

Architecture Design Space Exploration for
Streaming Applications Through Timing

Analysis
Maarten H. Wiggers, Nikolay Kavaldjiev, Gerard J. M. Smit, Pierre G. Jansen

Department of EEMCS,
University of Twente, the Netherlands

{wiggers, nikolay, smit, jansen}@cs.utwente.nl

Abstract. In this paper we compare the maximum achievable throughput of different
memory organisations of the processing elements that constitute a multiprocessor system
on chip. This is done by modelling the mapping of a task with input and output channels
on a processing element as a homogeneous synchronous dataflow graph, and use
maximum cycle mean analysis to derive the throughput. In a HiperLAN\2 case study we
show how these techniques can be used to derive the required clock frequency and
communication latencies in order to meet the application’s throughput requirement on a
multiprocessor system on chip that has one of the investigated memory organisations.

Introduction

Advances in silicon technology enable multi-processor system-on-chip (MPSoC) devices to
be built. MPSoCs provide high computing power in an energy-efficient way, making them
ideal for multimedia consumer applications. Multimedia applications often operate on one
or more streams of input data, for example: base-band processing, audio/video (de)coding,
and image processing. An MPSoC consists of Processing Elements (PE). For scalability
reasons we envision that in the near future MPSoCs will include a Network-on-Chip (NoC)
for communication between PEs, as i.e. [1].

Multimedia applications can be modelled conveniently using a task graph, where the
vertices represent functions and the edges data dependencies. The data streams through the
graph from function to function.

A subclass of multimedia applications operates under hard real-time constraints:
throughput and latency requirements are put on the inputs and outputs of the task graph. To
satisfy these requirements, methods are needed that allow reasoning, predicting and
guaranteeing the application performance for a given mapping on a multi-processor
architecture. Using such an analysis method different architectures can be compared, so that
for given timing requirements the architecture that runs at the lowest clock frequency can
be found.

This paper analyses the temporal behaviour of multimedia applications mapped on a
multiprocessor architecture by modelling the mapping with Homogeneous Synchronous
DataFlow (HSDF) graphs and applying the associated analysis techniques. The contribution
of this paper is that it shows how these analysis techniques can be used for design space
exploration, to find an architecture instance given the timing constraints and given an
optimisation criterion (in our case clock frequency) which has its influence on the energy
efficiency. We explore different memory organisations for the PEs and their consequences
for the clock frequency of the processor and the requirements imposed on the NoC.

The approach is based on the following assumptions: i) an upper bound on the task’s
execution time can be given; ii) upper bounds on the data communication latencies can be
given. Finding a tight upper bound on the execution time of a piece of code is a hard
problem, but using techniques as presented by Li this can be done [2]. When multiple tasks
are mapped on the same processor, then a scheduling policy needs to be applied on this
processor that provides an upper bound on the waiting time of the task. An upper bound on
the communication latencies can be given by a communication infrastructure that provides
guaranteed latency such as [1][3].

Poplavko [4] uses SDF inter-processor communication (IPC) graphs [5] to find minimal
buffer sizes by accurately modelling the Æthereal NoC [3] and analysing the temporal
behaviour of a JPEG decoder mapped on an MPSoC consisting of ARM processors and the
Æthereal NoC. We do not aim for buffer minimization but aim for an architecture that
meets the applications timing constraints at low energy consumption.

An untimed HSDF graphs is similar to a Marked Graph Petri Net [6]. The time
semantics applied here for HSDF graphs is similar to time Petri Nets [7].

The organisation of this paper is as follows. In Section 1, the organisation of the
MPSoC template is given. The HSDF model of computation and its associated analysis
technique is presented in Section 2. In Section 3, the different memory organisations for the
PEs are presented and their throughput is analysed, after which in Section 4 the
consequences are described when an application is mapped over multiple PEs. Section 5
describes a case study in which the data processing part of a HiperLAN\2 receiver is
mapped on a MPSoC consisting of a number of MONTIUM processing tiles [8], after which
we conclude in Section 6.

1. System Organization

An abstract representation of the multiprocessor system considered in this paper is given in
Figure 1. It consists of multiple Processing Elements (PEs) that are connected to a
Network-on-Chip (NoC) through Network Interfaces (NI). A PE includes a processor,
instruction memory, and data memory; the processor is for instance a domain-specific or
general purpose processor. One or several tasks (τi) can execute on a PE. When
communicating tasks are mapped on the same PE then the communication channel between
them is mapped on the local memory. When communicating tasks are mapped on different
PEs then the channel is mapped over the local memories of both PEs and the NoC is used to
transport data from one PE to the other. Tasks only access the PE’s local memory.

PE1 PE2 PEn

RTOS

τ1

τ5

τ2 τ3

τ4

NoC

NI NI NI

Figure 1. An abstract representation of a multiprocessor system

The NoC provides reliable, in-order, and guaranteed latency services on connections. A
connection is a channel between NIs, and can go over routers in the NoC. The size of the
data items on the connection is known. Guaranteed latency provides an upper bound on the
time between the moment that the first word of the data item is written on the connection
and the moment that the last word is available for reading. Communication over the NoC is
event-triggered: data can be transferred as soon as both NIs (sending and receiving) are
ready for communication on the same connection.

The NI hides the NoC details from the PEs. It also has DMA (direct memory access)
functionality and can transmit data from the PE’s memory on the network and write data
received from the network in the memory.

The organisation of a PE together with its NI is presented in Figure 2. It consists of a
processor, instruction memory, data memory and a NI. The NI can operate in parallel to the
processor and accesses the memory for inter-PE communication. Furthermore, the NI has
separate sending and receiving parts that operate independently. In this case three parties
can request memory access at a particular time – PE, sending and receiving part of the NI.
An extension to more than one input or output connection can be further considered, but for
clarity reasons it will not be discussed in this paper.

Network on Chip

connection2connection1

arbiter

memory
instruction

memory
data

processor Element
Processing

Network
Interface

Figure 2. PE organization

Conflicts between the three parties requesting memory access can be solved through
scheduling of memory accesses or through multiple memory ports. Several options for
solving the conflicts are discussed in this paper. Each of the options is studied as an HSDF
model of a single task running on a PE. Throughput is derived for the models and
compared.

2. Homogeneous Synchronous DataFlow

HSDF [9] is a model of computation in which multimedia applications can be conveniently
modelled and with which analysis techniques are well suited to derive the throughput and
latency of hard real-time applications.

The vertices of an HSDF graph are called actors. Actors communicate by exchanging
tokens over channels which are represented by the edges of the graph. The channels are
unbounded first-in first-out (FIFO) buffers. In the HSDF graph, tokens are represented as
black dots on the edges.

The actors in the HSDF graph represent some activity. An HSDF actor has a firing rule
that specifies the number of tokens that needs to be present on the input channels. When the

firing rule is met the actor is enabled after which it can fire. The difference between the
firing time and the finish time is the execution time. At the finish time the actor atomically
removes a predefined number of tokens from its input channels and places a predefined
number of tokens on its output channels. By definition the actors in a homogeneous SDF
graph always consume and produce a single token on a channel; SDF graphs allow the
modelling of so-called multi-rate applications. For clarity reasons we restrict the present
discussion to HSDF graphs, a similar approach can be taken with SDF graphs. In all the
HSDF graphs the token consumption and production rates are omitted for clarity reasons.
Self-timed execution of an HSDF graph means that the actor fires as soon as it is enabled.

Figure 3 shows an example HSDF graph that models a bounded FIFO buffer of capacity
two data items. The actors A1 and A2 are the producer and consumer on this FIFO. The
number of tokens on the cycle between the actors corresponds to the capacity of the FIFO.
A self edge with one initial token enforces that the previous firing of the actor must have
finished before the next firing can start. A self-edge is required to model state over different
firings of the same actor.

A1

ET1

A2

ET2
Figure 3 HSDF model of a FIFO

HSDF graphs have two important properties: (1) monotonicity, and (2) periodicity.
Self-timed execution of an HSDF graph is monotonic [10]. This means that decreasing
actor execution times will only lead to non-increasing actor firing times, and thus will only
lead to increasing or unchanged throughput.

After a transient phase in the beginning, the self-timed execution of a strongly
connected HSDF graph will exhibit periodic behaviour. The throughput of the HSDF graph
after the transient phase can be derived using Maximum Cycle Mean (MCM) analysis of a
strongly connected HSDF graph [11]. The mean of a simple cycle c in an HSDF graph is
defined as the sum of the execution times (ET) of the actors, a, on the cycle divided by the
number of tokens on the cycle. The MCM of an HSDF graph G, λG, is found by calculating
the cycle mean of every simple cycle c:

�
�
�

�

�

�
�
�

�

�

=
�
∈

∈)(

)(
max

ctokens

aET
ca

Gc
Gλ (1)

The throughput T of the graph G is:

G
GT

λ
1= (2)

For example, the HSDF graph in Figure 3 contains three cycles and its λG is
max[ET1/1, ET2/1, (ET1+ET2)/2], while the throughput is the inverse of the λG.

3. Modelling of a Single Task on a PE

This section discusses a single task running on a PE. The task receives and sends its data
from/to other PEs. It is shown how the task including the communication can be modelled
as an HSDF graph, taking into account the PE architecture.

The processor and the sending and receiving part of the NI access the data memory in
parallel and contention may occur on the memory port. In order to resolve the contention,
arbitration on the memory port is used. The arbitration can be done at two levels: token
level and word level. At token level the arbitration is done on a coarse granularity. Access
is granted to either the processor or the NI until it finishes its operation: processing, sending
or receiving of a data item respectively. At word level the arbitration is done on a finer
granularity. Access to the memory is granted on a word-by-word basis.

Intuition says that arbitration on the word level is advantageous if either the processor
or the NI does not access the memory every clock cycle. This will for instance occur for
control-oriented tasks, and for processors with a large register set or multi-cycle operations.
In this paper we only consider token level arbitration, because our focus is on the data
processing part of the application that frequently accesses the memory. For a discussion on
word level arbitration see [12].

Figure 4 shows how a dataflow graph of an application is mapped on our MPSoC. The
application is partitioned into three tasks: τ1, τ2 and τ2. We call the dataflow graph in Figure
4 a mapping-unaware graph. Information about the mapping is included in the graph by
extending the mapping-unaware graph with actors that model the communication latency.

Figure 5 shows how the mapping-unaware graph of a single task, τi, is extended with
the knowledge that the tasks are mapped on different PEs and that communication between
the tasks has a certain (guaranteed) latency. The annotated times (ETCi-1, ETτi, and ETCi)
represent either the upper-bound on the execution time in the case of the tasks or the upper-
bound on the latency of moving a data item from one memory to another memory.

��

�� �� ��

�� ��

Figure 4. Mapping of an application graph on a MPSoC.

Ci-1 τi
Ci

ETCi-1 ETτi ETCi

Figure 5. The dataflow between receiving part of the NI, processor, and sending part of the NI.

The graph from Figure 5 still does not contain all the information about the PE
architecture. It has to be further extended with information about the memory organisation
and the arbitration on the data memory port.

We consider three data memory organisations in the following subsections: (1) a single-
port, (2) dual-port or (3) three-port data memory organisation. For each organisation an
HSDF model is constructed and achievable throughput is compared. In a later section it is
shown how a model of a complete application running on multiple PEs can be derived
using the results for a single PE.

3.1. Arbitration on 1 Memory Port

Assume a PE has one single-port data memory. To resolve the conflicts between the three
entities (task, input connection and output connection) that access the memory a static
schedule S0 can be applied. Figure 6 presents this schedule as an HSDF graph. Because of
the 1-to-1 mapping one can view the actors modelling either the logical entities as
mentioned or the processor, receiving part of the NI, and sending part of the NI. The token
can be interpreted as a grant for memory usage: the actor that currently possesses the token
owns the memory. The edges model the data dependencies between the entities: memory
access should be first granted to the input connection Ci-1, then to the task on the processor
τi and then to the output connection Ci. The execution time of an actor equals the maximal
time that the corresponding entity will keep the memory.

�
���

��

�
�

����

��
	�

����
�

Figure 6. HSDF graph corresponds to schedule S0

Excluding the self edges the graph contains one cycle with one token. Applying Eq. (1)
and (2) the throughput of the graph is derived:

CiiCi
SCiiCiS ETETET

TETETET
++

=→++=
−

− τ
τλ

1
1

1
00

If a lower bound T on the throughput has to be guaranteed, then from the above
equation we see that the following must hold:

T
ETETET CiiCi

1
1 ≤++− τ

3.2. Arbitration on 2 Memory Ports

When the PE’s data memory is implemented as a dual-port memory or two separate single-
port memories, then two entities can access it simultaneously. Note that in the case of
multiple single-port memories combined with a task that carries state from one firing to the
next firing special care needs to be taken for storing and retrieving the state. We assume
here that the task is a function that does not have state (the self-edge only enforces
sequential firings). Figure 7 and Figure 8 present HSDF graphs of two contention free
schedules, S1 and S2, for that memory organization. There are two tokens circulating in the

graph that correspond to the two memory ports. The actor τi corresponds to task i, and
actors Ci-1 and Ci correspond to the task’s input and output connection respectively.

������ �
��	

�
��
��

�
�

����

Figure 7 The HSDF graph corresponding to schedule S1.

�����

����

�
��

��

���

��

Figure 8 The HSDF graph corresponding to schedule S2

Applying Eq. (1) and (2) the throughput of the schedules is:

CiiCi
S

CiiCi
S ETETET

T
ETETET

++
=→++=

−

−

τ
τλ

1

1 2

2 11
,

() ()CiiiCi
SCiiiCiS ETETETET

TETETETET
++

=→++=
−

− ττ
ττλ

,max

1
,max

1
1 22

The throughput of S1 is greater than or equal to the throughput of S2. This is because in
S2 the task is granted access to both memory ports.

If a lower bound T on the throughput has to be guaranteed, then from the above
equation it is seen that the following must hold:

T
ETETET CiiCi

2
1 ≤++− τ , for S1;

T
ETET

T
ETET

Cii

iCi

1

1
1

≤+

≤+−

τ

τ
, for S2

3.3. Arbitration on 3 Memory Ports

When the PE data memory is implemented as a three port memory or three separate single-
port memories, then all three actors can access a memory simultaneously. Arbitration on the
memory ports is not needed. It is only necessary to keep the data dependencies. Two HSDF
graphs, S3 and S4, for that memory organisation are shown in Figure 9 and Figure 10.

����
��

����

���� 	�

����
�

Figure 9 This HSDF graph corresponds to schedule S3

���
�����

���

���� �� ��

Figure 10 This HSDF graph corresponds to schedule S4.

Applying Eq. (1) and (2) we derive the throughput of the schedules:

CiiCi
S

CiiCi
S ETETET

T
ETETET

++
=→++=

−

−

τ
τλ

1

1 3

3 33
,

�
	

�
�

 ++
=→�

	

�
�

 ++=
−

−

2
,

2
max

1

2
,

2
max

1

1
44

CiiiCi
S

CiiiCi
S ETETETET

T
ETETETET

ττ
ττλ

The throughput of schedule S3 is greater than or equal to the throughput of schedule S4.
If a lower bound T on the throughput has to be guaranteed, then from the above

equations it is seen that the following must hold:

T
ETETET CiiCi

3
1 ≤++− τ , for S3;

T
ETET

T
ETET

Cii

iCi

2

2
1

≤+

≤+−

τ

τ
, for S4

Extending this discussion to multiple tasks mapped on the processor and thus multiple

connections can either be done by extending the static order schedule with these tasks and
connections or applying i.e. Time Division Multiple Access (TDMA) arbitration, as
presented by Bekooij [12], on the processor and NIs.

3.4. Comparison

Table 1 summarises the result for the memory organisations discussed above. For each of
them the table gives the throughput and the constraints on the actors’ execution times
implied by an application throughput bound T.

Table 1 Summary of the results

T
ETETET CiiCi

1
1 ≤++− τ

CiiCi
S ETETET

T
++

=
− τ1

1

2

()CiiiCi
S ETETETET

T
++

=
− ττ ,max

1

1
2

T
ETETET CiiCi

2
1 ≤++− τ

T
ETET

T
ETET

Cii

iCi

1

1
1

≤+

≤+−

τ

τ

CiiCi
S ETETET

T
++

=
− τ1

3

3

�
	

�
�

 ++
=

−

2
,

2
max

1

1
4

CiiiCi
S ETETETET

T
ττ

T
ETETET CiiCi

3
1 ≤++− τ

T
ETET

T
ETET

Cii

iCi

2

2
1

≤+

≤+−

τ

τ

CiiCi
S ETETET

T
++

=
− τ1

0

1

Throughput Constraints

S0

S1

S2

S3

S4

Three-
port

Dual-
port

Single-
port

Mem.

To compare the throughput results we assume the same actors’ execution times (ETCi-1,
ETτi and ETCi) in the five cases. This results in a lattice:

�
�

�

�
�

�

�

≤

≤

<

<<

34

12

42

310

SS

SS

SS

SSS

TT

TT

TT

TTT

S0 has lowest throughput and S3 has highest throughput. As can be expected an increase
in memory ports (or the number of separate memories used) leads to an increase of the PE
throughput.

Given an application throughput bound T, the maximal achievable processor utilisation
can be derived from the constraints in Table 1. Higher processor utilization leads to lower
clock frequencies and therefore to lower power consumption. Processor utilisation ρ is
defined as the ratio between the time a processor is busy and the period at which the data
arrives. For each data item a processor is busy for time ETτi . The data arrival period is 1/T.
Thus ρ=T*ETτi. Taking into account that the throughput bound requires that the execution
times for all the actors are smaller than or equal 1/T, from the constraints we derive the
maximal achievable ETτi and thus the maximal achievable processor utilisation. The results
are given in Table 2. S0 has worst utilisation while S1, S3 and S4 allow for 100% utilisation
of the processor.

Table 2 Maximal achievable processor utilization

1

1

1

()CiCi ETETT +− −11

() ()[]CCi ETTETT ∗−∗− − 1,1min 1

Maximal processor utilisation

S0

S1

S2

S3

S4

Three-port

Dual-port

Single-port

Mem.

In the same way the latency requirements can be compared. Consider the constraints
inequalities in Table 1 and assume that the processing time ETτi is fixed. Then it can be
seen that the latency requirements (ETCi-1 and ETCi) are most difficult for S0 and most
relaxed for S3 and S4.

4. Application Model

The previous section discussed how a single task of an application can be modelled such
that information about the PE architecture where the task runs is included in the HSDF
graph. Here the model is extended to the entire application.

Consider the application shown in Figure 4 and assume that all its tasks (τ1, τ2 and τ3)
are mapped on PEs with a single-port memory. The HSDF graph of the mapping is shown
in Figure 11. It is constructed by extending the original application graph with the
communication latencies and the constraints between the different actors due to the
scheduling on the memory port. The communication latency ETCi is the time that it takes to
move a token (data item) from the data memory in PEi to the data memory in PEi+1.

C0

τ1

C1

τ2

C2

τ3

C3

ETτ1 ETτ2 ETτ3

ETC0 ETC1 ETC2 ETC3
Figure 11 An HSDF graph of the application from Figure 4 assuming PEs with a single-port memory and
direct communication between the tasks

This graph contains three simple cycles each with a single token. Applying Eq. (1) and
(2) for this HSDF graph we find that the throughput of the application is:

{ }
()CiiCi

i

G ETETET
T

++
=

−∈
τ1

3,2,1
max

1

The last can be restated in the following way: the necessary and sufficient condition for
the application having throughput equal to or higher than Τ is:

T
ETETET CiiCi

1
1 ≤++− τ , for { }3,2,1∈i

This system of inequalities gives the relation between the global application throughput
requirement Τ and the constraints for a particular mapping of the tasks.

When the communication between PEs is not direct and data is buffered in between
then the application HSDF graph is changed as shown in Figure 12 for a buffer capacity of
n data items. For example, data is written through the network to a logical FIFO properly
implemented on a memory that is larger than the local memories and later read again
through the network. The execution times of the send (S) and receive (R) actors equal the
latency guarantees given by the NoC for transmission of the data to and from this
secondary memory plus the time required to update the FIFO administration.

Ri

τi

Si

ETτi

TRi TSi

Ri+1

τi+1

Si+1

ETτ1+1

TRi+1 TSi+1

n

Figure 12 Buffered communication between the PEs. It is assumed storage with FIFO organization and
capacity of n data items

Figure 13 presents an HSDF model of the application from Figure 4 assuming PEs with
a dual-port memory using schedule S2. It is derived by extending the original application
graph with details about the PEs architecture as in Figure 8. The communication between
the PEs is direct.

C0

τ1

C1

τ2

C2

τ3

C3

ETC0 ETC1 ETC2 ETC3

ETτ1 ETτ2 ETτ3

Figure 13 HSDF graph of the application from Figure 4 assuming PEs with dual-port memory and direct
communication between the tasks.

The graph contains six simple cycles each with one token. Applying the Eq. (1) and (2)
the throughput of the application is derived:

{ }
() ()[]CiiiCi

i

G ETETETET
T

++
=

−∈
ττ ,max

1

1
3,2,1

If a lower bound T of the application throughput has to be guaranteed then the
following should hold:

T
ETET

T
ETET

Cii

iCi

1

1
1

≤+

≤+−

τ

τ
, for { }3,2,1∈i

In the same way HSDF models for the other PE organizations can be constructed. It is
not necessary for all PEs to have the same organization, the architecture can be
heterogeneous as for each PE a corresponding HSDF graph is substituted. Figure 14 shows
an example HSDF graph of the same application assuming that the first PEs has a dual-port
memory with schedule S1, the second PE has a three-port memory with schedule S4, and the
PE where task τ3 is mapped on has a single port memory.

C0

τ1

C1

τ2

C2

τ3

C3

ETτ1

ETC0 ETC1 ETC2 ETC3

ETτ2 ETτ3

Figure 14 HSDF graph of the application from Figure 4 assuming PEs with dual port memory and direct
communication between the tasks

The graph contains 4 simple cycles – three with two tokens on them and one with a
single token. According Eq. (1) and (2) the throughput of the application is:

�
�

�
�
�

�
�
	

�
�

 ++
�
	

�
�

 +
�
	

�
�

 +
�
	

�
�

 ++
=

1
,

2
,

2
,

2
max

1

322110 CiCCiiCCiC

G
ETETETETETETETETETET

T
ττττ

Each of the four terms in the max function corresponds to one of the cycles in the
graph. If lower bound T of the application throughput has to be guaranteed then it should be
provided:

T
ETETET

T
ETET

T
ETET

T
ETETET

CiC

Ci

iC

CiC

1

2

2

2

32

2

1

10

≤++

≤+

≤+

≤++

τ

τ

τ

τ

5. HiperLAN/2 Example

In this section a HiperLAN/2 receiver is used as an example to demonstrate how HSDF
throughput analysis is applied for real streaming applications. HiperLAN/2 [13] is a
wireless local area network (WLAN) standard, based on Orthogonal Frequency Division
Multiplexing (OFDM), which is defined by the European Telecommunications Standards
Institute (ETSI).

The HiperLAN/2 receiver will run on three PEs. The PEs are MONTIUM processing tiles
[8] – domain-specific processors for the domain of mobile communications. The tiles
communicate through a NoC as presented in [1].

The application is partitioned in three tasks [14] each of which will run on a separate
PE. The dataflow graph is given in Figure 15. The tasks τ1, τ2 and τ3 implement the base
band processing of the HiperLAN/2 receiver. The graph is annotated with the sizes of the
data items on the communication channels and the number of cycles required for processing
the data item on a Montium. In order to request a guaranteed latency connection the data
item size is required. The number of cycles enables calculation of the task execution times.
Further the graph is a homogeneous SDF graph: all consumption and production rates are 1.

τ1 τ2 τ3

OUTIN

τ1 - Frequency offset correction
τ2 - Inverse OFDM
τ3 - Equalization, Phase offset correction and De-mapping

T=4us

256 B 256 B 192 B 36 B

67 204 110

Data item size
[Byte]

Processing duration
[clock cycles]

Figure 15 Process graph of a HiperLAN/2 receiver

A HiperLAN/2 receiver has to handle a new OFDM symbol (data item) every 4� s. This
is the throughput requirement of this application. It is required that the application has a
throughput greater than or equal to 1/(4 us) = 250 OFDM symbols per ms.

The MONTIUM tile has a single-port memory and the NoC provides direct
communication without buffering. Therefore, the HSDF graph from Figure 11 can be
directly used for modelling the application. Here the arriving OFDM symbols correspond to
tokens arriving to the application. The lower bound on the application throughput is Τ=250
[token/ms].

Assuming that the three tiles run on a clock frequency of 100 MHz and considering the
number of cycles per firing given in Figure 15 we can calculate the execution times for the
processing actors in the HSDF graph: ETτ1=0.67us, ETτ2=2.04us, ETτ3=1.1us. Taking into
account the throughput requirement Τ and system of inequalities given for the graph in
Figure 11,

T
ETETET CiiCi

1
1 ≤++− τ , for { }3,2,1∈i ,

we derive the constraints for the communication latencies:

sETET

sETET

sETET

CC

CC

CC

µ
µ
µ

9.2

96.1

33.3

32

21

10

≤+
≤+
≤+

One possible solution of this system of inequalities is: ETC0=2.35us, ETC1=0.98us,
ETC2=0.98us, ETC3=1.92us. These are the upper bounds on the latency guarantees to be
requested from the network. The utilisation of the MONTIUM tiles will be: ρ1=0.17, ρ2=0.51,
ρ3=0.28.

In the case that the network cannot provide the requested latency guarantees we can
take the lowest possible latency that can be provided. Now starting with these fixed
latencies the system of inequalities will give the minimum task execution times ETτ1, ETτ2
and ETτ3 and consequently the minimum processor clock frequencies.

If the MONTIUM tiles had dual-port memory, then according Table 2 it would be
possible to achieve 100% processor utilisation (applying S1). Assume that this is the case.
In order to keep the tiles busy all the time, the tasks execution times are set equal to the
arrival period of the data items: ETτ1=ETτ2=ETτ3=ET=4us. Taking into account the number
of cycles given in Figure 15 the tiles clock frequencies are calculated: f1=16.75MHz,
f2=51MHz, f3=27.5MHz. Considering schedule S1, the graph in Figure 7 is used for
constructing the HSDF graph, given in Figure 16, of the application running the three tiles.

C0

τ1

C1

τ2

C2

τ3

C3

ETτ1 ETτ2 ETτ3

ETC0 ETC1 ETC2 ETC3
Figure 16 HSDF graph of a HiperLAN/2 receiver running on three Montium tiles assuming the tiles had dual-
port memories organized according schedule S1

The throughput equations for the graph in Figure 7 are already derived. They give the
necessary and sufficient conditions for guaranteeing a lower bound on the application
throughput T:

T
ETETET CiiCi

2
1 ≤++− τ , for { }3,2,1∈i ,

Since the tasks execution times are already fixed, for the communication latencies it
must hold that:

sETET

sETET

sETET

CC

CC

CC

µ
µ
µ

4

4

4

32

21

10

≤+
≤+
≤+

One possible solution of this system of inequalities is: ETC0=2us, ETC1=2us, ETC2=2us,
ETC3=2us. Compared with the results for the real MONTIUM architecture we see that with
dual-port memory and S1 the highest possible tile utilisation is achieved while the latency
requirements are the same or relaxed.

6. Conclusion

We have shown how different memory organisations of the processing elements that
constitute an MPSoC can be compared based on their throughput. Further we have shown
how the throughput of a mapping can be evaluated by first modelling the application as an
HSDF graph and then extending this graph with actors that model the effects of the
mapping, e.g. the latency of the communication channels.

Even though we have only presented an application that is organised as a pipe, we
believe that this approach can be extended in a straightforward way to include arbitrary
application graph topologies.

One of the strengths of this approach is that we can model the application as well as the
mapping on possibly heterogeneous PEs in a single graph in an intuitive way. Throughput
can be derived from this graph by analytical means, allowing for tool support, which will
be necessary for larger or multi-rate graphs.

HSDF graphs can only model static behaviour, in the sense that it cannot model
dynamic token consumption or production rates or dynamic (data dependent) execution
times. How we can accurately model and analyse the interaction between the control and
data parts of the application is therefore future work.

References

[1] Nikolay Kavaldjiev, Gerard J. M. Smit, Pierre G. Jansen, "A Virtual Channel Router for On-chip
Networks", Proceedings of IEEE International SOC Conference, pp. 289-293, September 2004.

[2] Y-T. S. Li and S. Malik, Performance analysis of real-time embedded software, ISBN 0792383826,
Kluwer academic publishers, 1999.

[3] E. Rijpkema, K.G.W. Goossens, and A. Radulescu, Trade Offs in the Design of a Router with Both
Guaranteed and Best-Effort Services for Networks on Chip. In Proceedings of DATE’03, 350-355,
ACM, 2003.

[4] P. Poplavko, T. Basten, M. Bekooij, J. van Meerbergen, and B. Mesman. “Task-Level Timing Models
for Guaranteed Performance in Multiprocessor Networks-on-Chip”, CASES’03, October 2003.

[5] S. Sriram, and S.S. Bhattacharyya, Embedded Multiprocessors: Scheduling and Synchronization, Marcel
Dekker, Inc., 2002.

[6] T. Murata, Petri Nets: Properties, Analysis, and Applications. In Proceedings of the IEEE, vol. 77, no. 4,
pp. 541-580, April 1989.

[7] A. Cerone and A. Maggiolo-Schettini, Time-based expressivity of time Petri nets for system
specification. Theoretical Computer Science 216, pp. 1-53, 1999

[8] Heysters P.M., Smit G.J.M. & Molenkamp E. “A Flexible and Energy-Efficient Coarse-Grained
Reconfigurable Architecture for Mobile Systems”, The Journal of Supercomputing, volume 26, issue 3,
Kluwer Academic Publishers, November 2003.

[9] E.A. Lee, and D.G. Messerschmitt, Synchronous Data Flow. In Proceedings of the IEEE, vol. 75, pp.
1235-1245, 1987.

[10] M. Bekooij, O. Moreira, P. Poplavko, B. Mesman, M. Pastrnak, and J. van Meerbergen. Predictable
embedded multi-processor system design. In Scopes 2004, 8th International workshop on software and
compilers for embedded systems. Amsterdam, The Netherlands, 2-3 September 2004.

[11] F. Baccelli, G. Cohen, G.J. Olsder, and J-P. Quadrat, Synchronization and Linearity. New York: Wiley,
1992.

[12] M. Bekooij, S. Parnar, and J. van Meerbergen, Performance guarantees by simulation of process
networks. To appear in Scopes 2005.

[13] ETSI, Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Physical (PHY) layer, ETSI TS
101 475 V1.2.2 (2001-02), 2001.

[14] Gerard K. Rauwerda, Paul M. Heysters, Gerard J.M. Smit, “Mapping Wireless Communication
Algorithms onto a Reconfigurable Architecture”, Journal of Supercomputing, Kluwer Academic
Publishers, December 2004.

[15] Pascal T. Wolkotte, Gerard J.M. Smit, L.T. Smit, “Partitioning of a DRM receiver”, Proceedings of the
9th International OFDM-Workshop, pp. 299-304, Dresden, September 2004.

