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Abstract. A new methodology to analyze non-linear components in perturba-
tive transport experiments is introduced. The methodology has been experimen-
tally validated in the Large Helical Device (LHD) for the electron heat transport
channel. Electron cyclotron resonance heating (ECRH) with different modulation
frequencies by two gyrotrons have been used to directly quantify the amplitude
the non-linear component at the inter-modulation frequencies. The measurements
show significant quadratic non-linear contributions, but also the absence of cu-
bic and higher order components. The non-linear component is analyzed using
Volterra series, which is the non-linear generalization of transfer functions. This
allows to study the radial distribution of the non-linearity of the plasma and to
reconstruct linear profiles in the case the measurements were not distorted by
non-linearities. The reconstructed linear profiles are significantly different from
the measured profiles showing the significant impact the non-linearity can have.
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1 INTRODUCTION

1. Introduction

Plasma turbulence or anomalous transport deteriorates
energy confinement in contemporary magnetically con-
fined fusion devices. Therefore, with the view to im-
prove energy confinement a number of methodologies
have been developed to analyze transport. They focus
either on the micro-scale level [1], or on the global con-
sequences of turbulence, e.g., temperature (gradient)
and transport coefficients such as diffusion [2]. These
quantities are generally analyzed in 1D as a function of
the dimensionless normalized minor radius ρ, which is
permissible due to the device geometry, magnetic field
configuration, and relevant time scales of transport [3].
This radial transport is then analyzed in steady-state
[4] or in the transient phase, often using a perturbation
[2, 5, 3, 6].

In perturbative experiments a source or multiple
sources are modulated and the resulting perturbations
are studied. The reason is that it allows to separate
different transport quantities. Consequently, these
studies allow to get a deeper understanding of the
underlying physics, which is often non-linear.

Different modulated sources can be used to
perturb various transport channels such as: the
electron heat transport by electron cyclotron resonance
heating (ECRH) [7, 8, 9] or with repetitive pellet
injection [10] or using a minority heating scheme
[11]; particle transport using modulated gas-puffing
with helium [12, 13]; the momentum transport using
modulated neutral beam injection (NBI) to modulate
the torque [14, 15, 16]; the ion heat transport using ion
cyclotron resonance heating [17, 18]; and the analysis
of impurity transport using for instance laser blow-off
of boron and carbon materials [19]. This list is far from
exhaustive and for a more complete overview of such
experiments and its history the reader is referred to
[2, 3, 20].

In this paper, periodic transient measurements are
analyzed in the frequency domain where the change of
amplitude and phase (delay) of the spatial propagation
of the perturbation are crucial to interpret the effect
of turbulence on overall transport [17, 21]. Currently,
the proper interpretation and results derived from
the amplitude and phase profiles require the validity
of the small perturbation theory (linearity). Hence,
we introduce frequency inter-modulation [22, 23, 24]
in combination with a newly developed experimental
analysis method based on Volterra series [25]. Not

only the linearity property in a single experiment
can be validated, but more importantly the spatially
distributed non-linear transport properties can be
studied. Moreover, the linear profiles can be
reconstructed, which are significantly different from the
measured profiles.

In this paper, we focus on perturbative electron
heat transport because the electron transport can
be considered decoupled from the other transport
channels when using modulated ECRH and a low-
density (low-collisonality) plasma. There are several
non-linearities proposed in the literature. The most
common are dependencies of the diffusivity on the
temperature or the temperature gradient, where the
latter is considered to be rather weak in LHD [2, 26]. In
addition, other important sources of non-linearity and
non-locality are streamers [27], avalanches [28], and
MHD mode coupling [29]. Current literature related to
LHD points into the direction of a power dependence
of transport via the turbulence level [30], which has
also been extensively studied at W7-AS [31, 32, 33].
These and other non-linear transport properties have
been analyzed using perturbations (often via the heat
pulse diffusivity χHP ) at different operating points
and comparing them to each other and to steady-
state results (power balance diffusivity χPB) [34, 2].
Alternatively, model codes based on the physics are
used to fit parameters of the non-linear models, e.g.,
[20, 35]. The problem with such an approach is that
they generally prove the existence of a non-linearity,
but their interpretations depend on the used transport
model. An example is the heat diffusivity χHP , which
is fit on the basis that the measurements from the
perturbative experiment are described by a linearized
transport model. Changing the operating point also
shows that χHP is changing, a clear sign of non-
linearity. However,in the presence of non-linearities the
presumed perturbative "linear" measurements from
which χHP is estimated can be distorted by the non-
linearity resulting in an incorrect estimate of χHP .
Consequently, describing the non-linearity with linear
models at different operating points only captures part
of the non-linear behavior and in the case the linear
models are estimated from measurements distorted
by non-linear components they describe neither the
linearized physics nor capture the full non-linearities.
Therefore, in this paper, we apply a measurement
driven approach in which the amplitude of non-
linearity can be directly detected at inter-modulation
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2 DETECTING NON-LINEARITIES

frequencies. The advantage of this approach is that
the non-linearity becomes separable from the choice
of a specific transport model. In addition, it allows
checking the validity of the assumption of linearity in
the particular experiment, which is crucial in the linear
interpretation of transport experiments. Volterra series
are used to reconstruct the linear and amplitude
profiles distorted due to non-zero average perturbation
via the inter-modulations. Also it is possible with some
additional assumptions to calculate the local non-linear
contribution.

The method is based on an induced perturbation
with two different frequencies f1 and f2. As a
result of non-linear transport properties, these sum
and difference harmonics should become non-zero
components. Hence, their amplitude is a measure of
the non-linearity. This analysis has some similarity to
the bi-coherence analysis [36], but with the important
difference that the plasma is actively perturbed. In
principle, it is possible to use one source term to create
such perturbations, however, given the constraints on
the modulation, it is often not possible to make such
a perturbation. This is also specifically true in ECRH
experiments. Therefore, alternatively two sources with
block modulations are used.

For a long time, this inter-modulation method
or two-tone method is a common method to study
non-linearities in electron circuits [24, 37]. To our
knowledge this method has only been used once
regarding transport studies in fusion plasmas [23]. The
conclusion of that experiment on W7-AS was that
no inter-modulations were detected and that extreme
sensitivities of the electron-cyclotron-emission (ECE)-
system are necessary to detect such inter-modulations
[23]. One of the reasons that make it difficult to detect
non-linearities at the inter-modulation frequencies is
that the chosen modulation frequencies for f1 and f2
resulted in rather large inter-modulation frequencies
158 Hz and 342 Hz. Consequently, the diffusive
transport is dominant, which suppresses the amplitude
of the sum and difference contributions making them
more difficult to detect compared to lower modulation
frequencies. Hence, in the experiment presented here
we use significantly lower inter-modulation frequencies.
As a result the thermal transport component of the
propagation is less dominant, however, these frequency
components are subject to low frequency perturbations
such as the natural response due to a change from an
equilibrium to another and drifts. Therefore, to remove
these low frequency perturbations a local polynomial
method will be applied [38]. However, possibly the
most significant difference between our experiment and
the past W7-AS experiment is the increased signal-
to-noise ratio (SNR) of modern ECE-systems making
it possible to detect such non-linearities, more easily,

compared to 20 years ago.
The method is experimentally verified at the Large

Helical Device (LHD) using modulated ECRH and
ECE to measure the electron temperature fluctuations.
In the presented experiment, both the sum and
difference interaction terms were detected. Moreover,
higher order quadratic interactions were also detected,
which is additional evidence for the presence of
quadratic non-linearities in the plasma. The spatial
distribution of the non-linearity in the amplitude and
phase profiles also yielded interesting results showing
the applicability of this method.

The paper has the following structure. In
the next section, the underlying theoretical concepts
are described. Then, the experimental results are
described including the spatial distribution of the
inter-modulations. In section 4, the consequences
for the fundamental harmonics are presented and the
spatial distribution of the non-linearity is calculated.
Finally, the main conclusions are presented and the
experimental interpretation is discussed.

2. Detecting non-linearities

There are several methods available to detect and
quantify non-linearities. These methods show that
the superposition property, which must hold for
linear systems, does not hold and quantify to what
extend it does not hold. The superposition property
can be separated in the homogeneity and additivity
properties. The homogeneity or scaling property
can be analyzed by changing the amplitude of the
perturbation. In case of linearity, the resulting
amplitude change of the temperature should then be
equal [39]. The additivity property of linear systems
states that the sum of the responses should be the
same as the individual responses [40]. A consequence
of this additivity property is that the sum of the
inputs equals the sum of the individual responses to
sinusoidal perturbations. Hence, if the opposite is
true and the system contains non-linearities, other
"new" components appear at frequencies not part
of the original perturbation (excited harmonics).
Moreover, it also implies that the response to the
excited harmonics is changed due to the non-linearities,
but this is more difficult to measure than the new
components. This section describes the detection and
modification of harmonics in detail.

2.1. Taylor expansion

As perturbative experiments and the Taylor expansion
are indissolubly linked, the study of non-linear systems
is explained on the basis of the Taylor expansion
of the perturbed electron temperature T (t) at some
operating point and radial location. In this paper, the
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2.1 Taylor expansion 2 DETECTING NON-LINEARITIES

perturbed electron temperature T (ρ, t) is analyzed at
specific radial locations ρ, which at some operating
point is a non-linear static function h of the plasma
parameters h0 (ne, Te, Pdep (ρ) , Pnbi (ρ) , ...) such as the
density ne, electron temperature Te, the deposition
profile Pdep (ρ), heating due to neutral beam injection
Pnbi, etc.. Moreover, T (ρ, t) depends on the waveform
or modulation of the perturbative source term P (t),
i.e.,

T (ρ, t) = h (h0, P (t)) . (1)
This non-linear function (1) can be expanded into a
Taylor series with respect to time around the operating
point h0 and P = 0 [24]

T (ρ, t) =

linear contribution︷ ︸︸ ︷
h (h0, 0) +

∂h (h0, P )

∂P

∣∣∣∣
P=0

P (t)

+
1

2!

∂2h (h0, P )

∂P 2

∣∣∣∣
P=0

P 2 (t) +
1

3!

∂h3 (h0, P )

∂P 3

∣∣∣∣
P=0

P 3 (t) + . . .︸ ︷︷ ︸
non−linear contributions

(2)

These partial derivatives can also be expressed as gain
factors such that (2) becomes (the dependence of K ′s
on ρ has been omitted)

T (ρ, t) = h (h0)+K1·P (t)+K2·P 2 (t)+K3·P 3 (t)+. . . ,
(3)

where K1 contributions are called linear, K2 non-linear
contributions are called quadratic, and those related to
K3 are called cubic non-linearities. Although a Taylor
expansion can always be performed, it is only sensible
if the non-linearity can be approximated well within a
few terms (weak non-linearities).

The source term P (t) generally consists of a
number of harmonic components in a perturbative
experiment of which two have been explicitly stated,
i.e.,

P (t) = P0 +A1 cos (f1t) +A2 cos (f2t) + h.o.c., (4)

where P0 is the average power of the perturbation.
The higher order components (h.o.c.) are harmonic
components related to 3f1, 5f1, · · · and 3f2, 5f2, · · · ,
which are also induced by a block-wave modulation.
The source term (4) is substituted into (3) resulting
in the harmonic components of the temperature
perturbations at a spatial location ρ given in (5), where
(a) is the DC-value; (b) the “linear” responses, which
are a combination of the linear contribution and the
quadratic non-linear contribution due to the non-zero
average P0 of the perturbation; (c−d) are the harmonic
components due to the quadratic part of the Taylor
expansion; (f − k) are the result of the cubic non-
linear part in (2); and (l) are the higher order terms
(h.o.t.) related to, e.g., K4 and to perturbed harmonic
components different of f1 and f2 in (2).

This Taylor expansion shows that higher harmon-
ics will be generated at new frequencies, e.g., 2f1,
2f2, 3f1, 3f2. It is important to notice that also the
ground harmonics f1 and f2 are modified by the non-
linearity. For the case where two or more sinusoids are
used also inter-modulation harmonics are occurring at
|f1 − f2| , f1 + f2, |2f1 − f2| , |f1 − 2f2| , 2f1 + f2, and
f1 + 2f2. The significance of the contribution depends
on the factors K2 and K3, but also depends on various
products of P0, A1, and A2. If P0, A1, and A2 are
sufficiently small the response to the perturbation can
be seen as linear (small perturbation theory). As the
square and cubic powers of A1 and A2 make the contri-
butions negligible. The dependence on P0 is the result
of a perturbation with a heat source. As input power
cannot become negative the perturbation is not around
the equilibrium but on top of the equilibrium. This
means that the equilibrium and harmonic components
are modified by P0. As the modification of f1 (and
f2) is of the form 2K2P0A1 this term can significantly
modify the assumed linear responses. It is also possi-
ble to attribute P0 to the function h0. However, this
means that when the type of modulation, e.g., duty cy-
cle and input power, is changed a different equilibrium
is studied as is explained above. As such any change
made to the input can technically not be compared
as being from the same equilibrium without proving
that the change does not affect the equilibrium. This
is undesirable, hence, we include P0 explicitly. When
P0 = 0 (2K2P0A1 = 0), then the linear profiles would
remain unchanged. The same holds in the caseK2 = 0.
Hence, we interpret the change due to P0 as the non-
linear modification of the linear profiles. This aspect
is specifically analyzed in this paper showing that this
aspect is significant.

Here, we will analyze the unperturbed harmonic
components and specifically focus on the difference
and sum contributions, i.e., |f1 ± f2| as they can
be uniquely attributed to the non-linearity. Two
alternative approaches to analyze non-linearities are
changing the operating point (equilibrium), e.g., [21],
and changing the amplitude of the perturbation, e.g.,
[39]. However, for these methodologies it is difficult
to determine the non-linear component uniquely if the
single experiment contains non-linear components, i.e.,
P0 and K2 contributions are not negligible in (5b).
The reason is that in case the amplitude of P (t) is
changed at the same time P0 is also changed and
hence the amplitude of the main harmonic components
is changed. In case of changing the operating point
simultaneously also K2 is modified as it depends on
the operating point. As P0 is not negligible also
the perturbed harmonic components f1 and f2 are
modified (see (b)) differently due to the operating
point K2. Hence, to apply these two analysis methods
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2.2 Volterra series 2 DETECTING NON-LINEARITIES

T (t, ρ) = h (h0) +K1P0 +K2P
2
0 (a)

+ (K1 + 2K2P0) (A1 cos (f1t) +A2 cos (f2t)) (b)
+ 1

2K2

(
A2

1 cos (2f1t) +A2
2 cos (2f2t)

)
(c)

+ K2A1A2 (cos ((f1 − f2) t) + cos ((f1 + f2) t)) (d)
+ 3

2K3A1A2 (A2 cos (f1t) +A1 cos (f2t)) (e)
+ 1

4K3

(
A3

1 cos (3f1t) +A3
2 cos (3f2t)

)
(f)

+ 3
4K3A

2
1A2 (cos ((2f1 − f2) t) + cos ((2f1 + f2) t)) (g)

+ 3
4K3A1A

2
2 (cos ((f1 − 2f2) t) + cos ((f1 + 2f2) t)) (h)

+ 3K3P
2
0 (A1 cos(f1t) +A2 cos (f2t)) (i)

+ 3
2K3P0

(
A2

1 (1 + cos (2f1t)) +A2
2 (1 + cos (2f2t))

)
(j)

+ 3K3P0A1A2 (cos ((f1 + f2) t) + cos ((f1 − f2) t)) (k)
+ h.o.t (l)

(5)

such contributions need to be taken into account or
the linearity of the experiment needs to be validated,
e.g., by analyzing higher harmonic components as
will be done here. Although the Taylor expansion is
straightforward to explain how the analysis works, it is
not able to describe memory effects using K1 and K2.
Hence, a generalization of (5) known as the Volterra
series [25] is used.

2.2. Volterra series

Volterra series are used to analyze the amplitude of the
non-linear contributions and their spatial distribution
dynamically. Due to transport there is a delay between
the induced perturbation and observed fluctuations
measured at different radial locations. This effect is
also known as (fading) memory. As the coefficients K1

and K2 in (5) are static, they are unable to describe
this memory effect, hence, Volterra series are necessary.

The number of terms that needs to be considered
in the Volterra series (or Taylor expansion) depends on
the specific experimental conditions. In the experiment
presented in this paper, third order (cubic) non-linear
contributions were not observed at their corresponding
discrete frequencies. Therefore, it suffices to use a
second order Volterra series, which is equivalent in
the Taylor expansion to setting all K3 and higher
contributions to zero. Hence, a second order Volterra
series is introduced [41, 42], which only considers the
relevant discrete harmonic components due to linear
and non-linear quadratic components, i.e.,

Θ (ρ, k) = G(1) (ρ, k)U (k) +

N∑
k1=−N+k

G(2) (ρ, k1, k − k1)U (k1)U (k − k1) , (6)

where Θ (ρ, k) = F (T (ρ, t)) and U (k) = F (u (t)) with
F denoting the Fourier transform. The frequency is
defined here as multiples of the fundamental frequency
k, not to be confused with the spatial wavenumber,
as such k = 1 corresponds to the lowest frequency

present in Θ (ρ, k) and k = 0 to the DC-component.
The highest frequency that needs to be considered is
denoted by N . The Volterra kernels G(1) and G(2) are
the complex and frequency dependent equivalents of
K1 and K2. G(2) has a three dimensional dependence
on the spatial coordinate ρ and k1 and k. In practice,
separate G(2)’s are calculated at the radial locations
ρ where the temperature is measured. Hence, the
Volterra series is only an approximation over time and
not over space. The proper choice to define U (k) is
to use the power dependent part of the perturbation
u (t) = P (t) as has been used in the Taylor expansion
in (5). The deposition profile is part of G(1) and
G(2) as the input is purely the time dependent part
of the perturbation. Alternatively, we can assume
that the heat is locally absorbed such that instead the
temperature at the deposition location can be used
as input, i.e., u (t) = Td (ρ0, t). The input U (k) is
then defined by Θd (ρ, k) = F (Td (ρ0, t)). This allows
us to say something about the spatial dependence of
the non-linearity. The kernels capture the underlying
physics (including the deposition location in case of P )
and can be fitted to a large class of non-linear physical
descriptions.

As both G(1) and G(2) depend on the underlying
physics, (6) will not change when changing the input
U (k) from power to temperature but the internal
structure or values of G(1) and G(2) will change.
The long term goal is to match the estimated values
of G(1) and G(2), which we estimate here, to those
derived from physics. To make it more concrete G(1)

is simply the transfer function, which is specifically
defined for various transport models as is explained
[43]. However, as at this stage it is unclear what
the underlying physics are we will not try to match
G(1) and G(2) against simulations here, but will
focus on their estimation from measurement data and
derive conclusions from calculations using the general
Volterra series.
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3 EXPERIMENTAL RESULTS

3. Experimental results

In this section, the experimental results are presented.
First, the experimental conditions and the expected
inter-modulations are given. Then, the spatial
distribution of the non-linearities are studied.

Unfortunately, here only two periods are present
making the measure of variance less reliable (at least
three periods should be used) [44].

3.1. Set-up and experimental conditions

Experimental results in this paper are presented for the
Large Helical Device (LHD) [45]. LHD’s major radius
Rmajor = 3.5 ∼ 3.9 m and effective (averaged) minor
radius is a99 = 0.6 m such that ρ is defined by reff /a99
where reff denotes the effective radius [46].

L-mode plasmas were analyzed with a magnetic
field strength of 2.75T at the magnetic axis Rax = 3.6
m. This plasma is sustained using two tangential
co/counter neutral beams of total 10 MW, with near
zero overall beam driven current. The line-averaged
density is approximately 0.9 · 1019 m−3. As LHD is
a heliotron-type machine, it is free from macroscopic
magneto-hydrodynamic instabilities such as sawteeth
and neo-classical tearing modes. Consequently, these
cannot disturb the pure plasma transport studies.

Only for plasma initiation two gyrotrons 77 GHz
5.5U (Pi1) and 82.7 GHz (Pi2) were used. In the
steady-state phase of the discharge, EC waves of
approximately 2 × 0.3 MW are injected from the low
magnetic field side using the horizontal port launchers
named 2Oll for 154GHz 2nd X-mode (P1) and 2Olr
for 77GHz 1st O-mode (P2) [47]. They are operated
to create symmetric power (block-type) modulated
EC waves which generate electron heat pulses and
fundamental frequencies of f1 = 11.11 Hz (P1) and
f2 = 14.29 Hz (P2) such that k = 1 corresponds to
1.59 Hz (see Fig. 1). Consequently, k = 7 corresponds
to f1 = 7·1.59 Hz and k = 9 corresponds to f2 = 9·1.59.
For intermodulation f1 + f2, k = 7 + 9 = 16 and for
|f1 ± f2|, k = |7− 9| = 2. The deposition locations
were chosen such that both are around ρ = 0.2.
However, both the amplitude and the phase profile
of 77 GHz 2Olr (f2) do not show this. Moreover, in
#125699, which is similar to #125703, both 77 GHz
2Olr and 154 GHz 2Oll are applied but at different
time-instances of the discharge. This allows us to
separately analyze the deposition profiles. The center
of deposition, i.e., the maxima of the amplitude of the
temperature profiles, are clearly inconsistent with the
calculated deposition locations. Hence, the conclusion
is that the deposition location of 77 GHz 2Olr based
on ray-tracing is inaccurate.

Based on the amplitude profiles it was probably
around ρ = 0.25. The electron temperature was
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Figure 1. (color) Overview of LHD discharge #125703
showing the time-traces of the calibrated launched EC wave
power generated by four gyrotrons; the electron temperature
perturbations at different ρ measured with ECE; and the line-
averaged density ne. Gyrotrons Pi1 and Pi2 are only used for
plasma initiation.

measured using electron cyclotron emission (ECE)
by a 28-channel radiometer [48] and calibrated using
Thomson scattering [49]. The measured electron
temperature has been checked for a non-thermal
component due to energetic electrons, which is
maximally 20% of the ECE signal. An overview of
the experimental conditions can be found in Fig. 1.
Before the impact of non-linearities can be analyzed,
first the existence of G(2) needs to be shown through
the existence of a contribution at 2f1, 2f2, |f1 ± f2|.

3.2. Inter-modulation

The corresponding Fourier transforms of the power
modulation and the calibrated ECE-temperature
measurement can be found in Fig. 2. Fig. 2(a) shows
5 main peaks at f1, f2, 3f1, 3f2, and 5f1. These
correspond to the modulation pattern with duty cycle
50%. Based on this modulation pattern it is expected
that no harmonic components are present at 2f1, 2f2,
4f1, and 4f2.

In Tab. 1, the main expected harmonic compo-
nents from linear and non-linear contributions are pre-
sented based on (5). The two dominant non-linear
components are expected at the inter-modulation fre-
quencies 3.17 Hz and 25.40 Hz, and double harmonics
22.22 Hz and 28.57 Hz or (d), (e), and (c) in (5), re-
spectively.

Unfortunately, it is difficult to achieve an exact
timing of power outputs of the gyrotrons resulting in
a deviation from the 50% duty cycle. This can be
seen in Fig. 2(a) by the presence of peaks at 2f1 and
2f2. If the duty cycle would be exactly 50%, the
amplitude at these frequencies would be zero (noise
level). Consequently, amplitude contributions above
the noise level at 2f1 and 2f2 would originate only
from non-linear contributions (see (5)). However, as
the duty cycle deviates from 50%, the source also
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3.2 Inter-modulation 3 EXPERIMENTAL RESULTS

Table 1. Possible non-linear harmonic components due to f1 and f2, with in bold the quadratic interactions only possible due to
non-linearities.

Quadratic non-linearities Cubic non-linearities
f [Hz] k linear non-linear f [Hz] k linear non-linear
3.17 2 0 |f1 − f2| 7.94 5 0 2f1 − f2
22.22 14 2f1 2f1 11.11 7 f1 f1
25.40 16 0 f1 + f2 14.29 9 f2 f2
28.57 18 2f2 2f2 17.46 11 0 |f1 − 2f2|
Interactions with 3f1 and 3f2 33.33 21 3f1 3f1

19.05 12 0 3f1 − f2 36.51 23 0 2f1 + f2
22.22 14 2f1 3f1 − f1 39.68 25 0 f1 + 2f2
28.57 18 2f2 3f2 − f2 42.86 27 3f2 3f2
31.75 20 0 |f1 − 3f2| Interactions with 3f1 and 3f2
44.44 28 4f1 f1 + 3f1 2f1 ± 3f2 2f1 ± 3f1
47.62 30 0 3f1 + f2 2f2 ± 3f2 3f1 ± 2f2
53.97 34 0 f1 + 3f2 f1 ± 6f2 f1 ± 6f1
57.14 36 4f2 3f2 + f2 f2 ± 6f2 6f1 ± f2
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Figure 2. (color) Amplitude spectra of (a) the calibrated EC
power and (b) the ECE-measurements at ρ = 0.48. The solid
lines show the contributions at the perturbed harmonics. The
dashed-dotted lines show the locations of the primary inter-
modulations and the grey-dashed lines show the secondary inter-
modulations. The green circle at |f1 − f2| shows the amplitude
of |f1 − f2| after applying a technique called the local polynomial
method, which corrects for non-periodic errors in the spectra.

contributes to the measured amplitude at 2f1 and 2f2.
Therefore, the measured amplitude at 2f1 and 2f2 is
a combination of the small contribution originating
directly from the source and quadratic non-linear
contributions. This makes 2f1 and 2f2 less reliable
to use for the detection of non-linearities (5). Instead,
the inter-modulation frequencies |f1 ± f2| are chosen
such that they do not coincide with harmonics present
in the original perturbation as can be seen in Fig. 2(a).

In addition, f1 and f2 are chosen such that |f1 ± f2|
are sufficiently low-frequent to reduce the effect of the
thermal transport on |f1 ± f2|.

The corresponding amplitude spectrum at ρ =
0.48 is shown in Fig. 2(b). As expected, the strongest
harmonic components are at f1, f2, 3f1, and 3f2.
The next three strongest harmonic components are
f1 + f2, 2f2, and 2f1, which are far above the noise
floor (≈ 4 · 10−4 keV). The large harmonic component
at f1 + f2 proves that a non-linearity exists and is
measurable. This is further supported by the presence
of secondary quadratic components at |3f1 ± f2| and
|f1 ± 3f2|.

The complementary modulation |f1 − f2| cannot
be recognized due to non-periodic slow temperature
drifts and the effect of unforced response due to
a change of equilibrium. Therefore, a correction
technique is applied called the local polynomial
method (LPM), which corrects the Fourier spectra
for such errors. It has been applied successfully to
numerous measurements outside the fusion community
[BRONNEN] and is explained in more detail in [50].

Cubic non-linearities are not detected at the inter-
modulations as the harmonic contributions described
in Tab. 1 are too small to be detected. There seems
to be only one exception at 39.68 Hz (2f2 + f1), but
it is not present at the other spatial locations. All
the secondary quadratic components are present at
3f1 ± f2 and f1 ± 3f2. Only |f1 − 3f2| is difficult to
detect, but when the LPM is applied the amplitude
increases significantly. Also a strong peak is observed
at 44.44 Hz, this is also a quadratic contribution
due to 3f1 + f1 and 3f2 + f2, but it can also be
due to a non-linear contribution of the quasi-linear
contribution 2 (2f1) and 2 (2f1). In addition, many
other different amplitude peaks can be observed,

7
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Figure 3. (color) Amplitude profile of the main harmonics
as function of the spatial location. The solid lines of f1 + f2
and |f1 − f2| show the estimates compensated with the LPM
method. The stars show the same amplitudes without correction.

which are relatively small in amplitude. These can
originate from several non-linear interactions including
those with 5f1, 7f1, 5f2, 7f2. All these other harmonic
components are presented in Fig. 3.

Summarizing, there is clear evidence of quadratic
non-linear contributions, not only on the primary
interactions (f1 and f2), but also on the secondary
interactions (f1 and f2 with 3f1 and 3f2). On the
other hand, there is also a lack of cubic non-linearities,
which means that heat transport in this type of
plasma discharges can be considered weakly non-linear
consistent with perturbative literature [3].

3.3. Spatial distribution

The spatial distribution of the amplitude is shown in
Fig. 3, where only the excited harmonic components
and primary non-linear interactions of f1 and f2 are
shown. As there are no significant cubic non-linearities,
these harmonic components are not shown. The
spatial distribution of the excited harmonics (f1, f2,
3f1, 3f2) show similar decay profiles with a clear
peak around ρ0 = 0.2 corresponding to the chosen
deposition location ρ0. This implies that the bulk
of heat is deposited at this spatial location. Fig. 3
shows at ρ0 the amplitude of |f1 ± f2| a clear the
minimum. Consequently, at this radial location G(2) ≈
0, K2 ≈ 0, respectively. As we do not expect non-
linear contributions to originate in the transfer of heat
from the source to the plasma, the absence of a non-
linear contribution at this radial location confirms this
expectation. Conversely, if the heat transfer from
source to the plasma does not generate non-linear
contributions, the radial location where the non-linear
component is zero must be the deposition location is
indeed at ρ0. The absence of a non-linear component
at ρ0 also implies that the non-linearity is generated by

the heat pulse propagation and not by the heat sources
directly. Otherwise, a significant non-linear component
would be expected at ρ0.

A small bump can be also observed at ρ = 0.42 in
these profiles. Its origin is likely to be from the non-
linearity. Studying the radial profile in Fig. 2(b) shows
a weak contribution of |f1 − f2|. The reason is that
Fourier coefficients below 5 Hz are dominated by errors
due to slow non-periodic fluctuations. These errors can
be observed in Fig. 2(b) by the smooth low-frequent
decaying function (0.1-6 Hz), which are removed using
the local polynomial method. After this removal both
amplitude profiles of |f1 ± f2| are similar and show a
clear peak around ρ = 0.45 and a clear minimum at
ρ = 0.2. The amplitude increase ρ < 0.45 is higher
than the amplitude decay ρ > 0.45. This is a clear
proof that the quadratic non-linearity exists; that it
is dominant at ρ = 0.45; and that at this frequency
range the amplitudes differences between |f1 ± f2| is
small showing little dynamics.

The primary non-linearity will also occur at
2f1 and 2f2, however, as explained before they are
mixed with linear contributions. From the frequency
spectrum in Fig. 2(a) the f1 contribution is larger than
f2 so one expects a stronger non-linear contribution on
2f1 than on 2f2. It also shows the non-linearity at ρ =
0.45 and a similar decay as |f1 ± f2|. The harmonic 2f2
behaves more similar to the excited harmonics. On the
other hand, its amplitude decay around ρ = 0.45 is not
present. After this point its amplitude decay is almost
identical to that of 2f1. Most secondary interactions
show some similarity to the profiles of |f1 ± f2|, but
most of them are too close to the noise floor to draw
unambiguous conclusions. The secondary quadratic
interactions are shown in Fig. 4 including the cubic
components, which are significantly smaller than the
inter-modulation components. Hence, the third order
components can neglected.

3.4. Phase profile

The phase profiles are presented in Fig. 5, where
the profiles influenced and generated by non-linear
interactions are plotted separately from the excited
harmonic components.

The harmonics generated by non-linearities
|f1 ± f2| show a phase jump at the maximum of the
amplitude profiles of the excited harmonics. The
phase jump is approximately 180◦, which corresponds
to a sign-change. This phase change is opposite for
|f1 ± f2|. This jump can also be observed in the har-
monics 2f1 and 2f2, but it is not so strong as it is
mixed with the linear contributions and again weakest
in 2f2. This is also in accordance to the amplitude pro-
file. On the other hand, 2f1 which seems most sensitive
to the non-linearity shows a change of almost 150◦ in
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not presented in Fig. 3. Except for f1 + f2 which is used as
a reference. The amplitude profiles labeled with 2 belong to
quadratic non-linear interactions and those labeled with 3 belong
to cubic non-linear interactions. The corresponding frequencies
can be found in Tab. 1. It is clear that those belonging to
cubic non-linear interactions are small and can be considered
negligible. Those belonging to quadratic non-linear interactions
depending on the harmonic and if it concerns large or small
amplitude inter-modulations are visible. All show to some extent
a peak at the same location as f1 + f2.

0 0.2 0.4 0.6 0.8

ρ

50

60

70

80

P
ha

se
 [°

]

(b)

f
1

f
2

3f
1

3f
2

0 0.2 0.4 0.6 0.8

ρ

-250

-200

-150

-100

-50

0

50

100

150

2f
1

2f
2

|f
1
-f

2
|

f
1
+f

2

LPM

No LPM

LPM

No LPM
(c)

Figure 5. (color) Phase profiles of the main harmonics
with (left) the harmonics due to dominant perturbations and
(right) harmonics due to dominant non-linearities (|f1 ± f2|) and
mixed harmonics (2f1, 2f2). The lines for |f1 ± f2| are LPM
compensated, the stars are again without compensation. The
phases are compensated w.r.t. the perturbation sources and
unwrapped, which only changes the profile height.

the region ρ = 0.07− 0.44.
The phase profiles of f1 and 3f1 have a minimum

at ρ = 0.44. However, that of f1 shows a flattening
between ρ = 0.2 and ρ = 0.44. The phase profile of
f2 has a minimum at ρ = 0.2 and a lesser minimum
at ρ = 0.44. Interestingly, 3f2 has two minima at
exactly ρ = 0.2, the probable deposition location ρ0,
and ρ = 0.44. At first sight these can be interpreted
as two absorption points, however, it is unlikely that

both gyrotrons have a second deposition at exactly the
same location, e.g., due to re-absorption. Moreover,
the amplitude profile with only one clear maximum
would be inconsistent with such an observation of a
second heating point at ρ = 0.44, nor is it consistent
with ray-tracing calculations. A much more plausible
cause is that the phase change is caused by the non-
linearity, which is also consistent with the growing
inter-modulation amplitude at this spatial location.
This is further discussed and analyzed in the next
section.

4. Impact and strength of non-linear
contributions

This section shows how to reconstruct the linear
profiles of the excited harmonics f1 and f2 based on
Volterra kernels. In addition, this section explains
why the measured amplitudes at |f1 ± f2| are not
representative for the local non-linearity of the plasma.
In the last part of this section, we try to calculate
the local amount of non-linearity of the plasma,
which is independent of the size and location of the
perturbation.

4.1. Calculation second order Volterra kernels

The non-linearity not only has an impact on the inter-
modulation frequencies, but can also have a significant
impact on the excited harmonics such as f1 and f2.
Here the effect of a change of equilibrium on the
amplitude and phase profiles of f1 and f2 is studied
from two reference points the source P (t) and the
temperature perturbation at the deposition location
Td (t).

Only quadratic non-linear components have been
observed. Hence, significant non-linear distortions
at f1 and f2 are only expected to originate from
the steady-state value of the perturbation. This is
described by (5b), which in terms of the Volterra series
is given by

Θ (ρ, 7) =

G(1) (ρ, 7)︸ ︷︷ ︸
linear

+ 2G(2) (ρ, 7, 0)U (0)︸ ︷︷ ︸
non−linearmodification

U (7) .

(7)
for f1 (k = 7). The measured amplitude profile
|Θ (ρ, 7)| (f1) is a combination of the linear response
and the non-linear modification. Therefore, to
calculate the linear profiles the non-linear contribution
G(2) needs to be subtracted from Θ (ρ, 7) in (7), i.e.,

Θlin (ρ, 7) = G(1) (ρ, 7)U (7)

= Θ (ρ, 7)− 2G(2) (ρ, 7, 0)U (0)U (7) . (8)
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Figure 6. (color) Estimated non-linear global Volterra kernels
G(2) calculated using (9) and (10) in case u (t) = P (t) and
u (t) = Td (t). Note that in case u (t) = Td (t) only the scaling of
the amplitude changes (T0 instead of P0). Hence, only the phase
difference is represented.

Although we do not know G(2) (ρ, 7, 0) in (7) at (7, 0),
we can make an approximation based on estimates of
G(2) at the inter-modulation frequencies G(2) (ρ, 9,−7)
and G(2) (ρ, 9, 7), i.e., k = 2 (|f1 − f2|)

Θ (ρ, 2) = 2G(2) (ρ, 9,−7)U (9)U (−7) , (9)

where U (−7) = U (7) (complex conjugate) and k = 16
(|f1 + f2|)

Θ (ρ, 16) = 2G(2) (ρ, 9, 7)U (9)U (7) . (10)

As U (2) and U (16) are zero for P (t) and Td (t), G(1)

does not appear in (9) and (10). If we assume that the
kernel G(2) is constant at all frequency combinations,
i.e., G(2) (ρ, 9, 7) = G(2) (ρ, 9,−7) = G(2) (ρ, 7, 0) =
G(2) (ρ, 9, 0), the linear response can be calculated from
(8). Therefore, first the kernels G(2) are calculated to
verify this assumption.

Fig. 6(a,b) shows the amplitude and phase of the
second order Volterra kernels at the inter-modulation
frequencies. The amplitudes are remarkably similar
and the phase profiles have a difference of ≈ 90◦

for ρ > 0.3 for u (t) = P (t). It is peculiar that
the Volterra kernels are changing phase around the
deposition location ρ0, for which we do not have an
explanation yet.

The Volterra kernels are also calculated using
as reference the temperature perturbation at the
deposition location, i.e., u (t) = Td (t). The mean value
of Td (t) is a combination of the equilibrium h (h0) and
the change due to P0 as shown in in (5a). We are

only interested in the change of equilibrium due to T0.
As in (5a) K2P

2
0 ≈ 0, only the contribution due to

T0 ≈ K1P0 is taken into account. This value is ideally
calculated from h (h0) to the average value of the
new equilibrium h (h0) + T0. However, as the original
equilibrium temperature h (h0) is not available the
average value of the perturbation T0 = 1

2 ‖Td (t)‖1 =
0.55 [keV] is used. The phase profiles of the kernels
u (t) = Td (t) are shown in Fig. 6(c). The amplitude
profiles of G(2) are not shown as they only differ a
scaling factor compared from those shown in Fig. 6(a).

There is no longer a phase difference between
the kernels ρ < 0.3 when using Td (t) as reference.
Therefore, for ρ > 0.3, the kernels G(2) can be
considered constant (static) when using Td (t) as a
reference. This allows us to replace the G(2) kernels
at the inter-modulation frequencies with those at
G(2) (ρ, 7, 0) and G(2) (ρ, 9, 0) necessary to calculate the
true linear profiles.

4.2. Non-linear impact on f1 and f2

In this subsection, the linear profiles Θlin (ρ, 7)(f1)
and Θlin (ρ, 9)(f2) defined in (8) are reconstructed
using the temperature perturbation at Td (t) as
reference. Therefore, it is assumed that G(2) (ρ, 9, 7) =
G(2) (ρ, 9, 0) and G(2) (ρ, 9,−7) = G(2) (ρ, 7, 0) as was
explained in Sec. 4.1. The result is shown in Fig. 7(a-
d).

The corrected amplitude profiles of Θlin (ρ, 7) and
Θlin (ρ, 9) have decreased significantly for both the
corrections based on f1+f2

(
G(2) (ρ, 9, 7)

)
and |f1 − f2|(

G(2) (ρ, 9,−7)
)
. In particular, the bump visible at

ρ = 0.41 has disappeared. The effect of the non-
linearity on the phase profile is even more significant
as all minima at ρ = 0.44 have disappeared in the
case of f1 + f2. This becomes particularly clear when
compared to phase profiles corrected using |f1 − f2|.
These show a different phase profile and strong minima
at the location of the non-linearity. However, the
profile at |f1 − f2| is reconstructed and hence is more
error prone.

As both the bump at ρ = 0.41 and all
minima at ρ = 0.44 are absent in the corrected
phase profiles, this analysis shows that the profiles
of amplitude are consistently modified by the non-
linearity. Therefore, these changes in the profiles can
lead to misinterpretations because their gradients are
used to determine transport coefficients.

The corrected profiles using u (t) = P (t)
as a reference can be found in the Appendix.
Basically showing the same corrected amplitude
profiles and behavior of the phase except for some
phase reconstructions. However, as the phase is
different using G(2) (ρ, 9, 7) and G(2) (ρ, 9,−7), the
assumption to replace G(2) (ρ, 9, 7) and G(2) (ρ, 9,−7)

10
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Figure 8. Schematic depiction of the estimation procedure with
(right) the method to calculate the Volterra kernels G(1) and
G(2) and (left) the method to calculate the local Volterra kernels
L(1)and L(2) for different domains [ρi, ρi+1].

for G(2) (ρ, 7, 0) seems invalid at least for individual
cases. Hence, we have chosen to represent use Td (t) as
a reference.

4.3. The local non-linearity vs. amplitude of
inter-modulation frequencies

In this section, we show that the amplitude of the
inter-modulation frequencies are not necessarily the
radial locations where the plasma is most non-linear.
The calculation of G(1) and G(2) only describes global
transport from ρ0 to ρ. Hence, G(2) describes the total
amount of non-linearity over the entire domain ρ0 to
ρ. Therefore, if we want to estimate the local amount
of non-linearity we should estimate the local non-linear
Volterra kernels, called L(2), over a small interval, e.g.,
∆ρ = ρi−ρi+1. The difference between the local kernel
L(2) and the global Volterra kernel G2 is schematically
shown in Fig. 8.

The local Volterra kernels over a small interval ∆ρ
follow from the definition in (6) where input U (k) is

the temperature at different ρ, i.e.,

Θ (ρi+1, 16) = L(1)
ρi→ρi+1

(ρ, 16) Θ (ρi, 16)

+ Θ (ρi, 9) Θ (ρi, 7)L(2)
ρi→ρi+1

(9, 7) . (11)

L
(1)
ρi→ρi+1 describes the linear transport properties of

the plasma and L
(2)
ρi→ρi+1 the non-linear transport

properties of the plasma. In this representation,
U (k) is non-zero at the inter-modulation frequencies
U (2) = Θ (ρi, 2) and U (16) = Θ (ρi, 16) for ρi 6= ρ0.
Consequently, this formula cannot be directly used to
calculate the local amount of non-linearity L(2)

ρ1→ρ2 (see
discussion below (10)). However, we can use it to
interpret the experiments and specifically the measured
radial profiles in Fig. 3.

Equation (11) shows that the measured amplitude
at f1 + f2, i.e., |Θ (ρi+1, 16)|, is a combination of
1) how the local linear transport L(1)

ρi→ρi+1 dissipates
the Fourier coefficient Θ (ρi, 16) and 2) a non-linear
contribution which is a combination of the plasma
non-linearity L

(2)
ρi→ρi+1 and the profiles Θ (ρi, 7) and

Θ (ρi, 9) of the main perturbation f1 and f2.
In Fig. 3 it is clearly visible that Θ (ρi, 7) and

Θ (ρi, 9) decrease with increasing radius for ρ > ρ0.
This means that even if L(2)

ρi→ρi+1 (9, 7) is constant, a
decrease in Θ (ρi, 7) and Θ (ρi, 9) will lead to a decrease
in amplitude of Θ (ρi+1, 16). Therefore, the amplitude
profile observed in Fig. 3 can be separated into three
phases:

(i) 0.2 < ρ < 0.45: The term
Θ (ρi, 9) Θ (ρi, 7)L

(2)
ρi→ρi+1 (9, 7) dominates over

L
(1)
ρi→ρi+1 (ρ, 16) Θ (ρi, 16). Consequently, we will

see that the amplitude |Θ (ρi+1, 16)| increases. As
both Θ (ρi, 7) and Θ (ρi, 9) are large for ρ < 0.45,
the local non-linear contribution L

(2)
ρi→ρi+1 (9, 7)

11
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does not need to be large to dominate over
L
(1)
ρi→ρi+1 (ρ, 16) Θ (ρi, 16).

(ii) ρ ≈ 0.45: A maximum occurs when |Θ (ρi+1, 16)| =
|Θ (ρi, 16)|. This means that in (11), the term
Θ (ρi, 9) Θ (ρi, 7)L

(2)
ρi→ρi+1 (9, 7) matches the de-

crease in amplitude due to the linear transport
(dissipation) L(1)

ρi→ρi+1 (ρ, 16). Consequently, ρ ≈
0.45 is not the location where the plasma itself
is most non-linear as this is the location where
L
(2)
ρi→ρi+1 (9, 7) is largest.

(iii) ρ > 0.45: When Θ (ρi, 7) and Θ (ρi, 9) de-
crease in amplitude, even if the plasma is very
non-linear, i.e., L(2)

ρi→ρi+1 (9, 7) is large, the com-
bined term Θ (ρi, 9) Θ (ρi, 7)L

(2)
ρi→ρi+1 (9, 7) will

be small. Consequently, the linear trans-
port L(1)

ρi→ρi+1 (ρ, 16) Θ (ρi, 16) will dominate over
Θ (ρi, 9) Θ (ρi, 7)L

(2)
ρi→ρi+1 (9, 7) resulting in a de-

crease of amplitude of Θ (ρi, 16). However, in
Fig. 3 this decrease (spatial amplitude gradient)
|Θ (ρi, 16)| is smaller than that of Θ (ρi, 7) and
Θ (ρi, 9) suggesting that L(2)

ρi→ρi+1 (9, 7) is large.

In conclusion the measured amplitude at the inter-
modulation frequencies is the result of the interplay
between perturbation, linear transport, and non-linear
transport. Therefore, L(2)

ρi→ρi+1 needs to be estimated
to determine where the plasma is most non-linear.

4.4. Calculating the strength of local non-linearity

In this section, we try to answer the question if it
is possible to determine the local non-linearity L(2)

extensively discussed in the previous subsection. The
definition (11) can be rewritten

L(2)
ρi→ρi+1

(9, 7) =

Θ (ρi+1, 16)− L(1)
ρi→ρi+1 (ρ, 16) Θ (ρi, 16)

Θ (ρi, 9) Θ (ρi, 7)
(12)

The only unknown in this equation is L(1)
ρi→ρi+1 (ρ, 16),

which can be calculated from the global kernels. If
there is no non-linear component in the measurements.
Then, the terms corresponding to G(2) and L(2) are
zero because Θ (ρi+1, 2) = 0 and Θ (ρi+1, 16) = 0. This
property is used to determine the relationship between
L
(1)
ρi→ρi+1 and G(1), i.e.,

L(1)
ρi→ρi+1

(k) =
G(1) (ρi+1, k)

G(1) (ρi, k)
. (13)

Remember that we do not have the actual G(1), but we
have the estimates using the global non-linear kernels
G(2). These have been estimated in Sec. 4.1, using
additional assumptions on G(2) and heavily relies on a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.8

1

1.2

|L
(1

) |

P
0
: |L

(1)
(2)|

T
0
: |L

(1)
(2)|

P
0
: |L

(1)
(16)|

T
0
: |L

(1)
(16)|

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ρ

0

0.1

0.2

|L
(2

) |

P
0
: |L

(1)
(2)|

T
0
: |L

(1)
(2)|

P
0
: |L

(1)
(16)|

T
0
: |L

(1)
(16)|

Figure 9. Approximation of the local kernels L(1) and L(2).
The local kernels are all calculated via ρ0 either starting directly
from T0 or via P0. This also explains their similarity.

chain of assumptions. In particular, on the assumption
that all the heat has been deposited at ρ0, and thus
heating does not contribute linearly between ρi and
ρi+1. If this is not true, this specific analysis may
loose validity, for instance, in the presence of non-local
transport as has been observed in similar discharges at
LHD [30]. The local kernels are shown in Fig. 9, which
should be interpreted with care due to the assumptions
on the estimation of G(1).

Fig. 9 clearly shows that L(2) is not dominant at
the peak in |f1 ± f2| at ρ = 0.45, but is increasing with
radius. The amplitudes are similar for the local linear
kernels L(1) (2) and L(1) (16).

We expect in a local sense L(1) to behave as
diffusive transport, i.e., a strong decay as function
of ρ and f . This is not the case here, one of the
reasons, that this is not occurring might be the relative
low-frequency at which this transfer function L(1) is
measured. The local non-linear component also suffers
from signal-to-noise ratio problems. The reason is that
the amplitudes of Θ (ρi, 7) and Θ (ρi, 9) decrease with
increasing ρ. Consequently, L(2) becomes unreliable at
large radii ρ & 0.6 due to the lack of non-linear growth
of the term Θ (ρi, 9) Θ (ρi, 7)L

(2)
ρi→ρi+1 (9, 7) making it

difficult to calculate L(2)
ρi→ρi+1 (9, 7).

In summary, mathematically it is valid to calculate
the local kernels L(1) and L(2). However, due to the
lack of non-linear growth and uncertainty it is unclear
if the L profiles are reliable. One indication that the
profile might be correct is that the turbulence level,
which in LHD can be spatio-temporarily resolved using
phase contrast imaging (PCI) [51, 52], gives a similar
turbulence profile of turbulence as of non-linearity.
However, more experiments are necessary to show that
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this relationship exists.

5. Conclusion and discussion

Based on a single perturbative experiment this paper
shows that non-linearities exist and can be quantified
by the amplitude at the inter-modulation frequencies.
Moreover, due to the absence of third and higher order
inter-modulation components the non-linearity is weak
in this plasma regime. The inter-modulation harmonic
components are 1-2 orders in amplitude smaller than
the amplitudes of the main harmonic components f1
and f2. As such physical descriptions that have
a strong non-linear component do not describe the
regime in which these measurements are performed.
Moreover, as only a few inter-modulation components
are present, it also shows that a Volterra series can
be applied to approximate the non-linearity and with
a further decrease in amplitude only the first order
Volterra series is necessary to describe the transport.
The similarity between the kernel values at f1 +
f2 and |f1 − f2| is remarkable. Especially, as for
this application the modified local polynomial method
(LPM) has no relation to f1 + f2 nor in its calculation
or frequency range used. This also shows the value of
removing spectral errors at |f1 − f2| from the spectra
with the LPM.

An important complication when analyzing per-
turbative experiments using a heat source as pertur-
bation is the non-zero average P0 of the perturbation.
The non-linearity significantly distorts the “linear” am-
plitude and phase profiles, which are generally used for
physics interpretations and thus this can lead to mis-
interpretations.

It is also shown, that it is possible to correct or at
least to get an idea of the error in the amplitude and
phase profiles. The linear estimates of the amplitude
profiles are similar for both reconstructions from P (t)
or the temperature Td (t) at the assumed deposition
location. The phase reconstructions vary depending
on which correction is used, but all show that they are
clearly modified. Based on the information concerning
the sources (deposition, amplitude, phase profiles),
the observed non-linearity in the amplitude is not
at the deposition locations. This leads us to the
conclusion that the inter-modulation frequencies are
not fed directly by the source, but are only generated
in the process of the heat pulse propagation, i.e.,
transport. Hence, we have calculated the Volterra
kernels from the temperature at the assumed location
of deposition to the different temperature locations.
Moreover, the significant changes around ρ ≈ 0.42
can also be interpreted as that the equilibrium is very
sensitive to changes in the input power P0.

The amplitude and phase profiles of the inter-
modulation harmonics show that the impact of the
non-linearity is distributed with a strong effect around
ρ ≈ 0.42. However, the resulting amplitude and phase
at a specific radial location are not only the radial
distribution of the underlying physics non-linearity but
are the result of a combination of the perturbation,
non-linearity, and the perturbation and non-linearity
at other radial locations. Therefore, a first attempt
is made to reconstruct the non-linearity by estimating
the local Volterra kernels. The result shows that there
is no longer a strong non-linear peak at ρ ≈ 0.42.
Hence, this supports our conclusion that the non-
linearity is distributed. However, as the amplitude
are relatively small for large radii, the measurement of
the non-linearity becomes unreliable. This needs to be
improved in the future. As the whole analysis method
presented here is fully measurement driven through
the use of non-parametric Volterra kernels, conclusions
can be reached without assuming a specific physics
paradigm. The next step is to construct parametric
Volterra kernels from various physics models, which
can be directly compared to the measured kernels.
Note that the kernels G(1) and G(2) can capture also
possible non-local transport.

This experimental approach shows great promise
for future perturbative transport experiments. How-
ever, there is significant room for improvement. The
first necessary step is the inclusion of an uncertainty
analysis with errors in the frequency domain. In this
experiment only two periods were used these should
be increased to at least three and preferably to 7 to
retain important statistical properties under Gaussian
noise assumptions [53]. Note that here some noise
statistics is done based on the intermediate frequency
and under the assumption of white noise, but this can
be significantly improved. Secondly, since the non-
linear analysis is based on the two inter-modulation
harmonics, these should be increased with reasonable
signal-to-noise ratio’s to arrive at a better estimate of
the Volterra kernel especially in the relevant frequency
range. Finally, this experiment is relatively easy to
perform in the sense that two modulated (block-wave)
sources are necessary. However, if this experiment
would be performed by a single gyrotron with multi-
level power modulation, possible interactions between
deposition locations would no longer be relevant and it
would be possible to design modulation signals, which
can estimate a larger number of frequency points in
the kernel, allowing for an even better non-linear inter-
pretation and the possible exclusion of various physics
descriptions as they need to fulfill the Volterra kernels.

Finally, in this paper, we have deliberately not
assumed a physics model as it is unclear what
non-linear physics is causing the inter-modulation
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components. Instead, we try (based on measurements)
to identify what properties the underlying physics
(model) must have. Therefore, a general Volterra
description is used, which captures the physics in a
non-parametric way. If the Volterra kernel has been
properly estimated using the above suggestions, the
underlying physics model must reproduce the Volterra
kernel within its statistical uncertainty.
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Appendix A. Calculation of non-linear
contribution with Volterra series

Volterra series describes the input and output behavior
of weakly non-linear systems. In our case the input U
is defined as the complex Fourier spectrum of P (t)
or the temperature T at ρ0 = 0.21 and the outputs
Θ are defined as the complex Fourier coefficients of
the temperatures T at the different radii. This means
that the dynamics between different measurements are
always calculated either directly from P (t) or from
the temperature Td (t) assumed deposition location ρ0
to the other measurements. This deposition location
is also the only location where the inter-modulation
harmonics are small and as such it is reasonable to
assume that the input consists of only the excited
harmonic components. This is also depicted in Fig. 8
(left). Hence, the newly generated harmonics at ρ0 are
considered negligible and the input is defined as

u (t) = U (0) + U (7) ei2π7f0 + U (−7) e−i2π7f0

+ U (9) ei2π9f0 + U (−9) e−i2π9f0 . (A.1)

In the previous section, it has been established that
third order non-linearities have not been detected (see
Fig. 2). Therefore, it suffices to only consider second
order Volterra kernels. In [41] and (6) the second order
Volterra series in the frequency domain is defined as

follows

Θ (ρ, k) = G(1) (ρ, k)U (k)︸ ︷︷ ︸
linear

+

N∑
k1=−N+k

G(2) (ρ, k1, k − k1)U (2) (k1, k − k1)︸ ︷︷ ︸
quadratic

, (A.2)

where k = 1, . . . , N with k the harmonic number;
G(1) (k) is the first order kernel; G(2) (k1, k − k1) is the
second order kernel; N is the highest harmonic number
appearing in the output times the highest non-linear
contribution (N = 9·2); and U (2) (k1, k2) is the second-
order poly-spectrum defined as

U (2) (k1, k2) = U (k1) · U (k2) . (A.3)

The fundamental frequency of one period is f0 = 1.54
Hz. Consequently, f1, f2, |f1 − f2|, and f1 + f2
in terms of harmonic numbers are k = 7, 9, 2, 16,
respectively.

Appendix A.1. Calculation linear contribution

The total contributions on the different harmonics can
be calculated using (4) by substituting the harmonic
number, e.g., k = 7

Θ (ρ, 7) = G(1) (ρ, 7)U (7) +

18∑
k1=−11

G(2) (ρ, k1, 7− k1)U (k1) · U (7− k1) , (A.4)

which simplifies to

Θ (ρ, 7) = G(1) (ρ, 7)U (7)

+ 2G(2) (ρ, 0, 7)U (0)U (7) (A.5)

because the product in (A.3) and (A.4) is only non-
zero for k1 = 0. Also the other combinations can
be calculated, which results in the following non-zero
contributions for k = 9

Θ (ρ, 9) = G(1) (ρ, 9)U (9)

+ 2G(2) (ρ, 0, 9)U (0)U (9) , (A.6)

for k = 2

Θ (ρ, 2) = 2G(2) (ρ, 9,−7)U (9)U (−7) (A.7)

and for k = 16

Θ (ρ, 16) = 2G(2) (ρ, 9, 7)U (9)U (7) . (A.8)

Other non-zero contributions such as the complex
conjugates of the here shown harmonics are not
presented, which also holds for Θ (ρ, 14) and Θ (ρ, 18).
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The Volterra kernel G(1) equals the linear
transport in terms of a transfer function as defined in
[43]. Hence, this kernel G(1) is frequency dependent
and represents the best true linearized dynamics
whereas G(2) acts as a non-linear error on this
measurement. Note, that following the definitions
here these kernels G(1)and G(2) do not depend on the
amplitude of the inputs. Although it is not possible
to directly calculate G(2) (ρ, 0, 9) and G(2) (ρ, 0, 7) in
(A.5) and (A.6), it is possible to calculate the kernels
values at G(2) (ρ, 9,−7) and G(2) (ρ, 9, 7) using the
inter-modulations in (A.7) and (A.8), i.e.,

G(2) (ρ, 9,−7) =
1

2

Θ (ρ, 2)

U (9)U (−7)
, (A.9)

where the conjugate can be used U (7) = U (−7) and

G(2) (ρ, 9, 7) =
1

2

Θ (ρ, 16)

U (9)U (7)
. (A.10)

This also shows why they are so important as they
offer a near independent estimation of the second order
kernel. The values of this kernel are plotted in Fig. 6.
It clearly shows that the amplitude differences and
phase differences for ρ > 0.3 between G(2) (9,−7)
and G(2) (9, 7) are small. Hence, we conclude that
it is reasonable to assume that the points G(2) (0, f1)
and G(2) (0, f1) are close to G(2) (9,−7) and G(2) (9, 7).
Consequently, they can be replaced by their complex
values. It is then possible to calculate the linear
contributions by rewriting (A.5) resulting in

G(1) (ρ, 7) ≈ Θ (7, ρ)

U (7)
− 2G(2) (ρ, 0, 7)U (0) (A.11)

and for k = 9

G(1) (ρ, 9) ≈ Θ (9, ρ)

U (9)
− 2G(2) (ρ, 0, 9)U (0) . (A.12)

This allows to calculate the purely linear contribution
Θlin (ρ, k)

Θlin (ρ, k) = G(1) (ρ, k)U (k) , (A.13)

which only depend G(1). This calculation is used to
produce Fig. 7 in case of u (t) = Td (t) and Fig. A1 in
case of u (t) = P (t).

Appendix A.2. Calculation non-linear contribution

In the previous sub-section, the linear contributions
have been calculated. Here, using G(1) from (A.13) the
local non-linear contribution can be estimated, which
is called L

(2)
ρi→ρi+1 . This is graphically depicted in

Fig. 8(right). Locally the inter-modulation f1 + f2
(k = 16) is a combination of a linear and non-linear

component. For instance, if the Volterra kernels
between ρ1 and ρ2 are considered, then based on (6)
this results in

Θ (ρ2, 16) = L(1)
ρ1→ρ2 (16) Θ (ρ1, 16)

+ 2L(2)
ρ1→ρ2 (9, 7) Θ (ρ1, 9) Θ (ρ1, 7) , (A.14)

where the temperature measurement at ρ1 is defined as
Θ (ρ1, 16), which consist of four harmonic components
unlike U (16). Similar to (A.13), the linear change
between ρ1 and ρ2 of the Fourier coefficients is defined
as

Θlin (ρ2, 16) = L(1)
ρ1→ρ2 (16) Θlin (ρ1, 16) . (A.15)

In addition, based on (A.13) the following relationships
hold

Θlin (ρ1, 16) = G(1) (ρ1, 16)U (16)
Θlin (ρ2, 16) = G(1) (ρ2, 16)U (16)

. (A.16)

Combining the relationships in (A.16) and (A.15), the
local Volterra kernel can be calculated

L(1)
ρ1→ρ2 (16) =

G(1) (ρ2, 16)

G(1) (ρ1, 16)
. (A.17)

Similarly all the L(1)
ρi→ρi+1 (16) can be calculated. The

local non-linear dependence can now be calculated
between ρ1 and ρ2 based on (A.14) substituting (A.17),
which results in

L(2)
ρ1→ρ2 (9, 7) =

1

2

G(1) (ρ1, 16) Θ (ρ2, 16)−G(1) (ρ2, 16) Θ (ρ1, 16)

G(1) (ρ1, 16) Θ (ρ1, 9) Θ (ρ1, 7)
.

(A.18)

This is generalized for k = 16

L(2)
ρi→ρi+1

(9, 7) =

1

2

G(1) (ρi, 16) Θ (ρi+1, 16)−G(1) (ρi+1, 16) Θ (ρ1, 16)

G(1) (ρi, 16) Θ (ρi, 9) Θ (ρi, 7)
(A.19)

and for k = 2

L(2)
ρi→ρi+1

(9,−7) =

1

2

G(1) (ρi, 2) Θ (ρi+1, 2)−G(1) (ρi+1, 2) Θ (ρi, 2)

G(1) (ρi, 16) Θ (ρi, 9) Θ (ρi,−7)
(A.20)

This allows the calculation of the local strength of the
non-linearity, which resulted in Fig. 9.
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Figure A1. (color) (a-d) Amplitude and phase profiles of f1 and f2 of the original measured profiles (full), and the profiles
compensated for the non-linearities Θlin using G(2)(7, 9) and G(2)(−7, 9) (colors correspond to Fig. 7, but here P0 is used). They
are all calculated from P (t). The phase shows quite different behavior. Note that the for the calculation using the difference
frequencies |f1 − f2| an additionally the LPM has been applied.
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