
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 3, MARCH 1991 229

Two-Level Pipelined Systolic Array
Graphics Engine

J. A. K. S. Jayasinghe, Member, IEEE, F. Moelaert El-Hadidy, G. Karagiannis,
Otto E. Herrmann, Member, IEEE, and J. Smit

Abstract -Simultaneous improvement of interaction speed and image
quality of raster graphics systems is an important topic in computer
graphics research. Due to huge processing power requirements, realistic
shading methods (like Phong shading) have been used only in noninter-
active applications whereas less realistic shading methods (like Con-
stant shading) have been used in current interactive applications. A
design of a systolic array graphics engine is described which generates
high-quality Phong-shaded images in real time. Under the area and
speed limitations of the current IC technologies, the required speed is
achieved using pipelined functional units. A prototype containing nine
processing elements was fabricated in a 1.6-pm CMOS technology.

I. INTRODUCTION
N THE past decade, raster graphics systems have become I more popular than vector graphics systems because of

their better image quality. The frame buffer in the raster
graphics systems has been identified as the major bottleneck
for real-time interaction [l] due to its insufficient bandwidth.
A VLSI systolic array graphics (SAG) engine called Super
Buffer (only capable of Constant shading) was first intro-
duced in 1985 [2] to replace the frame buffer by a processor
array. More powerful SAG engines capable of Gouraud
shading were introduced later [3], [4] which use 16-b fixed-
point arithmetic. The main advantage of the SAG engine is
its smaller overall system size compared to other graphics
systems [2], and its potential for better interaction speed [5].
As the maximum operating speed of a systolic array is
determined by the delay of the most complex operation, the
maximum operating speed of an SAG engine tends to reduce
as more complex functions are introduced to improve the
image quality. Attempts to improve the speed using faster
functional units (like carry lookahead adders instead of sim-
ple carry:ripple adders) lead to larger silicon area. Since a
large number of processing elements (PE's) is needed in an
SAG engine, this solution is impractical. The purpose of this
paper is to report a VLSI design of an advanced SAG engine

Manuscript received July 27, 1990; revised November 1, 1990. This
work is part of a project for developing a graphics workstation. The
project is supported by the Dutch Research Foundation (STW) under
Contract CW177.1249, carried out by the University of Twente, En-
schede, The Netherlands, and the Center for Mathematics and Com-
puter Science, Amsterdam, The Netherlands.

J. A. K. S. Jayasinghe is with the Laboratory for Network Theory,
University of Twente, 7500 AE Enschede, The Netherlands, on leave
from the Department of Electronics Engineering, University of
Moratuwa, Moratuwa, Sri Lanka.

F. M. El-Hadidy, G. Karagiannis, 0. E. Herrmann, and J. Smit are
with the Laboratory for Network Theory, University of Twente, 7500 AE
Enschede, The Netherlands.

IEEE Log Number 9041479.

built from pipelined functional units which can generate
realistic images interactively for high-resolution displays.

This paper is organized as follows. In the next section, we
introduce a structured frame store system as an environment
for the advanced SAG engine. In Section 111, we present the
principles and architecture of the advanced SAG engine. We
introduce pipelined functional units into this SAG engine to
meet the performance requirements. This is done by the
formal approach presented in Section IV. Next, two architec-
tures built from pipelined functional units are described in
Section V. In Section VI, some details of a prototype are
presented. Finally, some conclusions are drawn.

11. A STRUCTURED FRAME STORE SYSTEM
For the sake of completeness, a brief description of the

structured frame store system is presented that incorporates
the advanced SAG engine. The low-level display file (LDF)
in Fig. 1 contains nonoverlapping facets (patterns) describing
the visible image. These patterns are shaded in real time
while being displayed on the screen. Since a large number of
small patterns can occur in a typical scene, high bandwidth is
required to access the LDF. This has been achieved by
parallel accesses of the LDF by multiple pattern loaders
(PL's). The patterns that are contributing to the next pixel
row are stored in the active pattern store (AF'S). There are
two sets of systolic arrays that work independently. One
takes care of the incremental calculations along the pixel-col-
umn direction, the systolic array preprocessing (SAP) engine,
and the other along the pixel-row direction, the SAG engine.
The SAP engine calculates the intersections of edges with
the current pixel row, the color values at the leftmost edge,
incremental color values along the pixel-row direction, etc.
These data are sent into the scan-line command buffer
(SCB) as instructions and data for the SAG engine. In the
SAG engine, shading is done by incremental calculations.
The output of the SAG engine is directly used to refresh the
display.

This architecture offers attractive features such as expand-
ability, linear performance improvement with increased
hardware, efficient implementation in VLSI, and the ability
to generate high-quality pictures with a good interactive
behavior.

111. THE ADVANCED SAG ENGINE
In this section, we introduce an advanced instruction set

together with the corresponding architecture of an SAG
engine. Before that, some notes on shading are made to

0018-9200/91/0300-0229$01.00 61991 IEEE

230

Instruction

REF(1

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 3, MARCH 1991

Description

Send the local pixel storage to the display and reset the processor.

TABLE I
OUR ADVANCED INSTRUCTION SET

EVALO(X , DX, I)
EVALI (X , DX, I , D I)
EVALZ(X, DX, DDI, DI, I)

Interpolate and accumulate the intensity between pixel locations X + 1
and X + DX + 1 until the next REF(). Zero-, first-, and second-order
interpolation are done by the EVALO(. .
EVALZ(. . .) instructions, respectively.

EVALI(. . ‘1, and

SETPI(X, D X , I)
SETPDI(X, DX, D I)
SETPDDI(X, DX, DDI)

SETI(X, I)
SETDI(X, D I)
SETDDI(X , DDI

DIS(X , D X)

Correct the periodic discontinuities during the next interpolation at pixel
locations DX apart, starting from X + 1. The intensity, its first
derivative, and its second derivative are corrected by the SETPI(. . .)
SETPDI(. . .), and SETPDDI(. .) instructions, respectively.

Correct the discontinuity during the next interpolation at pixel location
X + 1. The intensity, its first derivative, and its second derivative
are corrected by the SETI(. . .), SETDZ(. . .), and SETDDI(. . .)
instructions, respectively.

Disable the accumulation between pixel locations X + 1 and X + DX + 1.

ACC-M() I Toggle the accumulation of negative intensities.

From a higher image
generation level

I

APS : Active Pattem Store
LDF : Low-Level Display File
PE-a : Processor Element of SAP
PE-b: Processor Element of SAG

SAG: Systolic h a y Graphics
(Engine)

SAP : Systolic Array Re-
Processing (Engine)

SCB : Scan-Line Command Buffer PL : Pattem Loader

Fig. 1. Architecture of the structured frame store system.

highlight the power of the new instruction set and
architecture.

A. Some Notes on Shading

Shading enhances the realism of computer-generated

the

im-
ages. There are several well-known shading techniques such
as Constant shading, Gouraud shading, and Phong shading,
mentioned in order of increasing complexity [6]. Constant
shading calculates a single intensity value for an entire facet.
Gouraud shading linearly interpolates the intensity along the
edges and between the edges. Phong shading interpolates
some vectors and calculates a unit vector dot product raised
to a power. The image quality that Phong shading offers is

superior to Gouraud shading but greatly increases the cost of
computation. We conclude that shading methods providing
realistic images need huge processing power. In order to
achieve the required interaction speed, less realistic shading
methods (like Constant shading) have been used in current
interactive applications, whereas more realistic shading
methods (like Phong shading) have been used only in nonin-
teractive applications.

We have found that Phong shading can be approximated
by second-order intensity interpolation with changes to the
second derivative of the intensity at some strategic points
during interpolation [5]. This approach dramatically reduces
the computational power requirements. It introduces no
visible degradation in image quality, because it calculates the
intensity values to the same accuracy as the conventional
Phong shading produces. A 10 x 10-pixel facet can be shaded
using a factor of 10 less processing power, whereas for a
1OOX 100-pixel facet the saving is a factor of 25. Though
Phong shading was considered to be computationally too
expensive for real-time applications, the simplicity of the
second-order interpolation scheme makes real-time Phong
shading not only feasible but also faster than Gouraud shad-
ing. When Phong shading is used, one can increase the sizes
of facets without losing the quality of the image. This re-
duces the number of facets needed to describe an image.
The fewer the number of facets, the smaller the amount of
processing power required. Our estimate shows that by mak-
ing the facets more than a factor of 4 larger, we can make
Phong shading faster than Gouraud shading.

B. The Instruction Set

A generalized interpolation scheme, which performs zero-,
first-, or second-order interpolation with discontinuities in
intensity and/or derivatives of the intensity, provides a uni-
fied approach to support several shading methods. Table I
shows our instruction set for this approach which can be
executed on an SAG engine. The EVAL * (X , DX, . . .) in-
structions perform the intensity interpolation between pixel
locations X + 1 and X + DX + 1, and the SET * (. . .) in-
structions are used to set or compensate for the discontinu-
ities at the required locations. The REF() instruction is sent

JAYASINGHE et al.: TWO-LEVEL PIPELINED SYSTOLIC ARRAY GRAPHICS ENGINE 23 1

~

Shading technique Instruction Description

L, SETDDI(X4-1.DDI2) Secondader derivative correction a t X 4
E V A ~ (X l - 1 . 4 D X , O . O . D D ~ ~ ~ S ~ n d ~ r interpolation from X I to X I +4DX

8 - 1

4DX
xo X l x2 x3 x4 x5 xs
Sludlng h a t s Having Holu

____________________-_------------------------
DlS(X2-1,DX)

EVALIfX1-1.4DX.LDIJ

Disable the accumulation from X 2 to X 2 + D X

Fmt-orda interpolation from X I t o X Z + 4 D X
e - L I

4DX ____________________------_--------------_----
Gouraud Shadlng
+ AnU-Allaslng

, , , , , , I
SETDI(X2-1,DIlJ

SETDI(X4-1.DI2)

Fmt-ordex derivative correction at X 2
Fust-order derivative correction at X 4

, EVALlfX1-1.4DX,I.DI) Fust-order interpolation from X I to X I + 4 D X
, , H I , ,

XO X1 X2 X3 X4 XS X6
DX

Fig. 2. Implementing some shading algorithms using our instruction set.

into the SAG engine in synchronism with the display refresh-
ing. It sends the pixel value of the current PE it resides in to
the display and resets each PE as it travels through the
processor array. The instructions required to shade the cur-
rent pixel row are sent into the SAG engine between the
REF() instructions, due for the previous and current pixel
rows. When fewer objects (than the capacity of the SAG
engine) have to be displayed, the empty slots between the
REF() instructions are filled by NOP() instructions. The
DZS(. . .) instruction disables the accumulation of intensi-
ties. Facets having holes can be shaded efficiently by sending
this instruction before an EVAL * (. . .) instruction. The
ACC-M() instruction toggles the accumulation of negative
intensities. Using this instruction, one can eliminate the back
facing parts of a facet. Fig. 2 shows the implementation of
some shading algorithms using our instruction set.

C. The Architecture

In an SAG engine, the pixel storage, which is limited to a
pixel row, is distributed over the one-dimensional systolic
array built from identical PE's. Processing and storage of
pixels in each pixel column is done sequentially by a single
PE, such that adjacent pixel columns are taken care of by
adjacent PE's, minimizing communication requirements.
During each processor cycle of our SAG engine, the PE
containing the REF() instruction sends the pixel value in
register P (see Fig. 3) to the display. As the REF'(instruc-
tion is passed in synchronism with the display refreshing, the
video stream is generated on the fly and the display resolu-

Vin

Din Dout

A,B,C: Registers Iin : Instruction input P : Pixel Storage
BUF : Buffer Iout : Instruction output Vi : Video input
Din : Data input MUX: Multiplexer Vout : Vidw output
Dout : Data output OD : Output Driver

Fig. 3. Architecture of a PE in the advanced SAG engine.

tion determines the clock frequency. Other PE's perform
operations according to their current instructions. The con-
troller decodes the instruction to enable proper functional
units in the PE. At the end of the processor cycle all but the
last PE pass instructions to their neighbors and the first PE
receives a new instruction. Before the instructions and data
are sent to the neighboring PE's, they are modified accord-
ing to a known criterion. The registers A , B , and C store the
intensity I , its first derivative DZ, and its second derivative
DDZ. Data are represented by 36-b fixed-point numbers' for
interpolations and discontinuity corrections. The processor
addresses, X and DX, are represented by 12-b integers. The

'At least (m +2n)-bit fixed-point representation is needed to prevent
visible quantization errors, where 2"' and 2" are intensity and horizontal
display resolutions.

232 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 3, MARCH 1991

processor addresses (i.e., X and O X) , DDZ, DI, and Z are
sent into the array in consecutive time slots in the given
order. For fault tolerance reasons, the processor location X
is identified by decrementing the address X at each PE and
detecting whether its value is zero or not. Processor locations
X + DX, X + 2 DX, X + 3DX, . . . can also be similarly iden-
tified, by substituting X by DX whenever X is zero. Faulty
PE's are bypassed by disabling the decrementing of X and
bypassing the instructions and data. As the data associated
with instructions are sent in different time slots, the proces-
sor address decrementation, intensity interpolation, and in-
tensity accumulation can be done on the same adder. The
condition X = 0 can be detected by monitoring the carry-out
of the adder at the 12th bit (i.e., C, , in Fig. 3) when X is
represented by the lowest significant 12 bits. The leftmost
multiplexer provides the data for decrementing X . The
rightmost multiplexers select the correct output data and op
codes depending on the decisions related to the processor
addresses.

IV. A FORMAL APPROACH FOR TWO-LEVEL PIPELINING
Pipelined functional units are shown to be very attractive

in achieving the necessary performance requirements under
the speed and area limitations of the current IC technolo-
gies. Systolic arrays built from pipelined functional units
have been referred to as two-level pipelined systolic arrays in
the literature [7]. When the behavior of a systolic array is
time invariant (i.e., each PE performs the same function in
every cycle) and shift invariant (i.e., the output data of a PE
are independent of the PE location in the array), it can be
converted into a two-level pipelined design by using the
formal methodology presented in [7]. Due to the time-vari-
ance and shift-variance behavior of the advanced SAG en-
gine, this formal methodology fails to produce functionally
correct designs [SI. Therefore, we use the following graph-
theoretic approach, which can be used for two-level pipelin-
ing of systolic arrays irrespective of their behavior.

In our approach, the original systolic array is represented
at bit level by a finite, vertex-weighted, edge-weighted, di-
rected graph G = (V , V', E , d,, dbt, w E) (from now on, for
simplicity, we say graph) where V U V' and E are the set of
vertices and the set of edges, respectively. The functions d,,
di,,, and wE represent the weights defined on vertices in V ,
vertices in V', and edges in E , respectively. The graph G is
constructed by replicating the graph of a PE, G,,=
(VPE, V;,, E,,, dVPE, dbfiE, wE,,) and connecting vertices ac-
cording to the communication between PE's as the entire
systolic array is built from identical PE's.

In order to construct the graph G,,, the bit-level func-
tional units are represented by vertices V,, and bit-level
stwage by vertices V;,. The communication between ver-
tices is denoted by the edges and for each edge e E E,,,
d e) denotes the earliest communication time slot for all
legal combinations of instructions. The edges which commu-
nicate in the ith (i = 0,1,2, . . .) time slot are weighted by i .
As any vertex U E VPE represents a functional unit, the data
sent on an output edge of U are dependent on the data
supplied on several input edges of U . Though the propaga-
tion delay from each input edge to an output edge is differ-
ent, for simplicity, we assume that the propagation delay for
each vertex is equal to the worst propagation delay of it.

Hence, we weigh each vertex U E V,, by d(u), the maximum
numerical propagation delay of the functional unit repre-
sented by the vertex U . In general, storage vertices represent
multiport registers. Therefore, the data coming from an
input edge are stored and passed to a selected output edge.
The output edge is selected by another input edge represent-
ing a control signal. Therefore, we weigh each vertex U ' E V;,
by d ' (u ' ,u l ,u2) for all vertices u1 and u2 such that vertex u2
receives data from vertex u 1 through vertex U'. The quantity
d'(u', u I , u 2) indicates the minimum latency (which is under
the control of instructions) through the storage vertex. If the
data supplied to vertex u2 from vertex U' have no depen-
dency on the data supplied to vertex U' from vertex c1, then
d'(u', ul , U,) is undefined.

The maximum clock speed of the circuit is determined by
the propagation delays of the critical path(s). A critical path
in our graph G can be identified as a directed path activated
in the same time slot such that the sum of the vertex weights
on that path is maximum over the entire graph. If a critical
path goes through a storage vertex, the critical path is
terminated at the storage vertex whenever the vertex weight
corresponding to that path is nonzero, as the vertex weights
of storage vertices denote the latency whereas the weights of
other vertices denote the propagation delay. In order to
improve the clock speed, the graph is retimed. In retiming,
pipeline registers are added to all critical paths to meet the
given speed requirements, and then additional pipeline regis-
ters are added to other edges and/or latencies at storage
vertices are changed such that the conditions of the following
theorem are satisfied.

Two-Leuel Pipelining Theorem: If a two-level pipelined de-
sign is obtained by adding pipeline registers to some edges
and/or changing the latencies of storage vertices of G, the
logical behavior of the system will be kept intact if the
differences in latencies through any pair of paths between
any two vertices are equal in the original and retimed graphs
when the weights of the storage vertices corresponding to
these paths are not undefined.

Proof: Let m and n be two vertices and p 1 and p 2 be
two paths from m to n. Assume path p 1 is activated on
~ ~ ~ , , z ~ ~ ~ , ~ . . , i p l N , time slots (i p l l < i p l , . . . < i p l N ,) and p z is
activated on i p21 , ip22 , . . ., iP2,, time slots (i p 2 , < i P z 2 . . . <
ip2, ,) . We can make this assumption iff this path does not
contain edges connected to a storage vertex such that the
vertex weight is undefined. If we introduce a latency of k
cycles in path p l , by introducing pipeline stages and/or
changing storage latencies, vertex m gets the data from
vertex n through path p1 in time slot i p l N l + k . In the
original graph, vertex m gets the data from vertex n through
paths p1 and p 2 in time slots i p l N l and ip2,,, respectively. In
order to keep the logical behavior of the graph intact, we
must get data through path p 2 in time slot ip2,, + k . Now,
we can see that the difference in latency through path p1
and p 2 is equal to i p ,N , - ip2, , cycles in both original and
retimed graphs. This argument, when applied to all paths

0
As any circuit in a graph can be described in terms of a set

of linearly independent circuits, it is enough to apply the
two-level pipelining theorem to a set of linearly independent
circuits of G. This produces a set of equations that contains
more variables than the number of equations. Therefore,
feasible solutions can be found by linear integer program-
ming, for example, by minimizing the total register count.

. .

between any vertex pair, proves the theorem.

233 JAYASINGIIE et al.: TWO-LEVEL PIPELINED SYSTOLIC ARRAY GRAPHICS ENGINE

Vi n

Din

Vout

PDout

Vi n

Din 1 , 4 Vout

Dout

lout
0 : Pipeline Registers

Fig. 4. A Group-X architecture where the pipelining depth is limited.

V. TWO-LEVEL PIPELINED DESIGNS OF THE

ADVANCED SAG ENGINE
Due to limited space, we cannot present the full details of

the conversion of our SAG engine into two-level pipelined
versions. The necessary steps to convert the advanced SAG
engine into two-level pipelined designs are:

1) construct the graph G ,
2) identify the critical paths and add pipeline registers

3) apply the two-level pipelining theorem and get a func-
into them to meet the given speed requirements,

tionally correct and feasible design.

Due to the difference in bit requirements for processor
addresses (i.e., X , D X) and intensity data (i.e., Z, DZ, DDZ),
we get two groups of two-level pipelined architectures for
our advanced SAG engine. We present these architectures in
the following subsections.

A. The Group-X Architecture

If the speed requirements are such that only a few pipeline
registers are necessary on the carry path, we can encounter a
situation where no pipeline registers are required on the part
of the adder in which the addresses are updated. We refer to
this configuration as Group-X architecture. Fig. 4 shows an
example where only two groups of pipeline registers have
been placed on the 36-b data path. This divides the 36-b data
path into three blocks of 12 b each. Let us assume that the
instruction Zin and the first 12-b block of the input data Din
are supplied to the processor at the nth cycle. The instruc-
tion provides the proper control signals to the data path such
that the correct inputs are provided to the adder. As the
processor addresses are represented by 12-b numbers and
sent into the processor on the first 12-b block of the data
path, any decision related to a processor address can be
taken in the same time slot as the address is decremented.
We recall that the rightmost multiplexers select the proper
output data depending on the decisions related to the pro-
cessor addresses. Therefore, the output instruction Z,,, and
the first 12-b block of the output data Do,, can be produced
at the nth cycle. In the case of the second 12-b block, the
carry input to the adder is delayed by one clock cycle due to
the first pipeline register on the carry path. Hence, the input
and output activities of this adder must occur at the (n + 1)th
cycle. The following conditions are required for the second
12-b block:

Fig. 5. A Group-Y architecture where the pipelining depth is
unlimited.

1) the control signals which provide the inputs to the
adder must be delayed by one cycle with respect to the
relevant control signals of the first 12-b block;

2) the control signals which use the output of the adder
must be delayed by one cycle with respect to the
relevant control signals of the first 12-b block;

3) the input data Din must be supplied at the (n + 1)th
cycle.

The set of pipeline registers between the first and second
12-b block has been inserted to meet the first and second
requirements. As the second section of the adder is generat-
ing its output at the (n + 1)th cycle, the second 12-b block of
the output data Dout is generated on the (n + l) t h cycle.
Similarly, the pipeline registers between the second and
third 12-b blocks of the data path are inserted. For proper
operation, the last 12-b block of the input data Din must be
supplied in the (n +2)th cycle and the last 12-b block of the
output data Dout will be generated in the (n +2)th cycle.
Now we can see that the skews of different blocks of the
input data Din and output data Dout are compatible with
each other such that two processors can be cascaded. In the
case of the architecture in Fig. 3, the speed improvement of
Group-X architectures is limited to a factor of 3.

B. The Group-Y Architecture

When the speed requirements are severe, more pipeline
registers must be placed on the carry ripple path of the
adder. As soon as pipeline registers are introduced into the
section of the adder where the address is decremented, any
decision related to a processor address cannot be taken in
the same cycle as the least significant bit of the address is
supplied. We refer to this configuration as Group-Y archi-
tecture. Fig. 5 depicts an example, where pipeline registers
are placed 4 b apart. When the address is represented by a
12-b number, any decision related to the address has to be
postponed by two cycles. Hence, the inputs to the rightmost
multiplexers must be delayed by two cycles. The pipeline
registers on the horizontal buses provide the necessary de-
lays. Similar to the Group-X architecture, if there is a
pipeline register between the kth bit and (k + 11th bit of the
adder, pipeline registers are necessary on all the control
signals which provide/use the data to/from the (k + 1)th bit
of the adder. Furthermore, the input data Din must be
skewed. We notice that the latency between any input port
to the relevant output port has been increased by two cycles.

234 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 3, MARCH 1991

In general, if there are k pipeline registers on the section of
the adder where the addresses are updated, k pipeline Pixel rate
registers are necessary on the horizontal buses. As C,, is an
input to the controller, some pipeline registers are also
necessary in the controller. The speed improvement of this

1-b adder is the limiting factor.

Characteristic

Transistor count

Chipsize

Power dissipation
Package

group is superior to the previous group, and the speed of a Power supply

outp3I t l

RD1
RD2

OutgoM

-

Prototype Optimized Design

66 - 83 MHz
85K
9
1.6-km CMOS 1 . 6 - ~ m CMOS
1 0 . 2 ~ 11.4 mm2
5v 5v
< 5 W at 83 MHz
144 PGA 144 PGA

66 - 83 MHz
190 - 230K
50 - 60

1 0 . 2 ~ 11.4 mmz

< 5 W at 83 MHz

Fig. 7. Microphotograph of the prototype SAG engine.
U

RD2
Vs WR V&

TABLE I1

AND THE EXPECTED CHARACTERISTICS OF AN OPTIMIZED
DESIGN (IN DOMINO LOGIC)

(b)

multiport register used for registers A, B , and C.
Fig. 6. Some circuits used in the prototype. (a) The adder. (b) The THE CHARACTERISTICS OF THE PROTOTYPE (IN FULL CMOS)

VI. A PROTOTYPE DESIGN
same type can be implemented in a single diffusion area. A

BUF. The gate capacitance of an inverter has been used as
the storane element for the registers as the maximum

Due to the superior 'peed Of Group-Y architectures, we two-phase serial shift register was used for the input buffer
have decided to implement the architecture given in Fig. 5 in
silicon. The following steps were followed during the design:

hardware description of the SAG engine to verify its
behavior with the specifications;
two-level pipelining with estimated propagation delays;
hierarchical decomposition and floor planning;
leaf cell design using symbolic layouts;
circuit extraction for functionality verification of leaf
cells and better propagation delay estimation by SPICE;
refinement of the design by repeating steps 2-5;
design rule checking, electrical rule checking, and then
refinement of the design;
circuit extraction to verify the functionality of the com-
plete design by switch-level simulation and verification.

For the hardware description, the in-house developed hard-
ware description language MoDL [9] was used. For the
symbolic layout design, the symbolic layout design system
CAMELEON [lo] was used. The procedural design language
GrapMG [ll] was used to build the processor in a hierarchi-
cal form using the custom designed leaf cells. The design
rule checking and electrical rule checking were done by the
tools in the DRACULA design system.

Most leaf cells were designed such that they can be abut-
ted. The adder is shown to be the critical cell which deter-
mines not only the speed of the processor but also the area
of a PE to considerable extent. The adder shown in Fig. 6(a)
was used due to its compactness, as ail the transistors of the

time is a-few microseconds. The registers have several 170
ports and transmission gates were used to select the proper
ports. Fig. 6(b) depicts the circuit of the multiport register
used for the registers A , B , and C. The multiplexers are also
based on the transmission gates. In the refined design (step
6), the width of the first section of the data path was reduced
to 3 b due to instruction decoding delays. For regularity, we
decided to implement the data path as 3-, 5-, 4-, 3-, 5-, 4-, 3-,
5-, and 4-b-wide sections. Fig. 7 is a microphotograph of the
prototype which consists of nine PE's. It contains the equiva-
lent of 85K minimum feature size transistors in a 1.6-pm
CMOS technology and the design was done in a university
environment (see Table I1 for more details). The area over-
head of the pipeline registers is approximately 25%. Due to
relatively low processor count per chip, we have investigated
an improved design. Using Domino logic and better circuits,
the transistor count per PE can be reduced by approximately
a factor of 2.3. When cells are abutted, some of them have to
be stretched. Better layouts can minimize area overhead due
to cell stretching. According to our estimate, the density can
be improved by approximately a factor of 2.5 using better
mask layouts. Therefore, given adequate resources, 50 - 60
PE's could be integrated in a single chip using the same
1.6-pm CMOS technology without any speed reductions.
Submicrometer technologies could provide even better re-
sults.

I

I

JAYASINGHE et al.: TWO-LEVEL PIPELINED SYSTOLIC ARRAY GRAPHICS ENGINE 235

The testability of the design is an important aspect. The
advanced SAG engine was designed such that each processor
can be tested individually by bypassing the other processors.
The signals of the test PE are observed via a serial shift
register and are controlled via the ports Zi, and Din. The
prototype chip has been tested and it is fully functional.

VII. CONCLUSIONS
By converting the computationally intensive Phong shad-

ing method into second-order interpolation, it is now possi-
ble to generate images faster than Gouraud shaded images
using the same amount of processing power. Therefore,
real-time Phong shading becomes a reality. Due to the
robustness of our approach, no visible errors are introduced.
The simplicity of our approach enables significant speed
improvements for Phong shading even with general-purpose
hardware. The speed improvements can be further enhanced
by ASIC’s and hence we designed an advanced SAG engine.
A silicon implementation of a prototype SAG engine sup-
porting an advanced instruction set for real-time Phong
shading is reported. Apart from Phong shading, it also sup-
ports Gouraud shading and Constant shading. The speed of
the advanced SAG engine is improved by two-level pipelin-
ing. The two-level pipelined design is derived using the
formal approach presented in Section IV which handles
time-variant and shift-variant systolic arrays. The advantage
of the two-level pipelining is its capability to provide complex
functionalities a t high pixel rates, which is difficult to achieve
by other means using the same silicon area. As computer
graphics users have a great desire for high image quality,
high interaction speed, and high resolution, we think that
two-level pipelined S A G engines supporting realistic shading

I techniques will be a breakthrough for real-time computer
graphics.

ACKNOWLEDGMENT
Thanks to J. Huisken and other members of the VLSI

Design Group at Philips Research Laboratories, Eindhoven,
for their help and for allowing us to use their design system
and fabrication process. The members of the Interactive
Systems Group, CWI, Amsterdam, are also acknowledged
for the discussions during the specification development
phase of the advanced SAG engine. Thanks also to S. Gerez
and K. Slump at the University of Twente, Enschede, for the
critical remarks and proofreading.

REFERENCES

[l] P. J. W. ten Hagen et al., “Display architecture for VLSI-based
graphics workstation,” in Advances in Graphics Hardware I .
Berlin: Springer-Verlag, 1987.

[2] N. Gharachorloo and C. Pottle, “SUPER BUFFER: A systolic
VLSI graphics engine for real time raster image generation,” in
Proc. 1985 Chapel Hill Con5 VLSI, 1985, pp. 285-305.

[3] N. Gharachorloo et al., “Subnanosecond pixel rendering with
million transistor chips,” in Proc. SIGGRAPH, Aug. 1988, pp.

[4] T. Nishizawa et al. “A hidden surface processor for 3-dimen-
sion graphics,” in ISSCC Dig. Tech. Papers, Feb. 1988, pp.

[5] J. A. K. S. Jayasinghe et al., “A display controller for a
structured frame store system,” in Advances in Graphics Hard-
ware III. Berlin: Springer-Verlag, 1989.

[6] J. D. Foley and A. van Dam, Fundamentals of Interactive
Computer Graphics.

41-49.

166- 167.

Reading, MA: Addison Wesley, 1984.

H. T. Kung and M. S. Lam, “Fault-tolerance and two-level
pipelining in VLSI systolic arrays,” in Proc. Conf. Advanced
Res. VLSI , Jan. 1984, pp. 74-83.
J. A. K. S. Jayasinghe and 0. E. Herrmann, “Two-level pipelin-
ing of systolic array graphics engines,” in Aduances in Graphics
Hardware N. Berlin: Springer-Verlag, 1990.
J. Smit et al., “The MoDL hardware design system,” in Proc.
8th Int. Conf. Computer Hardware Description Languages and
Their Applications, Apr. 1987, pp. 327-342.
K. Croes et al., “CAMELEON, A process tolerant symbolic
layout system,” in Proc. European Solid-State Circuits Conf .,
Sept. 1987, pp. 193-196.
H. Jansen et. al., “GrapMG: Cost effective module generation,”
in Proc. European Solid-state Circuits Conf., Sept. 1989, pp.
86-71.

versity of Twente, Ensc
ests are parallel proces
electronics.

J. A. K. S. Jayasinghe (S’86-M’88) was born in
Colombo, Sri Lanka, in 1960. In 1984 he re-
ceived the B.Sc. (engineering) degree in elec-
tronics and telecommunication engineering from
the University of Moratuwa, Sri Lanka. In the
same year, he joined the academic staff of the
same university as an Assistant Lecturer. In
1987 he received the M.E.E. degree from the
NUFFIC (Netherlands University Foundation
for International Cooperation). Currently he is
working towards the Ph.D. degree at the Uni-
hede, The Netherlands. His main research inter-
,sing systems for computer graphics and medical

F. Moelaert El-Hadidy was born in Prague,
Czechoslovakia, in 1959. In 1982 she received
the B.Sc. degree in communication and elec-
tronics engineering from the University of Cairo,
Egypt. In December 1986 she received a
Diploma from the Philips International Insti-
tute, Eindhoven, The Netherlands. In 1989 she
received the M.Sc. degree from the University
of Cairo. She is currently working towards the
Ph.D. degree at the University of Twente, En-
schede, The Netherlands.

She worked as a software engineer in Egypt from 1982 to September
1985. She then worked in the Philips CAD center in Eindhoven on an
analog circuit analysis package until August 1987. Her interests include
parallel architectures, systolic arrays, graphics, and ASIC’s.

design developing
student in electron

G. Karagiannis was born in Braila, Rumania in
1964. In 1987 he received the “Technologos
Mihanikos” degree in electronics from the
Technical Institute of Education (T.E.1.) of
Athens, Greece, In 1988 he received the Ing.
degree in electrical engineering from the Poly-
technical High School (H.T.S.) of Enschede,
The Netherlands.

In the same year he joined the staff of the
University of Twente, Enschede, The Nether-
lands. Currently he is working in the field of IC

a graphics workstation. He is a part-time MSc.
ics at the same university.

Otto E. Herrmann (M’72) was born in Diissel-
dorf, West Germany, in 1933. He received the
Dipl.-Ing. and Dr.-Ing. degrees in electrical en-
gineering from the University of Technology
Aachen, West Germany, in 1959 and 1965, re-
spectively. In 1971 he received the “venia leg-
endi” for telecommunication from the Univer-
sity of Erlangen, West Germany.

From 1959 to 1965 he was a Research Associ-
ate and Lecturer at the Universities of Aachen
and Karlsruhe. From 1966 to 1972 he was Se-

236 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 3, MARCH 1991

nior Staff Member and from 1972 to 1975 “Abteilungsvorsteher” in the
Department of Electrical Engineering of the University of Erlangen.
During 1972 he was a Visiting Scientist on leave at Bell Laboratories,
Murray Hill, NJ. Since November 1975, he has been heading the group
for network theory, signal processing, and CACSD as a full Professor at
the Faculty of Electrical Engineering at the University of Twente,
Enschede. The Netherlands.

J. Smit was born in 1944 in Berkhout, The Netherlands. He re-
ceived the Ing. degree in electrical engineering in 1966 from the tion in the area of VL

Polytechnical High School (H.T.S.) in Emchede,
The Netherlands, and the B.Sc. degree in elec-
trical engineering in 1971 and the Ir. degree in
electrical engineering in 1975 from the Univer-
sity of Twente, Enschede, The Netherlands.

Since 1971 he has been working at the Uni-
versity of Twente at several levels of responsibil-
ities. Currently he is a senior staff member
(“Universitair hoofd docent”) in the Laboratory
for Network Theory at the University of Twente,
where he is responsible for research and educa-

S I design.

