Decamerone, its Method
Base and associated Method Base Management System.
The paper is organised as follows. In section two, the
overall technical architecture of Decamerone is presented,
whereas section three deals with the design of the Method
Base structure. Section four focuses on the Method Base
Management System, which offers Method Base access
and modification functions. The paper ends with
conclusions and suggestions for further research.

2 A Situational CASE Environment

To support Situational Method Engineering, a CAME
tool should provide at least the following functionality:

Representation, allowing for the description of method
fragments. Method fragments can be described in any
kind of language that is able to represent products or
processes. Saeki and Wen-Yin [12], for instance, are
using Object Z to represent method fragments.
Administration, which provides facilities to insert and
modify method fragments in the Method Base. For
instance, it is possible that a process fragment needs to
be extended by an additional sub-activity. The
adaptation needed is performed by an administration
function.
Selection, which provides functions to retrieve method
fragments from the Method Base. The method
engineer should be able to execute queries on the
Method Base, such as: “Select all method fragments
that have to do with object oriented programming
requiring average experience from the programmers”.
Assembly, allowing for the assembly of selected
method fragments. Process fragments and product
fragments can be combined to form larger
components, eventually leading to a situational
method.

Figure 2.1 depicts the architecture of Decamerone.
Decamerone is implemented in the meta-CASE
environment Maestro I1 [13], thus simplifying many
implementation issues. The situational CASE
environment consists of two main components: a CAME
component, and a CASE component. The CAME
component is built upon the Method Base Management
System (see section 4) and provides facilities for
specifying, storing, and selecting method fragments, and
for assembling method fragments into a situational
method. The CASE component uses the situational
method as a definition for its repository structure, its
editors and report generators, and its process engine.

In this paper, we will mainly deal with the CAME
component, which will be explained in more detail in the
next sub-sections.

43 1

Method Engineering User Interface I
MEL editor

Line Interface

/Representation1 Administration1 Selection I Assembly 1
I

MEL interpreter

calls returns
A

T i Method Base Management System (MBMS) i Repository I
and Process

1 -
Engine

IRepreseotation! Administration 1 Selection Assembly 1 i G~~~~~~~~ 1
1

Method Base ((SMFR () i Situational (, Method
L v v ‘L

Figure 2.1 Architecture of Decamerone

Systems
Development
User Interface

CASE functions and
Process Manager

I

CASE tool

PROCESS Create Prototype business process:
ID METHl/A2.1.2.1;
LAYER Diagram;
SOURCE Method/l; # used with permission of Andersen Consulting #
PARENT Describe Requirements;
TYPE Abstraction;
REQUIRED {Entity-relationship Diagram, Organisation-process Diagram, Workflow Diagram, User Requirements};
(

- Define Prototype scope;
- Develop Prototype review plan;
- Select Prototype environment;
REPEAT

- Design Prototype;
- Build Prototype;
- Test Prototype;
- Review Prototype;
- {Document Reactions I Document Revisions requested}

UNTIL Prototype accepted
)
DELIVERABLES {Business process Prototype, issue List}.

Figure 2.2 MEL process fragment specification

2.1 The MEL interpreter

The Method Engineering Language (MEL) provides
concepts and constructs dedicated to describing, selecting,
and manipulating method fragments [14]. MEL is also
used for other purposes, for instance CASE tool repository
specification and integration [15]. Examples of a MEL
process fragment specification and a MEL assembly
operation are depicted in figures 2.2 and 2.3 respectively.

The specification depicted in figure 2.2 describes an
activity that has a number of properties, such as its
granularity layer (see section three) and the systems
development method from which it was taken (“Source”).

The products that the process fragment requires as input,
and the products that it delivers are specified as well.
Between the brackets, the process flow is indicated. Note
that a bar between process names indicates parallelism.

Join Technical data Model With {Module Structure, User-
interface Design, System-interface Design} Into Technical
design Report.

Figure 2.3 MEL assembly operation

The assembly operation shown combines several
product descriptions, and calls the resulting product a
“Technical design Report”. Assembly rules are used by

432

the interpreter to assure a consistent situational method.
An example of such a rule is shown in figure 3.1.

The MEL interpreter translates specifications and
operations into corresponding Method Base Management
System function sequences. An example of such a
translation will be shown in section four.

2.2 The User Interface

The MEL command line interface offers facilities to
modify, select, and combine method fragments in a high-
level method engineering language. Besides the
possibility to textually specify and assemble method
fragments, we have also incorporated a Concept Structure
Diagram (CSD) editor for specification and assembly of
product fragments, and a Process Structure Diagram
(PSD) editor for specification and assembly of process
fragments [5] . CSD is a dialect of Entity-Relationship
diagrams, extended with complex objects to allow for
specification of composite models and diagrams. PSD
offers the concepts “Task”, “Trigger”, and “Product”, the
latter being a composite CSD object. A menu structure
provides links to the various tool components. It contains,
in addition to that, dialogue boxes to perform queries, and
to retrieve statistical information about the Method Base.

2.3 Decamerone databases

Decamerone uses four databases: the Method Base, the
Selected Method Fragments Repository (SMFR), the
Situational Method Database, and the CASE tool
repository. The Method Base is the central repository of
Decamerone, containing method fragments and their
relationships. The SMFR contains the unconnected
method fragments that have been chosen for incorporation
into a situational method. The Situational Method
Database contains the assembled situational method. The
data perspective of the situational method, containing, for
instance, the concept “Data store”, the association “Data
Store is described by Entity”, or the description (meta
data model) of a Data Flow Diagram, describe the
structure of the CASE tool repository, which will be used
during the project to store all kinds of products.

2.4 Generators

For practical use. the situational method has to be
processed by a repository structure generator and a
process engine generator. As Decamerone is completely
implemented in Maestro 11, generating a repository
structure involves the conversion of the situational
method data perspective (a set of objects) into a Maestro
I1 database structure (a set of object classes). The process
engine generator makes use of the Maestro I1 facilities to
define process managers, which can force the CASE tool
user to invoke for instance certain diagram editors.

3 Design of the Method Base structure

3.1 Classification of method fragments

The method fragments in the Method Base are
classified using the dimensions perspective, abstraction
level, and granularity layer.

The perspective dimension considers the product
perspective and the process perspective on methods.
Product fragments represent deliverables, milestone
documents, models, diagrams, etc. They can consist of
other product fragments. Process fragments represent the
stages, activities and tasks to be carried out. Process
fragments have precedence relationships with each other,
can consist of other process fragments, and require and
produce product fragments.

The abstraction level dimension constitutes of the
external level, the conceptual level, and the technical
level. Conceptual method fragments are descriptions of
systems development methods or part thereof, for instance
a description of an Entity-relationship diagram, or JSD’s
Network phase. Extemal method fragments [I41 are
introduced to accommodate multiple views of project roles
on methods (cf. [16;17]). Views to be distinguished
include the project manager’s view, the analyst’s view,
and the programmer’s view. Technical method fragments
are the operational parts of a method, i.e. tools and
repositories. Extemal method fragments are derived from
conceptual method fragments, which are supported by
technical method fragments.

The granularity layer dimension is introduced to deal
with method fragments of different levels of
decomposition. When assembling a situational method,
the decomposition levels of the various method fragments,
taken from different SDMs, have to be aligned with each
other. However, different SDMs have different numbers of
decomposition levels, which makes alignment
cumbersome. Therefore we have introduced granularity
layers. A granularity layer of a particular method
fragment is completely determined by its properties, and
not by its level in the decomposition tree. For systems
development methods, five granularity layers can be
considered:

Method layer The highest layer addresses the entire
method, and is therefore called the Method layer. An
example of such a method fragment is a method like
JSD, or Information Engineering.
Stage layer This layer consists of the direct
components of a method, producing milestone
deliverables. Such method fragments, for instance a
Requirements Analysis stage, address different
abstraction levels of the object system.
Model layer Although model is a generic term,
systems developers use it to indicate products
describing a specific aspect of the object system, for
instance data or processes. Models, and the activities
to create them, belong to the Model layer. An example

433

of a method fragment on the model layer is “Create
test suite”, or “Technical data model”.
Diagram layer Models can be represented in many
different ways and at various levels of detail, and
consist therefore of components, often diagrams like
DFD’s, Action Diagrams or Decomposition Diagrams.
These model components, and the activities to produce
them, reside on the Diagram layer.
Concept layer Method fragments residing on the
Concept layer are the concepts and associations
describing the diagram components, as well as the
manipulations with these concepts and relationships.
Examples of such method fragments are “Entity”,
“Actor” and “Determine actors”.

Note, that granularity layer is not a relative notion
within one method. However, within one granularity
layer, levelling is allowed, in order to enable
representation of methods consisting of more than five
decomposition levels.

3.2 Properties of method fragments

We distinguish variable project properties and
intrinsic properties. Intrinsic properties receive a value in
the Method Base, whereas project properties receive their
respective values during the system development project.
The first category includes:

LAYER, the granularity layer of the method fragment,
which is of property iype-GRAN-LAYER = {Method,
Stage, Model, Diagram, Concept}.
GOAL, the goal to be achieved with the method
fragment, which is of type FRAG-GOAL - @({{a,b,c}
I a E “Verbs”, b E “NounProperties”, c E “Nouns”}).
SOURCE, the name of the SDM from which the
method fragment is taken, which is a string of
characters.
EXPERIENCE, the amount of experience needed by a
project member to perform or apply a method
fragment. The associated property type is EXP-LEVEL
= {Little, Average, Much, Very much}.
TRAINING, the amount of person days required to
train a project member in performing a process
fragment.
TYPE describes whether a process fragment is an
abstraction step, a form conversion step, a decision, a
review step, or a checking step [181.
RESPONSIBLE, the actor type responsible for -the
instance of- the method fragment. Property type is
ACTOR = {Commissioning Agent, User, Project
manager, Analyst, Functional Designer, Technical
Designer, Programmer, System Tester, Acceptance
Tester, Database Administrator},
EXECUTOR, the actor type that executes the process
fragment, also of type ACTOR.
CREATOR, the actor type or set of actor types in the
systems development project creating instances of the

product fragment, which is of type @(ACTOR).
FOR, the actor type or set of actor types for whom -the
instance of- the product fragment is made. also of type
@(ACTOR).

Examples of first order properties are well-known
method fragment instance attributes like creation date,
comments, definition, and instances of actor types
responsible for, performing, creating, or receiving the
method fragment instance. An important first order
property is the experience record associated with each
method fragment. In this record, project member can
enter their experiences with a method fragment.
Dependent on the contents of these experience records, a
method engineer can modify a method fragment
accordingly.

3.3 Formalisation of the Method Base structure

The global structure of the Method Base is given by a
first order predicate logic specification, which constitutes
the basis for the specification of rules, as will shown at
the end of this section.

We define: M = R v P , the set of method fragments,
where R represents the set of product fragments, and P
the set of process fragments. Note that R n P = 0.

The following predicates are used to express
relationships between method fragments:
predicate consists of over (R x R) v (P x P) , indicating

the existence of a “consists of‘ relationship between
product fragments and between process fragments,

predicate produces over P x R, which holds if a process
fragment produces a product fragment,

predicate requires over P x R, which holds if a process
fragment requires a product fragment,

predicate precedes over P x P, indicating the existence of
a precedence relationship between product fragments.
We assume that precedence is transitive,

predicate is supported by over (R x R) U (P x P), which
holds if a conceptual method fragment is supported by
a technical method fragment,

predicate is view upon over (R x R) U (P x P),
indicating that an external method fragment is a view
upon a conceptual method fragment.

Furthermore, for each property a function is defined, for
instance:
function type over P to PROCESS-TYPE, yielding the

function layer over M to LAYER, yielding the granularity

function goal over M to GOAL, yielding the goal of a

type of process,

layer,

method fragment.

Sets, predicates, and functions are used to formally

434

define method assembly rules, which will be incorporated
in Decamerone to support consistent combination of
method fragments. One example of a method assembly
rule, taken from a set of 66 rules described in [6], is
depicted in figure 3.1.

Process CO mpleteness rule
Informal description: all (parts of) product fragments have
to be output from a process fragment. All method, model
and diagram layer product fragments have to be produced
by process fragments; Stage layer product fragments do
not have to be produced themselves, but their contents on
lower layers do: e.g. “Business Re-engineering Master
plan” from the method Method1 is not created itself, but
its contents are. Concept layer product fragments
(concepts) do not have to be produced themselves, if their
parent is produced by a non-decomposable process
fragment.

Formal specification:
Vrl& 3 p l d Vr2& 3p@ Vp3cP [
(layer(r1) E {Diagram,Model,Method} + produces(pl,rl)) A

(layer(r1) = Stage + (produces(pl,rl) v ((consists of(r1,r2) A

layer(r2) - Diagram) + produces@2,r2)))) A

(layer(r1) = Concept + (produces(p1,rl) v (consists of(r2,rl) A

produces(p2,rz) A yconsists Of@2,p3)))]

Figure 3.1 Example of a method assembly rule

4 Implementation of the Method Base
Management System

The Method Base Management System (MBMS) is
the kemel of Decamerone and provides the operations
necessary to interact with the Method Base. As was
shown in figure 2.1, the MBMS is called by, and returns
values to, the MEL interpreter. It i s developed as an
application within the Maestro I1 meta-CASE
environment.

4.1 Overview of Maestro I1

Maestro I1 is a meta-CASE environment developed
and marketed by the German Softlab company. Since the
tool can be customised to a very large extent, i t can be
used to develop project-specific CASE tools. Due to the
comprehensiveness of Maestro 11, only the most relevant
parts are listed here. These parts are:

The Object Management System (OMS), a multi-user
on-line repository, represents the data base
management system of Maestro 11. All data
concerning both application and method development
are stored in databases of the OMS. The OMS stores
data as object classes and objects.
Project and Conjguration Management System
(PCMS), dealing with specification and execution of

process managers. PCMS is the Maestro I1 counterpart
of an SDM’s process flow, supporting its user in
performing system development activities and
invoking the appropriate tools. The PCMS is also
used to define deliverables, and to define and maintain
relationships between activities and deliverables.
The Maestro I1 environment can be customised by
writing procedures in the systems programming
language Prolan. This proprietary language, similar to
C and assembler, provides means to build a user
interface, and offers function calls to the OMS as well.
Dedicated editors, both graphical and textual, which
are not only used for entering ordinary text files and
diagrams, but also to specify and customise diagram
editor descriptions, Prolan programs, deliverable
templates, and OMS database structures.
Relationships exist between on the one hand the steps
and deliverables defined with the PCMS, and on the
other hand diagram- and text editors.

Implementing a CAME environment using such a
meta-CASE environment offers advantages over using a
conventional programming language. Maestro I1 offers
the availability of symbol editors, a CASE tool oriented
DBMS, and reporting and texvgraphics editing facilities
[131. A limit of this approach is, that the resulting CAME
tool is not a stand-alone application, but should always be
used in conjunction with Maestro 11.

4.2 Implementation of the Method Base Management
System in Maestro I1

The Method Base Management System, completely
programmed in Prolan, is partitioned into the following
layers:

Tool-specific layer, which provides a set of atomic
operations defined in terms of OMS calls. This layer
serves as an interface between Maestro 11’s OMS and
the rest of the MBMS.
Basic CAME functions layer, which assures the
availability of all necessary basic operations such as
creating or modifying a method fragment, a
relationship, or an attribute.
Compound CAME functions layer, which provides
aggregated functions to perform more complex
operations, such as creating a product fragment with
its properties.

The three layers have been introduced to abstract from
different types of problems and solve them per type in
modules. The result is a structured realisation of the
MBMS that allows top-down and bottom-up iterations
without loosing the overview over the different
components and their functions.

The function and implementation of the MBMS will
be illustrated with the following example. Suppose the
method engineer has specified the following product

435

fragment with the MEL editor, which is to be stored in the
Method Base:

PRODUCT User-interface Standard:
ID METHl/P4.3.10;
LAYER Model;
GOAL {Description Screen Layout, Description System

SOURCE Method/l; # used with permission of Andersen

PART OF Business process Design;
CREATED BY Complete Dialog design;
(

Usage, Description User-interface Response}:

Consulting #

- Screen model List;
-Window model List;
-Widget model List;
- Keyboard usage Instructions;
- Mouse usage Instructions;
- Feedback Description;
- Error prevention Description;
- Multiple language support Description

).

Figure 4.1 Specijication of a product ffagment

The MEL interpreter first assigns attribute v31ues to
global variables, as Prolan is incapable of having more
than one parameter passed to procedures. For each
predicate and function defined in the Method Base
structure specification, one or more global variables have
been declared in the MBMS. The altemative to this fairly
awkward solution, passing complex structures, is only
used where time-criticality is no issue. In figure 4.2, some
assignments are shown for our example.

sysvar(“Name”) = “User-interface

sysvar (“Perspect“) = “Product” :
sysvar (“Abstract”) = “Conceptual” ;
sysvar (“Layer“) = “Model“ ;
sysvar (“Created”) = “Complete Dialog

design” ;

Figure 4.2 Assignment of global variables

Standard “ ;

Each layer uses the information contained in the
global variables to create objects in the Method Base.
Next, the MBMS Compound CAME layer procedure
CR-Fragment, with parameter METHllP4.3.10, is
invoked, which first inspects whether the fragment is
legal according to the attribute constraints. When the
constraints are met, a method fragment object is created
in the Method Base. When CR-Fragment fails, it will
remove the method fragment to keep the Method Base
consistent.

CR-Fragment invokes the Basic CAME layer
procedures Create-Fragment and AttrRestrictions.
Create-Fragment takes care of the creation of the method
fragment object, as well as the product fragment object
including the corresponding subkuper-type relation. To
simplify retrieval, each fragment is stored both as a
method fragment object and as a product- or process

fragment object. AttrRestrictions checks, whether the
object’s attributes meet the defined constraints. For
instance, the following piece of Prolan code checks,
whether the granularity layer has a valid value:

Layer = SYSVAR(’LAYER‘)
[SYSVAR(’RETURN-C0DE’)EQUAL Space?
[Layer LESS-THEN MethodLayer?
I Layer GREATER-THEN ConceptLayer?]?
SYSVAR(‘RETURNKC0DE’) = ‘Level not in
range

1

Figure 4.3 Check of an attribute constraint in
Prolan

After creation of the product fragment and check of
the attribute constraints, the CR-MethodAttr procedure
creates the attributes and their values, such as fragment
name-“User-interface standard”, layer-“Model”,
source-“Method/l”, etc. In the source code depicted in
figure 4.4, part of CR-MethodAttr, the tool-specific
procedure CreateAttribufe is called to actually store the
attribute and its value in the Method Base.

The result of the Compound CAME layer and Basic
CAME procedures is, that all information regarding the
fragment is broken down into units that can be stored in
an OMS database. The Method Base is implemented as an
OMS database, which is started and accessed by means of
Prolan procedure calls offered by the Tool-specific
procedures. The Createobject and CreateRelation
procedures create a CAME object in the Object
Management System, as well as a relation between two
CAME objects, respectively. The attributes are stored in the
OMS by the CreateAttribute procedure. Part of the
CreateAttribute source code is depicted in figure 4.5.

After having seen the low-level nature of actually
accessing an OMS database, the advantages of having an
MBMS as a CAME tool kernel are obvious: the
functionality of the tool is easier to adapt, the structure of
the Method Base is easier to modify, programming the
system requires less knowledge of a proprietary language
like Prolan, and the CAME tool obtains a higher degree
of portability.

436

0peration.Process = AttrCall.Operation
0peration.Object = SYSVAR(’FRAG1D‘)
0peration.ActiveBase = SYSVAR(‘ACT1VE-BASE’)
FrgSource = SYSVAR(“Source” ’)

0peration.ObjectClass = MethodFragClassName

. Create SourceAttribute
[0peration.ReturnCode EQUAL Attribute-Ok ?

Attributeoperation (CreateAttribute, FrgSource, MethodFragSource)
I

Figure 4.4 Creation of an attribute and its Iqalue in the Method Base

SHDR: CreateAttribute (Operation OPERAT-TYPE)

$DATA :
oms-par
oms-1st
oms-val

OMS-PARAM
OMS-L I S T
OMS-VALUE(OMS-VALUE-LEN)

$BEGIN: . _ - - - - - _ _ _ - - - _ _ _ _ _ _ _ _ _ _ PARAMETERS .
oms-par.OBJ-CL = 0peration.ObjectClass
oms-par.OBJ = 0peration.Object
oms-par.ATT-CL = 0peration.AttributeClass
oms-va1.VALUE = Operation.Attribute&Delimitor

oms-par.OPCODE = InsertObjectAttribute

. .
START-OMS(oms-par, 0peration.ActiveBase)

OMS-INIT-VALUE(oms-Val, 0 p e r a t i o n . A t t r i b u t e C l a s . s)
OMS-SET-PARAM(oms-par, oms-Val)

CALL-OMS(oms-par, 0peration.ActiveBase)

0peration.ReturnCode = oms-par.RC

database

. _ PARAMETERS _ _ _ _ _ - - _ _ _ _ _ - - _ _ _ _ _ - _

$END

Figure 4.5 Creating an attribute by performing an OMS call

5 Conclusions and further research

The Method Base Management System, implemented
in the meta-CASE environment Maestro 11, is the kemel
of the Decamerone* situational tool environment that
assists in efficiently and effectively configuring and
applying project-specific systems development methods.
We have shown an overall architecture of Decamerone, as
well as a more detailed treatment of the Method Base and
the Method Base Management System.

The implementation of the MEL editor and interpreter
is currently addressed in the Pampinea project. Further
future research concerning Decamerone focuses on the
incorporation of quality enforcing rules, currently
specified in predicate logic (Filomena project), the
implementation of support for method assembly by the
Methodology Data Model (Filostrate project), and the
implementation of repository and process engine
generators (Neifile project).

* “I1 Decamerone”. by the Italian writer Giovanni Boccaccio (I3 13- 1375).
contains 100 stones, told on IO days by IO people who were on the run for
the plague in Florence. The names of the projects mentioned in the
conclusions are the names of the IO persons. I1 Decamerone can be regarded
as a “story base”, rather than a Method Base.

437

