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Abstr act

Metamodels can be used to reduce the computational burden a&stegthtcomputationgt demanding
analyses of simulation models, though applications withintheatbnomics are still scarce. Besides a lack
of awareness of tlirepotential within health economics, the absence of guidandideoronceivably
complex and time-consuming process of developing and validatgigmodels may contribute to their
limited uptake To address these issues, this paper introduces metamodeliwegier health economic
audience and presents a process for applying metamodeling dotiéxt, including suitable methods and
directions for their selection and ugeneral (i.e., non-health economic specific) metamodeliegtitre,
clinical prediction modeling literature, and a previously mi#d literature review were exploited to
consolidate a process and to identify candidate metamgdatiethods. Methods were considered
applicable to health economics if they are able to accoumhifard (i.e., continuous and discrete) input
parameters and continuous outcomes. Six steps were identifietbntdor applying metamodeling
methods within health economics, i.e. 1) the identificatibra guitable metamodeling technique, 2)
simulation of datasets according to a design of expergmaipfitting of the metamodel, 4) assessment of
metamodel performance, 5) conduct the required analysis usimgetaenodel, and 6) verification of the
results Different methods are discussed to support each step, inchindiingcharacteristics, directions for
use, key references, and relevRmnd Python packages. To address challenges regarding meiiaghode
methods selection, a first guide was developed towards usiragmmdels to reduce the computational
burden of analyses of health economic models. This guidanc@naragse applications of metamodeling
in health economics, enabling increased use of efatee-art analyses, e.g. value of information analysis

with computationally burdensome simulation models.
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1. Introduction

Decision analytic models are valuable tools to inform healticypdecisions by estimating the health and
economic impact of healthcare technologies. When decisiontiznalgdels take the form of simulation
models, and particularly if they incorporate patient-léaterogeneity and stochasticitiye computational
power of standard desktop computers may be insufficient torpedomputationally demanding analysis
within feasible time horizon@-3). Although it is typically feasible to perform traditionaledyses, such as
probabilistic analysis to reflect parameter uncertaiddy performing more advanced analyses, such as
value of information analysis (5), may not be possibtaiwa feasible timeframe unless simulations are
executed in parallel using high performance computing clustardagy, if we wish to optimize some
specific model outcome, for example to identifgcreening or treatment strategy that maximizes patient
outcomes subject to some set of constraints, we may firtdthisais infeasible using only desktop

computing resources (6).

Performing these more advanced analyses may be computgticimelenging, because they can
requirea large number of model evaluations (i.e., simulation ruURg) example, suppose a discrete event
simulation model has been developed to estimate the healtioreic impact of a novel cancer drug
compared to an existing drujow assume that running this simulation model with 10,000 hypothetical
patients for each of the two treatment strategies is @irifito obtain stable outcomes over model runs and
takes approximately 1 minute. If an expected value of gtefarameter information analysis is to be
performed for only 1 group of parameters using an inner pradtabihnalysis simulation loop of 5,000
runs and outer simulation loop of 2,500 rut.5 million simulation runs would be required in toElen
if it only requires 1 minute to perform a simulation run,faening this analysis using a brute force
approach on a desktop computer with 8 central processingliiit)(cores working in parallel would take

more than 1000 days.

Metamodeling methods can be applied to reduce the computationah lwfirdemputationally

demanding analyses with simulation models (7,/)metamodel, also known as surrogate model or
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emulator, in general can be thought of as a functionaghatoximates an outcome (i.e., response variable
or dependent variable) of a simulator (i.e., the origsiaiulation model) based on input that would
otherwise have been provided to that simulator f8tamodels are typically defined over the same
(constrained) input parameter range as the corresponding simatataytion is needed when extrapolating
input parameter values beyond their simulator range. Sincemoeéds are computationally cheap to
evaluate, requiring only a fraction of the time thaikes to evaluate the simulator, they can be used as
substitute for the simulator to substantially reduce theysisatuntime. In the example above, arsd a
illustrated in Figure 1, metamodels can be used to replhealth economic simulation modélthough

this will still require 12.5 million evaluations to be perfeed, this can be done in very limited time. For
example, ifametamodel would require approximately 0,1 second to evaluatermpang the analysis using
the metamodel would take 2 instead of over 1000 days. Howevamodtls themselves take time to build

and validate (10, 11), though this will not take 1000 days.

Figure 2, which will be discussed in detail throughout thigwmscript, includesraoverview of
how metamodels are developed. First, a set of experimentbésdefined An experiment refers to the
generation of a single sample of values of the model input perengso, if there ark input parameters,

a vector of lengtlt), which is different tahe use of the word “experiment” in the context of clinical studies
For health economic models, these input parameters may be pitEsatibstsor utilities, for example.
Second, the set of experiments is to be evaluated from thiagimio obtain a training dataset that contains
the experiments and their corresponding model outcomes, suadAaDr incremental costs and quality-
adjusted life years (QALYSs). Finally, metamodels are ditte the training dataset to approximate the
relationship between simulator inputs and outcorbéfferent metamodeling technigues can be used to
approximate this relationship, each of which makes differenngssons about the functional form of the
relationship between the inputs and outcomes of the simulalirough the extent to which fitted
metamodels can be interpreted varies, this is not of pyiméerest when using metamodels to reduce

computational burden, because the main aim is to approximatetnsubutcomes accurately and not to
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make inferences between inputs and outcoulsst techniques approximate a single model outgome
requiring multiple metamodels to approximate multiple sinanlatitputs. Hence, one metamodel can be
used to approximate the net health benefit at a given willingngsay, but two metamodels would be
required to approximate costs and QALYs separately (Figuwsfter developing a metamodel, it needs to
be validated by assessing its accuracy in approximating simaatoomes, which is done based on a
testing dataset containing experiments and outcomes thatdsheusimilar but different from those

included in the training dataset.

Metamodeling methods are used widely across different fieldsiehce and engineering, for
example to optimize designs of coronary stents (12), high spEed (13), and groundwater remediation
(14), as well as to estimate future water temperatuggslifilhealth economics, de Carvalho et al. recently
demonstrated that metamodel can be used to perform prebalzlalysis, which was not possible in a
feasible timefreneusing their original model (16M previous literature review only identified 13 additional
applications of metamodeling methods in health economics, masilygto perform value of information
analysis and applying various, relatively basic metamodelirthads compared to those used in other
fields of research, suggesting the field of metamodeling nvitkealth economics to be in its infancy.(3)
An important reason for the limited uptake of metamodeliethods within health economics may be that
most health economic models and applied analyses have, untillyebeen relatively simpland could
often be performed within acceptable time frames. Qtb&ential reasons include a lack of awareness of
the potential of metamodeling methods to reduce runtimeadadk of guidance on how to apply these

methods in a health economic context, which would explaiditfesity in methods applied.

To increase awareness of the potential for applying metdsnadhin health economics, and
provide guidance for doing so, this study introduces the concepts afmoaling to the wider health
economic audience, and presemt®mprehensive, structured overview of metamodeling methods deemed
suitable for use in a health economic context. Points of consaterfor selecting and applying

metamodeling methods are discussed, including directions sgedifgalth economics.
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2. ldentification of Metamodeling M ethods

Metamodeling methods (and the steps to be taken when applying werm)identified by a scoping
literature search that was performed by KD. This involvetherdearches, searches in Scopus and PubMed,
and cross-referencing. Several publications that provide nmaftoon on steps taken when applying
metamodeling methods in health economics, identified in atreed@ew (3), were used as a starting point
(17-20). Method-specific information, other candidate metamuaglefiethods, and potentially relevant
process steps were identified by iterative searches on me#imadprocess steps introduced in these
publications and by cross-referencing. For example, if the ingfadifferent experimental designs on
metamodel performance was discussed in a paper found fronrah $wa a specific metamodeling
technique (i.e., structure of the metamodel), additionalkckearon these designs of experiments were
performed to identify further information on these expentakdesigns and other designs of experiments.
The iterative search process terminated when additiofmaihd literature did not result in further inclusion

of methods, i.e. until theoretical saturation was reached.

Metamodeling methods were only included if they are considmpedopriate for use in health
economics and have been commonly used in other fields ofaksaaline with the objective of the study.
Methods were considered applicable to health economics if thegbégeto account for mixed (i.e.,
continuous and discrete) input parameters and continuous outcomesefponse variables). Typical
continuous input parameters of health economic models are, fmpbxacosts and utilities, whereas the
number of hospital days after a surgical interventionkmimcluded as a discrete parame&milarly,
typical continuous outcomes of interest are the net healthooetary benefit, total cost, and QALYs.
Relevant steps to be taken when applying metamodeling methottgailth economics were not
prespecified, but extracted from the literature as descaibede, and structured in a procédstamodeling
methods and their characteristics were described accordimng fwocess, and presented in a table or graphs

when appropriate. Additionally, examples of packages availabieglement methods in R Statistical

7
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Software (21) and Python (22) were identified via an onlie&ch and introduced along with the
corresponding methods. These two software environments wereedelbetause they can be used to
develop both the health economic simulation model and metamoaiet iscript, and are commonly used
by academics, though other software environments like Stafg, &nd C++ can also be used to develop

meamodels.

3. A Process for Metamodeling in Health Economics

A six-step process for metamodeling in health economics was lictated, covering methods from
selecting suitable metamodeling techniques up to validating methowgats against simulator outputs
(Figure 2). A validated health economic simulation model,(§imulator) that is considered appropriate to
perform the analysis of interest is a prerequibiteause while metamodels can theoretically be as accurate
as their corresponding simulators, they cannot compensateafuracies or bias in these simulators.
Here, the analysis refers to what is to be analyzed ubmgttiginal health economic model, but is
considered infeasible due to the associated computationalnbupépending on the analysis to be
performed, the sixth step is facultative, as will be discussefbrfany type of modeling study, the process
of metamodeling is iterative, since new insights may quegtion decisions. Next, each process step will
be described, including an overview of corresponding meti#odslustration of how this process would

be applied to perform value of information analysipresented in Appendix A.

Step 1: identifying candidate metamodeling techniques

Identification of theoretically suitable metamodeling techagjis based on study characteristics, including
the analysis to be performed, type of input parametersijcous, discrete, or mixed (i.e., both continuous
and discrete)), number of input parameters, and type obmat (continuous or discrete). As discussed

previously the focus here is on technigues capable of handling mixed input gterarand continuous
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outcomes. In the presence of time or budget constraints fammodel development, and when multiple
techniques are considered appropriate for use, modelers dabyssatecting and applying one of these
technigues and only select and apply another technique if themgsnétamodel does not yield acceptable

performance (see Step 4).

Tappenden et al. (18) identified five metamodeling techniquesaj@lication in value of
information analysis: linear regression, response surfackodwbgy, multivariate adaptive regression
splines, Gaussian processes, and neural networks. These tesharigueomplemented with symbaolic
regression, which was also identified from the review (1%, generalized additive models, which have
been used previously for performing value of informationyaisl(23, 24). In Table 1, an overview of
technigues and their characteristics is provided. For eatdmmudeling technique, this overview includes
the typically required number of experiments (which weehdefined as low: n < 500r high: n> 500),
number of input parameters it allows (which we have defisddw: n < 20, or high:n20), interpretability
of the resulting metamodel structure (which we have clagsiidow: nobr barely possible to understand
relations between inputs and outpunoderate: input-output relations can be understood to some, extent
or high: input-output relations can be undersjoamd the description of any R and Python packages
available to apply the technique. Regarding the interpiiyabf the metamodels’ structures, this is
typically not of primary interest when using metamodelingéducing computational burden, as accurate

and fast approximation of simulator outcomes is the main goal.

Simple linear regression is a statistical modeling techniggleknown in health economics and,
theoretically, suitable for metamodeling. It assumes a lindationship between independent variables
(i.e., input parameters) and the dependent variable (i.eqroatof interest) and is linear in the regression
model parameters (25). These models can easily be fittedasetia of all sizes, including datasets with
large numbers of experiments and input parameters, whileiagjder both continuous and categorical
input parameters. Although fitting linear regression models atetpreting their structure can be

considered relatively easy, they are unlikely to be usefuinetamodels of health economic simulation
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models, as the latter typically induce complex and non-lineenpsier interactions. More advanced
techniques, allowing for more flexible model structurespéten better suited to represent such simulation

models.

Response surface methodology is also linear in the regression paodeteters, but does not
assume a linear input-output relationship, and fits polynomiagéssgm models to predict responses, i.e.
outcomes (10, 26, 27). Both continuous and categorical input p@rancan be considered in response
surface models, and datasets including large numbers of remési and input parameters can be used.
However, high non-linearity will require higher order polynomialkjclv will require larger numbers of
experiments and, hence, it will require larger up-fronugtor runtime. Although polynomial models are
more difficult to interpret compared to linear models, i6ickx, general trends on model parameter

influence can still be extracted from their model structures.

Symbolic regression uses genetic programming to construct a naditednexpression from
elementary operators (e.g+‘ and ‘x’) and elementary functions (e.g., ‘log”’) accurately describing the
relation between input parameters and the outcome of intefdsiut making any priori assumption about
this relationship (28, 29). Fitting an accurate symbolic regnesabdel may take substantial time, due to
a potentially large number of candidate metamodels, amgel solution space. However, symbolic
regression is capable of handling large datasets includingga feumber of mixed input parameters.
Symbolic regression models can be difficult to interpregssithe final expression is relatively simple or

is simplified.

Multivariate adaptive regression splines were developed to mumdtoutcome relations that may
not be constant across input space (10, 30-32). Regression splingnghdiédes the outcome domain
into intervals, and then estimates an equation, typiedtyv-order polynomial, for each interval. Different
types of splines can be distinguished, based on how the numinterefils and level of smoothness are
defined. Fitting multivariate adaptive regression splines dedan automated input parameter importance

analysis (see Step 2). Although capable of handling largeedataf mixed input parameters, regression

10
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splines are prone to overfitting. In contrast to the previousdgudsed metamodeling techniques, the

interpretability of multivariate adaptive regression splisdanited.

Generalized additive models assume that the dependent varmblad®th, but unknown, function
of the independent variables (33, 34). This unknown underlying smoottiofurie usually represented
using splines, with the cubic spline as a common choice. In its singalest a univariate cubic spline
represents an arbitrary smooth single-input function as a séslerb cubic polynomials joined piecewise
such that the function is twiadifferentiable at the ‘‘knots’’ (i.e., join points). The same spline can also be
represented as the weighted sum of a series of predetermined ‘‘basis functions’’ that extend over the whole
range of the function input. Simple univariate cubic splines hawgral extensions to higher dimensions
and to a metamodeling framework, where the spline param@ersthe basis function weights) are
estimated from noisy data. Generalized additive modelbanadiie large datasets and high numbers of input

parameters, but their structure is difficult to interpret.

Gaussian process regression is a nonparametric regression alsthkdown as Kriging (10, 35)
Gaussian processes use information on neighbor experimentsvfpregictions, while directly providing
information on the uncertainty in these predictions. Thimigue for metamodeling techniques, since other
technigues require additional effort to obtain informatbonprediction uncertainty. Although Gaussian
processes are capable of considering mixed input parameterd(8&) Gaussian processes have been
developed specifically for this type of data (3The interpretability of Gaussian processes is 16w.
disadvantage of Gaussian processes is that computational burdtem tesns of fitting and predicting,
increases dramatically with increasing numbers of expetsrand parameters, limiting their applicability
Hence, Gaussian processes are often well suitable for patiari problems, which are typically defined
by limited numbers of decision parameters. Furthermomytiparameter importance analysis can be

performed to reduce the number of parameters (see Stad,2hareby, computational burden.

Neural networks are non-parametric models that are commonly fwundachine learning

applications. These models exist of networks of nodes (called newoddnyers, which learn about

11
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relationships between inputs, either continuous or categoaiodloutputs, typically using large datasets
(10, 31, 38). Although neural networks are commonly used for foitadi&in, they are also able to predict
continuous outcomes (39). Since no assumption regarding simstatoture is made, neural networks
may well represent complex, i.e. non-linear, health econamitels. Developing large neural networks
typically requires large numbers of experiments, whick pwse challenges regarding obtaining sufficient
simulator samples. Similar to multivariate adaptive regrassplines, generalized additive models, and

Gaussian processes, neural networks are “black boxes” that are hard to interpret.

In conclusion, as illustrated in the selection flowchart (Fég3) Gaussian processes are
particularly useful when obtaining sufficient simulator samplespialy the other techniques is infeasible.
Response surface methodology, symbolic regression, multivadiapéivse regression splines, generalized
additive modelsand neural networks are typically useful when sufficient samg@ede obtained from the
simulator, i.e. original health economic model. If metamdaterpretation is important, response surface
methodology and symbolic regression can be used to danetamnodels that may be interpretable to some

extent.

Step 2: simulating datasets

Simulating data from the simulator is crucial in metamaogetitudies, as metamodel performance is highly
dependent on the data used for fitting (9). Modelers controluimber and definition of experiments used
for fitting metamodels, which is fundamentally different frpmadiction modeling studies, for which data
is typically observed from clinical studies or registries (Bakthermore, challenges regarding handling
missing data, reversed causality, omitted variables, andsumeaent error are not applicable to
metamodeling. There are five key aspects to simulating daté®emetamodeling: 1) the number of
datasets, 2) parameter rang®sdesign of experiments, 4) number of experiments, and 5)sémabed for

obtaining simulator outcomes. As explained previously, an expetinefers to the generationasingle

12



Authors’ final accepted version — Published in Medical Decision Making

sample of model input parameter values in a metamodeling cohterte, the number of experiments
does not refer to a number of (hypothetical) patientsidotite number of sets of model input parameter

valuesfor which the simulation model is evaluated to createsg#gefor metamodel fitting and validation.

As in prediction modeling, two distinct datasets are prefefor metamodeling studies: one for
fitting (i.e., training or development dataset) and omevédidation (i.e., testing or validation dataset). In
prediction modeling studies, validation datasets would typicalplitained by isolating a proportion of
the data from a single cohort for internal validation, or by gathering additional data from another ‘plausibly
related’ cohort for external validation (25). In metamodeling, however, it is preferable to obtain two
separate datasets from the simulator, each having a présgatEsign with comprehensive coverage.
Obtaining one large dataset and separating it in two datisdraining and validation, may compromise
the coverage of these datasets: either dataset may lackutttargt and properties induced by the design of
experiments used to generate the single large dataset. Byirfptavo separate datasets, their structure

and properties according to the design of experiments usedewitiaintained, as will be discussed.

The range of values that is to be covered in the datasgitises careful consideration for each input
parameter separately. Although metamodels are theoretiepi@ple of extrapolating beyond the parameter
ranges covered by the dataset on which they were fitted egtrelpolations are not preferable. The ranges
that need to be covered are determined by the rangesrebiritethe analysis that is to be performed using
the metamodel. For example, if a metamodel is developegtimipe a cancer screening strategy, the
ranges that are considered feasible in the optimization sheulte same as those in the datasets used for
fitting and validating the used metamodel(s). If the scredntegval in years is a parameter of interest and
any value between 1 and 10 is considered feasible, the paraanage for this parameter in the training

and testing dataset should also be from 1 to 10.

Design of experiments methods determine how sets of samples migparaalues are selected, to
be evaluated from the simulator in order to obtain datdeefitting and validation (40). The objective of

these methods is to cover parameter spaces and paramesetions as effectively and efficiently as

13
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possible, i.e. with the least number of experiments. rfgaiio represent the full parameter spaces and
parameter interactions will decrease metamodel performdfast common designs of experiments are so
called single-pass methods that first define a completefsexperiments, which are subsequently all
evaluated using the simulator (1Commonly used designs are random designs, full factorial designs, and

Latin Hypercube designs.

Random designs, also known as Monte Carlo Sampling methods, nlseais of experiments by
generatingn draws from the joint probability distribution for the input paeters (40). These designs
require a large number of experiments to sufficiently ctveparameter space. Input distributions may be
designed to cover a pre-specified range with equal probabiétyufiiform distributions), or may represent
judgements about the true unknown value of some population qudatityexample using Gamma
distributions for parameters with a positive range (4). Whendora design is used, one large dataset can

be separated in two datasets for fitting and validatidrievwnaintaining its random properties.

Full factorial designs fully enumerate possible combinatiafndiscrete parameter values (11)
More specifically, forn values ofk parameters, a full factorial design represents’alktombinations of
these parameter values. Although full factorial designsable to cover the full parameter space and
interactions, the number of experiments exponentially incseaih the number of parameters and they
are, therefore, often infeasible to use. Fractionalofadt designs have been introduced to address
challenges regarding high numbers of experiments when usingdhd&signs, and consist of subsets of

full factorial designs (41).

Latin Hypercube designs have been used often for designingutemmexperiments, as they
efficiently cover the full parameter space (40, 42, 43). drsitmplest form, Latin Hypercube samples
represent random combinations of values for each pargmeéiarh are equally spaced between their
minimum and maximum value for each parameter. More plfiain Hypercube samples represent random

combinatims of random values from equally sized bins that cover the parameters’ domains. Over the years,

14
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more advanced versions have been developed, such as thanraadim Hypercube design (44), which

maximizes the minimum distance between design pointsprahdgonal Latin Hypercube designs (45).

Figure 4 illustrates how random, full factorial, and maxiirétin Hypercube designs may define
nine experiments for two continuous paramefers Cost andConsultation Cost. Although simulatos
and metamodels in practice will have more than two pars)ehis figure clearly demonstrates differences
between the designs. It shows that parameter spaces are feoSvedy covered by maximin Latin
Hypercube sampling, as the corresponding experiments are prajigributed over all bins of the
parameter ranges. Conversely, the full factorial design ceeeng bins multiple times and others not at
all. The randomly sampled experiments also cover some bingpl@dtines and others not at all, though
which those are is determined by chance. From this figumni also be seen why simply isolating a
proportion of experiments from the dataset for model vatida#i not appropriate, and a separate dataset
needs to be simulated when a non-random design is used. Isaldtangdom) proportion from a dataset
generated according to a full factorial or Latin Hypercdésign, will result in a training dataset that no
longer covers the full parameter space consistently. The remairperiments will no longer cover all
bins of the parameter domain in a Latin Hypercube desigall parameter value combinations in a full

factorial design.

In general, Latin Hypercube designs are preferable fortkaitting and testing datasets, especially
when only a limited number of experiments can be evalufaten the simulator in the available time
Optimized Latin Hypercube designs can easily be generatadsh software environments, for example
using thelhs package in R (4&r pyDOE package in Python. However, these designs are challenging to
apply when constraints on combinations of parameters are apgligdihiough some work has been done
on conditioned Latin Hypercube designs, accounting for ingguainstraints (47), this might not enable
all constraints to be accounted for. In such situationsyriattlesigns can be used if the resulting number
of experiments is considered feasible. However, when usingitdalesigns for continuous variables, a

finite set of discrete values within the continuous paranateye needs to be defined, which may result in
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an infeasible number of experiments to cover those parameters’ ranges at the desired level of detail. If using

a factorial design is considered infeasible, random desitgms abnstraints to be accounted for easily
However random designs are likely less efficient, which may reawdtiboptimal solution space coverage
and, consequently, lower metamodel performance, esgeaiaén a limited number of experiments can

be evaluated from the simulator.

How many experiments are required, i.e. how larghould be, heavily depends on the desired
metamodel accuracy, which will be discussed in Step 4. idddity, the design of experiments method
used, and how well the metamodeling techniques match the unketation between inputs and outputs,
influence the number of experiments required (48, 49).reige rule of thumb is to start with = 10 X
d, whered refers to the number of input parameters (49, Afigr evaluating model performance for the
initial set of experiments (see Step A)may be increased until the desired level of overall aoguis
achieved (see Appendix A for an example). Alternativatigptive sampling methods may be applied to
improve accuracy in local regions of the parameter space (51)ydset methods are outside the scope of
this study (see Discussion section). If the desired model acataangt be achieved with a feasible number
of experiments, importance analysis methods may be applieduoe the number of input parametéyrs
by analyzing which parameters are most important in tefrpsedicting the simulator outcomes (18, 52,
53). Only including the most parameters might result in lesaptex metamodel structures, and if

redundant input parameters can be removed, metamodel accarnaapnpnove as overfitting is reduced.

Whether a deterministic or probabilistic analysis needs foelfermed to evaluate experiments
from the simulator, depends on the analysis to be perforntiethe metamodel. In a deterministic analysis,
the simulator is evaluated once for the expected valuekeoinput parameters (4). In a probabilistic
analysis, the simulator is evaluated numerous times, tipihausands of times, based on parameter values
sampled from distributions that reflect the uncertainty ie parameter values (i.e., second-order
uncertainty) If a modelis non-linear, which most health economic models are, health econatommes

from adeterministic analysis are not equal to those of a prasi@banalysis (54)If metamodels are being
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used to perform model probabilistic analysis or value of infdion, simulator outcomes based on a
deterministic analysis should be used. If the aim is to parfcalibration or optimization, simulator
outcomes based on probabilistic analyses are preferred, becaesarththe values expected to be observed
in reality given the current information. However, perforg a probabilistic analysis for each experiment
might not be feasible because of the required simulatamrentn that case, outcomes from a deterministic
analysis may be used to approximate the outcomes of a preti@hitialysis, though this should be clearly

noted as a limitation when reporting the results.

The stability of outcome estimates is another important asffestochastic uncertainty, also
referred to as uncertainty on patient level or first-ocoherertainty, is reflected in a patient-level simulation
model, sufficient hypothetical patients need to be simulatetitain stable outcomes. Similarly, regardless
of whether first-order uncertainty is reflected, sufficierdababilistic analysis runs need to be performed to
obtain stable point-estimates. When insufficient hypothetiedlents are simulated, or probabilistic
analysis runs performed, the subsequent noise in the datufittthg metamodels may have a pernicious
effect on metamodel performance. Outcomes can be considtbl, if outcomes obtained from
simulations with different random numbers, but with the sawpat parameter values, are sufficiently
similar. What defines “sufficiently similar”, differs over case studies and should be discussed with all
relevant stakeholders, e.g. care providers, decision makers)atalers. Obtaining stable outcomes may
require a substantial number of patients to be simulategimulation runs to be performed, and may not
be feasible in practice. However, to reduce the numbeatiénts to be simulated, or number of runs to be
performed to obtain stable outcomes, variance reduction tpe®imay be applied, such as using common

random numbers when comparing strategies (55, 56).

Step 3: fitting metamodels

After evaluating an initial set of experiments from the $atar, this training dataset can be used to fit

selected metamodeling techniques. Steps involved in fitting gsesdliffer between techniques, as well as
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any settings to be provided. We referthe corresponding literature and software documentatiorato le

about steps to be taken and settings to be provided (see Steplrdbdend). As a basic example, some
metamodeling techniques or software packages require input paraiode rescaled. Fitting meta-models
is an iterative process, in which settings may be adaptedoie experiments may be evaluated from the

simulator, after assessing model performance (see Step 4).

Step 4: assessing metamodel performance

Assessing performance of fitted metamodels is essentiatth@f improve that performance, by iteratively
improving (extending) the design of the training dataset used,aptiag the settings for fitting these
models. Additionally, an initially selected metamodelimghnique may be deemed inappropriate if
performance does not reach an acceptable level, resultinglirsion of this technique from the list of
potential candidates (Step. Berformance can be assessed using the testing dataseteellomt the
simulator in Step 2. Since metamodels of health economics moiielgoigally predict continuous scale
outcomes, of main interest is to quantify how close predigtioa to actual simulator outcomes. Assessing
accuracy and comparing different metamodels can be done giphaitd using quantitative performance
criteria. A validation plot, with predicted values on #axis and observed values from the simulator on
the y-axis, is fundamental in assessing model performanc@resehts information on systematic trends,
as well as general performance (see Appendix A for an egxngsdveral quantitative performance criteria
are available, including mean or maximum values of the alesetubr, absolute relative error, squared
error, which may all be normalized using the sample rangtaadard deviation, and summarized by their

mean or maximum values, and @1, 49, 57, 58).

It is important to be aware of performance criteriarahteristics when selecting one, or several, to
compare metamodels or to assess whether model performancepsable For example, compared to

mean absolute errgrenean squared errors places more weight on outliers. Addliiprampared to
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squared errors, setting a desired level of accuracy is staightforward for absolute (relative) errors, as
these can be set by answering questions such as “what is the maximum mean deviation in predicted life-
years thanetamodel is allowed to have compared to the simulator outcomes?” What performance can be
considered acceptable for deciding to apply a metamodel filarméng analyses, differs over case studies
and should be based on input from all stakeholders. For exampé the point-estimate for the
incremental QALYs is 0.18 QALYs, an absolute error of 0.01 ®Ahay be considered appropriate by
stakeholders. Since different performance criteria and idefis of acceptable performance may yield

alternative conclusions, these should be decided upon priatéomadel development.

Step 5: applying metamodel

Once a metamodel has been developed and validated,beassed to perform analyses that could not be
performed in a feasible time period with the originahltte economic model. Previous applications of
metamodels in health economics include value of informatiolysisamodel calibration, optimization,
probabilistic analysis, and obtaining stable outcomes over muttipke with the same input values .(3)
Additionally, metamodels can be used in online tools for whinldd computer resources are available.
For example, see de Carvalho et al. for a demonstratioretamodels used to probabilistic analysis ,(16)
or Appendix A for an illustration of the presented six-step m®der performing value of information
analysis. Another example may be to use metamodels farativeg a large set of (thousands of) screening
strategies, for example to identify the starting age, screamtienyal, and number of screening rounds that

optimize health and economic outcomes.

Step 6: verifying results (optional)

If metamodels are used for optimization purpo#teis recommended to re-evaluate a certain number of

best strategies identified by the metamodel using the originahhaadnomic model, to assess whether
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their outcome and ordering meaningfully differ. By providihgse results, decision makers are better
informed about the expected impact of choosing a good but not abptiamdidate strategy for
implementation, which may be favored over the optimal glyafier practical reasons. For other types of
analyses, such as probabilistic or value of informatiaiyais, additional verification will not add to the
validation of Step 4, because re-evaluating a number ofegieat using the simulator will yield
approximately the same error values as those obtainedgMStdthough this will also be the case for
several best-performing strategies when optimization is peefthrkmowing the true outcomes and ordering
of the strategies according the simulator is informativegreas knowing the true outcome for a specific

probabilistic analysis run is not of any value.

4. Discussion

This study provides an introduction to metamodeling methodsdhateused to reduce the computational
burden of advanced analyses with health economic models, dalndsses challenges regarding the
selection and application of these methods. Similar to ordstatistical regression modeling, different
methods are available with their own advantages, disadvantage underlying assumptions, which are
discussed and directions for selecting and implementing thed®wds are provided. Selected methods are
structured in a comprehensive six-step process that can deddIto assure essential modeling steps are
covered, as it includes all relevant design choices. Additigndiéyprocess discussed can be used as a
structure to effectively and efficiently communicate metdeling studies, to increase modeling

transparency and reproducibility.

Given that tools and packages are available to generaténespes according to specific designs
and to fit different types of metamodels, for example iand Python, applying metamodeling methods is
feasible for health economic analys@urrently available software and results from this study enable

analysts to perform computationally demanding analyses withrttoelels, such as value of information
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analysis, model calibration, and optimization. Benefitdeveloping metamodels are relevant to analyses
using patient-level simulation methods, such as microsimulat@e-transition modeling and discrete
event simulation, but also to cohort models used to perfoatysas that require a large number of model

evaluations.

Applying metamodeling methods can reduce computational burdethidbusually comes at the
price of introducing additional uncertainiy the model outputs. Consequently, checking whether
underlying assumptions are met and checking metamodel performa@oeycial to success and essential
to build confidence in the metamodel. Since modelers typiballg access to the original health economic
model, validation of the metamodel is often not a problenughdikely to be more demanding in terms of
effort compared to developing the metamodel itself. Theirsgagoint for building any metamodel
however, should be a realistic and validated health ecormoodel, since metamodels can theoretically be
as accurate as thecorresponding simulators, but will not compensate for inacagdtithese simulators.
Moreover, when metamodels are used for optimization, the gitateonsidered, and possibly identified
as optimal, may not be supported by (the data underlying) indadbr. Caution is required when such
extrapolation is (automatically) performed, and such optintimatesults should only serve to initiate
discussion on the appropriateness and validity of the simulatothendata supporting it. In addition,
application of metamodeling methods requires communication t£magleling design choices made in
publications, for which space typically already is limitelgnce, metamodeling studies may be published
separately from their simulator to assure the metamodelingeggocan be appropriately described.
Furthermore, there is a ‘sweet spot’ for metamodeling: sufficient experiments need to be evaluatedhgsi
the simulator to develop an accurate metamodel, but evaludtiagperiments of interest should not be

feasible.

Several technical challenges regarding the application of rméigling methods in health
economics remain. Simulators in health economics may incloaelex behavior, such as rigid cutoffs

due to clinical decision rules, which may be complex faamedeling techniques to capture. Additionally,
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(combinations of) model input parameters may be subject to aonsfrwhich are difficult to incorporate
in efficient designs of experiments, such as Latin HypercubelsamIf sufficient samples can be
evaluated from the simulator to use random or full factakésigns in which constraints can be accounted
for more easily, however, this might not be an issue. Alteelg, more advanced adaptive sampling

strategies may need to be applied.

Not all metamodeling methods are directly suitable for agidin in health economics and, hence,
have been discussddowever, it is important to note that some techniques, sutthoge that can be used
for categorical outcomes (i.e., classification), couldothgcally be applied in health economics after
discretizing continuous outcomes. Such an approach has beemptekieisly by using a binary outcome
to reflect whether one treatment was preferred over anmtlgelogistic regression model (58imilarly,
examples of packages for R and Python were discussed, whedi#fg@nadpackages are likely to be
available and other software environments can also be usiEétop metamodels, such as Stata, SAS,
and C++. Additionally, alternative performance critédaametamodel validation can be found, or may be
developed, based on study-specific needs. With regard to sgmpdihods, only single-pass methods have
been discussed, whereas iterative methods, also known as adaptiping or active learning methods,
also exist (59, 60)lterative methods use an initial dataset for fitting amiahimetamodel, which is
subsequently used in an iterative process to identify additixpariments to be added to the dataset, to
update the initial metamodel and check the updated metamodetrp@ntce, until this performance is
according to a pre-defined threshold (51). The additionalrarpats are sampled in the area in which
performance needs to be improved. Although iterative methedwane efficient compared to single pass
methods, they are substantially more complicated to implear@hrequire simulators to be available in
the same software environment used for generating experimentitiagdhe metamodel. Nevertheless,
these methods may be useful if insufficient experiments acgptdia single-pass design can be obtained
to develop an accurate metamodel. Also, alternative designpefiments are available, such as D-optimal

designs, which are efficient and can account for comssralbut for which an linear or quadratic model
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simulator model structure should be known (61), or so called SeQoences, which may be more efficient
compared to Latin Hypercube designs for low dimensionsrfueaper of input parameters) problems (62,

63).

Future metamodeling applications should further illustrate thenpal and use of these research
methods, and identify common challenges. Once the field efamodeling in health economics has
evolved, good research practices (i.e., consensus guidamckg identified to further improve the quality

of metamodeling studies.
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Figure 1. lllustration of how metamodels can be used in a health ecorammiext to approximate the

outcomes of the original health economic simulation model.

Figure 2. Process for developing, validating, and applying metamodel@tbads in health economics.

Figure 3. Flowchart for the selection of appropriate metamodetkobriques for a specific case study.

Figure4. lllustration of how a random uniform sample, full factbdesign, and maximin Latin Hypercube

sample may define nine experiments for two continuous paresniest Cost and Consultation Cost.
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FIGURE 3
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FIGURE 4
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Table 1. Overview of candidate metamodeling techniques for applicatibeaitth economics, which are all able to account for mmpdt

Authors’ final accepted version — Published in Medical Decision Making

parameters and continuous outcomes.

Technique Required Number of Inter pretability | R Package Python Package Refer ences
Number of Inputs
Experiments
Responsq High Large Moderate rsm (64) sklearn (65) (10, 26, 27)
Surface
Methodology
Symbolic| High Large Moderate RGP* (66) fastsr (67), (28, 29)
Regressiorn DEAP (68)
Multivariate | High Large Low earth (69), py-earth (71) (10, 30, 31)
Adaptive mda (70)
Regressiorn
Splines
Generalized High Large Low gam (72), pyGAM (74) (33, 34)
Additive mgcv (34, 73)
Models
Gaussian Low Low Low GPfit (75), scikit-learn (78), (10, 35)
Processey tgp (76, 77) GPflow (79)
Neural | High Large Low Neuralnet (80), | keras (82), (10, 31, 38)
Networks nnet (81) NeuPy (83)

* No longer maintained by authors.
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Appendix A: hypothetical illustration on performing value of infor mation analysis

Consider the example used in the introduction of the manustritich a discrete event simulation model
had been developed to estimate the health economic impacbekl cancer drug compared to an existing
drug. Performing one simulation run using this model requiredrar 1 minute. An expected value of
perfect parameter information (EVPPI) analysis was to be performed to answer the question “What is the
value of collecting additional evidence on this single subgroup of model parameters?”’. Based on assessing
the stability of modeling outcomes, the EVPPI was to be estintgtgerforming an inner probabilistic
analysis simulation loop of 5,000 runs and outer simulation 1o@pB00 runs, resulting in a total of 12.5
million required simulation runs. To perform this analysisyetamodel was developed to approximate the

net monetary benefit (NMB) based on the subgroup of 10 model input paramet

Step 1: identifying candidate metamodeling techniques

Despite the runtime of 1 minute, a relatively large nundfeexperiments could be evaluated from the
simulator. Hence, it was not necessary to use Gaussian Rcasghe only purpose of developing the
metamodel was to perform the EVPPI analysis, the intetpligteof the metamodel structure was not an
issue and there was no specific reason to use response sutfaoealogy or symbolic regression. Finally,
because the modeler was familiar with Generalized Additive Modeis technique was selected (see
Figure Al).

Step 2: simulating datasets

Because there were no specific constraints on (combinatipm®del input parameters, a Latin Hypercube
design was used for both the training dataset and testirgptidtising the rule of thumb to starthwit =

10 x d experiments, the initial training dataset was generategrising 100 experiments (her= 10).

To assess the accuracy of the metamodel in Step 4, a testirsgt of siza = 20 was generated. The net
monetary benefit for all experiments in these two sets wdsated with the simulator, i.e. discrete event
simulation model. However, after fitting a metamodel ip&dased on 100 experiments, its performance
was considered insufficient in Step 4. Therefore, the nuwfbexperiments was increased to 1000, which
could still be evaluated with the simulator within a felsitimeframe, and the testing dataset size was

increased to 200. This number of experiments resultediffigiently accurate metamodel (Step 4).
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Can a large number of
YES: experiments be evaluated
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Does the interpretability of
the metamodel structure —N
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Figure Al. lllustration of the selection of the metamodeling technfquéhe hypothetical illustration.

Step 3: fitting metamodels

The metamodel that approximates the net monetary benefit tigabifi R using the gam function of the
gam package, using all 10 model input parameters as input var@aiddbe net monetary benefit as output

variable.

Step 4: assessing metamodel performance

A validation plot and the mean absolute error and mean shaam were used to determine the accuracy
with which the metamodel approximates the outcomes of the disevent simulation (i.e., simulator).
Figure A2 presents validation plots, including the two perforee measures, for the metamodel that was
fitted based on a training dataset of size 100, ¢.es 100 experiments) and the one fitted basedica
1000 experiments. Clearly, the performance of the metamottedfbased on 100 experiments was
insufficient, as predictions on average were 13.67 below or abowvalthes observed from the simulator
(mean absolute error), which is more than 9% on averagemé&tamodel fitted to 1000 experiments, on
the other hand, approximated the outcomes of the simulatoaeeurately and was considered appropriate

to replace that simulator in the EVPPI (Step 5).
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Step 5: applying metamodel

After the metamodel had been considered sufficiently aetwagubstitute the discrete event simulation
model, the EVPPI analysis was performed. All the 12.5 millionukitions were performed in the same
way as they would have been using the discrete event sionutabdel, but now the metamodel replaced
the discrete event simulation model within the inner simulation foagbtain the net monetary benefit

estimates for specific combinations of input parameter values.

Step 6: verifying results (optional)

No final verification was necessary after performing the ENdhalysis using the metamodel, as this would
not have resulted in any additional insights than thosengataduring the validation of the metamodel
(Step 4). If the metamodel had been used to apply an ogtiorizalgorithm, the best performing sets of
input parameters obtained from the optimization should beectising the simulator, to check whether
the rank of these scenarios meaningfully differed when etedussing the simulator and, thereby, establish

additional confidence in the optimization outcomes.

a) Metamodel fitted to 100 experiments b) Metamodel fitted to 1000 experiments
(20 experiments for validation) (200 experiments for validation)
220 1 MAE=1367 220 1 MAE = 0749
5 MSE = 281 .21 5 MSE = 0.771
® 200 ® 200
=} =}
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Figure A2. Validation plots for the net monetary benefit (NMB) as obsefrad the simulator and
predicted by the metamodels fitted based on a) 100 experimertty 4000 experiments, including the

mean absolute error (MAE) and mean squared error (MSE).
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