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Abstract 

Metamodels can be used to reduce the computational burden associated with computationally demanding 

analyses of simulation models, though applications within health economics are still scarce. Besides a lack 

of awareness of their potential within health economics, the absence of guidance on the conceivably 

complex and time-consuming process of developing and validating metamodels may contribute to their 

limited uptake. To address these issues, this paper introduces metamodeling to the wider health economic 

audience and presents a process for applying metamodeling in this context, including suitable methods and 

directions for their selection and use. General (i.e., non-health economic specific) metamodeling literature, 

clinical prediction modeling literature, and a previously published literature review were exploited to 

consolidate a process and to identify candidate metamodeling methods. Methods were considered 

applicable to health economics if they are able to account for mixed (i.e., continuous and discrete) input 

parameters and continuous outcomes. Six steps were identified as relevant for applying metamodeling 

methods within health economics, i.e. 1) the identification of a suitable metamodeling technique, 2) 

simulation of datasets according to a design of experiments, 3) fitting of the metamodel, 4) assessment of 

metamodel performance, 5) conduct the required analysis using the metamodel, and 6) verification of the 

results. Different methods are discussed to support each step, including their characteristics, directions for 

use, key references, and relevant R and Python packages. To address challenges regarding metamodeling 

methods selection, a first guide was developed towards using metamodels to reduce the computational 

burden of analyses of health economic models. This guidance may increase applications of metamodeling 

in health economics, enabling increased use of state-of-the-art analyses, e.g. value of information analysis, 

with computationally burdensome simulation models.  
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1. Introduction 

Decision analytic models are valuable tools to inform health policy decisions by estimating the health and 

economic impact of healthcare technologies. When decision analytic models take the form of simulation 

models, and particularly if they incorporate patient-level heterogeneity and stochasticity, the computational 

power of standard desktop computers may be insufficient to perform computationally demanding analysis 

within feasible time horizons (1-3). Although it is typically feasible to perform traditional analyses, such as 

probabilistic analysis to reflect parameter uncertainty (4), performing more advanced analyses, such as 

value of information analysis (5), may not be possible within a feasible timeframe unless simulations are 

executed in parallel using high performance computing clusters. Similarly, if we wish to optimize some 

specific model outcome, for example to identify a screening or treatment strategy that maximizes patient 

outcomes subject to some set of constraints, we may find that this is infeasible using only desktop 

computing resources (6). 

Performing these more advanced analyses may be computationally challenging, because they can 

require a large number of model evaluations (i.e., simulation runs). For example, suppose a discrete event 

simulation model has been developed to estimate the health economic impact of a novel cancer drug 

compared to an existing drug. Now assume that running this simulation model with 10,000 hypothetical 

patients for each of the two treatment strategies is sufficient to obtain stable outcomes over model runs and 

takes approximately 1 minute. If an expected value of perfect parameter information analysis is to be 

performed for only 1 group of parameters using an inner probabilistic analysis simulation loop of 5,000 

runs and outer simulation loop of 2,500 runs, 12.5 million simulation runs would be required in total. Even 

if it only requires 1 minute to perform a simulation run, performing this analysis using a brute force 

approach on a desktop computer with 8 central processing unit (CPU) cores working in parallel would take 

more than 1000 days. 

 Metamodeling methods can be applied to reduce the computational burden of computationally 

demanding analyses with simulation models (7, 8). A metamodel, also known as surrogate model or 
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emulator, in general can be thought of as a function that approximates an outcome (i.e., response variable 

or dependent variable) of a simulator (i.e., the original simulation model) based on input that would 

otherwise have been provided to that simulator (9). Metamodels are typically defined over the same  

(constrained) input parameter range as the corresponding simulator, as caution is needed when extrapolating 

input parameter values beyond their simulator range. Since metamodels are computationally cheap to 

evaluate, requiring only a fraction of the time that it takes to evaluate the simulator, they can be used as 

substitute for the simulator to substantially reduce the analysis runtime. In the example above, and as 

illustrated in Figure 1, metamodels can be used to replace a health economic simulation model. Although 

this will still require 12.5 million evaluations to be performed, this can be done in very limited time. For 

example, if a metamodel would require approximately 0,1 second to evaluate, performing the analysis using 

the metamodel would take 2 instead of over 1000 days. However, metamodels themselves take time to build 

and validate (10, 11), though this will not take 1000 days. 

Figure 2, which will be discussed in detail throughout this manuscript, includes an overview of 

how metamodels are developed. First, a set of experiments is to be defined. An experiment refers to the 

generation of a single sample of values of the model input parameters (so, if there are ݇ input parameters, 

a vector of length ݇), which is different to the use of the word “experiment” in the context of clinical studies. 

For health economic models, these input parameters may be probabilities, costs or utilities, for example. 

Second, the set of experiments is to be evaluated from the simulator to obtain a training dataset that contains 

the experiments and their corresponding model outcomes, such as mean or incremental costs and quality-

adjusted life years (QALYs). Finally, metamodels are fitted to the training dataset to approximate the 

relationship between simulator inputs and outcomes. Different metamodeling techniques can be used to 

approximate this relationship, each of which makes different assumptions about the functional form of the 

relationship between the inputs and outcomes of the simulator. Although the extent to which fitted 

metamodels can be interpreted varies, this is not of primary interest when using metamodels to reduce 

computational burden, because the main aim is to approximate simulators outcomes accurately and not to 
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make inferences between inputs and outcomes. Most techniques approximate a single model outcome, 

requiring multiple metamodels to approximate multiple simulator outputs. Hence, one metamodel can be 

used to approximate the net health benefit at a given willingness to pay, but two metamodels would be 

required to approximate costs and QALYs separately (Figure 1). After developing a metamodel, it needs to 

be validated by assessing its accuracy in approximating simulator outcomes, which is done based on a 

testing dataset containing experiments and outcomes that should be similar but different from those 

included in the training dataset. 

Metamodeling methods are used widely across different fields of science and engineering, for 

example to optimize designs of coronary stents (12), high speed trains (13), and groundwater remediation 

(14), as well as to estimate future water temperatures (15). In health economics, de Carvalho et al. recently 

demonstrated that metamodel can be used to perform probabilistic analysis, which was not possible in a 

feasible timeframe using their original model (16). A previous literature review only identified 13 additional 

applications of metamodeling methods in health economics, mostly aiming to perform value of information 

analysis and applying various, relatively basic metamodeling methods compared to those used in other 

fields of research, suggesting the field of metamodeling within health economics to be in its infancy (3). 

An important reason for the limited uptake of metamodeling methods within health economics may be that 

most health economic models and applied analyses have, until recently, been relatively simple and could 

often be performed within acceptable time frames. Other potential reasons include a lack of awareness of 

the potential of metamodeling methods to reduce runtime, and a lack of guidance on how to apply these 

methods in a health economic context, which would explain the diversity in methods applied. 

 To increase awareness of the potential for applying metamodels within health economics, and 

provide guidance for doing so, this study introduces the concepts of metamodeling to the wider health 

economic audience, and presents a comprehensive, structured overview of metamodeling methods deemed 

suitable for use in a health economic context. Points of consideration for selecting and applying 

metamodeling methods are discussed, including directions specific to health economics. 
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2. Identification of Metamodeling Methods 

Metamodeling methods (and the steps to be taken when applying them) were identified by a scoping 

literature search that was performed by KD. This involved online searches, searches in Scopus and PubMed, 

and cross-referencing. Several publications that provide information on steps taken when applying 

metamodeling methods in health economics, identified in a recent review (3), were used as a starting point 

(17-20). Method-specific information, other candidate metamodeling methods, and potentially relevant 

process steps were identified by iterative searches on methods and process steps introduced in these 

publications and by cross-referencing. For example, if the impact of different experimental designs on 

metamodel performance was discussed in a paper found from a search on a specific metamodeling 

technique (i.e., structure of the metamodel), additional searches on these designs of experiments were 

performed to identify further information on these experimental designs and other designs of experiments. 

The iterative search process terminated when additionally found literature did not result in further inclusion 

of methods, i.e. until theoretical saturation was reached. 

 Metamodeling methods were only included if they are considered appropriate for use in health 

economics and have been commonly used in other fields of research, in line with the objective of the study. 

Methods were considered applicable to health economics if they are able to account for mixed (i.e., 

continuous and discrete) input parameters and continuous outcomes (i.e., response variables). Typical 

continuous input parameters of health economic models are, for example, costs and utilities, whereas the 

number of hospital days after a surgical intervention can be included as a discrete parameter. Similarly, 

typical continuous outcomes of interest are the net health or monetary benefit, total cost, and QALYs. 

Relevant steps to be taken when applying metamodeling methods in health economics were not 

prespecified, but extracted from the literature as described above, and structured in a process. Metamodeling 

methods and their characteristics were described according to this process, and presented in a table or graphs 

when appropriate. Additionally, examples of packages available to implement methods in R Statistical 
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Software (21) and Python (22) were identified via an online search and introduced along with the 

corresponding methods. These two software environments were selected, because they can be used to 

develop both the health economic simulation model and metamodel in one script, and are commonly used 

by academics, though other software environments like SAS, Stata, and C++ can also be used to develop 

metamodels. 

 

3. A Process for Metamodeling in Health Economics 

A six-step process for metamodeling in health economics was consolidated, covering methods from 

selecting suitable metamodeling techniques up to validating metamodel outputs against simulator outputs 

(Figure 2). A validated health economic simulation model (i.e., simulator) that is considered appropriate to 

perform the analysis of interest is a prerequisite, because while metamodels can theoretically be as accurate 

as their corresponding simulators, they cannot compensate for inaccuracies or bias in these simulators. 

Here, the analysis refers to what is to be analyzed using the original health economic model, but is 

considered infeasible due to the associated computational burden. Depending on the analysis to be 

performed, the sixth step is facultative, as will be discussed. As for any type of modeling study, the process 

of metamodeling is iterative, since new insights may question prior decisions. Next, each process step will 

be described, including an overview of corresponding methods. An illustration of how this process would 

be applied to perform value of information analysis is presented in Appendix A. 

 

Step 1: identifying candidate metamodeling techniques 

Identification of theoretically suitable metamodeling techniques is based on study characteristics, including 

the analysis to be performed, type of input parameters (continuous, discrete, or mixed (i.e., both continuous 

and discrete)), number of input parameters, and type of outcome (continuous or discrete). As discussed 

previously, the focus here is on techniques capable of handling mixed input parameters and continuous 
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outcomes. In the presence of time or budget constraints for metamodel development, and when multiple 

techniques are considered appropriate for use, modelers can start by selecting and applying one of these 

techniques and only select and apply another technique if the resulting metamodel does not yield acceptable 

performance (see Step 4). 

Tappenden et al. (18) identified five metamodeling techniques for application in value of 

information analysis: linear regression, response surface methodology, multivariate adaptive regression 

splines, Gaussian processes, and neural networks. These techniques are complemented with symbolic 

regression, which was also identified from the review (19), and generalized additive models, which have 

been used previously for performing value of information analysis (23, 24). In Table 1, an overview of 

techniques and their characteristics is provided. For each metamodeling technique, this overview includes 

the typically required number of experiments (which we have defined as low: n < 500, or high: n ≥ 500), 

number of input parameters it allows (which we have defined as low: n < 20, or high: n ≥ 20), interpretability 

of the resulting metamodel structure (which we have classified as low: not or barely possible to understand 

relations between inputs and outputs, moderate: input-output relations can be understood to some extent, 

or high: input-output relations can be understood), and the description of any R and Python packages 

available to apply the technique. Regarding the interpretability of the metamodels’ structures, this is 

typically not of primary interest when using metamodeling for reducing computational burden, as accurate 

and fast approximation of simulator outcomes is the main goal. 

Simple linear regression is a statistical modeling technique well known in health economics and, 

theoretically, suitable for metamodeling. It assumes a linear relationship between independent variables 

(i.e., input parameters) and the dependent variable (i.e., outcome of interest) and is linear in the regression 

model parameters (25). These models can easily be fitted to datasets of all sizes, including datasets with 

large numbers of experiments and input parameters, while allowing for both continuous and categorical 

input parameters. Although fitting linear regression models and interpreting their structure can be 

considered relatively easy, they are unlikely to be useful as metamodels of health economic simulation 
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models, as the latter typically induce complex and non-linear parameter interactions. More advanced 

techniques, allowing for more flexible model structures, are often better suited to represent such simulation 

models. 

Response surface methodology is also linear in the regression model parameters, but does not 

assume a linear input-output relationship, and fits polynomial regression models to predict responses, i.e. 

outcomes (10, 26, 27). Both continuous and categorical input parameters can be considered in response 

surface models, and datasets including large numbers of experiments and input parameters can be used. 

However, high non-linearity will require higher order polynomials, which will require larger numbers of 

experiments and, hence, it will require larger up-front simulator runtime. Although polynomial models are 

more difficult to interpret compared to linear models, if desired, general trends on model parameter 

influence can still be extracted from their model structures. 

Symbolic regression uses genetic programming to construct a mathematical expression from 

elementary operators (e.g., ‘+‘ and ‘×’) and elementary functions (e.g., ‘log’) accurately describing the 

relation between input parameters and the outcome of interest, without making any priori assumption about 

this relationship (28, 29). Fitting an accurate symbolic regression model may take substantial time, due to 

a potentially large number of candidate metamodels, i.e. large solution space. However, symbolic 

regression is capable of handling large datasets including a large number of mixed input parameters. 

Symbolic regression models can be difficult to interpret unless the final expression is relatively simple or 

is simplified. 

Multivariate adaptive regression splines were developed to model input-outcome relations that may 

not be constant across input space (10, 30-32). Regression spline modeling divides the outcome domain 

into intervals, and then estimates an equation, typically a low-order polynomial, for each interval. Different 

types of splines can be distinguished, based on how the number of intervals and level of smoothness are 

defined. Fitting multivariate adaptive regression splines includes an automated input parameter importance 

analysis (see Step 2). Although capable of handling large datasets of mixed input parameters, regression 
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splines are prone to overfitting. In contrast to the previously discussed metamodeling techniques, the 

interpretability of multivariate adaptive regression splines is limited.  

Generalized additive models assume that the dependent variable is a smooth, but unknown, function 

of the independent variables (33, 34). This unknown underlying smooth function is usually represented 

using splines, with the cubic spline as a common choice. In its simplest case, a univariate cubic spline 

represents an arbitrary smooth single-input function as a series of short cubic polynomials joined piecewise 

such that the function is twice-differentiable at the ‘‘knots’’ (i.e., join points). The same spline can also be 

represented as the weighted sum of a series of predetermined ‘‘basis functions’’ that extend over the whole 

range of the function input. Simple univariate cubic splines have natural extensions to higher dimensions 

and to a metamodeling framework, where the spline parameters (i.e., the basis function weights) are 

estimated from noisy data. Generalized additive models can handle large datasets and high numbers of input 

parameters, but their structure is difficult to interpret. 

Gaussian process regression is a nonparametric regression method also known as Kriging (10, 35). 

Gaussian processes use information on neighbor experiments for new predictions, while directly providing 

information on the uncertainty in these predictions. This is unique for metamodeling techniques, since other 

techniques require additional effort to obtain information on prediction uncertainty. Although Gaussian 

processes are capable of considering mixed input parameters (36), Treed Gaussian processes have been 

developed specifically for this type of data (37). The interpretability of Gaussian processes is low. A 

disadvantage of Gaussian processes is that computational burden, both in terms of fitting and predicting, 

increases dramatically with increasing numbers of experiments and parameters, limiting their applicability. 

Hence, Gaussian processes are often well suitable for optimization problems, which are typically defined 

by limited numbers of decision parameters. Furthermore, input parameter importance analysis can be 

performed to reduce the number of parameters (see Step 2) and, thereby, computational burden.  

Neural networks are non-parametric models that are commonly found in machine learning 

applications. These models exist of networks of nodes (called neurons) and layers, which learn about 
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relationships between inputs, either continuous or categorical, and outputs, typically using large datasets 

(10, 31, 38). Although neural networks are commonly used for classification, they are also able to predict 

continuous outcomes (39). Since no assumption regarding simulator structure is made, neural networks 

may well represent complex, i.e. non-linear, health economic models. Developing large neural networks 

typically requires large numbers of experiments, which may pose challenges regarding obtaining sufficient 

simulator samples. Similar to multivariate adaptive regression splines, generalized additive models, and 

Gaussian processes, neural networks are “black boxes” that are hard to interpret. 

In conclusion, as illustrated in the selection flowchart (Figure 3), Gaussian processes are 

particularly useful when obtaining sufficient simulator samples to apply the other techniques is infeasible. 

Response surface methodology, symbolic regression, multivariate adaptive regression splines, generalized 

additive models, and neural networks are typically useful when sufficient samples can be obtained from the 

simulator, i.e. original health economic model. If metamodel interpretation is important, response surface 

methodology and symbolic regression can be used to develop metamodels that may be interpretable to some 

extent. 

 

Step 2: simulating datasets 

Simulating data from the simulator is crucial in metamodeling studies, as metamodel performance is highly 

dependent on the data used for fitting (9). Modelers control the number and definition of experiments used 

for fitting metamodels, which is fundamentally different from prediction modeling studies, for which data 

is typically observed from clinical studies or registries (25). Furthermore, challenges regarding handling 

missing data, reversed causality, omitted variables, and measurement error are not applicable to 

metamodeling. There are five key aspects to simulating datasets for metamodeling: 1) the number of 

datasets, 2) parameter ranges, 3) design of experiments, 4) number of experiments, and 5) analysis used for 

obtaining simulator outcomes. As explained previously, an experiment refers to the generation of a single 



 

AƵƚŚŽƌƐ͛ ĨŝŶĂů accepted version ʹ Published in Medical Decision Making 

13 

 

sample of model input parameter values in a metamodeling context. Hence, the number of experiments 

does not refer to a number of (hypothetical) patients, but to the number of sets of model input parameter 

values for which the simulation model is evaluated to create datasets for metamodel fitting and validation. 

 As in prediction modeling, two distinct datasets are preferred for metamodeling studies: one for 

fitting (i.e., training or development dataset) and one for validation (i.e., testing or validation dataset). In 

prediction modeling studies, validation datasets would typically be obtained by isolating a proportion of 

the data from a single cohort for internal validation, or by gathering additional data from another ‘plausibly 

related’ cohort for external validation (25). In metamodeling, however, it is preferable to obtain two 

separate datasets from the simulator, each having a prespecified design with comprehensive coverage. 

Obtaining one large dataset and separating it in two datasets for training and validation, may compromise 

the coverage of these datasets: either dataset may lack the structure and properties induced by the design of 

experiments used to generate the single large dataset. By obtaining two separate datasets, their structure 

and properties according to the design of experiments used will be maintained, as will be discussed. 

 The range of values that is to be covered in the datasets requires careful consideration for each input 

parameter separately. Although metamodels are theoretically capable of extrapolating beyond the parameter 

ranges covered by the dataset on which they were fitted, such extrapolations are not preferable. The ranges 

that need to be covered are determined by the ranges of interest in the analysis that is to be performed using 

the metamodel. For example, if a metamodel is developed to optimize a cancer screening strategy, the 

ranges that are considered feasible in the optimization should be the same as those in the datasets used for 

fitting and validating the used metamodel(s). If the screening interval in years is a parameter of interest and 

any value between 1 and 10 is considered feasible, the parameter range for this parameter in the training 

and testing dataset should also be from 1 to 10. 

 Design of experiments methods determine how sets of samples of parameter values are selected, to 

be evaluated from the simulator in order to obtain datasets for fitting and validation (40). The objective of 

these methods is to cover parameter spaces and parameter interactions as effectively and efficiently as 
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possible, i.e. with the least number of experiments. Failing to represent the full parameter spaces and 

parameter interactions will decrease metamodel performance. Most common designs of experiments are so 

called single-pass methods that first define a complete set of experiments, which are subsequently all 

evaluated using the simulator (11). Commonly used designs are random designs, full factorial designs, and 

Latin Hypercube designs.  

Random designs, also known as Monte Carlo Sampling methods, obtain ݊ sets of experiments by 

generating ݊  draws from the joint probability distribution for the input parameters (40). These designs 

require a large number of experiments to sufficiently cover the parameter space. Input distributions may be 

designed to cover a pre-specified range with equal probability (i.e. uniform distributions), or may represent 

judgements about the true unknown value of some population quantity, for example using Gamma 

distributions for parameters with a positive range (4). When a random design is used, one large dataset can 

be separated in two datasets for fitting and validation, while maintaining its random properties. 

Full factorial designs fully enumerate possible combinations of discrete parameter values (11). 

More specifically, for ݊  values of ݇  parameters, a full factorial design represents all ݊ combinations of 

these parameter values. Although full factorial designs are able to cover the full parameter space and 

interactions, the number of experiments exponentially increases with the number of parameters and they 

are, therefore, often infeasible to use. Fractional factorial designs have been introduced to address 

challenges regarding high numbers of experiments when using factorial designs, and consist of subsets  of 

full factorial designs (41). 

Latin Hypercube designs have been used often for designing computer experiments, as they 

efficiently cover the full parameter space (40, 42, 43). In its simplest form, Latin Hypercube samples 

represent random combinations of values for each parameter, which are equally spaced between their 

minimum and maximum value for each parameter. More often, Latin Hypercube samples represent random 

combinations of random values from equally sized bins that cover the parameters’ domains. Over the years, 
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more advanced versions have been developed, such as the maximin Latin Hypercube design (44), which 

maximizes the minimum distance between design points, and orthogonal Latin Hypercube designs (45). 

Figure 4 illustrates how random, full factorial, and maximin Latin Hypercube designs may define 

nine experiments for two continuous parameters ܶ݁ݐݏܥ ݐݏ and ݐݏܥ ݊݅ݐܽݐ݈ݑݏ݊ܥ. Although simulators 

and metamodels in practice will have more than two parameters, this figure clearly demonstrates differences 

between the designs. It shows that parameter spaces are most effectively covered by maximin Latin 

Hypercube sampling, as the corresponding experiments are properly distributed over all bins of the 

parameter ranges. Conversely, the full factorial design covers some bins multiple times and others not at 

all. The randomly sampled experiments also cover some bins multiple times and others not at all, though 

which those are is determined by chance. From this figure, it can also be seen why simply isolating a 

proportion of experiments from the dataset for model validation is not appropriate, and a separate dataset 

needs to be simulated when a non-random design is used. Isolating a (random) proportion from a dataset 

generated according to a full factorial or Latin Hypercube design, will result in a training dataset that no 

longer covers the full parameter space consistently. The remaining experiments will no longer cover all 

bins of the parameter domain in a Latin Hypercube design, or all parameter value combinations in a full 

factorial design. 

In general, Latin Hypercube designs are preferable for both training and testing datasets, especially 

when only a limited number of experiments can be evaluated from the simulator in the available time. 

Optimized Latin Hypercube designs can easily be generated in most software environments, for example 

using the lhs package in R (46) or pyDOE package in Python. However, these designs are challenging to 

apply when constraints on combinations of parameters are applicable. Although some work has been done 

on conditioned Latin Hypercube designs, accounting for inequality constraints (47), this might not enable 

all constraints to be accounted for. In such situations, factorial designs can be used if the resulting number 

of experiments is considered feasible. However, when using factorial designs for continuous variables, a 

finite set of discrete values within the continuous parameter range needs to be defined, which may result in 
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an infeasible number of experiments to cover those parameters’ ranges at the desired level of detail. If using 

a factorial design is considered infeasible, random designs allow constraints to be accounted for easily. 

However, random designs are likely less efficient, which may result in suboptimal solution space coverage 

and, consequently, lower metamodel performance, especially when a limited number of experiments can 

be evaluated from the simulator. 

 How many experiments are required, i.e. how large ݊ should be, heavily depends on the desired 

metamodel accuracy, which will be discussed in Step 4. Additionally, the design of experiments method 

used, and how well the metamodeling techniques match the unknown relation between inputs and outputs, 

influence the number of experiments required (48, 49). A general rule of thumb is to start with ݊ ൌ  ͳͲ ൈ݀, where ݀  refers to the number of input parameters (49, 50). After evaluating model performance for the 

initial set of experiments (see Step 4), ݊ may be increased until the desired level of overall accuracy is 

achieved (see Appendix A for an example). Alternatively, adaptive sampling methods may be applied to 

improve accuracy in local regions of the parameter space (51), but these methods are outside the scope of 

this study (see Discussion section). If the desired model accuracy cannot be achieved with a feasible number 

of experiments, importance analysis methods may be applied to reduce the number of input parameters ݀, 

by analyzing which parameters are most important in terms of predicting the simulator outcomes (18, 52, 

53). Only including the most parameters might result in less complex metamodel structures, and if 

redundant input parameters can be removed, metamodel accuracy may improve as overfitting is reduced. 

 Whether a deterministic or probabilistic analysis needs to be performed to evaluate experiments 

from the simulator, depends on the analysis to be performed with the metamodel. In a deterministic analysis, 

the simulator is evaluated once for the expected values of the input parameters (4). In a probabilistic 

analysis, the simulator is evaluated numerous times, typically thousands of times, based on parameter values 

sampled from distributions that reflect the uncertainty in the parameter values (i.e., second-order 

uncertainty). If a model is non-linear, which most health economic models are, health economic outcomes 

from a deterministic analysis are not equal to those of a probabilistic analysis (54). If metamodels are being 
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used to perform model probabilistic analysis or value of information, simulator outcomes based on a 

deterministic analysis should be used. If the aim is to perform calibration or optimization, simulator 

outcomes based on probabilistic analyses are preferred, because these are the values expected to be observed 

in reality given the current information. However, performing a probabilistic analysis for each experiment 

might not be feasible because of the required simulator runtime. In that case, outcomes from a deterministic 

analysis may be used to approximate the outcomes of a probabilistic analysis, though this should be clearly 

noted as a limitation when reporting the results. 

The stability of outcome estimates is another important aspect. If stochastic uncertainty, also 

referred to as uncertainty on patient level or first-order uncertainty, is reflected in a patient-level simulation 

model, sufficient hypothetical patients need to be simulated to obtain stable outcomes. Similarly, regardless 

of whether first-order uncertainty is reflected, sufficient probabilistic analysis runs need to be performed to 

obtain stable point-estimates. When insufficient hypothetical patients are simulated, or probabilistic 

analysis runs performed, the subsequent noise in the data used for fitting metamodels may have a pernicious 

effect on metamodel performance. Outcomes can be considered stable, if outcomes obtained from 

simulations with different random numbers, but with the same input parameter values, are sufficiently 

similar. What defines “sufficiently similar”, differs over case studies and should be discussed with all 

relevant stakeholders, e.g. care providers, decision makers, and modelers. Obtaining stable outcomes may 

require a substantial number of patients to be simulated, or simulation runs to be performed, and may not 

be feasible in practice. However, to reduce the number of patients to be simulated, or number of runs to be 

performed to obtain stable outcomes, variance reduction techniques may be applied, such as using common 

random numbers when comparing strategies (55, 56). 

 

Step 3: fitting metamodels 

After evaluating an initial set of experiments from the simulator, this training dataset can be used to fit 

selected metamodeling techniques. Steps involved in fitting processes differ between techniques, as well as 
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any settings to be provided. We refer to the corresponding literature and software documentation to learn 

about steps to be taken and settings to be provided (see Step 1 and Table 1). As a basic example, some 

metamodeling techniques or software packages require input parameters to be rescaled. Fitting meta-models 

is an iterative process, in which settings may be adapted, or more experiments may be evaluated from the 

simulator, after assessing model performance (see Step 4). 

 

Step 4: assessing metamodel performance 

Assessing performance of fitted metamodels is essential to further improve that performance, by iteratively 

improving (extending) the design of the training dataset used, or adapting the settings for fitting these 

models. Additionally, an initially selected metamodeling technique may be deemed inappropriate if 

performance does not reach an acceptable level, resulting in exclusion of this technique from the list of 

potential candidates (Step 1). Performance can be assessed using the testing dataset evaluated from the 

simulator in Step 2. Since metamodels of health economics models will typically predict continuous scale 

outcomes, of main interest is to quantify how close predictions are to actual simulator outcomes. Assessing 

accuracy and comparing different metamodels can be done graphically and using quantitative performance 

criteria. A validation plot, with predicted values on the x-axis and observed values from the simulator on 

the y-axis, is fundamental in assessing model performance, and presents information on systematic trends, 

as well as general performance (see Appendix A for an example). Several quantitative performance criteria 

are available, including mean or maximum values of the absolute error, absolute relative error, squared 

error, which may all be normalized using the sample range or standard deviation, and summarized by their 

mean or maximum values, and R2 (31, 49, 57, 58). 

 It is important to be aware of performance criteria characteristics when selecting one, or several, to 

compare metamodels or to assess whether model performance is acceptable. For example, compared to 

mean absolute errors, mean squared errors places more weight on outliers. Additionally, compared to 



 

AƵƚŚŽƌƐ͛ ĨŝŶĂů accepted version ʹ Published in Medical Decision Making 

19 

 

squared errors, setting a desired level of accuracy is more straightforward for absolute (relative) errors, as 

these can be set by answering questions such as “what is the maximum mean deviation in predicted life-

years the metamodel is allowed to have compared to the simulator outcomes?” What performance can be 

considered acceptable for deciding to apply a metamodel for performing analyses, differs over case studies 

and should be based on input from all stakeholders. For example, when the point-estimate for the 

incremental QALYs is 0.18 QALYs, an absolute error of 0.01 QALY may be considered appropriate by 

stakeholders. Since different performance criteria and definitions of acceptable performance may yield 

alternative conclusions, these should be decided upon prior to metamodel development. 

 

Step 5: applying metamodel 

Once a metamodel has been developed and validated, it can be used to perform analyses that could not be 

performed in a feasible time period with the original health economic model. Previous applications of 

metamodels in health economics include value of information analysis, model calibration, optimization, 

probabilistic analysis, and obtaining stable outcomes over multiple runs with the same input values (3). 

Additionally, metamodels can be used in online tools for which limited computer resources are available. 

For example, see de Carvalho et al. for a demonstration of metamodels used to probabilistic analysis (16), 

or Appendix A for an illustration of the presented six-step process for performing value of information 

analysis. Another example may be to use metamodels for evaluating a large set of (thousands of) screening 

strategies, for example to identify the starting age, screening interval, and number of screening rounds that 

optimize health and economic outcomes. 

 

Step 6: verifying results (optional) 

If metamodels are used for optimization purposes, it is recommended to re-evaluate a certain number of 

best strategies identified by the metamodel using the original health economic model, to assess whether 
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their outcome and ordering meaningfully differ. By providing these results, decision makers are better 

informed about the expected impact of choosing a good but not optimal candidate strategy for 

implementation, which may be favored over the optimal strategy for practical reasons. For other types of 

analyses, such as probabilistic or value of information analysis, additional verification will not add to the 

validation of Step 4, because re-evaluating a number of strategies using the simulator will yield 

approximately the same error values as those obtained in Step 4. Although this will also be the case for 

several best-performing strategies when optimization is performed, knowing the true outcomes and ordering 

of the strategies according the simulator is informative, whereas knowing the true outcome for a specific 

probabilistic analysis run is not of any value. 

 

4. Discussion 

This study provides an introduction to metamodeling methods that can be used to reduce the computational 

burden of advanced analyses with health economic models, and addresses challenges regarding the 

selection and application of these methods. Similar to ordinary statistical regression modeling, different 

methods are available with their own advantages, disadvantages, and underlying assumptions, which are 

discussed and directions for selecting and implementing these methods are provided. Selected methods are 

structured in a comprehensive six-step process that can be followed to assure essential modeling steps are 

covered, as it includes all relevant design choices. Additionally, the process discussed can be used as a 

structure to effectively and efficiently communicate metamodeling studies, to increase modeling 

transparency and reproducibility. 

 Given that tools and packages are available to generate experiments according to specific designs 

and to fit different types of metamodels, for example in R and Python, applying metamodeling methods is 

feasible for health economic analysts. Currently available software and results from this study enable 

analysts to perform computationally demanding analyses with their models, such as value of information 
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analysis, model calibration, and optimization. Benefits of developing metamodels are relevant to analyses 

using patient-level simulation methods, such as microsimulation state-transition modeling and discrete 

event simulation, but also to cohort models used to perform analyses that require a large number of model 

evaluations. 

 Applying metamodeling methods can reduce computational burden, but this usually comes at the 

price of introducing additional uncertainty in the model outputs. Consequently, checking whether 

underlying assumptions are met and checking metamodel performance, are crucial to success and essential 

to build confidence in the metamodel. Since modelers typically have access to the original health economic 

model, validation of the metamodel is often not a problem, though likely to be more demanding in terms of 

effort compared to developing the metamodel itself. The starting point for building any metamodel, 

however, should be a realistic and validated health economic model, since metamodels can theoretically be 

as accurate as their corresponding simulators, but will not compensate for inaccuracies in these simulators. 

Moreover, when metamodels are used for optimization, the strategies considered, and possibly identified 

as optimal, may not be supported by (the data underlying) the simulator. Caution is required when such 

extrapolation is (automatically) performed, and such optimization results should only serve to initiate 

discussion on the appropriateness and validity of the simulator and the data supporting it. In addition, 

application of metamodeling methods requires communication of metamodeling design choices made in 

publications, for which space typically already is limited. Hence, metamodeling studies may be published 

separately from their simulator to assure the metamodeling process can be appropriately described. 

Furthermore, there is a ‘sweet spot’ for metamodeling: sufficient experiments need to be evaluated using 

the simulator to develop an accurate metamodel, but evaluating all experiments of interest should not be 

feasible. 

 Several technical challenges regarding the application of metamodeling methods in health 

economics remain. Simulators in health economics may include complex behavior, such as rigid cutoffs 

due to clinical decision rules, which may be complex for metamodeling techniques to capture. Additionally, 
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(combinations of) model input parameters may be subject to constraints, which are difficult to incorporate 

in efficient designs of experiments, such as Latin Hypercube sampling. If sufficient samples can be 

evaluated from the simulator to use random or full factorial designs in which constraints can be accounted 

for more easily, however, this might not be an issue. Alternatively, more advanced adaptive sampling 

strategies may need to be applied. 

 Not all metamodeling methods are directly suitable for application in health economics and, hence, 

have been discussed. However, it is important to note that some techniques, such as those that can be used 

for categorical outcomes (i.e., classification), could theoretically be applied in health economics after 

discretizing continuous outcomes. Such an approach has been taken previously by using a binary outcome 

to reflect whether one treatment was preferred over another in a logistic regression model (53). Similarly, 

examples of packages for R and Python were discussed, whereas additional packages are likely to be 

available and other software environments can also be used to develop metamodels, such as Stata, SAS, 

and C++. Additionally, alternative performance criteria for metamodel validation can be found, or may be 

developed, based on study-specific needs. With regard to sampling methods, only single-pass methods have 

been discussed, whereas iterative methods, also known as adaptive sampling or active learning methods, 

also exist (59, 60). Iterative methods use an initial dataset for fitting an initial metamodel, which is 

subsequently used in an iterative process to identify additional experiments to be added to the dataset, to 

update the initial metamodel and check the updated metamodel performance, until this performance is 

according to a pre-defined threshold (51). The additional experiments are sampled in the area in which 

performance needs to be improved. Although iterative methods are more efficient compared to single pass 

methods, they are substantially more complicated to implement and require simulators to be available in 

the same software environment used for generating experiments and fitting the metamodel. Nevertheless, 

these methods may be useful if insufficient experiments according to a single-pass design can be obtained 

to develop an accurate metamodel. Also, alternative designs of experiments are available, such as D-optimal 

designs, which are efficient and can account for constraints, but for which an linear or quadratic model 
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simulator model structure should be known (61), or so called Sobol sequences, which may be more efficient 

compared to Latin Hypercube designs for low dimensions (i.e., number of input parameters) problems (62, 

63). 

 Future metamodeling applications should further illustrate the potential and use of these research 

methods, and identify common challenges. Once the field of metamodeling in health economics has 

evolved, good research practices (i.e., consensus guidance) can be identified to further improve the quality 

of metamodeling studies. 
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Figure 1. Illustration of how metamodels can be used in a health economic context to approximate the 

outcomes of the original health economic simulation model. 

Figure 2. Process for developing, validating, and applying metamodeling methods in health economics. 

Figure 3. Flowchart for the selection of appropriate metamodeling techniques for a specific case study.  

Figure 4. Illustration of how a random uniform sample, full factorial design, and maximin Latin Hypercube 

sample may define nine experiments for two continuous parameters Test Cost and Consultation Cost. 

FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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Table 1. Overview of candidate metamodeling techniques for application in health economics, which are all able to account for mixed input 

parameters and continuous outcomes. 

Technique Required 
Number of 
Experiments 

Number of 
Inputs 

Interpretability R Package Python Package References 

Response 
Surface 

Methodology 

High Large Moderate rsm (64) sklearn (65) (10, 26, 27) 

Symbolic 
Regression  

High Large Moderate RGP* (66)  fastsr (67),  
DEAP (68) 

(28, 29) 

Multivariate 
Adaptive 

Regression 
Splines 

High Large Low earth (69),  
mda (70) 

py-earth (71) (10, 30, 31) 

Generalized 
Additive 
Models 

High Large Low gam (72),  
mgcv (34, 73) 

pyGAM (74) (33, 34) 

Gaussian 
Processes 

Low Low Low GPfit (75),  
tgp (76, 77) 

scikit-learn (78), 
GPflow (79) 

(10, 35) 

Neural 
Networks 

High Large Low Neuralnet (80), 
nnet (81) 

keras (82), 
NeuPy (83) 

(10, 31, 38) 

* No longer maintained by authors. 
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Appendix A: hypothetical illustration on performing value of information analysis 

Consider the example used in the introduction of the manuscript in which a discrete event simulation model 

had been developed to estimate the health economic impact of a novel cancer drug compared to an existing 

drug. Performing one simulation run using this model required around 1 minute. An expected value of 

perfect parameter information (EVPPI) analysis was to be performed to answer the question “What is the 

value of collecting additional evidence on this single subgroup of model parameters?”. Based on assessing 

the stability of modeling outcomes, the EVPPI was to be estimated by performing an inner probabilistic 

analysis simulation loop of 5,000 runs and outer simulation loop of 2,500 runs, resulting in a total of 12.5 

million required simulation runs. To perform this analysis, a metamodel was developed to approximate the 

net monetary benefit (NMB) based on the subgroup of 10 model input parameters. 

 

Step 1: identifying candidate metamodeling techniques 

Despite the runtime of 1 minute, a relatively large number of experiments could be evaluated from the 

simulator. Hence, it was not necessary to use Gaussian Processes. As the only purpose of developing the 

metamodel was to perform the EVPPI analysis, the interpretability of the metamodel structure was not an 

issue and there was no specific reason to use response surface methodology or symbolic regression. Finally, 

because the modeler was familiar with Generalized Additive Models, this technique was selected (see 

Figure A1). 

 

Step 2: simulating datasets 

Because there were no specific constraints on (combinations of) model input parameters, a Latin Hypercube 

design was used for both the training dataset and testing dataset. Using the rule of thumb to start with ݊  ൌ ͳͲ ൈ ݀ experiments, the initial training dataset was generated comprising 100 experiments (here, ݀ ൌ ͳͲ). 

To assess the accuracy of the metamodel in Step 4, a testing dataset of size ݊ ൌ ʹͲ was generated. The net 

monetary benefit for all experiments in these two sets was evaluated with the simulator, i.e. discrete event 

simulation model. However, after fitting a metamodel in Step 3 based on 100 experiments, its performance 

was considered insufficient in Step 4. Therefore, the number of experiments was increased to 1000, which 

could still be evaluated with the simulator within a feasible timeframe, and the testing dataset size was 

increased to 200. This number of experiments resulted in a sufficiently accurate metamodel (Step 4). 
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Figure A1. Illustration of the selection of the metamodeling technique for the hypothetical illustration. 

 

Step 3: fitting metamodels 

The metamodel that approximates the net monetary benefit was fitted in R using the gam function of the 

gam package, using all 10 model input parameters as input variables and the net monetary benefit as output 

variable. 

 

Step 4: assessing metamodel performance 

A validation plot and the mean absolute error and mean squared error were used to determine the accuracy 

with which the metamodel approximates the outcomes of the discrete event simulation (i.e., simulator). 

Figure A2 presents validation plots, including the two performance measures, for the metamodel that was 

fitted based on a training dataset of size 100 (i.e., ݊ ൌ ͳͲͲ experiments) and the one fitted based on ݊ ൌͳͲͲͲ experiments. Clearly, the performance of the metamodel fitted based on 100 experiments was 

insufficient, as predictions on average were 13.67 below or above the values observed from the simulator 

(mean absolute error), which is more than 9% on average. The metamodel fitted to 1000 experiments, on 

the other hand, approximated the outcomes of the simulator very accurately and was considered appropriate 

to replace that simulator in the EVPPI (Step 5). 
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Step 5: applying metamodel 

After the metamodel had been considered sufficiently accurate to substitute the discrete event simulation 

model, the EVPPI analysis was performed. All the 12.5 million simulations were performed in the same 

way as they would have been using the discrete event simulation model, but now the metamodel replaced 

the discrete event simulation model within the inner simulation loop to obtain the net monetary benefit 

estimates for specific combinations of input parameter values.  

 

Step 6: verifying results (optional) 

No final verification was necessary after performing the EVPPI analysis using the metamodel, as this would 

not have resulted in any additional insights than those obtained during the validation of the metamodel 

(Step 4). If the metamodel had been used to apply an optimization algorithm, the best performing sets of 

input parameters obtained from the optimization should be verified using the simulator, to check whether 

the rank of these scenarios meaningfully differed when evaluated using the simulator and, thereby, establish 

additional confidence in the optimization outcomes. 

 

Figure A2. Validation plots for the net monetary benefit (NMB) as observed from the simulator and 

predicted by the metamodels fitted based on a) 100 experiments and b) 1000 experiments, including the 

mean absolute error (MAE) and mean squared error (MSE). 


