
GENERALIZED METHODOLOGY FOR ARRAY PROCESSOR DESIGN OF
REAL-TIME SYSTEMS

F. Moelaert El-Hadidy and O.E. Herrmann

University of Twente, Laboratory for Network Theory
P.O. Box 217, 7500 AE Enschede, The Netherlands

Tel: $31-53-892822, Fax: $31-53-340045
E-mail: ferialant .el.utwente.nl

ABSTRACT

Many techniques and design tools have been developed for
mapping algorithms t o array processors. Linear mapping
is usually used for regular algorithms. Large and complex
problems are not regular b y nature and regularzzation may
cause a computational overhead which prevents the ability
2 0 meet real-time deadlines. In this paper , a systematic
design methodology for mapping partzally-regular as well
as regular Dependence Graphs is presented. I% this ap-
proach the set of a l l optamal solutions is generated under
the given constraints. d u e t o nature of the problem and
the tight timzng constraints of rea,l-time systems the set
of alternative solutions i s limited. A n image processing
e x a m p l e is discussed.

tions for scheduling and projection. Our aim is to de-
sign a powerful methodology for systematically mapping
M-dimensional DG's directly into I<-dimensional array
processors for real-time systems, where M > A'. This
method offers a flexible platform t o investigate the possi-
ble mapping alternatives under a given set of constraints.
Emerging from the fact that real-time systems have tight
timing requirements, we show that the set of alternative
solutions is limited. Further, we show that under a cer-
tain set of constraints the solution set is independent of
the problem size.

In Sections 3 and 4 the branch-and-bound approach
for the scheduling and projection problem is presented.
Further, complexity issues are discussed in Section 5 and
mapping to fixed size arrays is discussed in Section 6.

1, INTRODUCTION
2. HIERARCHICAL DG REPRESENTATION

Array processors are well suited to efficiently implement
a major class of signal processing algorithms due to their
para.llelism and regular da ta flow [KUN88]. A widely
used approach for mapping algorithms to array proces-
sors is the Dependence Graph (D G) methodology. In this
methodology, first an algorithm is developed in Single h s -
signment Code (S A C) where each variable is only allowed
t.o have a single value. Then t,he algorithm is represented
in a graphical form by a DG [KUN88]. The nodes of
the DG are then mapped into an array processor. In
literature, several techniques and software packages have
been reported for the automation of the mapping (see e.g.
[QUISI], [MOLW], [RAO88], [hNN88], and [JAYSla]).
Except for [JAYSla], only mapping of regular DG's has
been fully automated. The DG's for large and complex
problems are not, regular in general and are very difficult
to make regular by adding dummy operations.

In an earlier paper [MOE92], based on work done
in [JAYSlb], we presented a n Integer Linear Program-
ming (U P) formulation for mapping (semi-)regular D G s
to array processors. In this paper, we use a branch-
and-bound technique to oht,ain the set of optimal solu-

'The best way to manage the complexity of large sys-
tems is to adopt a hierarchically structured design. In
literature, a hierarchical design environment has been
treated in [KUN84], [ANN€%], [THI88] and [JAYSla].
Here we adopt the hierarchical form of the S A C pro-
posed in [JAYSla]. This form is referred to as Structured
Single Asszgnment Code (S AC). The graphical repre-
sentation of the S 2AC description is called Structured
Dependence Graph (SDG) . The canonical forms of the
S ' A C and SDG are used for the construction of the DG
with local- dependence edges in a minimum dimension Eu-
clidean space to keep projection simple.

An index point in a DG can, in general, contain a
set of variables whose computations are dependent on
variables from neighboring as well as same index point
(multi-variable DG's). Single-variable DG nodes can be
linearly scheduled which is not always the case for multi-
variable nodes [RA088]. Yet most systematic methodolo-
gies proposed in literature treat multi-variable nodes as
single-variable nodes. Here the SDG is used to model the
single-variable as well as multi-variable DG.

0-7803-24404/94/ $4.00 @ 1994 IEEE 4C. 14.1 145

3. ALTERNATIVE NODE SCHEDULES

For mapping regular iterative algorithms the systolic sched-
ule is used, represented by the schedule vector s'. A sys-
tolic schedule implies that there is a t least one delay on
each edge of the resulting array processor. In semi-regular
arrays however, the best schedule is not necessarily lying
along a linear path. Therefore a more efficient approach
has to be derived.

We define a DG as a directed graph G = {V, E} where
V is the set of nodes and E is the set of directed edges.
The set of nodes V = I U N U 0 contains input nodes
I , output nodes 0, and intermediate nodes M. The fea-
sibility of a schedule is determined by the partial order-
ing and process assignment scheme. A node should have
valid da ta on all its input edges before it can be scheduled.
Given the earliest schedule of all nodes nJ E I , the earliest
schedule time of any node nJ E N U 0 can be found. The
latest schedule time of nodes nJ E 0 is also known since
the system must meet a set of deadlines which imposes
that the output must be available before a specific time.
The latest schedule of all nodes nJ E N U I can thus be
'calculated. Therefore, for each node ni an earliest sched-
ule s& and latest, schedule SI is given. I f s & = sj then node
ni is called a critical node. A path containing only critical
nodes is called a critical path. Ifs: > si for any ni E V
then no valid schedule can be found to meet the given
deadline. For si, < sf a range of schedules is available.

Definition 3.1 Schedule range of a DG node For a
dependence graph G = {V, E } given the earliest schedule
time s i of all input nodes ni E I , and the latest schedule
time SI of a l l output nodes ni E 0, the schedule range ri
o f node ni as [<si$ s i] , where sk is the earliest schedule time
cif the node na and si is the latest schedule time of the
node n 2 .

. .

From the above we conclude that for a given DG, each
node n2 E V can only be scheduled in the schedule range
rz = [s i , sj], where s i , s; E Zf . There are a number of
basic requirements needed for generating a suitable sched-
ule for a DG. Based on the features of array processors
we define the basic requirements for scheduling.

. . . .

Definition 3.2 Scheduling requirements

1 The schedule of n node n mzst be a t least o n e unzt
d e l a y hzgher than the haghest schedule of a l l nodes
havang an edgr to node n.

2. Input nodes 1%' E I should not be scheduled rarlaer
than the requzrements defined b y the system.

3. Output nbdes n3 E 0 should not be scheduled later
than the system defined deadline.

The basic idea of t8he Alternative Node Schedules ANS
algorithm is to generate an enumeration tree of all possi-
ble schedules in the DG given the schedule ranges ri such
that the requirements in Definition 3.2 are satisfied. The
ANSalgorithm generates a set of solutions GS. A solution
GP E GS is a set of { < nj , s j >} where nj is a node with
schedule S I . The ANS algorithm in its general form gener-
ates a set of solutions which grows exponentially with the
problem size. In practice the designer is only concerned
with solutions that are optimal with respect to certain cri-
teria. Note that introducing a wide schedule range gives a
huge amount of solutions which may be redundant, time
consuming, and may even be hard to generate for large
DG's. There exists a maximum range beyond which the
set of solutions offers no more improvement. This range
depends on the dimension of the array processor.

A semi-regular DG contains a set of connected sub-
DG's. These sub-DG's are regular. Keeping uniform de-
lay distribution in the sub-DG's simplifies the design, Let
Ri be the set of all edges along a linear path and Ej be
the set containing all edges on a selected number of lin-
ear paths belonging to several Ri with parallel edges. We
partition the set of edges in the D G into a number of sets
Ei, such that ViVj+Ei n Ej = 4 and &Ei = E. A set
{< Ei, dz >} specifies for each Ei a delay dz (i.e. all the
edges in E' have the same delay di). Once the schedule
time for an edge along a linear path in Ei is chosen, the
delay dz is fixed for all edges in Ei. This is done for all
sets E'.

Further, for mapping from a M-dimensional DG to
a I<-dimensional array processor, any node can be con-
nected to a maximum of 3K - 1 nodes scheduled in the
same time slot. We now define the set of constraints for
scheduling as follows.

Definition 3.3 Schedule constraints

1. The maximum number of nodes 113 having an edge
t o na and the same schedule time must be less than
3" - 1.

2. For aJl nodes with only external input edges se2 8; =
st and/or for all nodes with only external output
edges set s i = si

3. For euch sub-DG, create a set { (E i , d i) } for each
e d g e dzrectaon (3K - 1) /2 in the IC-dimensional Eu-
clzdean space.

We call the constraints in Definition 3.3 for generating
the set of optimal solutions GSOpt, tight constraints. A
solution may be either linear or non-linear. Under tight
constraints, the set of solutions GS,,t is constant for a
specific algorithm with respect to problem size.

Theorem 3.1 Bounding rule for the scheduling The
saze of the set GS,,t is independed of the problem size if

146 4C.14.2

Figure 2: Image Detector with Mask Width 4 (a)Image
Width 4 (b)Image Width 8 (c)Image Width 16.

Figure 1: The DG of'the Edge Detector for a mask width
of 8 and image of (A4 + 1) x (L + 1) pixels.

the bounding constraints are tight. Furthermore, the sets
of solutions jor different sues are equivalent.

The reader is referred to [MOE94] for the proof. In
case of tight constraints the complexity of the ANS al-
gorithm is O (U H) , where U is the number of sub-DG's
and N is the number of edge directions. In fact, even if
the constraints are not so tight, there still exists a set of
solutions tha t is independent of the size of the DG. Since
the result is invariant to the problem size, the set of opti-
mal schedules can be generated from a Reduced size DG
(RDG). The complexity of the algorithm for calculating
the schedule time of all nodes in DG is O(N+ x A,), where
N, is the number of nodes in the RDG, A, = nEl ai and
ai is the scaling factor for the ith dimension.

We choose the edge detection problem as an example.
The DG of the Edge Detector is three dimensional. Figure
1 shows one part of algorithm. The other part is identical.
Readers are referred to [JAYgIa] for the derivation. Due
to the huge proccssing power requirement parallel pro-
cessing is needed. The black nodes on the far right add
the result of both parts. White nodes are convolution
functions and dark grey nodes are row to column transla-
tion functions. It is clear that the DG for this problem is
inhomogeneous. We now apply the ANS algorithm for a
mask width of 4 and an image width of 4,s and 16. The
schedule range for all nodes is 2. A bounding constraint
is added for each edge direction in all subgraphs. The
behavior of the three different image sizes is compared in
the plot of Figure 2. Tn all three cases, the final set of
possible schedules contains five optimal solutions for all
different DG sizes.

4. ALTER.NATIVE NODE PROJECTION

We construct, a n nlgorithrn to find all valid linear (non-

linear) projections. Linear mapping involves projection
along a straight line whereas nonlinear mapping means
that multiple nodes not necessarily along a straight line
map to the same PE. In certain circumstances, a nonlinear
mapping may offer some unique flexibility and advantages
such as fewer PE's, faster pipelining, or higher utilization
of the array. This may allow nonlinear scheduling. On
the other hand it usually incurs the expense of somewhat
sophisticated control. If an advantageous trade-off can be
reached, a nonlinear schedule mapping may become pre-
ferred. We define the projection requirements based on
the definition of array processors in [KUN88].

Definition 4.1 Projection requirements:

4 Preserve spatially local interconnectzon.

e The dimension of the array processor determines the
maximum number of communzcation links allowed.

. 4 Inpirt/Output nodes should remain on the boundary.

The set of permissible positions to place a node ni on
a P E depends on the current position of all nodes tha t
have an edge to node ni. Each instance of the placement
can be modeled by a rectangular volume which we call
polyrec. Polyrec is a poly tope such that a l l the hyperplanes
lying on its boundary are perpendicular t o one of the axes
and orthogonal to each other. Further a polyrec is fully
represented b y two extreme points lying on the boundary.

Let p'j represent the location of a P E on the array
processor such that p'j = [p:, pa, ..., PA]'. Let Pi be the
set of all positions p ' j of nodes nJ having edges to node n i .
Given the set P i , the set of all valid positions that node ni
can occupy resides inside the polyrec Ai. The Polyrec Ai
can be fully represented by two extreme points [MOE94].
For a number of edges t i to a node ni and dimension I<
the complexit,y of finding polyrec Ai is 0(tiA'). In gen-
eral there are a maximum of 3x positions a node can be
projected into, where I< is the dimension of the array pro-
cessor. We can now define polyrec Ai for each node ni in

4C.14.3 147

the DG when the position of all the nodes having an edge
to node nz is known. Based or, this an algorithm is de-
veloped to generate all possible solutions. We start the
Alternative Node Projection (A N P) algorithm by plac-
ing all nodes which have only external input edges in the
A-dimensional array processor space. Due to da ta depen-
dencies these combinations are limited. The rest of the
nodes are then placed using polyrec Ai . We propose the
following projection constraints:

Definition 4.2 Projection Constraints: T h e e n u -
m e r a t i o n t r e e f o r p r o j e c t i o n s o l u t i o n s must be p r u n e d f o r
each

e

e

e

e

n o d e nz zf a n y of t h e f o l l o w i n g c o n d i t i o n s hold:

A n o d e ni c a n o n l y be pro jec ted o n t o a p o s i t i o n p ' j

t h a t l i es within t h e polyrec A' .

Two n o d e s m i t h t h e s a m e s c h e d u l e c a n n o t be p r o -
j e c t e d t o t h e s a m e PE.

T h e n u m b e r o f PE's s h o u l d n o t exceed s o m e u p p e r
b o u n d .

M a x i m u m n u m b e r o f c o m m u n i c a t i o n l i n k s 3M - 1
m u s t be p r e s e r v e d f o r each PE.

Up to now, factors such as complexity of the result-
ing PE and non-uniform distribution of 1/0 nodes on the
boundary has not been taken into account. The ultimate
performance goal of an array processor system is a com-
putation rate that balances the available 1/0 bandwidth
with the host. In order to achieve this we have to guar-
antee that the 1/0 nodes are uniformly distributed and
match t>he interface to the outside world. An additional
set of constraints are therefore needed.

Definition 4.3 Additional projection constraints:

e I n p u t / O u t p u t n o d e s s h o u l d r e m a i n o n t h e b o u n d a r y .

e P r e v e n t t h e m a p p i n g o f n o d e s with d i f ferent f u n c -
t i o n a l i t y o n t o t h e s a m e P E (o p t i o n a 1) .

e R e m o v e e q u i v a l e n t a n d s i m i l a r s o l u t i o n s .

The A N P algorithm finds the set of all possible map-
pings { G P i } under the constraints in Definitions 4.2 and
4.3. It maps a M-dimensional DG to a I<'-dimensional
array processor and finds the set of all possible linear and
non-linear projections. No solution is found if a node vio-
lates the set of constraints for all intermediate solutions.

Linear projection has been thoroughly studied in liter-
ature. Yet in certain circumstances a non-linear mapping
may offer some unique flexibility and advantage. To ex-
tract the optimal 1inea.r and non-linear solutions {GP'}
in terms of array processor characteristics and given con-
straints we need to define an extra set of constraints which
we call bounding rules. Let us define a bounding rule for

I C I

C I I I 1 1 1 1 1

(8 1 (hi /'I (di (4

Figure 3. All possible linear and semi-linear projections
(a) Horizontal (b) Diagonal (c) L-shape (d) inverted L-
shape (e) Vertical.

a regular M-dimensional DG. The intersections of all hy-
perplanes lying on the boundary of the DG form a poly-
tope. We call this polytope a DG-polytope. Let Ri be a
set of all edges having the same direction along a linear
path and Ea be the set containing all edges on a selected
number of paths.

Definition 4.4 The bounding rule for a regular M-
dimensional DG of size (a l , a ~ , ..., a ~) E Z,$: F o r
s e t Rz o n t h e lanear p a t h j o z n z n g t w o ver t zces of t h e DG-
poly tope a n d lyang o n t h e b o u n d a r y , a l l edges an R' h a v e
t o follow t h e s a m e r u l e of p r o j e c t z o n 2.e. edge dzrectzons
a f t e r p r o j e c t t o n are i d e n t i c a l t o e a c h o t h e r .

Definition 4.4 guarantees that 1/0 nodes are mapped
uniformly. This can be generalized to include the set E'.
The enhanced A N P algorithm uses set E2 to add bound-
ing constraint,s. An example of the projection set {GP'}
for a 3x3 matrix-vect,or multiplication using Definition 4.4
is given in Figure 3. This set contains linear as well as
semi-linear mapping. Whether the matrix is a 3 x 3 or
n x R DG, the set { G P i } contains 5 alternative solutions
which are equivalent for all sizes of the DG. In case an
?n x n DG where m # n, only solutions (a), (b) and (e)
are possible. This means that given a regular array and
using Definition 4.4, the set { G P i } is dependent on the
topology of the DG but independent of the size of the DG.
This is a very interesting result.

The above discussion assumes that the DG boundaries
lie on hyperplanes orthogonal to each other. This is not
always the case e.g sorting problem. We therefore define
a general bounding constraint for regular DG's.

Definition 4.5 General bounding rule for a regu-
lar M-dimensional DG: F o r s e t E2 of t h e l i n e a r p a t h
joaning t w o v e r t i c e s o f t h e D G - p o l y t o p e a n d l y i n g o n t h e
b o u n d a r y o f t h e DG, al l edges in Ei h a v e t o f o l l o w t h e
s a m e p r o j e c t z o n r u l e i . e . edge d i r e c t i o n s a f t e r m a p p i n g
are i d e n t i c a l t o each o t h e r . If t h e p a t h c o n s i s t s o f f loa tzng
n o d e s , create a s e t Ei o f al l edges, paral le l t o each o t h e r

14% 4C.14.4

I ry 1
I

I

3

Figure 4: Different constraint techniques for the image
detector (a) Local Boundary (b) Global Boundary (c)
Global Boundary with orthogonal boundary constraints.

Figure 5: Solutions for an image width of N and a mask
width of N using global bounding constraints.

and entering the floating nodes. The source nodes of these
parallel edges are treated as boundary nodes.

A more general problem representation is given by
semi-regular D G s . This is evident in algorithms which
consist of a set of interconnected recurrency equations.
DG’s of such algorithms consist for example of a cascade
of regular sub-DG’s. Treating the DG as a whole will ease
the data reformatting and increase the pipeline rate.

In the edge detector example there are 34 projections
possible when boundary constraints of Definition 4.4 are
placed on each sub-DG as shown in Figure 4 (a). No-
tice that all the nodes in the last sub-DG are floating (far
right). In that case additional boundary constraints be-
tween sub- DG‘s are needed. Placing boundary constraints
on the DG as a whole (Figure 4 (b)) results in 9 optimal
solutions (Figure 5). Def in i t i on 4.5 is generalized for
semi-regular DG’s as follows: For al l boundaraes be-
tween sub-DG: af any ofthe boundaraes have floatang nodes
a d d boundang constraants as above. We now define an im-
portant theorem.

Theorem 4.1 Tight Bounding rules for projection
of a DG Given a DG there exists a bounding constraint
which generates the set of a l l optimal solutions CP,,t =

{GPi} . The set GP,,t is independent of the problem size
if the bounding constraints are tight and the scheduling
chosen applies a uniform distribution of delays.

See proof in [MOE94]. This method can be applied on
any form of mapping by changing the valid-position rules
and the constraints rule. Even if the bounding constraints
are not tight enough, then the reduced size DG will still
generate a set of optimal solutions S,. . This is evident in
Figure 4 (b) and (c). Figure 4 (b) has constraints on the
complete DG which are not so tight on the sub-DG’s. In
this case, both bounding constraints give the same set of
mappings seen in Figure 5 . Yet the computation time of
Figure 4 (b) is higher because the ipternal nodes have a
higher degree of mobility. Further, the set of solutions in
Figure 5 has linear as well as nonlinear projections. The
non-linear solution (3) has a simpler PE since the con-
volver and row t,o coliimn t,ranslation nodes are mapped
to different PE’s. Furthermore, the number of PE’s per-
forming multiplication is fixed to 8 independent of the
image size.

5 . C O M P L E X I T Y ISSUES A N D S C A L I N G

The time bound for both algorithms is limited by V - 1
stages where V is the set of nodes. The average com-
putations per stage are proportional to the set of edges
to a node. It is apparent that all computations along
the hyperplane orthogonal to the flow of data have no
mutual dependency. Therefore they can be executed si-
multaneously. In general there is always a certain degree
of dependency which dictates the sequence of the compu-
tation. The choice of the order in which nodes are to be
placed in each step has an influence on the computation
time but has no effect on the end result. Take the image
detector example with image length of 3 and mask width
of 3 and find the set {GPi} for the constraints as given
in Figure 4 (c). For different ordering we get a different
distribution of the set of intermediate solutions. Three
orders were simulated as shown in the plot of Figure 6.

The local maximum of the peaks increase as the com-
putation gradually proceeds because within the search
path, the internal nodes have a higher degree of freedom
than boundary nodes. For a small size DG this is not a
problem but as the size of the DG increases this grows ex-
ponentially. This may cause the algorithm to run out of
memory before reaching a solution. There are two ways to
solve this problem. One is to add additional internal con-
straints concentric to the boundary constraint. This will
reduce the internal peaks and speed up the calculation yet
guarantee that the set of optimal solutions {GPi} is the
same. Since the result is invariant to the size according
to Theorem 4.1, another way is to solve for small size ar-
rays and then scale up the result to the required size. The
complexity of the algorithm for scaling is O(W+E), where

4C.14.5 149

lteratlons

Figure 6: Variation of the number of solutions as a func-
tion of (a) Horizontal order (b) Vertical order (c) Breadth
first preordered spanning tree.

W is the number of nodes in DG and E is the number of
edges in RDG.

6. MAPPING T O A FIXED SIZE ARRAY

A major area of researc,h for systematic design methods is
dedicated to the general problem of mapping classes of al-
gorithms onto regular array processors with limited num-
ber of processing elements, communication link or nieni-
ory size. Systematic design of processor arrays with a
given dimension and given number of PE's is called pnrtz-
tioning. Existing approaches to the partitioning problem,
however do only partially treat the problems like map-
ping from a M t o I< dimensional space directly, where
M > K . Another point is that the approaches are bound
to special structures. A unified approach to the solution of
the partitioning problem to realize all known partitioning
schemes [TE193] and to linear and nonlinear mapping is
not available. The algorithm mentioned in this paper can
be used to map arrays with limited resources. An upper
limit on the number of PE's can be used or a boundary
representation (b-reps) is defined.

7 . CONCLUSIONS

A systematic approach is presented for mapping algo-
rithms into array processors. This approach uses the
branch-and-bound technique to find the set of all opti-
mal solutions. The power of this approach lies i n the
ability to generate the set of possible mapping alterna-
tives using mixed linear and non-linear mapping. I t has
also been shown that the resulting set is limited and inde-
pendent of the problem size. This is especially interesting
for modeling large and complex problems. Further, map-
ping from M-dimensional space to I<-dimensional space,
where M > I<, is done in one step.

For mapping to fixed size arrays, it has been shown
that different partitioning techniques, can be modeled in

the algorithms using regularazed Boolean set operatzons for
the design of 2 and 3-dimensional array processors.

8 . R,EFERENCES

[-4N N 8 81

[JAY 9 1 a]

[JAYSlb]

[KU N 841

[K U N88]

[M 0 E9 21

[M 0 E9 41

[M 0 L, 8 71

[QUI841

[RA0881

[ROY 8 61

[TEI93]

[THI88]

J . Annevelink, A Des ign Me thod for Imp lemen t -
ing Signal Processing i l lgor i thms o n V L S I Pro-
cessor Arrays , Ph.D. Thesis, University of Delft,
T h e Netherlands, 1988.

J.A.K.S. Jayasinghe, A n A r r a y Processor Design
Methodology f o r Hard Real- T i m e S y s t e m s , Ph.D.
thesis, University of Twente, T h e Netherlands,
1991.

J.A.K.S. Jayasinghe, F. Moelaert El-Hadidy and
0 . E . Herrmann, A n A r r a y Processor Design
Methodology f o r Hard Real- T i m e S y s t e m s , I E E E
International Symposium on Circuits and Sys-
tems, Singapore, 11-14 June 1991.

S.Y. Kung, J . Annevelink and P.M. Dewilde,
Hierarchical I terat ive Flow-Graph Integrat ion f o r
V L S I A r r a y Processors, VLSI Signal processing,
IEEE Press, pp. 294-305, 1984.

S.Y. Kung V L S I A r r a y Processors, Prentice Hall,
1988.

F. Moelaert El-Hadidy and O.E. Herrmann, I n -
teger L inear Programming A lgor i thms for A r r a y
Processor based Real- T i m e S y s t e m s , University of
Twente, Internal Report number 9 2 N 188, August
1992.

F. Moelaert El-Hadidy , Generalized Methodolo-
gies f o r A r r a y Processor Des ign of Real- T i m e sys-
t e m s , University of Twente, PhD. Thesis, 1994.

Dan I. Mo1dova.n A D V I S : A Sof tware Package f o r
the Design of Systol ic Arrays , IEEE Transaction
on Computer-Aided Design, vol. CAD-6, no. 1,
pp. 33-39 , January 1987.

P. Quinton, A u t o m a t i c Syn thes i s o f Systol ic A r -
rays f r o m U n i f o r m Recurren t Equa t ions , Pro-
ceedings of the 11th. Annual Symposium on Com-
puter Architecture, pp. 208-214, July, 1984.

Sailesh K . Rao and Thomas Kailath, Regular It-
erative A lgor i thms and their I m p l e m e n t a t i o n on
Processor Arrays , Proceedings of the IEEE, vol.
76, no. 3 , pp. 259-269, March 1988.

V.P. Roychowdhury and T . Kailath, Regular Pro-

ing, IS1 preprint, Standford University, Stand-
ford, CA, 1989.

J. Teich and L. Thiele, Par t i t i on ing of Processor
Arrays: A Piecewise Regular Approach , Integra-
tion, T h e VLSI Journal, vol. 14, no. 3, pp. 297-
332, February 1993.

L. Thiele, O n the Hierarchical Design of VLSI
Processor Arrays , I E E E Symposium on Circuits
and Systems, Helsinki, pp. 2517-2520, 1988.

cessor Arrays f o r Matrix Algorithms with Piuot-

150 4C.14.6

