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Prediction models fitted with logistic regression often show poor performance when applied in populations other
than the development population. Model updating may improve predictions. Previously suggested methods vary
in their extensiveness of updating the model. We aim to define a strategy in selecting an appropriate update
method that considers the balance between the amount of evidence for updating in the new patient sample
and the danger of overfitting. We consider recalibration in the large (re-estimation of model intercept); recalibra-
tion (re-estimation of intercept and slope) and model revision (re-estimation of all coefficients) as update
methods. We propose a closed testing procedure that allows the extensiveness of the updating to increase
progressively from a minimum (the original model) to a maximum (a completely revised model). The procedure
involves multiple testing with maintaining approximately the chosen type I error rate. We illustrate this
approach with three clinical examples: patients with prostate cancer, traumatic brain injury and children
presenting with fever. The need for updating the prostate cancer model was completely driven by a different
model intercept in the update sample (adjustment: 2.58). Separate testing of model revision against the original
model showed statistically significant results, but led to overfitting (calibration slope at internal valida-
tion = 0.86). The closed testing procedure selected recalibration in the large as update method, without
overfitting. The advantage of the closed testing procedure was confirmed by the other two examples. We
conclude that the proposed closed testing procedure may be useful in selecting appropriate update methods
for previously developed prediction models. Copyright © 2016 John Wiley & Sons, Ltd.
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Introduction

Clinical prediction models, developed with logistic regression, may require updating to new circum-
stances in other populations. The simplest update approach is to re-estimate all regression coefficients
of the model (model revision). This approach however ignores previous evidence on the relative strength
of predictor variables in the model. It may lead to poorer predictions in new patients than accepting the
previously developed model if the sample size is limited [1]. Several more parsimonious update methods
have been described, such as recalibration [1–4]. The model intercept can be adjusted to allow for a dif-
ference in baseline risk that is not reflected in the predictors in the model. A recalibration factor may be
used that multiplies all regression coefficients with the same factor (calibration slope) to allow for a gen-
erally smaller or larger effect of all predictors. Only when effects of predictors have clearly changed, in-
dividual regression coefficients should be re-estimated (‘model revision’, Table I). In small samples, the
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evidence on changed predictor effects should be strong before model revision is preferred over model
recalibration.

Choosing the best updating method when limited sample size is available is not straightforward. Here,
we consider three tests as a multiple testing problem, i.e. should we 1) update the model intercept; 2)
recalibrate the model or 3) revise the model versus keeping the original model. These tests can be based
on any performance measure of the prediction model in the dataset available to update the model, such
as the c-statistic or R2. We however use the likelihood ratio test statistic to test if an updated model pro-
vides a significantly better fit compared to the original model. Statistical testing for a change in other
performance measures is conceptually equivalent to the likelihood ratio test, and it has previously been
suggested to have inferior statistical properties [5].

If a family of hypotheses needs to be tested, a closed testing procedure can be used to maintain ap-
proximately the chosen type I error rate. The procedure includes an ordered sequence of test results
and rejects hypotheses one at a time until no further rejections can be done [6,7]. An example of a pro-
cedure that is inspired by the closed testing procedure is the systematic search for the best fitting trans-
formations of continuous variables with fractional polynomials [8]. The closed testing procedure is also
the basis for several multiple testing procedures in genomics [9].

The multiple testing problem in the updating of prediction models combined with the clear ordering
in extensiveness of the update methods, prompted us to develop a closed testing procedure. Hereto,
the update methods are ordered from a prespecified minimum (keeping the original model as it
was) to a prespecified maximum (model revision, i.e. re-estimation of all regression coefficients in
the new data). The components of the test procedure are not new, but considering each separately
would lead to an increase in Type I error. This is prevented by the proposed closed testing procedure.
We demonstrate the procedure in three clinical examples: screening of patients for prostate cancer,
predicting the prognosis of patients having traumatic brain injury and diagnosing children with fever
for serious bacterial infections [10–12]. Properties of the proposed test procedure are also investigated
in a simulation study.

Closed testing procedure for model updating

In this section, we propose the closed testing procedure for updating of a prediction model. We consider
the situation that regression coefficients are available from a previously developed prediction model for
a dichotomous outcome. When the model is applied in a new patient population, the question arises
whether and to what extent the model needs to be updated for this patient population. We first briefly
review the most frequently used update methods and how the updated regression coefficients can be es-
timated. We then define the sequentially rejective test procedure.

Update methods

Consider a linear predictor Z0 that can be calculated as α + sβi xi, where α is the model intercept, x rep-
resents the p predictor values in the new patient, and β represents the p original regression coefficients
from the original prediction model. We review three previously described methods to update a logistic
regression model (Table I) [1]. The first two methods are simple recalibration methods [4]; the third
method includes re-estimation of all regression coefficients of the original model.

Method 1 considers only the model intercept and intends to correct ‘calibration in the large’. The
average predicted risks of the updated model become equal to the observed event rate in the update
sample.

Z1 ¼ αnew þ Z0

Table I. Methods to update prediction models

Method Label Parameter Number of parameters

0 Original model None 0
1 Recalibration in the large Intercept 1
2 Recalibration Intercept and slope 2
3 Model revision Re-estimate coefficients p*

*p is equal to the number of regression coefficients (intercept not considered) in the original model.
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Hereto we fit a logistic regression model in a sample from the new population (update sample) with
the intercept as the only free parameter and the linear predictor based on the original model (Z0) as an
offset variable (i.e. the slope is fixed at unity).

In method 2, we update both the model intercept α and the overall calibration slope βoverall by fitting a
logistic regression model with Z0 as the only covariate.

Z2 ¼ αnew þ βoverallZ0

This method has also been labelled ‘logistic calibration’ [13].
Method 3 fits the regression coefficients of the original model anew and can be labelled ‘model revi-

sion’ [2]. Model revision does not consider variable selection or extension of the model.

Z3 ¼ αnew þ
X

i∈1; : : ;p
βnew:ixi

The βnew.i are the re-estimated coefficients for the p covariates as specified in the original model.

A closed testing procedure to select an update method

The aim of the closed testing procedure is to select an update method. The update methods (recalibration
in the large, recalibration and revision) come with an increasing number of estimated parameters. Only if
sufficiently strong evidence exists that individual regression coefficients are different in the update sam-
ple, the revision method is selected.

The procedure consists of a series of likelihood ratio tests of updated models against the original
model. The procedure for a model with p regression coefficients (intercept not considered) is as follows:

A. Choose the nominal P value α for the hypothesis that the original model does not need updating.
B. Test the model revision (no. 3 in Table I) against the original model (no. 0 in Table I) at the α level

using p+1 df. If the test is not significant, adopt the original model, otherwise continue.
C. Test the model revision against recalibration in the large (no. 1) at the α level using p df. If the test

is not significant, adopt the updated model intercept, otherwise continue.
D. Test the model revision against the recalibrated model (no. 2) at the α level using p -1 df. If the test

is not significant, adopt the recalibrated model, otherwise adopt the revised model. End of
procedure.

The test at B assesses if any update of the original model is needed. The test at C examines the evi-
dence for updating beyond calibration in the large. At D the choice is made between one overall adjust-
ment for the regression coefficients (model recalibration) versus re-estimation of all individual
regression coefficients. See Appendix for the R code.

Clinical examples

In three clinical examples, we updated prediction models in samples from other populations than the de-
velopment population. We subsequently assessed the performance of the updated models. Calibration
was assessed with the calibration intercept and slope [4]. Discrimination was assessed with the concor-
dance index (c-index) [14,15]. We used Nagelkerke’s R2 as a measure of overall performance [16].
Particular in small samples, model performance estimates are too optimistic when model revision is
used. The updated model describes the sample very well, but may calibrate and discriminate poorly in
new patients. We used a bootstrap resampling procedure in the complete updating samples to correct
for optimism if model revision was applied [17].

In order to study the behaviour of the closed testing procedure in smaller and larger samples, we sim-
ulated the situation of increasing sample sizes over time. This mimicked the situation of growing amount
of evidence for the new population. We randomly draw patients without replacement from the available
dataset and applied the closed test procedure to the first patients in the dataset, such that the event per
variable ratio was equal to 5. Subsequently we increased the available sample size for updating the
model such that the event per variable ratio increased by 1. We continued this until all available data
were used when applying the closed testing procedure. At each step we recorded the update method se-
lected by the closed testing procedure. We repeated this process 1,000 times by repeatedly drawing

Y. VERGOUWE ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 4529–4539

4531



patients without replacement from the available dataset. Subsequently we calculated the proportion of
times each update method was selected at each event per variable ratio.

Example 1: Patients with prostate cancer

Data of 409 clinical patients, who were screened positive for prostate cancer, were previously used to
develop a model for indolent cancer (versus important cancer). Patients were treated at Baylor College of
Medicine or at the University Hospital Hamburg-Eppendorf [10]. Eighty patients (20%) had indolent
cancer. The model that included 7 predictors was updated for a screening population using the data of
the Rotterdam section of the European Randomized Study on Screening for Prostate Cancer (ERSPC)
[18]. In total 278 men were screened and 136 of them (49%) had indolent cancer at radical
prostatectomy.

Figure 1A shows the validity of the original model in the complete update sample (n=278). The
model predicted far too low probabilities of indolent cancer. Many more patients in the update sample
had indolent cancer (49%) compared to the development set (20%). The corresponding calibration inter-
cept for calibration-in-the-large was 2.58 (Table II; ideal value is 0.0). Updating the model intercept (up-
date method 1) was hence required. The individual regression coefficients of the original model were on
average correct as illustrated with the calibration slope of 1.01. Nevertheless, model revision showed dif-
ferences in individual regression coefficients compared to the clinical model. These coefficients were
overfitted (calibration slope corrected for optimism=0.86). When model revision was used in the first
100 patients, overfitting was even more profound with a corrected calibration slope of 0.76 and opti-
mism in c statistic of 0.03.

When the update methods were tested against the original model, all three methods showed statisti-
cally significant results for smaller and larger update samples (Figure 2A). The closed testing procedure
selected ‘recalibration in the large’ in the complete sample. The test for model revision against the orig-
inal model (step B) was statistically significant with p<0.001 (Chi-square=326, df =8). The test for
model revision against recalibration in the large (step C) was not statistically significant (Chi-
square =7.3, df = 7, p=0.40), and ‘recalibration in the large’ was adopted as update method. Simulating
the situation of increasing sample sizes over time showed that the closed testing procedure selected ‘re-
calibration in the large’ in nearly all the update samples (Figure 3A).

Example 2: Patients with traumatic brain injury

A model to predict six month mortality in traumatic brain injury (TBI) patients was previously devel-
oped with patient data from the North American and International Tirilazad trials (n=2259) [11,19]. At
six months after trauma, 517 patients (24%) had died. A model with three predictors (8 regression coef-
ficients) [20] was updated using data of patients from a survey data set (European Brain Injury Consor-
tium). This survey contained 822 patients; 281 patients died within 6months after trauma (34%).

In this example, the difference in overall risk between development and update samples (24% versus
34%) did not influence calibration in the large with the calibration intercept close to 0.0 (-0.01,
Table III). The calibration slope was larger than 1 (1.25, Figure 1B), which implies that the overall

Figure 1. Validation plots of the original models applied in the update samples for indolent cancer (A), 6month
outcome in TBI patients (B) and SBI in febrile children (C). The triangles represent deciles of subjects grouped
by similar predicted risk. The distribution of subjects is indicated with spikes at the bottom of the graph, sepa-

rately for persons with and without the outcome
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predictive effects in the original model were not extreme enough for the patients included in the survey.
Low predicted risks corresponded to lower observed frequencies of death; higher risks to higher frequen-
cies. Particularly the predictive effects for age and pupil reactivity (both sides) tended to be larger
(Table III). Model revision slightly increased the discriminative ability of the model (c statistic corrected
for optimism=0.85 versus 0.84 for the original model). When model revision was applied in the first 200
patients, we found clear optimism (a corrected calibration slope of 0.82 and optimism in c statistic of 0.02).

Table II. Logistic regression coefficients in the original clinical model for indolent cancer and the updated
models for the screening setting (n = 278). Model performance in the screening setting is also shown.

Clinical model Re- calibration in the large Re-calibration Model revision

Coefficients
PSA level, ng/ml # - 1.09 - 1.09 - 1.10 - 1.44
Clinical stage T2a 0.17 0.17 0.17 0.08
Primary biopsy Gl. - 0.30 - 0.30 - 0.30 0.37
Secondary biopsy Gl. - 0.05 - 0.05 - 0.05 - 1.74
US prostate volume, 10 cc 0.20 0.20 0.20 0.32
Cancerous tissue, mm # - 0.61 - 0.61 - 0.61 - 0.64
Positive cores, 10% - 0.39 - 0.39 - 0.39 - 0.21
Intercept 1.11 3.67 3.70 6.37

Model performance
Calibration intercept 2.58 0.00 0.00 - 0.01
Calibration slope 1.01 1.01 1.00 0.86*
c statistic 0.75 0.75 0.75 0.75*
R2 0.25 0.25 0.25 0.21*

Gl., Gleason score; US, ultrasound
#log transformed
*model performance, corrected for optimism with bootstrapping

Figure 2. Test results for different methods to update the prediction models. Update methods were tested against
the original model with increasing sample sizes over time.

Figure 3. Selected update methods with the closed testing procedure for increasing sample sizes.
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Separate testing of the updated models against the original model in smaller and larger samples
showed that updating the model intercept was not needed (Figure 2B). In update samples of around
660 patients or more the tests for recalibration were statistically significant. Tests for model revision be-
came statistically significant after inclusion of 620 patients. In the complete update sample, the closed
testing procedure selected model revision. All three tests were statistically significant with p=0.002
(step B: model revision against the original model, Chi-square =27, df = 9), p=0.001 (step C: model re-
vision against recalibration in the large, Chi-square =27, df = 8), and p=0.013 (step D: model revision
against the recalibrated model Chi-square =18, df =7). The closed testing procedure selected recalibra-
tion or the original model as the preferred method in most of the small simulated update samples
(Figure 3B). As sample size increased model revision became the preferred update method in almost
all simulated update samples.

Example 3: Children presenting with fever

A prediction model for serious bacterial infection (SBI) was previously developed with data from
1750 children with fever presenting at the emergency department of the Sophia’s Children hospital,
Rotterdam, the Netherlands (222, 13% had SBI). The model that included 11 predictors (12 regression
coefficients) was updated with new data collected in the same hospital. In total, 2019 children were
analysed with 223 (11%) patients having SBI.

The original model showed good performance in more recently treated febrile children with some
over prediction (Figure 1C). Calibration intercept and slope were slightly different from the ideal values
0 and 1 (- 0.18 and 0.96, Table IV). Model revision slightly increased the discriminative ability of the
model (c statistic corrected for optimism=0.77 versus 0.76 for the original model).

When the update methods were tested against the original model, all three methods showed statisti-
cally significant results for smaller and larger update samples (Figure 2C). The closed testing procedure
selected ‘model revision’ in the complete sample. All three tests were statistically significant with
p=0.001 for all three (step B: Chi-square =36, df = 13; step C: Chi-square =34, df = 12; step D:
Chi-square =33, df = 11). For smaller update samples the original model was chosen in 65% of the sim-
ulations and model revision in 30% (Figure 3C). As sample size increased model revision was chosen as
the preferred updating method in the majority of simulated update samples.

Simulation study

To investigate the type 1 error rate of the closed testing procedure we performed a simulation study
based on the three clinical examples. For each example, patient predictor data were drawn with replace-
ment from the original dataset. The binary outcome value for each patient was generated by comparing

Table III. Logistic regression coefficients in the original TBI model (Tirilazad) and the updated models for
the EBIC registry (n = 822). Model performance in the EBIC registry is also shown.

Tirilazad Re- calibration in the large Re-calibration Model revision

Coefficients
Age, 10 years 0.28 0.28 0.35 0.42
Motor score
Extension -0.48 -0.48 -0.60 0.07
Abnormal flexion -0.87 -0.87 -1.09 -0.80
Normal flexion -1.31 -1.31 -1.64 -1.23
Localises -1.81 -1.81 -2.27 -1.78
Obeys command -1.92 -1.92 -2.41 -1.35
Pupil reaction negative One side 0.56 0.56 0.70 0.64
Both sides 0.97 0.97 1.22 1.63
Intercept -1.19 -1.19 -1.36 -2.22

Model performance
Calibration intercept -0.01 0.00 0.00 -0.01
Calibration slope 1.25 1.25 1.00 0.96*
c statistic 0.84 0.84 0.84 0.85*
R2 0.41 0.41 0.42 0.41*

*model performance, corrected for optimism with bootstrapping
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the predicted probability based on the fitted model on the full sample (model revision) with an indepen-
dently generated variable ui having a uniform distribution from 0 to 1, with Yi = 1 if pi≥ui and 0
otherwise.

We considered four event per variable ratios for each clinical example, i.e. epv=5, 10, 15 or 20.
Given the epv, outcome incidence and number of regression coefficients in the model samples included
70, 140, 210 and 280 patients for the indolent prostate cancer example (7 coefficients), 118, 236, 354
and 472 patients for the TBI example (8 coefficients), and 545, 1090, 1635 and 2180 patients for the
SBI example (12 coefficients). For each scenario we generated 2000 samples and applied the closed test-
ing procedure. The proportion of test results indicating that the model should be updated equalled the
type I error rate.

When small update samples were available the type I error rate was slightly above the nominal 0.05
level (Table V). As sample size increased the observed type I error rate decreased to the 0.05 level.

We measured in the same simulation set up the average mean squared error (MSE) of the estimated
regression coefficients. Updating the model according to the closed testing procedure showed lower av-
erage MSE than model revision (Table VI). When the regression coefficients were shrunk, the average
MSE was lower with values of 0.4 and 0.01 for the model revision and closed testing procedure in the
indolent example; 0.13 and 0.01 in the TBI example and 0.02 and 0.0003 in the SBI example at event
per variable ratio of 5.

Table IV. Logistic regression coefficients in the original SBI model and the updated models for the new pa-
tients (n = 2019). Model performance in the new patients is also shown.

Original Re- calibration in the large Re-calibration Model revision

Coefficients
Age, years (1m-1 yr)† -0.65 -0.65 -0.62 -0.66
Age, years (>1 yr) † 0.07 0.07 0.07 0.07
Girl 0.34 0.34 0.33 0.27
Temperature, °C†† 0.13 0.13 0.12 0.13
Duration fever, days 0.10 0.10 0.10 0.16
Tachypnoea 0.15 0.15 0.14 0.33
Tachycardia -0.05 -0.05 -0.05 0.48
Oxygen saturation, <94% 1.03 1.03 0.99 0.89
Capillary refill time, >3 s 0.28 0.28 0.27 0.34
Chest wall retractions -0.04 -0.04 -0.04 0.42
Ill appearance 0.32 0.32 0.31 0.07
CRP, mg/l# 0.84 0.84 0.81 0.78
Intercept -5.42 -5.60 -5.45 -5.77

Model performance
Calibration intercept -0.18 0.0 0.0 -0.09
Calibration slope 0.96 0.96 1.0 0.94*
c statistic 0.76 0.76 0.76 0.77*
R2 0.19 0.19 0.19 0.19*

†Age was added using a piecewise linear term which can be calculated as -.65*min(1,Age) + 0.07*(Age-1)+. Where
(x) + =max(x,0).

††centred at 35 degrees;
#log transformed
*model performance, corrected for optimism with bootstrapping

Table V. Type I error rate for the closed testing procedure at different event per variable ratios.

Event per variable ratio: 5 10 15 20

Model
Indolent 0.08 0.07 0.06 0.06
TBI 0.07 0.06 0.06 0.06
SBI 0.07 0.06 0.05 0.05

Indolent: indolent cancer; TBI: traumatic brain injury; SBI: severe bacterial infection
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Discussion

Studying the performance of a prediction model in new patient data is a valuable step before using the
model in clinical practice. When models are applied in populations with local or contemporary circum-
stances that differ from the development population, the model may need adjustments. Data collected in
the new populationmay then be used to update themodel to performwell given the new circumstances [21].

We proposed a closed testing procedure to select an appropriate method for updating a previously de-
veloped prediction model. Application of the procedure in three clinical examples showed that more par-
simonious methods such as recalibration in the large or recalibration were selected, if the amount of
evidence for model revision was relatively small. The closed testing procedure can hence warn the re-
searcher that re-estimation of all regression coefficients from a prediction model for the own situation
may result in an overfitted model.

The available sample size in the three clinical examples might be considered sufficient to apply model
revision instead of updating the original prediction model. However previous studies have shown that if
the development sample is relatively large compared to the update sample it is still advantageous to in-
corporate the previous evidence of the relative predictor strengths and update the original prediction
model rather than re-estimation of all predictor effects [1].

When the closed testing procedure selects model revision as update method, the updating sample may
still be relatively small and overfitting can occur. Some kind of shrinkage of the regression coefficients
should be considered [22]. We did not consider the shrinkage step in the closed testing procedure itself,
since it would be difficult to assess the correct number of degrees of freedom [23]. Further, the number
of degrees of freedom can become below 2 with penalized maximum likelihood estimation, with alpha
not equal to the chosen value for the closed testing procedure [24].

We considered here relatively small update samples and limited therefore the update methods; model
extension in which extra predictors are included in the prediction model was not included in the closed
testing procedure. Further, the closed testing procedure is a frequentist approach to combine prior knowl-
edge incorporated in the established prediction model with new data of the updating sample. Bayesian
modelling would be an alternative update method [25]. Further research should elaborate on these issues.

We assume that the used update sample is a representative and random sample of the considered pop-
ulation. The updated model results from new regression analyses with limited sample size. As a conse-
quence, evidence on reproducibility of the updated model for the considered populations is relevant
[26,27]. This internal validity may be studied with bootstrap resampling or with new patients from the
same population.

Selecting an update method with the closed testing procedure is particularly relevant if an established
prediction model is available but not the individual patient data used to develop that model. When the
development data are also available, meta-analytical techniques can be applied to investigate the hetero-
geneity in predictor effects and to adjust the baseline risk if necessary [28,29]. If the observed heteroge-
neity between both samples is small, development and update samples can be combined to develop a
model for both the development and update sample. If the primary interest is to develop a prediction
model that is valid in the population of the update sample, adapting the model using the closed testing
procedure is sufficient.

In conclusion, we proposed and illustrated a closed testing procedure to select methods for updating a
previously developed prediction model. The closed testing procedure selects parsimonious update
methods when sample sizes are relatively small. Only if strong evidence is present in the new data that
individual regression coefficients should be re-estimated, model revision is selected.

Table VI. Average mean squared error of the estimated coefficients with model revision or the closed testing
procedure at different event per variable ratios.

Event per variable ratio 5 10 15 20

Revision Closed Revision Closed Revision Closed Revision Closed

Model
Indolent 8.0 1.0 3.0 0.35 1.2 0.17 0.58 0.1
TBI 1.5 0.31 0.36 0.08 0.2 0.04 0.14 0.03
SBI 1.3 0.04 0.10 0.01 0.06 0.005 0.05 0.004

Indolent: indolent cancer; TBI: traumatic brain injury; SBI: severe bacterial infection.
Revision: re-estimation of all regression coefficients; Closed: model was based on the closed testing procedure.
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Appendix. R code for closed testing procedure

ClosedTest <- function(coefs, X, y){
# Implement closed testing procedure (Version: 11-01-2013)
# Arguments:
# coefs: Vector containing the regression coefficients of the model that
# is updated.
# X: predictor matrix
# y: outcome vector
# Results:
# coef_new: regression coefficients of chosen model
require(rms)
if(class(X)=="data.frame"){
X <- data.matrix(X)

}
if(ncol(X)!=(length(coefs)-1)){
stop("Number of predictors not equal to the number of coefficients")

}
n_coefs <- length(coefs)
lp_old <- X %*% as.matrix(coefs[2:n_coefs])
# Calculate updated model intercept
intercept <- lrm.fit(y = y, offset = lp_old)$coefficients
coefs_int <- c(intercept , coefs[2:n_coefs])
# Calculate coefficients after recalibration
recal <- lrm.fit(x = lp_old, y = y)$coefficients
coefs_recal <- c(recal[1], recal[2] * coefs[2:n_coefs])
# Calculate coefficients after model revision
coefs_refit <- lrm.fit(x = X, y = y)$coefficients
# Calculate the log-likelihood of the different models
lp <- cbind(1, X) %*% coefs
ll_original <- sum(y * lp - log(1 + exp(lp)))
lp <- cbind(1, X) %*% coefs_int
ll_intercept <- sum(y * lp - log(1 + exp(lp)))
lp <- cbind(1, X) %*% coefs_recal
ll_recalibration <- sum(y * lp - log(1 + exp(lp)))
lp <- cbind(1, X) %*% coefs_refit
ll_revision <- sum(y * lp - log(1 + exp(lp)))
# Calculate difference in log-likelihood for testing of the models
dev_original <- -2 * ll_original + 2 * ll_revision
dev_intercept <- -2 * ll_intercept + 2 * ll_revision
dev_recalibration <- -2 * ll_recalibration + 2 * ll_revision
# See if difference in model fit was significant
test1 <- (1 - pchisq(dev_original, ncol(X) + 1)) < 0.05
test2 <- (1 - pchisq(dev_intercept, ncol(X))) < 0.05
test3 <- (1 - pchisq(dev_recalibration, ncol(X) - 1)) < 0.05
# See which model is chosen, index_test indicates the chosen model
# 1. Original model
# 2. Model with updated intercept
# 3. Recalibrated model
# 4. Revised model
test_original <- 1 * (!test1)
test_intercept <- 2 * ((test1)&(!test2))
test_recalibration <- 3 * ((test1)&(test2)&(!test3))
test_revision <- 4 * ((test1)&(test2)&(test3))
index_test <- (test_original + test_intercept + test_recalibration +

test_revision)
coefs_result <- rbind(coefs, coefs_int, coefs_recal, coefs_refit)
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# Output of the function
new_coefs <- coefs_result[index_test, ]
model <- c("Original Model", "Model with updated intercept",

"Recalibrated model", "Model Revision")[index_test]
cat("Method chosen by closed test procedure:\n", model, "\n",

"Resulting coefficients:\n", new_coefs, "\n")
res <- list(model = model, coefs = coefs_result)
return(res).
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