TWO-LEVEL PIPELINED SYSTOLIC ARRAY GRAPHICS ENGINE*

J.A.K.S. Jayasinghe, G. Karagiannis, F. Moelaert El-Hadidy,
O.E. Herrmann and J. Smit

University of Twente, Laboratory for Network Theory
P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract

Improvement of the interaction speed of raster graphics systems
is an important topic in computer graphics research. A two-level
pipelined systolic array graphics engine will be described, which
can improve the interaction speed and image quality for high res-
olution displays.

1 Introduction

In the past decade, raster graphics systems became popular
over vector graphics systems due to their high image qual-
ity. The frame buffer in the raster graphics systems has been
identified as the major bottle-neck for real-time interaction
[5]. A VLSI systolic array graphics (SAG) engine called Su-
per Buffer (only capable of constant shading) was first in-
troduced in 1985 {1] to replace the frame buffer by a proces-
sor array. More powerful SAG engines capable of Gouraud
shading were later introduced {2],[3] which use 16 bit fixed-
point arithmetic. The main advantage of the SAG engine
is its smaller overall system size compared to other graph-
ics systems [1], and its potential for better interaction speed
[4]. As the maximum operating speed of a systolic array is
determined by the delay of the most complex operation, the
maximum operating speed of an SAG engine tends to reduce
as more complex functions are introduced to improve the
image quality. Attempts to improve the speed by fast func-
tional units (like carry look-ahead adders instead of simple
carry-ripple adders) become unpractical due to their large
silicon area and large number of processing elements (PEs)
in an SAG engine. The purpose of this paper is to report
a VLSI architecture of an SAG engine built from pipelined
functional units which can generate realistic images interac-
tively for high resolution displays.

In the next section we introduce an advanced instruction
set and an architecture of an SAG engine. We derive two
architectures built from pipelined functional units to improve
the operating speed. Some details of a prototype are also
presented. Finally, some conclusions are drawn.

*The work described in this paper is part of a project for developing
a graphics workstation. The project is sponsored by the Dutch Re-
search Foundation (STW), under contract CWI77.1249, carried out by
University of Twente, Enschede, The Netherlands, and the Center for
Mathematics and Computer Science, Amsterdam, The Netherlands.

2 An Advanced SAG engine
2.1 The Instruction Set

Shading determines the realism of computer generated im-
ages. Conventional shading methods providing realistic im-
ages need huge processing power. Therefore, less realistic
shading methods (like Constant shading) have been used in
interactive applications. We have found that Phong shad-
ing, which can generate quite realistic images, can be ap-
proximated by second order interpolation. This approach
dramatically reduces the computational power requirements,
hence it becomes feasible for interactive computer graphics.
A generalized interpolation scheme where one can perform
zero, first or second order interpolation with discontinuities
in intensity and/or derivatives of the intensity provides a uni-
fied approach to support several shading methods. Table 1
shows an instruction set for this approach which can be exe-
cuted on an SAG engine. The EVAL¥(...) instructions per-
form the interpolation and the SET#(...) instructions sup-
port the discontinuities. The REF() instruction sends a new
pixel to the display. When less number of objects have to be
scan-converted, the empty slots between the REF() instruc-
tions are filled by NOP() instructions. The DIS(...) instruc-
tion disables the accumulation of intensities. The ACC_M()
instruction toggles the accumulation of negative intensities.
Figure 1 shows two shading examples.

2.2 The Architecture

The SAG engine consists of a one-dimensional array of iden-
tical PEs. Processing and storage of each pixel column is
done by a single PE, such that adjacent pixel columns are
taken care of by adjacent PEs, minimizing the communica-
tion bottle-necks. During each cycle of the SAG engine, the
PE containing the REF() instruction sends the pixel value in
register P (see Figure 2) to the display. Other PEs perform
operations according to the instructions in them (the con-
troller decodes the instruction to enable proper functional
units in the PE). At the end of the cycle all but the last
PE pass instructions to their neighbors and the first PE re-
ceives a new instruction. Before the instructions are sent to
the neighboring PEs, the data and op-code associated with
them are modified. The registers A,B,C store the intensity 7,
its first derivative DI and its second derivative DDI. Data is

17.2.1

IEEE 1990 CUSTOM INTEGRATED CIRCUITS CONFERENCE

CH2860-5/90/0000-0092 © 1990 IEEE

represented by 36 bit fixed-point numbers! for the interpola-
tion and discontinuity corrections. The processor addresses
X and DX are represented by 12 bit integers. Due to band-
width limitations, the processor addresses (i.e., X and DX),
DDI,DI and I are sent into the array in consecutive time
slots in the given order. For fault tolerance reasons, the pro-
cessor location X is identified by decrementing the address
X at each PE and detecting whether its value is zero or not.
Processor locations X+ DX, X +2DX, X +3DX, ... can also
be similarly identified, by substituting DX to X whenever
X is zero. Faulty PEs are bypassed by disabling the decre-
mentation of X and bypassing the instructions. As the data
associated with instructions is sent in different time-slots,
the processor address decrementation, intensity interpolation
and intensity accumulation can be done on the same adder.
Then, the condition (X = 0) can be detected by monitoring
the carry out of the adder at the 12 bit (i.e., C, in Figure
2) when X is represented by the low-significant 12 bits. The
leftmost multiplexer provides a -1 (in 12-bit format) on one
input of the adder to decrement X. The rightmost multi-
plexers select the correct output data and op-codes.

For proper operation, only one REF() instruction can re-
side in the SAG engine at any time. As only a single row
of pixels can be stored in an SAG engine, pixel values of
each pixel row are calculated in real-time by sending the in-
structions in between the refresh instructions. As the video
stream is generated on the fly, the speed of the clock is de-
termined by the display resolution.

3 Two-level Pipelining of the
Advanced SAG engine

36 bit arithmetic primarily determines the maximum oper-
ating speed and hence the maximum display resolution in
real-time applications. For an optimized carry-ripple adder
in a 1.6gm CMOS technology, the estimated cycle time is
about 100ns, which is far below the needs of high resolu-
tion displays?. Due to the large area of faster adders (like
carry look-ahead), it is not feasible to use them in this en-
gine as the number of PEs needed is equal to the number of
pixel columns. Pipelined carry-ripple adders are shown to
be practical. Systolic arrays built from pipelined functional
units have been referred to as two-level pipelined systolic ar-
rays in the literature and a formal approach to derive such
arrays from word-level systolic arrays has been reported [7].
Unfortunately, this formal approach fails to produce correct
SAG engine architectures due to time-varying behavior of
the PEs (i.e., PEs perform different functions in different
time slots.) and shift-variance of the data passing through
the array (i.e., output data of a PE depend on its location in
the array.). We have developed a formal approach for two-
level pipelining of systolic arrays subject to time-varying and
shift-variance behaviors which is reported in [6].

LAt least m + 2n bit fixed-point representation is needed to prevent
visible quantization errors, where 2™ and 2" are intensity and horizon-
tal display resolutions.

21024 x 1024 display refreshed at 50Hz needs a 12ns cycle time.

3.1 Ouwur Formal Approach

For the completeness of this paper, we describe the formal
approach we reported in [6] briefly without any proofs. The
original systolic array is represented at bit-level by a finite,
vertex-weighted, edge-weighted, directed graph G which is
constructed by replicating the graph of a PE, Gpg = (Vpg,
Vég, EpE, dveg, dyy_,w pE) and connecting corresponding ver-
tices by weighted edges indicating the earliest communicat-
ing time slot ¢(¢ = 0,1, 2,...) between PEs as the entire array
is built from identical PEs. In Gpg, vertices Vpg and Vg
denote the bit-level functional units and storage. Each edge
e € Epg and weight of it wpg(e) denotes the communica-
tion between nodes and earliest communication time slot for
all legal combinations of instructions respectively. Vertex
weight d(v),v € Vpg denotes the numerical propagation de-
lay. Each vertex v’ € Vpyg is multiple weighted by d(v’_,;)
for each input edge a and output edge b connected to node
v’, when there is a direct information flow or else undefined.
The weight d(v,_,;) indicates the minimum latency (which is
under control of instructions) between the information flow
from edge a to b through the storage node v'.

In order to improve the clock speed, pipeline registers are
added to critical paths in G to meet the given speed require-
ments, and then some more additional pipeline registers are
added to some other edges and/or latencies at some stor-
age vertices are changed to keep the logical behavior of the
system intact.

Two-level Pipelining Theorem: If a two-level pipelined
design is obtained by adding pipeline registers to some edges
and/or changing the latencies of storage nodes in G, the log-
ical behavior of the system will be kept intact if the differ-
ences in latencies through all pairs of paths between any two
nodes are equal in the original and re-timed (i.e., two-level
pipelined) graphs.

3.2 Two-level Pipelined Designs

The architecture in Figure 2 can be converted into two-level
pipelined designs as outlined below:

e Construct the graph.

o Identify the critical paths and add pipeline registers
into them to meet the given speed requirements.

o Apply the two-level pipelining theorem and get a func-
tionally correct and feasible design.

Due to the difference in bit requirements for processor ad-

dresses (i.e., X,DX) and intensity data (i.e., I, DI,DDI)

we get two groups of two-level pipelined architectures:

Group-X There are no pipeline registers in the functional
units where the addresses are updated. The latency
from the input-ports to output-ports of each PE is un-
changed.

Group-Y Pipeline registers are inserted into the functional
units where the address are updated. As the address
related decisions are delayed, the latency from the input-

17.2.2

ports to output-ports of each PE is increased by the
same value.

In the case of the architecture in Figure 2, the speed im-
provements of Group-X architectures are limited to 3 folds,
since the address and intensity data are represented by 12
and 36 bits respectively. Figure 3 shows a Group-X archi-
tecture. The adder is divided into 3 blocks of 12 bits by
pipeline registers. As the input data to the adder must be
in skewed format, pipeline registers are placed in the con-
trol signal paths of registers. Due to the skewed output data
from the adder, pipeline registers are placed at the rightmost
multiplexer.

Figure 4 shows a Group-Y architecture where the longest
carry-ripple path is limited to 5 bits, hence a factor £ speed
up. In this architecture, 8 pipeline registers are placed into
the 36 bit adder carry-ripple path to reduce the propaga-
tion delays. The first 12 bits, on which the address X is
updated, are divided into 3,5 and 4-bit blocks due to the in-
struction decoding delays. The remaining 24 bits are divided
into 3,5,4,3,5 and 4-bit blocks to get a regular design. As
the control signals for the rightmost multiplexers are gen-
erated in conjunction with the carry signal Cj; from the
adder, the (data) inputs to these multiplexers are delayed
by pipeline registers hence the latency from the input-ports
to the output-ports of each PE is increased. Pipeline regis-
ters on the control signals of registers A,B,C,P and leftmost
multiplexer are due to the skewed input data required at
the adder inputs. Furthermore, pipeline registers are intro-
duced on the rightmost multiplexer control signals due to
the skewed output data from the adder. Pipeline registers
on the pixel stream are placed due to the increased latency
between the input-ports and output-ports of each PE.

Due to the superior speed of Group-Y architectures, we
decided to implement the architecture given in Figure 4.
In a university environment, a 9-PE prototype consisting of
85,000 minimum feature size transistors in a 1.6 urm CMOS
process has been realized. The area overhead of the pipelined
registers is approximately 25%. The hardware description
language MoDL [8] has been used for the functional verifi-
cation, and symbolic layout design system CAMELEON has
been used for the cell design. According to extensive sim-
ulation results, it is capable of operating with a 12 ~ 15ns
cycle time, which has to be verified when the chips are back
from the foundry at the end of January 1990. More details
are given in Table 2. We estimate that 50 ~ 60-PEs can
be implemented on the same die by improving the pitch-
matching of leaf-cells and using Domino Logic without any
speed reductions.

4 Conclusions

A silicon implementation of a Two-level pipelined SAG en-
gine supporting an advanced instructions set is reported.
The advantage of the two-level pipelining is that it can pro-
vide a complex functionality at high pixel rates, which is
difficult to achieve by other means using less silicon area. As
computer graphics users have a great desire for high image

quality, high interaction speed and high resolution, we think
that two-level pipelined SAG engines will be a break-through
for real-time computer graphics.

A cknowledgements

Thanks to Jos Huisken and other members of the “VLSI De-
sign Group” at Philips Research Laboratories for their nu-
merous help and for allowing us to use their design system
and fabrication process. The members of “Interactive Sys-
tems Group”, CWI, Amsterdam are also acknowledged for
the discussions during the specification development phase
of the advanced SAG engine.

References

[1] N. Gharachorloo and C. Pottle, SUPER BUFFER: A Sys-
tolic VLSI Graphics Engine for Real Time Raster Image
Generation, Proceedings of 1985 Chapel Hill Conference on
VLSI, Computer Science Press, 1985, pp. 285-305.

[2] N. Gharachorloo, S. Gupta, E. Hokenek, P. Balasubrama-
nian, B. Bogholtz, C. Mathieu and C. Zoulas, Subnanosec-
ond Pizel Rendering with Million Transistor Chips, Pro-
ceedings of SIGGRAPH 88, August 1988, pp. 41-49.

[3] T. Nishizawa, T. Ohgi, K. Nagatomi, H. Kamiyama and
K. Maenobu, A Hidden Surface Processor for 3-Dimension
Graphics, ISSCC 88, February 1988, pp. 166-167.

[4] J.AK.S. Jayasinghe, A.A.M. Kuijk and L. Spaanenburg, A
Display Controller for a Structured Frame Store System, Ad-

vances in Graphics Hardware III, Springer-Verlag, 1989.

[5] P.J.W. ten Hagen, A.A.M. Kuijk and T. Triekens, Dis-
play Architecture for VLSI-based Graphics Workstation, Ad-
vances in Graphics Hardware I, Springer-Verlag, 1987.

[6] J.A.K.S. Jayasinghe and O.E. Herrmann, Two-level Pipelin-
ing of Systolic Array Graphics Engines, To be published in
Advances in Graphics Hardware 1V, Springer-Verlag, 1990.

{7] H.T. Kung and M.S. Lam, Fault-Tolerance and Two-level
Pipelining in VLSI Systolic Arrays, 1984 Conference on Ad-
vanced Research in VLSI, M.I.T., 1984, pp. 74-83.

[8] O. Herrmann, et.al., MoDL : Modeling and Design Lan-
guage, University of Twente, 1988.

Gouraud Shading

EVAL1(XI,4DX,1,DI)

! SETDDI(X2,DDII)

+ 1+ SETDDI(X4,DDI2)

\ 1 EVAL2(XI,4DX,0,0,DDI0)
O 1

X2 X3 X4 X5 X6
Figure 1: Two Shading Examples

17.2.3

,I
REF() ' . Vin 12 12 —\>— / Vout
Send the local pixel storage to the display and reset the m =
processor. 36 9 B C A y(\)P D -
36 N m
EVALO(X,DX,I) bin [U 0
EVAL1(X,DX,DI,I)
EVAL2(X,DX,DDI,DI,I) R
Interpolate and accumulate the intensity between proces- B
sors X +1,X + DX + 1 until the next REF(). Zero, 1 F
first and second order interpolation is done by the fin |U
EVALO(...),EVAL1(...) and EVAL2(...) instructions re- . .)
spectively. A,B,C:Registers MUX:Multiplexer P :Pixel Storage
SETPIX,DX.T) BUF :Buffer OD :Output Driver
bl H
SETPDI(X, DX, DI) Figure 2: Architecture of a PE
SETPDDI(X,DX,DDI)
Correct the periodic discontinuities during the next inter-
polation at processors DX apart, starting from X + 1. The - 7 :—b
intensity, its first derivative and its second derivative is cor- ‘{m B 12 } > »_\\ r rm Vout
rected by the SETPI(....),SETPDI(...) and SETPDDI{...) Fl A B,C + Pl TR
instructions respectively. Din U R\ P B BE W o o X] Dout
SETI(X,I) 5 %_ é 1‘ E
SETDI(X,DI) Bl B H > 0 i
SETDDI(X,DDI) Din [Up-C K N)J\ X| Dout
Correct the discontinuity during the next interpolation at ® ;I
processor X + 1. The intensity, its first derivative and its 1 B] mi < »m
second derivative is corrected by the SETI(...),SETDI(...) F A BIC -7 Uul—m» P
and SETDDI(...) instructions respectively. Din < 4 X) HE A _»X] Dout
DIS(X,DX) l{ IQ jl 5\ 2
Disable the accumulation between processors X+1, X+D X+ 1 B
1. lFJ -C ONTROL
Iin
NOI;J() b ® : Pipeline Registers fout
o nothing.
Fi 3 A - i
ACoM() gure Group-X Architecture
Toggle the accumulation of negative intensities.
Z
Table 1: Our Advanced Instruction Set Vin [A . e | mas Vout
)2 AL
pin (U< Ny >l \,—»\;' X| Dout
1 % é'_ ri é “33 >
A AB’C H > Ul
pin (U S = I~ N . L §
Feature Prototype Optimized Design i # v
Pixel rate 66 ~ 83 MHz 66 ~ 83 M1z o Tool»
Transistor count | 85 K 190 K ~ 230 K % F ABIC - P > li!l‘—b
PE count 9 50 ~ 60 Din U} el E Y X] Dout
Process 1.6um CMOS 1.6um CMOS D [{ 5} 9 +H
Chip size 10.2 x 11.4mm? | 10.2 X 11.4mm? o~ <
Supply 5V 5V 1 B Cis
Dissipation < 5W at 83 MHz | < 5W at 83 MHz =13
Package 144 PGA 144 PGA lin U]

Table 2: Main Features of the Prototype (in full CMOS)
and Expected Features of an Optimized Design (in Domino
Logic)

Figure 4: A Group-Y Architecture

17.2.4

