Architecture Design Space Exploration for
Sreaming Applications Through Timing
Analysis

Maarten H. Wiggers, Nikolay Kavaldjiev, Gerard J. M. Smit, Pierre G. @anse
Department of EEMCS
University of Twente, the Netherlands
{wiggers, nikolay, smit, jansen} @cs.utwente.nl

Abstract. In this paper we compare the maximum achievabieutthput of different
memory organisations of the processing elementstestitute a multiprocessor system
on chip. This is done by modelling the mapping ¢disk with input and output channels
on a processing element as a homogeneous synckratetaflow graph, and use
maximum cycle mean analysis to derive the througHpua HiperLAN\2 case study we
show how these techniques can be used to deriveetiigred clock frequency and
communication latencies in order to meet the appbtia’s throughput requirement on a
multiprocessor system on chip that has one ofrthestigated memory organisations.

Introduction

Advances in silicon technology enable multi-processor system-or(MiRBoC) devices to
be built. MPSoCs provide high computing power in an energy-effievagt making them
ideal for multimedia consumer applications. Multimedia applicatiotenadperate on one
or more streams of input data, for example: base-band processirngyimedi (de)coding,
and image processing. An MPSoC consists of Processing ElerREf)tsHor scalability
reasons we envision that in the near future MPSoCs will includehadxk-on-Chip (NoC)
for communication between PEs, as i.e. [1].

Multimedia applications can be modelled conveniently using a tagkhgmhere the
vertices represent functions and the edges data dependencies.alsieedahs through the
graph from function to function.

A subclass of multimedia applications operates under hard realdonstraints:
throughput and latency requirements are put on the inputs and outputs sktgeafah. To
satisfy these requirements, methods are needed that allow rggspnedicting and
guaranteeing the application performance for a given mapping on aprogdéssor
architecture. Using such an analysis method different architecturd® aompared, so that
for given timing requirements the architecture that runs atotlest clock frequency can
be found.

This paper analyses the temporal behaviour of multimedia applicatiapped on a
multiprocessor architecture by modelling the mapping with Homogen®gnshronous
DataFlow (HSDF) graphs and applying the associated anadg$isitjues. The contribution
of this paper is that it shows how these analysis techniques aasebtdor design space
exploration, to find an architecture instance given the timingtents and given an
optimisation criterion (in our case clock frequency) which hamilsence on the energy
efficiency. We explore different memory organisations forREs and their consequences
for the clock frequency of the processor and the requirements imposed on the NoC.

The approach is based on the following assumptions: i) an upper bound orkthe tas
execution time can be given; ii) upper bounds on the data communicaéoaiés can be
given. Finding a tight upper bound on the execution time of a piece ofisaaéard
problem, but using techniques as presented by Li this can be done E).Wittiple tasks
are mapped on the same processor, then a scheduling policy needapuiée on this
processor that provides an upper bound on the waiting time of the task. Arboppdron
the communication latencies can be given by a communication mftase that provides
guaranteed latency such as [1][3].

Poplavko [4] uses SDF inter-processor communication (IPC) graphs fisptminimal
buffer sizes by accurately modelling the Athereal NoCaf8] analysing the temporal
behaviour of a JPEG decoder mapped on an MPSoC consisting of ARMsorscasd the
Athereal NoC. We do not aim for buffer minimization but aim for @higecture that
meets the applications timing constraints at low energy consumption.

An untimed HSDF graphs is similar to a Marked Graph Petri [§pt The time
semantics applied here for HSDF graphs is similar to time PetriNets

The organisation of this paper is as follows. In Section 1, the orgjanisaf the
MPSoC template is given. The HSDF model of computation and itziag=d analysis
technique is presented in Section 2. In Section 3, the different memganyisations for the
PEs are presented and their throughput is analysed, after whictectiorS 4 the
consequences are described when an application is mapped over nRigpl&ection 5
describes a case study in which the data processing part gieaLAN\2 receiver is
mapped on a MPSoC consisting of a number oNMum processing tiles [8], after which
we conclude in Section 6.

1. System Organization

An abstract representation of the multiprocessor system cortsidettes paper is given in

Figure 1. It consists of multiplé€rocessing Elements (PEs) that are connected to a
Network-on-Chip (NoC) throughNetwork Interfaces (NI). A PE includes a processor,
instruction memory, and data memory; the processor is for instadoenain-specific or
general purpose processor. One or several tagkscdn execute on a PE. When
communicating tasks are mapped on the same PE then the communitatinal between

them is mapped on the local memory. When communicating tasksageed on different

PEs then the channel is mapped over the local memories of both PEs and the NoC is used to
transport data from one PE to the other. Tasks only access the PE’s local memory.

@
®
RTOS @ @

PE, PE, [------ PE,
NI NI NI

NoC

Figure 1. An abstract representation of a multipssor system

The NoC provides reliable, in-order, and guaranteed latency seoricesnections. A
connection is a channel between Nls, and can go over routers in th& NoGize of the
data items on the connection is known. Guaranteed latency provides arboppeéron the
time between the moment that the first word of the data itemriiten on the connection
and the moment that the last word is available for reading. Comatiom over the NoC is
event-triggered: data can be transferred as soon as both NIisn¢gsamdi receiving) are
ready for communication on the same connection.

The NI hides the NoC details from the PEs. It also has DMA¢tdimemory access)
functionality and can transmit data from the PE’'s memory ométeork and write data
received from the network in the memory.

The organisation of a PE together with its NI is presented in é&igult consists of a
processor, instruction memory, data memory and a NI. The NI can@pegarallel to the
processor and accesses the memory for inter-PE communication.rimarinethe NI has
separate sending and receiving parts that operate independentlis tade three parties
can request memory access at a particular time — PE, semtingceiving part of the NI.
An extension to more than one input or output connection can be further cedslulgrfor
clarity reasons it will not be discussed in this paper.

Processing

instruction
memory processor| Element

data
memory

arbiter

Network
Interface |

connectionfL connection?

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

8 Network on Chip g

Figure 2. PE organization

Conflicts between the three parties requesting memory aceesbe solved through
scheduling of memory accesses or through multiple memory portsrabeygions for
solving the conflicts are discussed in this paper. Each of the optietsdied as an HSDF
model of a single task running on a PE. Throughput is derived for the snaddl
compared.

2. Homogeneous Synchronous DataFlow

HSDF [9] is a model of computation in which multimedia applicati@arslze conveniently
modelled and with which analysis techniques are well suited to dévéhroughput and
latency of hard real-time applications.

The vertices of an HSDF graph are called actors. Actors comneifigaexchanging
tokens over channels which are represented by the edges afapite §he channels are
unbounded first-in first-out (FIFO) buffers. In the HSDF graph, tolkeresrepresented as
black dots on the edges.

The actors in the HSDF graph represent some activity. An H&i#¥ has a firing rule
that specifies the number of tokens that needs to be present on thehisupuels. When the

firing rule is met the actor is enabled after which it cae. fThe difference between the
firing time and the finish time is the execution time. At finesh time the actor atomically
removes a predefined number of tokens from its input channels and plpcedeéined
number of tokens on its output channels. By definition the actors in a leoewgs SDF
graph always consume and produce a single token on a channel; &S gilow the
modelling of so-called multi-rate applications. For clarity omaswe restrict the present
discussion to HSDF graphs, a similar approach can be taken Bhg&phs. In all the
HSDF graphs the token consumption and production rates are omittddrityr reasons.
Self-timed execution of an HSDF graph means that the actor fires as soanheasltled.
Figure 3 shows an example HSDF graph that models a bounded FIFO buffer afycapaci
two data items. The actors A1 and A2 are the producer and consuntes &iiFHO. The
number of tokens on the cycle between the actors corresponds to thigyaaiptae FIFO.
A self edge with one initial token enforces that the previous fiointhe actor must have
finished before the next firing can start. A self-edge is reduio model state over different

firings of the same actor.

ET, ET,
Figure 3 HSDF model of a FIFO

HSDF graphs have two important properties: (1) monotonicity, angdgpdicity.
Self-timed execution of an HSDF graph is monotonic [10]. This mdsatsdiecreasing
actor execution times will only lead to non-increasing actarditimes, and thus will only
lead to increasing or unchanged throughput.

After a transient phase in the beginning, the self-timed execwf a strongly
connected HSDF graph will exhibit periodic behaviour. The throughpiiedd SDF graph
after the transient phase can be derived using Maximum Cyeden YMCM) analysis of a
strongly connected HSDF graph [11]. The mean of a simple cyiclean HSDF graph is
defined as the sum of the execution times (ET) of the a&oos) the cycle divided by the
number of tokens on the cycle. The MCM of an HSDF g@pkg, is found by calculating
the cycle mean of every simple cycte

e S

1)
cG| tokens(c)
The throughput T of the graph G is:
1
T, =— 2
Y (2)

For example, the HSDF graph in Figure 3 contains three cycldsitamg is
max[ET1/1, ET2/1, (ET1+ET2)/2], while the throughput is the inverse of¢he

3. Modelling of a Single Task on a PE

This section discusses a single task running on a PE. The tasleseaed sends its data
from/to other PEs. It is shown how the task including the communicediorbe modelled
as an HSDF graph, taking into account the PE architecture.

The processor and the sending and receiving part of the NI @beedata memory in
parallel and contention may occur on the memory port. In order d&tveethe contention,
arbitration on the memory port is used. The arbitration can be dame devels: token
level and word level. At token level the arbitration is done on a e@aenularity. Access
is granted to either the processor or the NI until it finishespésation: processing, sending
or receiving of a data item respectively. At word level tHatation is done on a finer
granularity. Access to the memory is granted on a word-by-word basis.

Intuition says that arbitration on the word level is advantageouthdrehe processor
or the NI does not access the memory every clock cycle. THisowinstance occur for
control-oriented tasks, and for processors with a large regetter sulti-cycle operations.
In this paper we only consider token level arbitration, becauseogus fis on the data
processing part of the application that frequently accessesdimory. For a discussion on
word level arbitration see [12].

Figure 4 shows how a dataflow graph of an application is mapped on Go@®IH he
application is partitioned into three tasks:1, andt,. We call the dataflow graph in Figure
4 a mapping-unaware graph. Information about the mapping is included graghie by
extending the mapping-unaware graph with actors that model the communidatnmy.la

Figure 5 shows how the mapping-unaware graph of a singletiagk,.extended with
the knowledge that the tasks are mapped on different PEs and timticmation between
the tasks has a certain (guaranteed) latency. The annotated Eges ETt, and ET)
represent either the upper-bound on the execution time in the dhsetasks or the upper-
bound on the latency of moving a data item from one memory to another memory.

!

Figure 4. Mapping of an application graph on a MESo

ET., ETr, ET,

Figure 5. The dataflow between receiving part effth, processor, and sending part of the NI.

The graph from Figure 5 still does not contain all the informatiooutabhe PE
architecture. It has to be further extended with information aboun#meory organisation
and the arbitration on the data memory port.

We consider three data memory organisations in the following subsedil) a single-
port, (2) dual-port or (3) three-port data memory organisation. Fair egyanisation an
HSDF model is constructed and achievable throughput is compared. &ér adetion it is
shown how a model of a complete application running on multiple PEs cderibed
using the results for a single PE.

3.1. Arbitration on 1 Memory Port

Assume a PE has one single-port data memory. To resolve thetsobétween the three
entities (task, input connection and output connection) that accessetnery a static
schedule §can be applied. Figure 6 presents this schedule as an HSDF geaplis® of
the 1-to-1 mapping one can view the actors modelling either thiealoentities as
mentioned or the processor, receiving part of the NI, and sending phet Nf. The token
can be interpreted as a grant for memory usage: the actauthatly possesses the token
owns the memory. The edges model the data dependencies between itge gremory
access should be first granted to the input connection Ci-1, then tskhert the processor
r and then to the output connection Ci. The execution time of an actos ¢lg@ahaximal
time that the corresponding entity will keep the memory.

Figure 6. HSDF graph corresponds to schedyle S

Excluding the self edges the graph contains one cycle with one tokelyingpigg. (1)
and (2) the throughput of the graph is derived:

1
Ae =ET, +ETr, +ET, - T¢ =
e @ % ET,,+ETr, +ET,

If a lower bound T on the throughput has to be guaranteed, then from the above
equation we see that the following must hold:

ET, ,+ETr +ET, < %

3.2. Arbitration on 2 Memory Ports

When the PE’s data memory is implemented as a dual-port memtwp separate single-
port memories, then two entities can access it simultaneouslg. tNat in the case of
multiple single-port memories combined with a task that castae from one firing to the
next firing special care needs to be taken for storing andviegi¢he state. We assume
here that the task is a function that does not have state (thedgelfonly enforces
sequential firings). Figure 7 and Figure 8 present HSDF grapltoofcontention free
schedules, Sand S, for that memory organization. There are two tokens circulatirigein

graph that correspond to the two memory ports. The actmrresponds to task and
actors @; and G correspond to the task’s input and output connection respectively.

ETg, ET, ETe,

Figure 8 The HSDF graph corresponding to schedule S
Applying Eq. (1) and (2) the throughput of the schedules is:

G =ETa +ETT+ET, o _ 2
2 2 S ET,,+ETr, +ET, "’
1

As =maxET,, +ETr, ETr, +ET,) -~ T, =
% A{ETeis o)~ Ts maxET,_, + ETr,,ETr, +ET,)

The throughput of Sis greater than or equal to the throughput 0fT8is is because in
S, the task is granted access to both memory ports.

If a lower bound T on the throughput has to be guaranteed, then from the above
equation it is seen that the following must hold:

ET,, +ETr, < 1
2 T
ET,,+ETr, +ET, < T for §; 1 for S
ETr, +ET, < T

3.3. Arbitration on 3 Memory Ports

When the PE data memory is implemented as a three port membrg® separate single-
port memories, then all three actors can access a memory simultaneobisigtién on the
memory ports is not needed. It is only necessary to keep thdefadadencies. Two HSDF
graphs, $and g, for that memory organisation are shown in Figure 9 and Figure 10.

ET., , ET, ET,,

Figure 10 This HSDF graph corresponds to schedule S
Applying Eq. (1) and (2) we derive the throughput of the schedules:

1 = ETe, +ET7, +ETy _ 3
S 3 % ET,,+ETr, +ET,’
A =ma ET,, +ETr, 1ETri +ETy) T = 1
: 2 2 :){ETG L +ETr, ETr, +ET j
ma 2 ’ 2

The throughput of schedulg B greater than or equal to the throughput of schedule S
If a lower bound T on the throughput has to be guaranteed, then from the above
equations it is seen that the following must hold:

3 ET,, +ETr, < 2
ET,, +ETr, +ET, < = for S; 2T ,for§
ETr, +ET, < =

Extending this discussion to multiple tasks mapped on the processdrusnichultiple
connections can either be done by extending the static order schdtiulbese tasks and
connections or applying i.e. Time Division Multiple Access (TDMapitration, as
presented by Bekooij [12], on the processor and NIs.

3.4. Comparison

Table 1 summarises the result for the memory organisationssdest above. For each of
them the table gives the throughput and the constraints on the amtersition times
implied by an application throughput bound T.

Table 1 Summary of the results

Mem. Throughput Constraints
Single- SO T, = 1 ET, ., +ETr +ET, <~
port ET,, +ETr +ET, T
Dual- g1 Tg, = 2 ET,, +ETr, +ET, < 2
port ET,, +ETr, + ET, T

1

1
S2 T, = ET., +ETr, <=
" maxET,, +ETr,, ETr, +ET,) o T
ETr, +ETg sE
T
- 3 3
Three- S3 Tss = ETq, +ETr +ETy <—
port ET,, +ETT +ET T
S4 T, = ET., +ETr, SE
" ma{ Ela, +ET7, ETZ +ETg j o T
2 2 ETr, +ETy4 STE

To compare the throughput results we assume the same agtagtien times (Ed;.1,
ET. and ET) in the five cases. This results in a lattice:
<Tg <Tg,
<TS4
<Tg
<Tg

o

S has lowest throughput and as highest throughput. As can be expected an increase
in memory ports (or the number of separate memories used) teaddricrease of the PE
throughput.

Given an application throughput bound T, the maximal achievable processatiatil
can be derived from the constraints in Table 1. Higher proces$patitin leads to lower
clock frequencies and therefore to lower power consumption. Procedsatiati o is
defined as the ratio between the time a processor is busy andithee gtewhich the data
arrives. For each data item a processor is busy for time Efie data arrival period is 1/T.
Thusp=T*ET.;. Taking into account that the throughput bound requires that the execution
times for all the actors are smaller than or equal 1/T, ftwencbnstraints we derive the
maximal achievable Eiland thus the maximal achievable processor utilisation. The results
are given in Table 2.oShas worst utilisation while;SS; and S allow for 100% utilisation
of the processor.

Table 2 Maximal achievable processor utilization

Mem. Maximal processor utilisation

Single-port g 1_T(ETCi—1+ ETCi)
Dual-port s1 1

s2 min[(1-TCET,,,),A-TCET,)]
Three-port g3 1

s4 1

In the same way the latency requirements can be compared. Cahgid®nstraints
inequalities in Table 1 and assume that the processing timasHixed. Then it can be

seen that the latency requirements d&Tand ET;) are most difficult for $ and most
relaxed for $and S.

4. Application M odel

The previous section discussed how a single task of an application caode#ed such
that information about the PE architecture where the task rumligled in the HSDF
graph. Here the model is extended to the entire application.

Consider the application shown in Figure 4 and assume that abkts ta 1, andts)
are mapped on PEs with a single-port memory. The HSDF graibfe ehapping is shown
in Figure 11. It is constructed by extending the original appticagraph with the
communication latencies and the constraints between the diffactots due to the
scheduling on the memory port. The communication latengy iEThe time that it takes to
move a token (data item) from the data memory int®@ e data memory in RE

Figure 11 An HSDF graph of the application from W 4 assuming PEs with a single-port memory and
direct communication between the tasks

This graph contains three simple cycles each with a single t8kghying Eq. (1) and
(2) for this HSDF graph we find that the throughput of the application is:

_ 1

max(ETe., + ET7, +ETg)

The last can be restated in the following way: the necesadrgudficient condition for
the application having throughput equal to or higher than

ET,.+ETr, +ET, < % for i 0{1,23}

This system of inequalities gives the relation eswthe global application throughput
requirementl and the constraints for a particular mapping eftdsks.

When the communication between PEs is not diredtdata is buffered in between
then the application HSDF graph is changed as shiowigure 12 for a buffer capacity of
n data items. For example, data is written throughrietwork to a logical FIFO properly
implemented on a memory that is larger than thallmeemories and later read again
through the network. The execution times of theds8) and receive (R) actors equal the
latency guarantees given by the NoC for transmissb the data to and from this
secondary memory plus the time required to upded-tFO administration.

Figure 12 Buffered communication between the PEss lassumed storage with FIFO organization and
capacity of n data items

Figure 13 presents an HSDF model of the applicdtimm Figure 4 assuming PEs with
a dual-port memory using schedulg 8 is derived by extending the original applicati
graph with details about the PEs architecture dsigare 8. The communication between
the PEs is direct.

ETo ET.,

Figure 13 HSDF graph of the application from Figdrassuming PEs with dual-port memory and direct
communication between the tasks.

The graph contains six simple cycles each withtoken. Applying the Eq. (1) and (2)
the throughput of the application is derived:

_ 1

T =
° X (ETe +ETr,).(ET7, + ET,)]

If a lower bound T of the application throughputshim be guaranteed then the
following should hold:

ET,, +ETr <=
1T for i 0{1.23}
ET7, +ETy <=

In the same way HSDF models for the other PE orgdinins can be constructed. It is
not necessary for all PEs to have the same orgamzathe architecture can be
heterogeneous as for each PE a corresponding H&IDR ¢ substituted. Figure 14 shows
an example HSDF graph of the same application assguttmat the first PEs has a dual-port
memory with schedule;Sthe second PE has a three-port memory with séb&juand the
PE where tasks; is mapped on has a single port memory.

Figure 14 HSDF graph of the application from Figdr@ssuming PEs with dual port memory and direct
communication between the tasks

The graph contains 4 simple cycles — three with tak®ns on them and one with a
single token. According Eq. (1) and (2) the thrqugfof the application is:

_ 1

T. =
€ ma{(ET., +ET7, + ETClj (ETCl +ETr, j [ETri + ETCZJ [ETCZ +ETr, +ET,, H
2 ’ 2 ’ 2 ’ 1

Each of the four terms in the max function corresfsoto one of the cycles in the
graph. If lower bound T of the application throughpas to be guaranteed then it should be
provided:

ET., +ETr, +ET,, STE

2
ETe, + ETT <=

ETr, +ET,, s%

ET., +ETr, +ET,, s%

5. Hiper LAN/2 Example

In this section a HiperLAN/2 receiver is used aseaample to demonstrate how HSDF
throughput analysis is applied for real streamimgpliaations. HiperLAN/2 [13] is a
wireless local area network (WLAN) standard, basadOrthogonal Frequency Division
Multiplexing (OFDM), which is defined by the Eurage Telecommunications Standards
Institute (ETSI).

The HiperLAN/2 receiver will run on three PEs. TRES are MNTIUM processing tiles
[8] — domain-specific processors for the domainnafbile communications. The tiles
communicate through a NoC as presented in [1].

The application is partitioned in three tasks [&4Eh of which will run on a separate
PE. The dataflow graph is given in Figure 15. Task$1,, T2 andts implement the base
band processing of the HiperLAN/2 receiver. Thepbreés annotated with the sizes of the
data items on the communication channels and thebauof cycles required for processing
the data item on a Montium. In order to requestiargnteed latency connection the data
item size is required. The number of cycles enatddsulation of the task execution times.
Further the graph is a homogeneous SDF graphoadiunption and production rates are 1.

Data item size
[Byte]

ﬁ
-

256 B 256 B 192B 36B

Processing duration
[clock cycles]

11 - Frequency offset correction
12 - Inverse OFDM
13 - Equalization, Phase offset correction and Depiay

Figure 15 Process graph of a HiperLAN/2 receiver

A HiperLAN/2 receiver has to handle a new OFDM spifolata item) everyus. This
is the throughput requirement of this applicatitins required that the application has a
throughput greater than or equal to 1/(4 us) =@5®OM symbols per ms.

The MoNTIUM tile has a single-port memory and the NoC providéisect
communication without buffering. Therefore, the HS@Qraph from Figure 11 can be
directly used for modelling the application. Hemne arriving OFDM symbols correspond to
tokens arriving to the application. The lower bowmdthe application throughput 1250
[token/ms].

Assuming that the three tiles run on a clock freguyeof 100 MHz and considering the
number of cycles per firing given in Figure 15 wanalculate the execution times for the
processing actors in the HSDF graph:£0.67us, ET,=2.04us, ETz=1.1us. Taking into
account the throughput requireménand system of inequalities given for the graph in
Figure 11,

ET, +ETr, +ET, < % for i 0{123},

we derive the constraints for the communicatioariaies:

ET,, +ET,, < 3335
ET,, +ET., < 19645
ET., +ET., < 2945

One possible solution of this system of inequalitis: ETc0=2.35us, E€;=0.98us,
ETc2=0.98us, EEts=1.92us. These are the upper bounds on the latgumasantees to be
requested from the network. The utilisation of BhenTium tiles will be:p;=0.17,p,=0.51,
p3=0.28.

In the case that the network cannot provide thelesigd latency guarantees we can
take the lowest possible latency that can be peakidNow starting with these fixed
latencies the system of inequalities will give thenimum task execution times BTET:
and ET3 and consequently the minimum processor clock faqies.

If the MonTium tiles had dual-port memory, then according Tablé 2vould be
possible to achieve 100% processor utilisation lfapg S;). Assume that this is the case.
In order to keep the tiles busy all the time, tagks execution times are set equal to the
arrival period of the data items: EFET,=ET3=ET=4us. Taking into account the number
of cycles given in Figure 15 the tiles clock freqaes are calculated;=16.75MHz,
f,=51MHz, £=27.5MHz. Considering schedule S1, the graph inufég7 is used for
constructing the HSDF graph, given in Figure 1&hefapplication running the three tiles.

Figure 16 HSDF graph of a HiperLAN/2 receiver rurgnbn three Montium tiles assuming the tiles haal-du
port memories organized according schedyle S

The throughput equations for the graph in Figuaa& already derived. They give the
necessary and sufficient conditions for guarantgeiniower bound on the application
throughput T:

ET,, +ETr, +ET, < % for i 0{123},

Since the tasks execution times are already fikmdfthe communication latencies it
must hold that:

ET,, +ET,, <4/
ET,, +ET., <45
ET., +ET., <45

One possible solution of this system of inequaitee ET-¢=2us, ETt;=2us, ET>=2us,
ETcs=2us. Compared with the results for the re@nNvium architecture we see that with
dual-port memory and;She highest possible tile utilisation is achiewelile the latency
requirements are the same or relaxed.

6. Conclusion

We have shown how different memory organisationsthef processing elements that
constitute an MPSoC can be compared based ontkineurghput. Further we have shown
how the throughput of a mapping can be evaluatefirétymodelling the application as an
HSDF graph and then extending this graph with actbat model the effects of the
mapping, e.g. the latency of the communication obén

Even though we have only presented an applicatian is organised as a pipe, we
believe that this approach can be extended inaagbktforward way to include arbitrary
application graph topologies.

One of the strengths of this approach is that wencadel the application as well as the
mapping on possibly heterogeneous PEs in a simglghgn an intuitive way. Throughput
can be derived from this graph by analytical meafiswing for tool support, which will
be necessary for larger or multi-rate graphs.

HSDF graphs can only model static behaviour, in skase that it cannot model
dynamic token consumption or production rates amnamlyic (data dependent) execution
times. How we can accurately model and analysentieeaction between the control and
data parts of the application is therefore futuozkyv

References

[1] Nikolay Kavaldjiev, Gerard J. M. Smit, Pierre G.ndan, "A Virtual Channel Router for On-chip
Networks",Proceedings of IEEE International SOC Conference, pp. 289-293, September 2004.

[2] Y-T. S. Li and S. Malik, Performance analysis o&lseme embedded software, ISBN 0792383826,
Kluwer academic publishers, 1999.

[3] E. Rijpkema, K.G.W. Goossens, and A. Radule§tade Offs in the Design of a Router with Both
Guaranteed and Best-Effort Services for Networks on Chip. In Proceedings of DATE'03, 350-355,
ACM, 2003.

[4] P. Poplavko, T. Basten, M. Bekooij, J. van Meerbargand B. Mesman. “Task-Level Timing Models
for Guaranteed Performance in Multiprocessor Neltgxam-Chip”, CASES’03, October 2003.

[5] S. Sriram, and S.S. Bhattacharyya, Embedded Mattgssors: Scheduling and Synchronization, Marcel
Dekker, Inc., 2002.

[6] T. Murata,Petri Nets: Properties, Analysis, and Applications. In Proceedings of the IEEE, vol. 77, no. 4,
pp. 541-580, April 1989.

[7] A. Cerone and A. Maggiolo-Schettini, Time-based regpivity of time Petri nets for system
specification. Theoretical Computer Science 216,193, 1999

[8] Heysters P.M., Smit G.J.M. & Molenkamp E. “A Fleldband Energy-Efficient Coarse-Grained
Reconfigurable Architecture for Mobile System$he Journal of Supercomputing, volume 26, issue 3,
Kluwer Academic Publishers, November 2003.

[9] E.A. Lee, and D.G. Messerschmifiynchronous Data Flow. In Proceedings of the IEEE, vol. 75, pp.
1235-1245, 1987.

[10] M. Bekooij, O. Moreira, P. Poplavko, B. Mesman, Rhastrnak, and J. van Meerberg@nedictable
embedded multi-processor system design. In Scopes 2004, 8th International workshop onvwsoe and
compilers for embedded systems. Amsterdam, TheeXatids, 2-3 September 2004.

[11] F. Baccelli, G. Cohen, G.J. Olsder, and J-P. Qua8smchronization and Linearity. New York: Wiley,
1992.

[12] M. Bekooij, S. Parnar, and J. van MeerbergBa;formance guarantees by simulation of process
networks. To appear in Scopes 2005.

[13] ETSI, Broadband Radio Access Networks (BRAN); HIRER Type 2; Physical (PHY) layer, ETSI TS
101 475 V1.2.2 (2001-02), 2001.
[14] Gerard K. Rauwerda, Paul M. Heysters, Gerard J.khit,S"“Mapping Wireless Communication

Algorithms onto a Reconfigurable Architecture”, doal of Supercomputing, Kluwer Academic
Publishers, December 2004.

[15] Pascal T. Wolkotte, Gerard J.M. Smit, L.T. Smitafftioning of a DRM receiver”, Proceedings of the
9th International OFDM-Workshop, pp. 299-304, DesdSeptember 2004.

