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1 INTRODUCTION

Damage and fracture are important criteria in the design of products and processes. Tra-
ditional assessments of the formability of sheet metal materials are based on the appearance
of geometrical instabilities, the necking of the sheet. A commonly used method to predict
geometrical instabilities in sheet metal forming processes is the Forming Limit Curve (FLC).
However, the use of an FLC has some limitations in case of small radius over thickness ratios,
non proportional strain paths and non-traditional forming materials with less formability, such
as aluminium and high-strength steels. These materials often fail due to physical instabilities,
even before necking starts. For crash simulations the FLC is too conservative as also during
necking energy is absorbed.

Ductile damage models can be used complementary to the FLC approach to improve the
failure predictions. A nonlocal damage model will be presented in Section 2 and some results
will be shown in Section 3. The extension of this model to shells is discussed in Section 4.

2 NONLOCAL DAMAGE MODEL

Nonlocal damage models are used to avoid the mesh dependency problems of local damage
models. The nonlocal damage model presented here is based on [1, 2]. The local damage driving
variable z is a function of the local stress and strain history as defined in Equation 1. The
triaxiality g—; in this equation proves to be important factor [3].
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The nonlocal damage driving variable Z is obtained using a Helmholtz partial differential
equation with a Neumann boundary condition (Equation 2). [ is the internal length scale, which
controls the width of the localisation bands.
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z—1*’V?2=2 Vz-n=0 onl (2)

The evolution of history parameter x is according the Kuhn-Tucker loading-unloading con-
ditions.
k>0, Z—Kk<0; k(Z—kK)=0 (3)

The degradation of the material properties w is calculated from the history parameter k
using a damage evolution law. Here a linear law is used, the degradation initiates at x; and the
material fails completely at x,,.

KR — K;

w=0 for K<k w= ki <Kk <Ky w=1 for k> Ky (4)

Ry — Rj

The yield stress is calculated using a strain hardening function A, which competes with the

softening due to damage.
oy = (1 —w)h(ep) (5)

The nonlocal damage model is implemented using user subroutines into a commercial explicit
Finite Element code [4] as well as a private implicit code [5] using an operator split approach.
This method is relatively easy to implement into existing codes. The local and nonlocal damage
driving variables z and Z are updated only at the end of an increment. This means that the
degradation w is kept constant during an increment. Therefore the results become stepsize
dependent, but will converge for decreasing stepsize. The increment size used in an explicit
simulation is normally much smaller than used in an implicit simulation. Therefore the stepsize
dependency is negligible for explicit codes.

The discretisation of Equation 2 results in a symmetric linear system of equations, which
has to be solved every increment to calculate the nonlocal variable Z . The calculation time
of the nonlocal values is less than the time needed for one increment in an implicit simulation.
Contrary to this, for an explicit simulation the calculation of the nonlocal values takes more
time than an increment (depending on the problem size). Therefore, in order to reduce the
total calculation times using an explicit code, the nonlocal values are calculated only every n
increments (typically 100).

Cracks initiate as the degradation (w) is equal to one and there is no stiffness left. Crack
growth is often modelled by element erosion, i.e. failed elements are removed from the problem
and the simulation is continued on this updated geometry. Element erosion results in mass
loss and a faceted crack surface. This may have a strong influence on the local stress and strain
distributions and may lead to to numerical instabilities. This may result in convergence problems
using implicit integration, but is attractive for explicit codes due to its simplicity, compared to
alternative computational techniques to describe evolving cracks, such as remeshing [2].

The nonlocal model has a number of extra material parameters (I, K;, ky,,A,B) besides the
normal ones, which have to be determined experimentally. Microhardness measurements or
inverse modelling can be used for this purpose [3, 6], but no standard identification method
exists. The element size in the damaged areas should be smaller than the length scale to
capture the gradients properly in the nonlocal model. Ideally this length scale is related to
the microstructure. However, a small length scale leads to a large number of elements. In
practice the length scale might be chosen larger in order to decrease the problem size. Adaptive
remeshing of the damaged area might solve this problem [2].
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3 BENDING APPLICATION

The nonlocal model has been applied to a three point sheet bending case with a punch radius
of 0.2 mm and a die radius of 5 mm. The sheet of 1 mm thickness has been modelled with
40 plane strain elements in thickness direction. An elasto-plastic VonMises material model is
combined with the nonlocal damage model. The used material properties are x; = 0.05, k, =
0.5,A=3,B=0,h=983(c, + 4.1e72)%2%6. The length scale [ has been varied from 0.0 (local
damage) to 0.2 mm.
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Figure 1: Results of bending simulations. Left: w for [ = 0.05mm. Right: force-displacement diagram
for various [.

Figure 1 shows the resulting crack shape. During bending shearbands develop at the outer
fibers. This results in a crack inclined to the outer surface, which grows along the symmetry line
until separation of the parts. These shear bands disappear for larger values of the length scale
(I = 0.2mm) and the crack follows the symmetry line completely. From the force-displacement
graph can be seen that an increasing length scale leads to a more ductile response. These
detailed 2D simulations of bending (and combinations with tension) can serve as a reference for
simulations with shell elements.

4 SHELL ELEMENTS

For large scale simulations of forming or crash of sheet products shell elements are the most
efficient method. Shell elements have a limited description of the kinematics, as normals remain
straight during the deformation. Therefore these types of elements are not capable of describing
failure with through thickness shear bands as shown in Figure 1. However, often such local
details are not of interest and only the correct moment of failure and the energy absorption is
important. Furthermore the result should be independent of the used meshsize.

The extension of the nonlocal damage model from solid elements to shell elements is not
straight forward. The size of shells elements is normally larger than the sheet thickness. There-
fore it is not possible anymore to use the same length scale as in simulations with solid elements.
Often the nonlocal model is applied independently for every layer of integration points of the
shell element.

Even without damage the necking in simulations with shell elements is mesh size dependent
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as illustrated in Figure 2. The necking of a tensile bar with an imperfection has been modelled
with 2D solids and shells with the same plane strain boundary condition. In the 2D case the
neck has a fixed width where for the shells the neck has a width of one element, because the
thickness of two neighbouring elements is not coupled. The described nonlocal damage model
is not capable of solving this type of mesh dependency completely.
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Figure 2: Results of tensile test simulation of a strip of 15x1 mm. Left: force-displacement diagram.
Right: thickness distribution at displacement of 3 mm.

5 CONCLUSIONS

A nonlocal damage model has been presented, which gives mesh independent results for solid
elements. Some issues concerning the extension of this nonlocal damage models to shell elements
have been discussed. A solution for the observed problems with thin shells might be the use of
solid shells or cohesive zones [7].

ACKNOWLEDGEMENTS

This research was carried out under project number MC1.05205 in the framework of the
Strategic Research programme of the Netherlands Institute for Metals Research.

REFERENCES

[1] R. A. B. Engelen, M.G.D. Geers, and F.P.T. Baaijens. Nonlocal implicit gradient-enhanced elasto-
plasticity for the modelling of softening behavior. Int. J. Plasticity., 19:403-433, 2003.

[2] J. Mediavilla, R.H.J. Peerlings, and M.G.D. Geers. An integrated continuous-discontinuous approach
towards damage engineering in sheet metal forming processes. Eng. Frac. Mech., 73(7):895-916, 2006.

[3] A.M. Goijaerts, L.E. Govaert, and F.P.T. Baaijens. Evaluation of ductile fracture models for different
metals in blanking. J. Mat. Proc. Tech., 110:312-323, 2001.

[4] LTSC. LS-DYNA keyword user’s manual, 971 edition, 2007.
[5] DiekA development group. DiekA manual, 8.1 edition, 2006.

[6] A. Mkaddem, F. Gassara, and R. Hambli. A new procedure using the microhardness technique for
sheet material damage characterisation. J. Mat. Proc. Tech., 178:111-118, 2006.

[7] F. Cirak, M. Ortiz, and A. Pandolfi. A cohesive approach to thin-shell fracture and fragmentation.
Computer Methods in Applied Mechanics and Engineering, 194:2604-2618, 2005.



