
An Audit Logic for Accountability

J.G. Cederquist1, R. Corin1, M.A.C. Dekker1,2, S. Etalle1 and J.I. den Hartog1

1 Department of Computer Science, University of Twente, The Netherlands
{cederquistj,corin,etalle,hartogji}@cs.utwente.nl

2 Security Department, TNO ICT, The Netherlands
marnix.dekker@tno.nl

Abstract

We describe a policy language and implement its associated
proof checking system. In our system, agents can distribute
data along with usage policies in a decentralized architec-
ture. Our language supports the specification of conditions
and obligations, and also the possibility to refine policies.
In our framework, the compliance with usage policies is
not actively enforced. However, agents are accountable for
their actions, and may be audited by an authority requiring
justifications.

1 Introduction

In many situations, there is a need to share data be-
tween potentially untrusted parties while ensuring the data
is used according to given policies. This problem is ad-
dressed by two main research streams: on one hand, there
is a large body of literature on access (and usage) control
[8, 16, 11, 4], on the other hand we find digital rights man-
agement [18, 5]. While the former assumes a trusted ac-
cess control service restricting data access, the latter assume
trusted devices in charge of content rendering. Both settings
need the trusted components to be available at the moment
the request happens, to regulate the data access.

However, there are scenarios (like the protection of pri-
vate data) in which both access control and digital rights
management fail, either because the necessary trusted com-
ponents are not available or because they are controlled by
agents we do not want to trust. For instance, P3P [17] and
E-P3P (and also EPAL) [3] are languages that allow one to
specify policies for privacy protection; however, the user
can only hope that the private data host follows them.

In this paper, the process of regulating the data access is
not assumed to be always performed by the same entity at
the same moment in which the access is requested. More
specifically, we relax this in mainly two ways:

• Firstly, at the moment that the data is requested, we
assume that access is always granted, and only later it
is determined whether the requestor had permission to
access the data. This is the process of auditing. To
achieve this, we need all the relevant decision infor-
mation to be kept until audit time (e.g. keeping secure
logs).

• Secondly, the entity that is performing the auditing
does not need to be fixed, and can thus be dynami-
cally chosen. This is useful since, for example, some
authorities are more appropiate to audit specific agents
than others. The actual authority does not even need to
be one single entity, and can be for example composed
of regular agents.

We present a flexible system which allows to express,
deploy and reason about policies controlling the usage of
data. In our target setting agents can distribute data along
with usage policies within a highly decentralized architec-
ture, in which the enforcement of policies is difficult (if not
impossible). Therefore, we use instead an auditing system
with best-effort checking by an authority which is able to
observe (some) actions. We introduce a notion of agent ac-
countability and express the proof obligation of an agent
being audited. The system allows to reason about policies
and user accountability. Our framework is depicted in Fig-
ure 1.

We make no assumptions on the existence of trusted
components regulating access (although we do require a
trusted environment to certify environmental conditions,
and to securely log events). In fact, agents are not forced
to follow the policies, but may be audited by authorities
which ask for justifications. We make no particular assump-
tions about authorities; they may comprise, for instance, of
groups of regular agents. The more an authority can ob-
serve, the more accurate the auditing process is, thus pro-
viding more confidence over the agent’s behaviour. To char-
acterize compliant agent behaviour, as perceived by an au-

1

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

3. Proof for φ

A’s environment

Log

B and C’s environment

Log

A

B

C

comm(a ⇒ c, ψ)

Authority
Auditing

1. Check Log

2. φ?

Figure 1. Our framework

thority, we define accountability tests, which are carried out
during auditing by the authority.

Of course, our approach does not allow a strict policy
enforcement: agents can easily “misbehave” (i.e. treat data
in a way that is not allowed by the policy), at risk of be-
ing traced. It is our belief that in many emerging scenarios
active policy enforcement is infeasible.

This paper builds on the preliminary work reported
in [6]. In particular, we provide several extensions, the most
notable of which are:

• We include the ability to specify conditions and obli-
gations within the policies.

• Policies may now contain variables and quantifiers.
This allows us to define a fundamental rule that gives
the ability to refine policies. Agents can create (by
refinement) new policies from existing ones, before
passing them to other agents. In contrast, in [6] the
only policies allowed are those that are explicitly stated
by the data owner.

• We precisely describe our system by introducing
three functions, namely the observability, conclusion
derivation and proof obligation functions. Moreover,
we provide a customizable action set to account for
particular, user-defined scenarios.

• We define agent accountability tests, and present a (ter-
minating) procedure for recursive auditing.

• Finally, we provide a formalization of our proof sys-
tem in the proof checker Twelf[13], which allows us to
model proofs provided by agents, and the subsequent
checking by the authority (Our formalization covers
the lower part of Figure 1.)

2 A System of Policies and Actions

Our setup consists of a group of agents executing dif-
ferent actions. The permission to execute an action is ex-
pressed by a policy constructed using a special logic, intro-
duced below. In this section we introduce some necessary
components for our system.

2.1 The basics

Agents are modelled by a set G ranged over by a, b and c
(referred to as Alice, Bob, and Charlie). We also have a set
of agent variables Va and use A, B, C to range over both
agents and agent variables. Similarly we have a set D of
data objects, ranged over by d, and a set of data variables
Vd. We use D to range over data objects and data variables
and x, y, z to range over (data and agent) variables.

Basic permissions and facts are expressed by atomic
predicates in a set C, ranged over by p. Examples are
read(a, d), which expresses that agent a has permission to
read data d and partner(a, b) indicating (the fact) that agent
a and b are partners. In general, predicates can relate any
number of data objects and agents.

The actions that agents execute are modelled using a set
of actions ACT , ranged over by act. We assume that two
types of actions are always present in this set: Commu-
nication (of policies) comm(a ⇒ b, φ) and data creation
creates(a, d). (Here a, b are agents and φ is a ground pol-
icy formula, as introduced in the next subsection). Our sys-
tem supports the addition of user-defined actions.

2.2 The Policy Language

Policies are used to express permissions that agents have,
such as the permission to read a specific piece of data. Some
requirements may guard a permission. These requirements
can be conditions, as in ‘Alice may read the data if she is
a partner of Bob’, or obligations, as in ‘Alice may read
the data if she pays Bob 10$’. Besides this, a policy may
express or relate several different permissions. To provide
maximum flexibility for writing policies, we now introduce
the following policy language.

2

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

Definition 1 The set of policies Φ, ranged over by φ and
ψ, is defined by the following grammar:

φ ::= p(s1, ..., sn)
| A owns D | A says φ to B

| φ ∧ φ | ∀x.φ | φ → φ | ξ → φ

s ::= A | D

ξ ::= !act |?act

First, a policy formula can be a simple predicate
p(s1, ..., sn), where si’s can be either an agent, an agent
variable, a data object or a data object variable. Second,
we have the A owns D formula, which indicates that A is
the owner of data object D. As we define below, an data
owner is allowed to create usage policies related to that
data. A says φ to B expresses that agent A is allowed
to give policy φ to agent B. The ‘says’ policy contains a
target agent to which the statement is said (different from
e.g. [7, 1]). This allows us to provide a precise way of com-
municating policies to certain agents. However, the policy
A says φ to B carries a different meaning for source agent
A than target agent B: While for agent A it represents the
permission to send φ to B, for B it represents the possibility
to use policy φ and delegate the responsibility to A.

The logic constructions and, implication and universal
quantification have their usual meaning. We actually have
two different instances of the implication. The first, φ′ → φ,
has a policy φ′ as a condition, stating that the agent first
needs to establish this permission or fact before gaining the
permission described in φ. The second, ξ → φ, is used to
express obligations. The requirement ξ contains an action
that the agent has to perform when the permission granted
by φ is used. The annotations ! and ? indicate whether the
agent needs to do this action every time it uses φ or only
once. This will be discussed in Section 3.3. We write φ[D]
to indicate that the set D is the data set of φ, i.e. all data
objects and data variables occurring in φ. For instance, we
have read(b, d)[{d}].

Example 1 The (atomic) policy that allows Bob to read the
data d is read(b, d).

1. The policy that allows Bob to read every data object
owned by Alice is ∀x.(a owns x → read(b, x)).

2. Let age 21(x) denote that agent x is at least 21 years
old, and alc(y) denote that beverage y is alcoholic.
A policy allowing people over 21 to drink alcoholic
beverages is ∀x, y.(age 21(x)∧alc(y)) → drink(x, y).

3. If we require a payment of 10$ on the previous per-
mission, the policy becomes ∀x.(!paid(x, 10$) →
∀y.(age 21(x) ∧ alc(y)) → drink(x, y)).

2.3 Actions and permissions

To distinguish different instances of an action executed
in the system, we label each instance using a unique iden-
tifier id, as in createsid(a, d). This formally gives a set
AC = N → ACT of ‘executed actions’ or ‘action instan-
tiations’. However, when possible, we simply talk about
(labeled) actions in AC.

Three properties of actions that play a role in our policy
system are described by the following functions:

• The observability function: obs : AC → P (G) de-
scribes which agents can observe which actions.

• The proof obligation function: po : (AC × G) → Φ ∪
{⊥} describes which policy an agent needs to justify
the execution of an action. Here ⊥ indicates that no
policy is needed.

• The conclusion derivation function: concl : (ACT ×
G) → Φ ∪ {⊥}, describes what policy can an agent
deduce after observing an action. Here⊥ indicates that
no policy can be deduced.

While the observability and proof obligation functions
depend on executed actions (i.e. with identifiers), the con-
clusion derivation function is purely syntactical.

For our default actions creates(a, d) and comm(a ⇒
b, φ) we have:

obs(creates(a, d)) = a (1)

obs(comm(a ⇒ b, φ)) = {a, b} (2)

po(creates(a, d), a) = ⊥ (3)

po(comm(a ⇒ b, φ), c) = ⊥ (a �= c) (4)

po(comm(a ⇒ b, φ), a) = a says φ to b (5)

concl(creates(a, d), a) = a owns d (6)

concl(comm(a ⇒ b, φ), b) = a says φ to b (7)

concl(creates(a, d), b) = ⊥ (b �= a) (8)

concl(comm(a ⇒ b, φ), c) = ⊥ (c �= b) (9)

A creation action by a is observed by a (1), while a com-
munication between a and b is observed by both a and b
(2). In other settings, there may also be other agents that
observe these actions, e.g. a router standing in between a
and b. Agents do not need a policy for creating data (3)
or receiving a transmission (4). However, sending a trans-
mission does require a permission (5). If agent Alice cre-
ates a piece of data she becomes the owner of this data (6);
any other agent can not deduce the ownership (8). If an
agent receives a communication then the agent can conclude
the corresponding says statement (7). However, any other
agent can not deduce any conclusion (9).

3

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

Remark 1 Our communication comm(a ⇒ b, φ) models a
point-to-point communication. We can easily model broad-
casting, by introducing an action bcast(a, φ), and setting:

obs(bcast(a, φ)) = G
po(bcast(a, φ), x) =

{
ψ (x = a)
⊥ otherwise

concl(bcast(a, φ), x) = ψ

Where ψ = ∀y.a says φ to y.
Here, every agent can observe an action bcast(a, φ) and

conclude that a has broadcasted φ i.e. said φ to everybody.
Only a needs to justify this action.

2.4 The Proof System

In the previous section we introduced the actions that
agents can execute and the permissions that agents need to
justify these actions, in form of policies. This section de-
scribes how agents perform this justification, i.e. how agents
can build policies from (simpler) ones. The possibilities for
constructing policies are given in the form of a derivation
system or proof system for our policy language.

Each rule includes, besides the premises and conclusion,
an agent a, called the context of the proof, indicating which
agent is doing the reasoning. Our derivation system DER
contains the standard predicate logic rules for introduction
and elimination of conjunction, implication and universal
quantification, together with the following rules:

SAY

b says φ to a

φ
a

REFINE

φ → ψ a says φ to b

a says ψ to b
a

OBS ACT

act concl(act, a) �=⊥
concl(act, a) a

DER POL

a owns d1 . . . a owns dn

φ[{d1, . . . , dn}] a

Rule (SAY) models delegation of responsibility. If
agent b says φ to a then a can assume φ to hold. (It is b’s
responsibility to show that it had permission to give φ to a,
see Section 3.3 on accountability.) Although agent a may
use φ without further requirement, it does not mean that the
agent must always do this. If Bob wants to do a specific sen-
sitive action, he may only want to use communications that
he ‘trusts’ in building his policy. For example, Bob would
only trust and thus use a policy ‘fire Charlie’ if it is provided
by his boss. If it is provided to him by coworker Alice, Bob
will not use the policy, even though the responsibility of

this policy would rest with Alice. In this setting, the prob-
lem of establishing and managing trust is orthogonal to the
problem of obtaining policies: One could introduce a trust
management system to assign a ‘level of trust in a proof’,
and require that different levels of trust are established for
different actions (see Section 6).

In our logic, Alice can refine her own policies, e.g. by
adding extra conditions and obligations using the standard
propositional rules. In addition, rule (REFINE) enables Al-
ice to refine the policies she provides to other agents: if
Alice is allowed to send some policy φ then she can also
send any refinement of φ.

Rule (OBS ACT) links an action with its conclusion,
given by the concl function. (OBS ACT) applies when
there is some conclusion (i.e. concl(act, a) �=⊥); e.g., from
observing action comm(a ⇒ b, φ) b derives a says φ to b.

As we already mentioned, we design the logic in such a
way that the owner of some data d decides who is allowed
to do which actions on d. In other words, an owner of some
data d is allowed to derive usage policies for d, targeted
to any other agent. This is achieved by rule (DER POL),
which allows the creation of any usage policy for data which
the agent owns. Non-owners can refine existing policies
(e.g., policies they received), but cannot create new policies
from scratch.

A derivation with these rules made by an agent is a proof.

Definition 2 A proof P of φ from agent a is a finite deriva-
tion tree such that: (1) each rule of P has a as subject; (2)
each rule of P belongs to DER, (3) the root of P is φ, and
(4) each initial assumption is either an action, an obligation
or a basic predicate.

We call conditions cond(P) of P the initial assumptions
that are basic predicates, and actions act(P) the initial as-
sumptions which are observed unguarded actions (from rule
(OBS ACT)). Finally, the multiset of initial assumptions that
are guarded (by ? and !) actions are called the obligations
oblig(P) of P .

We now illustrate the usage of rules (REFINE) and
(DER POL) in the following example.

Example 2 (Policy Refinement) Suppose we have a pred-
icate rel(d, d̄), expressing whether two data objects are re-
lated: For instance, d can be a review of a new product and
d̄ the press release announcing this product. Alice creates
d and wants to give a policy ∀x. rel(d, x) → print(b, d) to
Bob giving Bob permission to print the document as soon as
a related object exists: Alice can build the policy allowing
her to give this policy to Bob as shown in Table 1.

3 The Model

We now introduce a model for our system, combining
the different components of the previous sections. In our

4

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

REFINE

[print(b, d)]
[rel(d, x)]

→I

print(b, d)

∀I
rel(d, x) → print(b, d)

→I

∀x. rel(d, x) → print(b, d)
print(b, d) → ∀x. rel(d, x) → print(b, d) a

a

a

OBS ACT

creates(a, d)
concl(creates(a, d), a)) = a owns d

DER POL

a owns d

a says print(b, d) to b
a

a

a says ∀x. rel(d, x) → print(b, d) to b
a

Table 1. Proof for Example 2.

system, agents can execute and log actions. In addition to
agents, an authority is also present. This authority may au-
dit agents requiring justification for (some of) the agents
actions.

3.1 Logging actions

Whenever an agent executes an action, it can also choose
to log this action. Logged actions constitute evidences that
can be used to demonstrate that an agent was allowed to
perform a particular action. They are used during account-
ability auditing, in Section 3.3.

Definition 3 A logged action is a triple lac =
〈act, conds, obligs〉 consisting of an action act ∈ AC, a
set of atomic predicates conds (the ‘conditions’), and a
set of labelled annotated actions obligs ⊂ {!, ?}AC (the
‘obligations’). The set of logged actions is denoted as
LAC.

When logging an action, an agent can include support-
ing conditions which the environment certifies to be valid
at the moment of execution of the action. This is recorded
in the set of predicates conds. We do not model the envi-
ronment explicitly but instead assume that the agent obtains
a secure “package” of signed facts from the environment,
represented in conds. As an example, one can think of the
driver’s license of Alice being checked to certify that she is
over 21.

An agent can also include obligations in obligs in a
logged action, which refers to other actions the agent did
or promises to do. We abstract away from the details of
expressing promises, and instead assume we have a way to
check if actions have expired. For example, the agent may
promise to pay within a day. Then a payment action needs
to be done (and logged) within a day of logging this obliga-
tion. (Also see Section 3.3.)

Example 3 We continue with Example 1.3. Sup-
pose that we introduce an action drunk(x, y) and
a corresponding atomic predicate drink(x, y), with

concl(drunk(x, y), x) =⊥ and po(drunk(x, y), x) =
drink(x, y). We also introduce an action paid(x, y),
with corresponding atomic predicate pay(x, y), with
concl(paid(x, y), x) = po(paid(x, y), x) =⊥.

A logged action lacpay for payment is done first by a:

lacpay = 〈paid0(a, 10$), ∅, ∅〉
Then, another logged action lacdrunk for the action

drunk1(a, beer) is recorded:

lacdrunk = 〈drunk1(a, beer),
{age21(a), alc(beer)},
{!paid0(a, 10$)}〉

The log of an agent a is a finite sequence of logged ac-
tions. Note that it does not need to be a who performed
the actions, but of course a has to observe an action to be
able to log it. We say that agent a logs action act when
〈act, conds, obligs〉 is appended to the log of a, where
conds is some set of conditions and obligs is some set of
obligations.

We assume the following consistency properties of log-
ging:

• An agent logs any action at most once, thus within an
agent’s log the logged actions are uniquely identified
by the label (id) of the action.

• An agent can include the same obligation !actid at
most once within the obligations of logged actions in
its log. (an ?actid action, in contrast, may occur mul-
tiple time).

• An agent cannot log an expired action.

Notice that consistency of the log does not have to be
checked at time of logging, it is sufficient to check it at time
of auditing.

3.2 The system model and state

We are ready to introduce our system model.

5

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

Definition 4 A system is a 6-tuple:

〈G, Φ, ACT, obs, concl, po〉
where G is a set of agents, Φ is the policy language, ACT is
a set of actions, and obs, concl and po are, respectively, the
observability, conclusion and proof obligation functions.

A state S is the collection of logs of the different agents,
i.e. a mapping from agents to logs. An agent who ob-
serves an action may choose to log this action. Thus by
executing action act the system can make a transition from

a state S to state S′, denoted S act→ S′ where S′ equals
S except that the action act may have have been logged
by any agent a that can observe the action, a ∈ obs(act).
An execution of the system consists of a sequence of tran-

sitions S0
act1→ S1

act2→ ...
actn→ Sn, starting with some

initial state S0. The execution trace for this execution is
act1 act2... actn. Actions logged by an agent can be also
seen as a trace of actions, by projecting only the actions of
each logged action. We denote that trace as S(a). Let

denote the subtrace relation (tr1
 tr2 if each action of tr1

is included in tr2, and each time an action act1 appears be-
fore act2 in tr1, the act1 also appears before act2 in tr2).
We have S(a)
 tr.

Auditing Authority Agents may be audited by some au-
thority, at some state S. Intuitively, when some agent is
about to be audited, an auditing authority is formed. This
authority will audit the agent to find whether she is account-
able for her actions. Let tr be the sequence of actions ex-
ecuted from some initial state to S, The evidence trace, de-
noted E , contains all the actions that might be audited. Ini-
tially, E embeds S(a). However, E may also contain actions
not in S(a): They may be provided, for example, by some
observing agents. However, we assume that given S(a) and
other observed actions S, the authority can order properly
the actions of S(a) and S into E , s.t. E
 tr. Thus, in
general E is a trace satisfying S(a)
 E
 tr.

3.3 Accountability

We now introduce notions of agent accountability, deter-
mined by some authority in possession of evidences. These
definitions allow an authority to audit agents, to establish
whether the agent was allowed to do the actions he did.
In previous work [6], we defined several notions of agent
and data accountability, but without checking for obliga-
tions nor conditions. We did not have logs of agents either.
We now define accountability for logged actions, which we
then extend to agent logs.

We first introduce justification proofs for logged actions.
Intuitively, a justification proof is a proof of the policy re-
quired for the action (as given by function po), using only
conditions and obligations that have been logged.

Definition 5 A proof P of φ from a is a justification (proof)
of logged action 〈act, conds, obligs〉 if:

• po(act, a) = φ

• The obligation in the proof are included in obligs;
‘oblig(P) ⊂ obligs’. (Here multiple ?act in oblig(P)
may be assigned to the same ?actid but each occur-
rence of !act must have its own !actid in obligs.) 1

• Each condition in the proof is in conds; cond(P) ⊆
conds.

The set of all justifications is denoted by J .

In general, there may be different justifications for an
action. The justifications provided by the agent are mod-
eled by a function Pr : G × LAC → J ∪ {⊥}. Here
Pr(a, 〈act, conds, obligs〉) is either a valid justification of
〈act, conds, obligs〉, or it is ⊥, indicating that the agent did
not provide a justification.

Definition 6 (Logged Action Accountability)
Agent a correctly accounts for logged action
logact = 〈act, conds, obligs〉 (in state S), denoted
LAA(a, logact), if:

• if po(act, a) �= ⊥ then Pr(a, logact) �= ⊥, i.e. if
needed a justification is provided

• if o ∈ obligs has expired then o ∈ S(a), i.e. each
obligation that has expired has been (executed and)
logged.

• For each act ∈ act(Pr(a, logact)), a provides an id
s.t. actid occurs in tr and a ∈ obs(actid)2

This definition introduces accountability for a single
(logged) action. We now define accountability for any ac-
tion and for all audited actions.

Definition 7 (Action Accountability) We say that agent
a correctly accounts for (labeled) action act, denoted
AA(a, act), if

• a has logged act as logact and LAA(a, logact) or

• a has not logged act and LAA(a, 〈act, ∅, ∅〉)
We say agent a passes audit E , written ACC(a, E), if

either E is the empty trace, or E = E ′.act with:

• AA(a, act)

• ACC(a, E ′′), with E ′′ the correct ordered merge of E ′

and newacts, all the new actions (i.e. not already in
E ′) given by the proofs in AA(a, act).

1interpreting as sets for ?act and as multisets for !act.
2We assume the authority can verify this.

6

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

The second case for action accountability explains why
it can be in the interest of an agent to log its actions. As con-
ditions may have changed, the agent can only rely on con-
ditions if they have been logged at the time the action was
executed. For example, if some action had a condition ‘only
execute between 4 p.m. and 4:30 p.m. on 12/10/2004’, then
that condition would only hold temporarily; If an agent ex-
ecuted the action and did not log it, during a later audit the
agent could not provide a valid proof. The same holds for
obligations: Only obligations logged with the action can be
used in a proof of the action.

Claim 1 Let a be an agent and E an evidence trace. Then,
checking ACC(a, E) terminates.

Proof. Let |tr| = n, for some n ≥ 0. Suppose |E| = m ≤
n. We show that each execution of ACC(a, E) decreases l,
with l = n initially. After every execution of ACC(a, E) as
in Definition 7, at most l − m evidences (the newacts) are
added to E ′′. Thus, |E ′′| = |E ′| + (l − m) = m − 1 + (l −
m) = l − 1. Hence, ACC(a, E) terminates.

Honest Strategy A strategy for an honest agent a to al-
ways be accountable is as follows. Before executing some
action act, a checks whether po(act, a) is derivable. If any
obligation needs to be fulfilled, then the agent performs and
then logs it. If any condition or obligation needs to be ful-
filled, then the action act is also logged. Then, it follows
from the definitions that:

Remark 2 (Accountability of honest agents) If agent a
follows the honest strategy, then for any system execution
and any auditing authority with evidence set E , we have
that ACC(a, E) holds.

The proof follows immediately from Definitions 6 and 7.

Recursive auditing We have, up to now, defined account-
ability of one particular agent in isolation. However, we
may be interested in cross-verifying the actions of agents.
We sketch an algorithm for recursive auditing of agents,
which can be used by a potential auditing authority. The
algorithm inputs S0, a set of suspected agents, and E0,
an initial evidence trace. Given ACC(a, E), we write
E(ACC(a, E)) to denote the set of new actions appear-
ing in the given proofs (the newacts in Definition 7), and
A(ACC(a, E)) the corresponding set of agents appearing
in these actions for which the proof obligation is not bot-
tom, i.e. po(·, ·) �=⊥.

Algorithm 1 (Recursive Auditing) Inputs: S0 and E0.
Outputs: true if audited agents are accountable, false oth-
erwise.

1. S:=S0;
2. E := E0;
3. while S �= ∅ do
4. let a ∈ S;
5. if ACC(a,E) then
6. S:=(S \ {a}) ∪ A(ACC(a,E))
7. E := E ∪ E(ACC(a, E))
8. else
9. return false
10. end
11. return true

Claim 2 Algorithm 1 terminates.

Proof. Similar to the proof of Claim 1.

Claim 3 In line 4 of of Algorithm 1, the order in which the
agents are chosen does not matter.

Proof (sketch). Follows from the fact that proofs are fixed
on beforehand, as given by function Pr : G × LAC →
J ∪ {⊥}, and do not depend on knowing whether other
agents are being audited or not. (Intuitively, this models
the fact that agents can not change their proofs on the fly,
depending on whether other agents are being audited.)

4 Formalization

We have implemented the proof system and checking
of the audit logic in Twelf [13], which is an implementa-
tion of the Edinburgh Logical Framework [12]. Research
in proof-carrying code [10] has shown that Logical Frame-
work (LF) provides a suitable notation for proofs to be sent
and checked by a recipient. In type theories proof check-
ing reduces to type checking and the LF proof checker is as
simple as a programming language type checker (see also
Section 5).

Due to space constraints, the full implementation is not
available here, although it can be found in the extended ver-
sion at http://arxiv.org/abs/cs.CR/0502091.

Audit Logic Implementation We first declare the types
of the object logic, the atomic predicates and the actions.
Then we present the proof rules and we finish with an ex-
ample of a complete proof.

Types In Twelf, a metalogic type is of type type. For ob-
ject logic types, we use the type tp. The meta-logic func-
tion -> goes from type to type or kind (type has type
kind). Agents, data, actions and policies are declared as
tps. Finally, when declaring the rules for the object logic
the tm type constructor is used, which casts arguments from
tp to type. Summarizing:

tp: type. agent: tp. policy: tp.
tm: tp -> type. data: tp. action: tp.

7

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

Policies Recall that policies are formed with says and
owns and for example scenario-specific atomic predicates
like print:

says: tm agent -> tm policy -> tm agent ->
tm policy.

owns: tm agent -> tm data -> tm policy.
print: tm agent -> tm data -> tm policy.

For instance, (print a d) is a policy stating that agent
a has permission to print document d. Policies can also be
formed using the usual propositional connectives and uni-
versal quantification3(except for negation and disjunction);
to model the different instances of implication in the policy
language (see definition 1), we declare separate instances
for use-once-obligations and use-many-obligations:

imp: tm policy -> tm policy -> tm policy.
forall: (tm T -> tm policy) -> tm policy.
and: tm policy -> tm policy -> tm policy.
?imp: tm action -> tm policy -> tm policy.
!imp: tm action -> tm policy -> tm policy.

Below we assume that the connectives imp forall and
?imp !imp are declared as infix-operators.

Actions The actions creates and comm have the follow-
ing types:

creates: tm agent -> tm data -> tm action.
comm: tm agent -> tm agent -> tm policy ->

tm action.

The conclusion derivation function describes the policies
the agent can deduce from some action.

concl: tm action -> tm agent ->
tm policy -> type.

concl_comm:
concl (comm A B Phi) B (says A Phi B).

concl_creates:
concl (creates A D) A (owns A D).

In Twelf, symbols with a leading capital are variables. Their
type can often be left unspecified, as Twelf expands them to
the most general type.

Proof derivation To model local proofs (with respect
to agents), we use sequent calculus formulas of the form
Γ; ∆ �A Φ, indicating that agent A can deduce the policy
Φ from premises Γ and ∆. Here Γ is an unrestricted con-
text and ∆ a linear context. More precisely, Γ is a sequent
of policies, actions and ?obligations, while ∆ contains only
!obligations. We formalize this with

entail: tm agent -> list nonlin ->
list action -> tm policy -> type.

3Quantification over policies is not allowed, so we only instantiate the
∀-left and -right rules for the types agent and data.

where list T is the type for lists of type T. The type
nonlin is like a disjoint union (policy, action, action) by
the following definitions:

nonlin: tp.
act_c: tm action -> tm nonlin.
?act_c: tm action -> tm nonlin.
pol_c: tm policy -> tm nonlin.

Rules The rules SAY and REFINE are defined as follows:

say: entail B Gamma Delta (says A Phi B)->
entail B Gamma Delta Phi.

refine:entail A Gamma Delta (Phi imp Psi)->
entail A Gamma Delta (says A Phi B) ->
entail A Gamma Delta (says A Psi B).

The structural rules and the logical rules for conjunction,
implication and universal quantification over agents and
data are omitted here. Of course for ∆, the linear context,
we don’t have contraction. The OBS ACT rule works as fol-
lows. If an agent A can conclude the policy Φ by observing
action act, then she can deduce Φ from any set Γ containing
act. In formula Γ, act; ∆ �A Φ, in Twelf:

obs_act: concl Act A Phi ->
entail A (cons (act_c Act) Gamma) Delta Phi.

The formalization of the DER POL rule is not straight-
forward in Twelf. Recall that any formula can be derived
as a conclusion, as long as, for all data in it, the owner-
ship is proven. It is enough to be able to derive the atomic
predicates, since for more complex formulas we can use the
corresponding right-rules. We define the two relations dts
and entl to handle the cases of the atomic predicates. dts
relates a list of data to a policy iff all data in the policy is in
the list. D and DS are data and list of data respectively and
in is the predicate that indicates wether an element occurs
in the list:

dts: list data -> tm policy -> type.
dts_owns: in D DS -> (dts DS (owns B D)).
dts_says:dts DS Phi->dts DS (says B Phi C).
dts_print: in D DS -> dts DS (print B D).

The entailment relation entl A Gamma Delta PS
holds iff A can deduce all policies in PS:

entl: tm agent -> list nonlin ->
list action -> list policy -> type.

entl_nil: entl A Gamma Delta nil.
entl_cons: entail A Gamma Delta P ->

entl A Gamma Delta PS ->
entl A Gamma Delta (cons P PS).

Here cons is one of the list constructors. Now the DER POL
rule is defined as follows:

der_pol: map D ([d](owns A d)) PS ->
entl A Gamma Delta PS ->
dts D Phi ->
entail A Gamma Delta Phi.

8

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

where map is the function that applies a function to all ele-
ments in a list.

Example 4 (Formalization of Example 2) Recall that Al-
ice creates a document d (a review of a product) and communi-
cates a policy, to Bob, that gives Bob permission to print d ’as
soon as a related object exists’. Below Alice justifies that she can
do so. First we declare the scenario-specific objects and predi-
cates.

a: tm agent.
b: tm agent.
d: tm data.
rel: tm data -> tm data -> tm policy.
ex2: entail a
(cons (act_c (creates a d)) nil) nil
(says a

(forall[x]((rel d x) imp (print b d)))b)
= refine
(imp_r (forall_r_data [X](

imp_r (w_l init))))
(der_pol
(map_cons map_nil)
(entl_cons

(obs_act concl_creates) entl_nil)
(dts_says (dts_print incons_head))).

This theorem has been checked by Twelf. The proof goes
along the same lines as previously in Table 1.

The lhs can be expressed as γ; δ �a (a says φ to b),
where φ is ∀x. rel(d, x) → print(b, d) and γ only contains
the creates action, while δ is empty. In the proof above,
imp_r is the imp−right rule, forall_r_data is the
∀−right rule for quantification over data, w_l and init
are weakening-left and the initial sequent axiom for the non-
linear sequent. The rules map_nil and map_cons are the
rules that define the map function.

5 Related Work

There is a wide body of literature on logics in Access
Control (see the survey by Abadi [1]). Here, we mention
some of the proposals. Binder [7] is a logic-based security
language based on Datalog Binder includes a special predi-
cate, says, used to quote other agents. Binder’s says differs
in two aspects from our construct: First, ours includes a tar-
get agent (see Section 2.4); Second, when importing (i.e.
communicating a policy in our setting) a clause in Binder,
care must be taken to avoid nested says, since it may intro-
duce difficulties in their setting. More related to our audit-
ing by means of proofs, Appel and Felten [2] propose the
Proof-Carrying Authentication framework (PCA), also im-
plemented in Twelf (see Section 4). Differently from our
work, PCA’s language is based on a higher order logic that
allows quantification over predicates. Also, their system is

implemented as an access control system for web servers,
while in our case we focus on a-posteriori auditing.

BLF [19] is an implementation of a Proof-Carrying-
Code framework that uses both Binder and Twelf, which
however focuses on checking semantic code properties of
programs.

Sandhu and Samarati [16] give an account of access con-
trol models and their applications. Bertino et al. [4] pro-
pose a framework for reasoning on access control models,
in which authorization rules treat the core components Sub-
jects, Objects and Privileges. Sandhu and Park [11] take
a different approach with their UCON-model, in which the
decision is modelled as a reference monitor that checks the
3 components: ACL, Conditions and Obligations. This re-
flects much the separation also made by us. Obligations and
conditions are also prominent in directives on privacy and
terms of use in DRM. The concept of purpose of an action
is not used by us, but is used in the privacy languages P3P
and E-P3P [3]. Unlike our policy language, E-P3P allows
the use of negation, which requires special care to avoid
problems in a distributed setting.

6 Conclusions and Future Work

We have presented a flexible usage policy framework
which enables expressing and reasoning about policies and
user accountability. Enforcement of policies is difficult (if
not impossible) in the highly distributed setting we are con-
sidering. Instead, we propose an auditing system with best-
effort checking by an authority depending on the power of
the authority to observe actions. A notion of agent account-
ability is introduced to express the proof obligation of an
agent being audited.

Our obligations cover pre- and post-obligations ([15])
but not yet ongoing obligations. The setup does, with an
adaption of the definitions of accountability, seem to pro-
vide the means to include this type of obligations. Obli-
gations are ‘use once’, e.g. !pay($10) or ‘use as often as
wanted’ ?pay($10).

Our proof system has been implemented using the proof
checker Twelf. The agents develop proofs using this imple-
mentation. Likewise, the implementation allows an author-
ity to check the agents’ proofs.

In our system, we include a powerful rule which allows
delegating any policy to any other agent. Agent Alice may
only want to use a policy from Bob if she (i) knows Bob,
(ii) authenticates Bob, and (iii) trusts Bob. All these issues
are (intentionally) abstracted away in our approach, as they
seem to be orthogonal to our aims. For example, in (iii), the
required level of trust may depend on the policy provided by
Bob or on the way Alice is going to use the policy. There,
a distributed trust management system (e.g. [9]) could be
employed to obtain the required level of trust.

9

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

In the work of Samarati et.al. [14], a discussion about
decentralized administration is presented. Specially, the re-
vocation of authorizations is addressed. This is acomplex
problem, which occurs as a consequence of the delegation
of privileges. One could model revocation of policies by
adding a special flag plus a corresponding check in a policy.
However, checking whether a flag is set in another agent’s
environment is not realistic in our highly distributed setting.
Further research is needed to find a both practical and real-
istic way to include rights revocation.

Our implementation only covers proof checking. Revis-
iting Figure 1, we find that arrows covering policy commu-
nications and logging are not yet implemented. Our frame-
work requires several properties for each of the different
modules (e.g. secure logging and non-repudiable commu-
nications). Certainly, these properties need cryptography to
be realized securely. We regard as future work the rigorous
cryptographic definition of these properties, along with the
accompanying cryptographic constructions.

Acknowledgements We would like to thank the anony-
mous reviewers for their useful comments. The research
presented in this paper is conducted within the PAW project,
which is funded by SenterIOP and TNO, the Inspired
Project and the NWO Account Project.

References

[1] M. Abadi. Logic in access control. In Proc. 8th Annual IEEE
Symposium on Logic in Computer Science (LICS), pages
228–233. IEEE Computer Society Press, 2003.

[2] A. W. Appel and E. W. Felten. Proof-carrying authentication.
In G. Tsudik, editor, Proc of the 6th Conference on Computer
and Communications Security. ACM Press, 1999.

[3] P. Ashley, S. Hada, G. Karjoth, and M. Schunter. E-p3p pri-
vacy policies and privacy authorization. In P. Samarati, edi-
tor, Proc. of the ACM workshop on Privacy in the Electronic
Society (WPES 2002), pages 103–109. ACM Press, 2002.

[4] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A logical
framework for reasoning about access control models. ACM
Transactions on Information and System Security (TISSEC),
pages 71–127, 2003.

[5] C. N. Chong, R. Corin, S. Etalle, P. H. Hartel, W. Jonker, and
Y. W. Law. LicenseScript: A novel digital rights language
and its semantics. In K. Ng, C. Busch, and P. Nesi, editors,
3rd Int. Conf. on Web Delivering of Music (WEDELMUSIC),
pages 122–129. IEEE Computer Society Press, 2003.

[6] R. Corin, S. Etalle, J. I. den Hartog, G. Lenzini, and I. Staicu.
A logic for auditing accountability in decentralized systems.
In T. Dimitrakos and F. Martinelli, editors, Proc. of the sec-
ond IFIP Workshop on Formal Aspects in Security and Trust
(FAST), volume 173, page to appear. Springer Verlag, 2004.

[7] John DeTreville. Binder, a logic-based security language. In
Proceedings of the IEEE Symposium on Research in Security
and Privacy, pages 105–113. IEEE Computer Society Press,
2002.

[8] S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino.
A unified framework for enforcing multiple access control
policies. In J. Peckham, editor, SIGMOD 1997, Proc. In-
ternational Conference on Management of Data, pages 474–
485. ACM Press, 1997.

[9] N. Li, J. Mitchell, and W. Winsborough. Design of a role-
based trust-management framework. In Proc. of the IEEE
Symposium on Research in Security and Privacy, pages 114–
130. IEEE Computer Society Press, 2002.

[10] G. C. Necula. Compiling with Proofs. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh,
PA, 1998.

[11] J. Park and R. Sandhu. Towards usage control models: Be-
yond traditional access control. In R. Sandhu, editor, Proc.
of the Seventh ACM Symposium on Access Control Models
and Technologies (SACMAT-02), pages 57–64. ACM Press,
2002.

[12] F. Pfenning. Logic programming in the LF logical frame-
work. In G. Huet and G. Plotkin, editors, Logical Frame-
works, pages 149–181. Cambridge University Press, 1991.

[13] F. Pfenning and C. Schürmann. System description: Twelf
— A meta-logical framework for deductive systems. In
H. Ganzinger, editor, Proc. of the 16th International Confer-
ence on Automated Deduction (CADE-16), pages 202–206.
Springer-Verlag, 1999.

[14] P. Samarati and S. De Capitani di Vimercati. Access control:
policies, models, and mechanisms. In R. Focardi and R. Gor-
rieri, editors, Foundations of Security Analysis and Design,
LNCS, volume 2171, pages 137–196. Springer-Verlag, 2001.

[15] R. Sandhu and J. Park. Usage control: A vision for next gen-
eration access control. In V. Gorodetsky, L. J. Popyack, and
V. A. Skormin, editors, Proc. Second International Work-
shop on Mathematical Methods, Models, and Architectures
for Computer Network Security MMM-ACNS, volume 2776
of LNCS, pages 17–31. Springer-Verlag, 2003.

[16] R. Sandhu and P. Samarati. Access control: Principles and
practice. IEEE Communications Magazine, 32(9):40–48,
1994.

[17] W3C. A p3p preference exchange language 1.0 (appel1.0).
www.w3.org/TR/P3P-preferences, 2002.

[18] X. Wang, G. Lao, T. De Martini, H. Reddy, M. Nguyen, and
E. Valenzuela. XrML: eXtensible rights markup language.
In M. Kudo, editor, Proc. 2002 ACM workshop on XML se-
curity (XMLSEC-02), pages 71–79. ACM Press, 2002.

[19] N. Whitehead, M. Abadi, and G. C. Necula. By reason and
authority: A system for authorization of proof-carrying code.
In Proc. of the 17th Computer Security Foundations Work-
shop, pages 236–250. IEEE Computer Society Press, 2004.

10

Proceedings of the Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05)

0-7695-2265-3/05 $20.00 © 2005 IEEE

