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We present the first polynomial-time approximation scheme (PTAS) for the Minimum
Independent Dominating Set problem in graphs of polynomially bounded growth which
are used to model wireless communication networks.
The approach presented yields a robust algorithm, that is, it accepts any undirected graph
as input, and returns a (1 + ε)-approximate minimum independent dominating set, or a
certificate showing that the input graph does not satisfy the bounded growth property.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

This paper presents and discusses a Polynomial-Time
Approximation Scheme (PTAS) for the Minimum Indepen-
dent Dominating Set (Min-IDS) problem in wireless com-
munication networks.

A subset of vertices in a graph is independent if no two
vertices are connected by an edge. A subset of vertices is
called dominating if every vertex in the graph is either in
the subset, or adjacent to a vertex from the subset. We are
looking at the problem of finding a subset of vertices of
small cardinality that is both independent and dominating
in a graph that has a structure stemming from a wireless
communication topology.

From an application point of view, independent and
dominating sets in a communication network are impor-
tant structures, and many optimization approaches rely on
these [7]. In clustering schemes, independent sets result in
clusterheads that have local control of their cluster with-
out interference. Additionally, a dominating independent
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set based clustering scheme ensures that the entire net-
work is covered.

Next, we discuss some related work, followed by def-
initions and characterizations of wireless communication
graphs in Section 2. In Section 3, we present the algorithm
that yields a PTAS for the Minimum Independent Dominat-
ing Set problem in graphs that model wireless networks.
In Section 4, we discuss the result obtained, and also show
how to modify the algorithm towards a robust approach.
The paper concludes in Section 5.

1.1. Related work

Most of the work on optimization algorithms for and in
wireless networks has been done using geometric graphs
as underlying models for the communication network.
Here, Unit Disk Graphs (UDG) are probably the most
prominent class of graphs used [12]. These are defined as
the intersection graph of equal diameter disks in the Eu-
clidean plane. In [4], it is shown that many optimization
problems, including the Minimum Dominating and Max-
imum Independent Set problems, remain NP-hard even
when restricting the input to this class of graphs. Also,
on a general graph, a Minimum Independent Dominating
Set cannot be approximated within n1−ε unless P = NP [8].
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An important detail when using UDGs is the encod-
ing of the input instance. Basically, there are two ways
of describing a geometric intersection graph: by its adja-
cency and by its geometric information. Note that this is
a significant distinction because determining for a given
graph whether it is a disk graph is an NP-complete prob-
lem [1,10], and therefore computing feasible positions to
each node in a disk graph is also intractable.

In case geometric information is available, we can use
geometric separation and a shifting strategy to obtain a
PTAS for many problems on (Unit) Disk Graphs. This strat-
egy gives a PTAS for the Maximum Independent Set, Min-
imum Dominating Set, and Minimum Vertex Cover prob-
lems on UDGs [2,9], and the Minimum Connected Domi-
nating Set problem on UDGs [3]. Combined with a dynamic
programming approach, the shifting strategy also gives a
PTAS for the Maximum Independent Set problem on Disk
Graphs with arbitrary radii [6]. To the best of our knowl-
edge, even for the case of Unit Disk Graphs with given rep-
resentation, a PTAS for the Min-IDS problem is not known
in the literature [5].

Without geometric information, and for the signifi-
cantly larger class of graphs with polynomially bounded
growth, robust approximation schemes for the Maximum
Independent Set problem [16] and the Minimum Dominat-
ing Set problem [15] exist. For graphs of (polynomially)
bounded growth, any maximal independent set, e.g., cre-
ated by a simple greedy strategy, yields a constant-factor
approximative solution to both the Maximum Independent
Set and the Minimum Dominating Set problems [13]. It is
easy to see that this solution then also gives a feasible so-
lution to the Min-IDS problem, together with a constant
bound on the approximation guarantee.

2. Preliminaries

Generally speaking, a communication network is mod-
eled as an undirected graph G = (V , E), where the ver-
tices V represent the n := |V | devices or nodes, and two
nodes are connected if they can communicate directly with
one another.

Two vertices of a graph are called independent if they
are not adjacent to one another. A subset I ⊆ V is called
independent if all vertices are not connected. A subset D ⊆
V is called dominating if every vertex from V is contained
in this subset, or adjacent to a vertex from D .

A subset can be both independent and dominating.
Such a set is also called maximal independent set since
it cannot be extended by the addition of any other vertex
from the graph without violating the independence prop-
erty.

If we seek for a small subset of vertices that is both
dominating and independent, we call the resulting prob-
lem Minimum Independent Dominating Set problem (Min-

IDS). Since any maximal independent set also dominates a
graph, the Min-IDS problem is sometimes also referred to
as Minimum Maximal Independent Set problem. We would
like to point out that the Maximum Independent Dom-
inating Set problem is equivalent to finding a Maximum
Independent Set, which seeks a maximal independent set
of maximum size.
An algorithm that runs in polynomial time, and that
for a given problem always returns a feasible solution
of relative error no more than some α � 1 is called
α-approximation. A Polynomial-Time Approximation Scheme
(PTAS) is an algorithm which, in addition to an input in-
stance, requires a parameter ε > 0, and which then returns
a feasible solution with an approximation ratio of 1 + ε.
The running time of such algorithms is allowed to depend
on ε, but should be polynomial for fixed ε > 0. In our case,
a PTAS for the Min-IDS problem returns an independent
and dominating set of cardinality at most (1 + ε) times
the cardinality of an optimal solution.

We denote by Γ (v) the closed neighborhood of a vertex
v ∈ V , i.e., Γ (v) := {u ∈ V | (u, v) ∈ E} ∪ {v}. Analogously,
for V ′ ⊆ V , let Γ (V ′) := ⋃

v∈V ′ Γ (v). For r ∈ N, we call
Γr(v) := Γ (Γr−1(v)) the recursively defined rth neighbor-
hood of v ∈ V , with Γ0(v) := {v}.

2.1. Wireless communication graphs

The nature of wireless transmissions leads to a struc-
tured graph. We now introduce the class of graphs of poly-
nomially bounded growth to characterize wireless commu-
nication networks.

Definition 2.1. Let G = (V , E) be a graph. If there ex-
ists a function f (.) such that every r-neighborhood in G
contains at most f (r) independent vertices, then G is f -
growth-bounded. Furthermore, we say that G has polyno-
mially bounded growth if for some constant c � 1, f (r) is
bounded by a polynomial of maximal degree c, i.e., f (r) =
O (rc).

Note that the growth function f (.) only depends on
the radius of the neighborhood, and not on the number
of vertices in G . Thus, for constant r, the number of in-
dependent vertices in Γr(v) is bounded by a constant for
any v ∈ V . It is straightforward to verify that the bounded
growth property of a graph is closed under taking vertex-
induced subgraphs.

The above structure of polynomially bounded growth
captures the major graph classes used to model wire-
less networks, including Unit Disk Graphs [4], Quasi Disk
Graphs [11], and—leaving the disk shape behind—Coverage
Area Graphs [14].

2.2. Neighborhoods and partial solutions

For local neighborhoods, and subsets of the vertices
in general, we now define local or partial solutions. Let
P (V ) denote the set of all subsets of vertices in G , and let
D : P (V ) → P (V ) be a function that returns for a set V ′
a minimum cardinality independent dominating set in G .
In the following, we denote by D∗ an optimal solution to
the Min-IDS problem on G , in other words, D∗ := D(V ).

The function D(.) is always computed with respect to
the entire underlying graph G = (V , E). It may thus in-
clude vertices from outside the argument subset in its
returned solution, i.e., for a subset V ′ ⊂ V the inclusion
D(V ′) ⊆ V ′ needs not to hold. This can be seen in the
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Fig. 1. Example of a local solution D(Γ2(v)) = {u, v}.

example given in Fig. 1, where the black vertices rep-
resent an optimal independent dominating set of the 2-
neighborhood of v , and u /∈ Γ2(v). On the other hand, it is
easy to see that D(V ′) ⊆ Γ (V ′) always holds.

In order to improve readability, e.g., if the central ver-
tex of a neighborhood or a local solution is unambiguous,
we use the following shorthand notation: Dr := Dr(v) :=
D(Γr(v)) and Γr := Γr(v).

2.3. Computing and bounding local solutions

Let us now consider a graph G = (V , E) with polyno-
mially bounded growth, and let p denote the polynomial
growth function. Let Ir ⊆ Γr denote a maximal indepen-
dent set in this neighborhood. Then, Ir also dominates Γr ,
and by the definition of bounded growth, we obtain
∣∣D(Γr)

∣∣ � |Ir | � p(r).

Using this bound on the cardinality of the locally optimal
solutions, it becomes clear that we can obtain an optimal
solution Dr for this neighborhood Γr in polynomial time if
the radius r is bounded.

Lemma 2.2. Let G = (V , E) be of polynomially p-bounded
growth. For any neighborhood Γr , we can construct Dr in time
nO (p(r)) .

Further on, we will also need to describe the local
neighborhoods and their distance with respect to each
other by the following definition.

Definition 2.3. For a graph G = (V , E), let S = {S1, . . . , Sk}
be a collection of subsets of vertices Si ⊆ V , i = 1, . . . ,k,
with the following property: for any two vertices s ∈ Si
and s̄ ∈ S j , i 	= j,

d(s, s̄) > d

holds. We refer to S as a d-separated collection of subsets.

Clearly, for d � 0, the subsets of a d-separated collection
are mutually disjoint. With respect to the Min-IDS prob-
lem, we get the following lower bound for a d-separated
collection of subsets, d � 2, and independent dominating
sets for the respective subsets.

Lemma 2.4. For a d-separated collection S = {S1, . . . , Sk} in a
graph G = (V , E), with d � 2, it is

|D∗| �
k∑

i=1

∣∣D(Si)
∣∣.
Proof. For each subset Si ∈ S , consider the neighborhood
Γ (Si). By definition, these are pairwise disjoint, and thus
we get

|D∗| �
k∑

i=1

∣∣D∗ ∩ Γ (Si)
∣∣.

Furthermore, any vertex outside Γ (Si) has distance d � 2
to all vertices in Si . Thus, D∗ ∩ Γ (Si) has to dominate Si ,
and is independent in G .

Also, the set D(Si) ⊂ Γ (Si) is independent and domi-
nates Si in G . However, since D(Si) uses a minimum num-
ber of vertices to do so, we obtain |D∗ ∩ Γ (Si)| � |D(Si)|,
and the claim follows. �

Note that, in the above lemma, the overall union of the
partial dominating sets D(Si), i = 1, . . . ,k, needs not be an
independent set. For example, consider the graph given in
Fig. 1, and suppose that we have two copies of it, where
the rightmost vertices u of each copy are connected. The
two neighborhoods Γ2(v) are 2-separated, while the union
of the two partial dominating sets D(Γ2(v)) does not sat-
isfy the independence property.

Enlarging the subsets of a d-separated collection, while
preserving some bound on the cardinality of the partial so-
lutions, we immediately obtain the following upper bound.

Corollary 2.5. Let S = {S1, . . . , Sk} be a d-separated collection
in G = (V , E), d � 2, and let T1, . . . , Tk be subsets of V with
Si ⊆ Ti for all i = 1, . . . ,k. If there exists a bound ρ � 1 such
that |D(Ti)| � ρ · |D(Si)| holds for all i = 1, . . . ,k, then
∣∣∣∣∣

k⋃

i=1

D(Ti)

∣∣∣∣∣ � ρ · |D∗|.

Proof. |⋃k
i=1 D(Ti)| �

∑k
i=1 |D(Ti)| � ρ · ∑k

i=1 |D(Si)| �
ρ · |D∗|. �
3. Approximation algorithm

In this section, we present an algorithm that yields a
PTAS for the Min-IDS problem on polynomially bounded
growth graphs. The approach works in two stages. The first
part of the approach follows [15], where a PTAS for the
Minimum Dominating Set problem is given. However, the
solution set D returned by this algorithm needs not be an
independent set. The second stage then consists of a repair
algorithm that restores the independence property without
increasing the solution set too much.

3.1. Local independent dominating sets

Consider Algorithm 1. The main part of it iteratively
constructs independent dominating sets for the neighbor-
hoods Γr and stops increasing the radius r of the neigh-
borhoods if

|Dr+3| � (1 + ε) · |Dr |
holds. Then, the solution D and the set of remaining ver-
tices is updated, respectively. In this context, we call D(i)

r+3
a partial solution, and the color i also gives the iteration.



158 J.L. Hurink, T. Nieberg / Information Processing Letters 109 (2008) 155–160
Input: G = (V , E) poly. growth-bounded, ε > 0
Output: Dominating Set D

1: D := ∅; i := 0;
2: while V 	= ∅ do
3: Pick v ∈ V ;
4: ri := 0;
5: while |D(i)

ri+3(v)| > (1 + ε) · |D(i)
ri

(v)| do
6: ri := ri + 1;
7: end while
8: Color vertices in D(i)

ri+3(v) with color i;

9: D := D ∪ D(i)
ri+3(v);

10: V := V \ Γri+3(v);
11: i := i + 1;
12: end while

Algorithm 1. Dominating set.

It is easy to see that the set D dominates the entire
graph G since at each iteration i, the removed neighbor-
hood Γri+3(v) is dominated by D(i)

ri+3(v). Furthermore, the
radius of the largest neighborhood we need to consider is
bounded by a constant that only depends on the growth
function and ε > 0, and especially not on the size of the
graph, as follows.

Lemma 3.1. Let G = (V , E) be a graph of polynomially p-
bounded growth. There exists a constant c = c(ε) such that
ri < c for every i.

Proof. Recall that ri denotes the radius of the neighbor-
hood considered when the criterion to stop expanding a
neighborhood is met. Now, suppose that r < ri is divisible
by three, in this case we have

p(r + 3) � |Dr+3| > (1 + ε) · |Dr | > · · · > (1 + ε)r/3 · |D0|
= ( 3

√
1 + ε

)r
,

which eventually has to be violated. The other two cases
follow the same argumentation. �

Due to Corollary 2.5, we see that D satisfies the in-
equality |D| � (1 + ε)|D∗|. However, D may not be an
independent set, and we resolve this issue next.

3.2. Restoring global independence

Consider the graph G[D] induced by the dominating
set D . If there are still edges present in G[D], we resort
to Algorithm 2, which removes non-independent vertices,
and adds independent ones.Vertices in D that are not in-
dependent are called conflicting vertices.

Let v ∈ D be a conflicting vertex, we then solve the
conflicts by removing v and restoring domination again by
greedy addition of vertices that are independent with re-
spect to the remaining ones in D .

Lemma 3.2. Algorithm 2 removes all conflicts involving the ar-
gument vertex v, and does not introduce any new conflicting
vertices into D.

Proof. Clearly, removing v from D removes respective
conflicts. The set V ′ , by construction, is 1-separated to D
Input: G = (V , E), Dominating set D , v ∈ D
1: Assert that v is conflicting;
2: D := D \ {v};
3: V ′ := V \ Γ (D);
4: Compute maximal independent set I on G[V ′];
5: D := D ∪ I;

Algorithm 2. Repair independence (v).

in G , and we can thus add a maximal independent set
I ⊂ V ′ to D that is not adjacent to D . Since I dominates
V ′ , the overall set D ∪ I dominates V in G . �

At each invocation of Algorithm 2, we can bound the
number of added vertices as follows.

Lemma 3.3. Let G = (V , E) be a graph of p-bounded growth.
A single invocation of Algorithm 2 increases the cardinality of D
by at most p(1).

Proof. It is easy to see that V ′ ⊂ Γ (v) holds, otherwise D
is not a dominating set. Any independent set in Γ (v) con-
sists of at most p(1) vertices due to the bounded growth
property of G , and therefore |I| � p(1). �

In order to repair a solution, we create a candidate set
C ⊂ D by adding conflicting vertices according to their
color as follows. Initially, start with C being empty. Con-
sider the first iteration, i.e., D(0)

r0+3 denotes the independent
dominating set constructed in this iteration. Looking at the
overall constructed solution D , we add all conflicting ver-
tices from D(0)

r0+3 to C . We then proceed iteratively until
all colors have been accounted for. Note that in each itera-
tion we only need to consider conflicting vertices involving
higher colors. It is straightforward to verify that D \ C is an
independent set in G after all partial solutions have been
considered.

As for the cardinality of C , we have the following ob-
servation.

Observation 1. |C | � ε · |D∗|.

Proof. In order to prove the observation, we proceed
alongside the colors given to the vertices in Algorithm 1.
Consider the local neighborhoods Γr0 and independent

dominating sets D(0)
r of the first iteration. Then, D(0)

r0+3 is
the partial solution of this iteration such that
∣∣D(0)

r0+3

∣∣ � (1 + ε) · ∣∣D(0)
r0

∣∣.

We see that any conflicting vertex with color 0 has to be
outside of Γr0+1 = Γ (Γr0), that is,

C ∩ D(0)
r0+3 ⊆ D(0)

r0+3 \ Γr0+1

holds. On the other hand, the interior part D(0)
r0+3 ∩ Γr0+1

dominates the neighborhood Γr0 , and therefore
∣∣D(0)

r0+3 ∩ Γr0+1
∣∣ �

∣∣D(0)
r0

∣∣,

as D(0)
r0 is an optimal independent dominating set for the

same neighborhood.



J.L. Hurink, T. Nieberg / Information Processing Letters 109 (2008) 155–160 159
Partitioning D(0)
r0+3 now yields

∣∣D(0)
r0+3

∣∣ = ∣∣D(0)
r0+3 \ Γr0+1

∣∣ + ∣∣D(0)
r0+3 ∩ Γr0+1

∣∣

� (1 + ε) · ∣∣D(0)
r0

∣∣,

and we can conclude that
∣∣C ∩ D(0)

r0+3

∣∣ �
∣∣D(0)

r0+3 ∩ Γr0+1
∣∣ � ε · ∣∣D(0)

r0

∣∣

has to hold.
We continue with the same argumentation for the local

subsets of the succeeding colors. Denote by Ci the set of
remaining conflicting vertices after the removal of vertices
with colors lower than i. Keeping in mind that vertices
with lower color no longer induce conflicts, we see that
for every iteration i, we obtain
∣∣Ci ∩ D(i)

ri+3

∣∣ �
∣∣D(i)

ri+3 \ Γ (Γri )
∣∣ � ε · ∣∣D(i)

ri

∣∣.

Let imax denote the last iteration of the first stage of the
approximation Algorithm 1, which is then also the high-
est color used. Using the fact that {D(0)

r0 , . . . , D(imax)
rimax

} is a
1-separated collection of partially optimal subsets, we get

|C | �
imax∑

i=1

∣∣D(i)
ri+3 \ Γ (Γri )

∣∣ � ε ·
imax∑

i=1

∣∣D(i)
ri

∣∣ � ε · |D∗|,

as claimed. �
After having repaired all conflicts in C , the overall inde-

pendent dominating set D constructed by the approach is
then of cardinality

|D| � |D| + (
p(1) − 1

) · |C | � (
1 + p(1) · ε) · |D∗|,

again where D denotes the (1 + ε)-approximate dominat-
ing set returned by the first stage of the approach.

The overall run time of the algorithm is dominated
by the dominating set construction in Algorithm 1. The

time complexity of this algorithm is nO ( 1
ε log 1

ε ) for ε > 0,
see [15].

4. Robustness

We now present a simple way to make the above ap-
proximation schemes robust. In this case, the algorithm
accepts any undirected graph as valid input, and either re-
turns a desired approximate solution, or outputs a polyno-
mial certificate showing that the input graph does not sat-
isfy the structural assumption of p-bounded growth [17].

In the previous section, we have seen that the approxi-
mation algorithm actually yields a PTAS when the instance
reflects a graph of polynomially p-bounded growth. We
thus continue the discussion only for the case that the
undirected graph G = (V , E) presented to the algorithm
does not satisfy the characterization of a polynomially
bounded growth graph.

Observe that during the first stage of the approxima-
tion, the polynomial runtime of the approximation algo-
rithms results from the bound p(r) on the size of an in-
dependent set, i.e., |Dr | � p(r). If, during execution of the
algorithm, a neighborhood Γr contains an independent set
of size larger than p(r), we can use this neighborhood as
a polynomial certificate showing non-membership in the
class of p-Bounded Growth Graphs. An independent dom-
inating set that gives an upper bound on the size of Dr

can be quickly computed by a greedy strategy, and if this
independent set satisfies the bound p(r), we can continue
without problems.

In the second stage, locally verifying that the size of the
independent set added while resolving conflicts meets the
p(1) bound is straightforward.

Generally speaking, we can thus apply the approxima-
tion scheme to any undirected graph which is believed to
be of polynomially bounded growth, without risk of failure,
i.e., exponential running time, if this assumption is wrong.

5. Conclusion

In this paper, we looked at the Minimum Independent
Dominating Set problem in wireless communication net-
works. Our results are summarized by the following theo-
rem.

Theorem 5.1. There exists a PTAS for the Min-IDS problem on
polynomially growth bounded graphs. In addition to the desired
approximation guarantee, this PTAS requires only adjacency in-
formation of the input graph and the involved algorithms are
robust.

The approximation algorithm works by exploiting the
fact that the graph can be divided into local neighbor-
hoods, for which an optimal, partial solution can be ob-
tained. While this approach is already used for related
problems, feasibility when combining the partial solutions
is an issue for sets that have to remain both independent
and dominating. We solve this issue by a post-processing
repair algorithm.

The run time of the (1 + ε)-approximation that gives

the PTAS is nO ( 1
ε log 1

ε ) for ε > 0.
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