
Aspect-Oriented Programming

Lodewijk Bergmans1 and Cristina Videira Lopes2 (Editors)

1 University of Twente, The Netherlands
bergmans@cs.utwente.nl

2 Xerox Palo Alto Research Center, Palo Alto, CA
lopes@parc.xerox.com

http://trese.cs.utwente.nl/aop-ecoop99/

Abstract. Aspect-oriented programming is a promising idea that can
improve the quality of software by reduce the problem of code tangling
and improving the separation of concerns. At ECOOP’97, the first AOP
workshop brought together a number of researchers interested in aspect-
orientation. At ECOOP’98, during the second AOP workshop the par-
ticipants reported on progress in some research topics and raised more
issues that were further discussed.
This year, the ideas and concepts of AOP have been spread and adopted
more widely, and, accordingly, the workshop received many submissions
covering areas from design and application of aspects to design and im-
plementation of aspect languages.

Workshop organisers: Cristina Lopes, Andrew Black, Elizabeth Kendall,
Mehmet Aksit, Lodewijk Bergmans

This report received contributions from (in alphabetical order): L. Blair,
K. Böllert, S. Clarke, C. Constantinides, Y. Gil, M. D’Hondt, L. Kendall, G.
Kiczales, J. Knudsen, R. Lämmel, J. Lamping, K. Mehner, L. Pazzi, J. Pryor,
J. Seinturier, M. Skipper, M. Südholt, S. Thompson, I. Welch

1. Introduction

Many systems have properties that do not necessarily align with the system’s
functional components. Failure handling, persistence, communication, replica-
tion, co-ordination, memory management, real-time constraints, etc., are aspects
of a system’s behaviour that tend to cut-across groups of functional components.
While they can be thought about and analysed relatively separately from the
basic functionality, programming them using current component-oriented lan-
guages results in spreading the aspect code through many components. The
source code becomes a tangled mess of instructions for different purposes.

This ’tangling’ phenomenon is at the heart of much needless complexity in
existing software systems. It increases the dependencies between the functional
components. It distracts from what the components are supposed to do. It intro-
duces numerous opportunities for programming errors. It makes the functional

A. Moreira and S. Demeyer (Eds.): ECOOP’99 Workshops, LNCS 1743, pp. 288–313, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Aspect-Oriented Programming 289

components less reusable. In short, it makes the source code difficult to develop,
understand and evolve.

Aspect-oriented programming is a promising idea that could reduce the
problem of code tangling, and therefore improve the quality of software. At
ECOOP’97, the first AOP workshop brought together a number of researchers
interested in aspect-orientation. At ECOOP’98, during the second AOP work-
shop the participants reported on progress in some research topics and raised
more issues that were further discussed.

This year, the ideas and concepts of AOP have been spread and adopted
more widely. Accordingly, the workshop received 26 submissions, of which 23
were accepted, covering areas from design and application of aspects to design
and implementation of aspect languages.

The program consisted of the following five sessions:
1. An invited talk by John Lamping
2. Applications Session
3. Specification and Design Session
4. Implementation Session
5. Aspect Language Designs Session
6. Wrap-up Session
The first five sessions consisted of a number of presentations followed by

discussions. Excerpts of these discussions have been included in this report in
the following forms:

!: [Mrs. X] A remark or suggestion made by Mrs. X.
Q: [Mr. Y] A question by Mr.Y to the presenter.
A: An answer, usually by the presenter, if not denoted otherwise.
The last session was a regulated interactive session intended to obtain sug-

gestions from all participants as to what they find important and relevant about
AOP.

This workshop report is organised as follows: the following six sections pro-
vide a description of each of the sessions described above. Finally, there is a list
of participants and their submissions, as well as the collected references.

Note that these excerpts have been reconstructed afterwards from notes that
were made, and provide only a short summary of what happened during the
workshop. There were some email discussions before the workshop - they can be
found in the workshop’s web page. Also, for an in-depth view of the works that
were submitted, we refer the reader to the collection of workshop papers that
can be found in the workshop’s web page.

2. Invited Talk (John Lamping)

John Lamping has been working at XEROX PARC on Aspect-Oriented Pro-
gramming from the very start, he was invited to open the workshop with a talk
about his latest insights and ideas. The following is a summary of his talk.

The presentation revolved around the picture in Fig. 1. In object oriented
programming, the structure of the basic operations, the messages that objects



290 Lodewijk Bergmans and Cristina Videira Lopes

basic

operationsconcern

localized concerns

cross-cutting concerns

base

code

base

code

aspect

code

aspect

code

Fig. 1. John Lamping’s picture.

can respond to, aligns with the structure of the code, the class files and methods.
But in aspect oriented programming the relationship is more subtle, and more
interesting.

The designer of an aspect-oriented program identifies the domain and imple-
mentation concerns their program must meet, and they also decide on the basic
operations the program will be expressed in terms of. For AspectJ, the basic
operations are the messages that the program will operate in terms of. These
messages play as central a role in AspectJ programs as they do in ordinary OO
programs. In particular, the choice of the basic operations determines which con-
cerns will be localised, pertaining to one or a few basic operations, and which will
cross-cut the basic operations, pertaining to a number of them. A good choice
of basic operations will lead to as many concerns being localised as possible, but
aspect oriented programming recognises that it is typically impossible to localise
all concerns.

Those concerns that are localised are addressed by base code, while those
concerns that cross-cut are addressed by aspect code. Both base code and as-
pect code contribute to the specification of what should happen when the basic
operations are executed.

In summary, the basic operations play a central role in aspect oriented pro-
gramming, both by determining which concerns cross-cut, and by serving as the
common ground where the effect of base and aspect code meets.



Aspect-Oriented Programming 291

Questions and Discussion

!: [Yossi Gil] Design decision about the difference between concerns and base
operations are still difficult.

!: [Dominick Lutz] Whatever formalism you adopt, you will always have to
make design decisions about how to decompose a system.

Q: [Lodewijk Bergmans] How can you express aspects of other aspects?
A: All aspects can be expressed in terms of the base operations, it is even

possible in this way to model aspects of aspects.

3. Applications

This session, about the application of the concepts of AOP to various problems
was chaired by Liz Kendall. The presenters of this session were asked beforehand
to address the following questions and issues:

– What is the significance of the presented application.
– What about alternative solutions/approaches?
– What are the benefits and drawbacks of AOP solution?
– How has the development of this application progressed your knowledge and

understanding of AOP?
– Share your experience with AOP
– How does AOP influence specification and design?
– Will this approach scale to larger applications?
– What is the next step/future work?

3.1. An Aspect Language for Robust Programming (Mario Südholt)

Presentation of the position paper submitted by Pascal Fradet and Mario Südholt

Topics

In this talk a semantically based robustness aspect for numerical programs was
presented. The approach provides a specialised aspect language for the specifica-
tion of the exceptional value domains of component programs. The specifications
define program transformations that are used by the weaver to transform the
component program into a woven program that provably does not perform cal-
culations based on exceptional values.

Lessons Learned/Conclusions

A very specialised aspect language is useful to describe the robustness aspect as
declaratively as possible. In the case of the robustness aspect, statement-level join
points are not fine-grained enough. General pattern-based join point definitions



292 Lodewijk Bergmans and Cristina Videira Lopes

have proven to provide adequate flexibility while retaining declarativeness of
aspect definitions.

The talk advocated a three-level approach with a clean separation between
levels: the aspect language is used to write aspect programs at the user level,
the aspect language definition is done at a lower-level (linguistic level which is
inaccessible to the user), aspect weaving is done at a generic implementation
level supporting tool support.

The approach features a formal (with respect to syntax and semantics) def-
inition of aspects and aspect weavers. By keeping the weaver simple important
properties of the woven program can be proven based on the aspect only, i.e.
(almost) without knowing the weaver.

Open Issues/Future Work

Since one of the main features of the approach is its formal definition, the ques-
tion which properties, i.e. aspects, can be integrated must be investigated.

Current work is done in two main areas:

1. Investigating general properties of the formal framework, in particular with
respect to the integration of new aspects (properties).

2. Developing a debugging and a security aspect

Questions and Discussion

Q: [Dominick Lutz]: How can you be sure that your pattern matches in the right
place(s)

A: The specification allows syntactical patterns of any desired granularity.

3.2. JST: An Object Synchronisation Aspect for Java
(Lionel Seinturier)

Presentation of the position paper submitted by Lionel Seinturier

In his talk, Lionel Seinturier presented JST, an aspect weaver for the Java lan-
guage. JST addresses two aspects: object synchronisation and observation of a
distributed CORBA run. The idea is to provide a tool (i.e. a so called aspect
weaver) that allows to separate the code related to these two issues from the
functional code of a distributed and concurrent CORBA/Java program. The
synchronisation aspect is associated to a language with a statechart-like syntax.
It wraps base level object and synchronises method calls before delivering them.
The join point is the base level class interface. The observation aspect of JST is
associated with some annotations of the base level programs. They point out the
elements (methods, variables) that need to be traced. The data collected during
a distributed run can then be used to perform some post-mortem profiling. This
task is based on an extension of the Lamport causality relation. The extension



Aspect-Oriented Programming 293

proposed by Lionel Seinturier adds three sources of order (synchronous method
calls, synchronised methods, and read/write dependencies on shared variables)
to the two sources (local ordering of events, and asynchronous communications)
considered by the Lamport relation. JST is implemented with OpenJava (a
compile-time MOP for Java) and ORBacus (a CORBA ORB). A first version of
JST can be downloaded from Lionel Seinturier home page at the following URL:
http://www-src.lip6.fr/homepages/Lionel.Seinturier/JST

Two conclusions can be drawn from Lionel Seinturier’s work. First, reflec-
tive languages such as OpenJava provide an useful help in implementing aspect
weavers. According to him, a lot of code should have been rewritten if OpenJava
hadn’t been used for JST. Second, in his opinion, the design of dedicated lan-
guages for each aspect leads to a better understanding of the domains involved in
the program and of the weaving process. Once the join point between the aspect
languages and the base language has been understood, the design of behaviours
for each aspect becomes easier.

One of the open issues with AOP lies in the debug process. Indeed, once
a program has been woven, the relation between the base level and the aspect
level code may not be so clear. Some work still need to be done to address this
problem. Finally, according to Lionel Seinturier, another big open issue that
remains to be addressed is to know whether AOP scales well and if it can be
applied to large scale applications where complex aspects such as fault tolerance,
replication or mobility are involved.

Questions and Discussion

Q: [Gregor Kiczales] Can you synchronise multiple instances of multiple classes?
A: [Seinturier] No. This kind of synchronisation has to be done by designing

different synchronisation behaviours and associating each behaviour to a
particular class.

3.3. Is Domain Knowledge an Aspect? (Maja D’Hondt)

Presentation of the position paper submitted by Maja D’Hondt and Theo D’Hondt

Programs are a combination of domain knowledge and algorithms. Moreover,
the real-world example accompanying this talk shows that the first crosscuts the
second. The benefits of factoring out domain knowledge are clear: the program-
ming process becomes less complex and both the domain knowledge and the
algorithm can evolve independently from one another.

As a first and obvious solution, the presentation pointed to the classical
techniques of object-orientation, such as delegation, subclassing and the use of
design patterns to factor out domain knowledge. These techniques, however,
cannot be applied in all cases. For example, domain knowledge that evolves
can sometimes force the addition of a new parameter in the original algorithm.
In order to avoid this, this talk focused on aspect-oriented programming as a
possible solution.



294 Lodewijk Bergmans and Cristina Videira Lopes

The exploration and development of a programming environment that sup-
ports the separation of domain knowledge from algorithms at coding time, but
that weaves the two at compile time or at run time, remains further work. Nev-
ertheless, some initial and successful experiments were mentioned in the talk,
consisting of a language symbiosis between Prolog for representing the domain
knowledge, and Smalltalk for the implementation of the algorithm.

Questions and Discussion

Q: [Jørgen Knudsen] Why not the OO solution: force the separation through
different languages

A: [Theo D’Hondt]: this work is driven by the goal of reusing AI domain knowl-
edge technology and adding it to conventional programming

Q: [Mario Südholt]: if you factor out the heuristics from the algorithm, doesn’t
that clutter the understanding and optimisation of the algorithm?

A: No, at least in this case rather the reverse, since all optimisations can be ex-
pressed as constraints that are derived directly from the domain knowledge.

3.4. Aspect-Oriented Programming for Role Models
(Elizabeth A. Kendall)

Presentation of the position paper submitted by Elizabeth A. Kendall

The Role Object with the Decorator pattern has been proposed as the best sup-
port for role models in standard object-oriented languages, such as Java. How-
ever, the Role Object design has three major drawbacks: object schizophrenia;
interface bloat or, alternatively, down-casting; and no support for role composi-
tion.

The hybrid approach for AOP-based role model implementation presented by
Liz Kendall places role behaviour in a combination of introduce weaves that are
added to the core class and advise weaves that are added to the core instances.
That is, an aspect both introduces the interface to the core class and then advises
or adds the role specific behaviour to the core instance. Further, role relationships
and role context reside in the aspect instance to easily support role multiplicity.

Liz Kendall claimed the following benefits of this hybrid approach to role
aspects:

– Interface maintenance: The class’ own intrinsic interface is not bloated with
every potential role. However, the extrinsic behaviour is also accessible with-
out down-casting.

– Object schizophrenia: Most of the role specific behaviour resides in the ob-
ject; only role relationships and role context reside in the aspect.

She had also investigated Glue Aspects, where roles are represented by ob-
jects, and aspects integrate a Core object to the role(s) that it plays. This ap-
proach has the following benefits and drawbacks:



Aspect-Oriented Programming 295

– Independent Core and Role hierarchies: Any Core object can play a given
Role if the appropriate Glue Aspect is provided. This is the major advantage
of this design.

– Interface maintenance: The role specific interfaces are introduced to the Core
objects in a modular fashion. This is also true in the hybrid approach.

– Role multiplicity: The glue aspect design provides support for role multi-
plicity as roles can be indexed by context. This is also true in the hybrid
approach.

– Object schizophrenia: The Role and Core objects are independent, so the
Glue Aspects have to encode and manage all integration. The hybrid ap-
proach is superior in this area, and glue aspects should only be employed
when there are only minimal dependencies between Role and Core objects.

– Additional level of components: The major drawback of this design is that
it requires three levels of components

The presentation included illustrative examples of these two approaches for
AOP-based role model implementation.

3.5. Aspect-Orientated Process Engineering (Simon Thompson)

Presentation of the position paper submitted by Simon Thompson and Brian
Odgers

This talk addressed the question of how process knowledge should be structured.
The use of Aspect Orientation as an abstraction for capturing and using process
knowledge was reported. A description of the method, ASOPE (Aspect Oriented
Process Engineering) was given.

The ASOPE system implements a hierarchical planning system that itera-
tively specialises a plan template stored as an object. The specialisation is done
by weaving context specific plan elements, stored as aspects, into the generic
plan according to the ownership and execution requirements of the business goal
that is to be achieved. This process is illustrated in Fig. 2.

The advantage of using an Aspect Orientated representation was reported
to be that the process knowledge developed in one context could be decontex-
tualised and reused in other contexts, and context specific knowledge could be
captured and retained for reuse at a local level.

4. Specification and Design

This session was chaired by Crista Lopes. The two first presentations dealt
with aspect-based specifications and the two subsequent presentations discussed
adding the notion of aspects to the design process and notations.



296 Lodewijk Bergmans and Cristina Videira Lopes

Aspect

Aspect

Weaver

Aspect

Aspect

Weaver

Process

Addition

Process

Redefinition

Fig. 2. Picture used in Simon Thompson’s presentation. The hierarchical aspect
weaving process used to specialise the generic plan.

4.1. A Tool Suite to Support Aspect-Oriented Specification
(Lynne Blair)

Presentation of the position paper submitted by Lynne Blair and Gordon Blair

This talk presented an aspect-oriented style for the formal specification of sys-
tems, along with a supporting toolkit. The specification of a simple multimedia
stream was considered and different aspects were identified, namely functional,
non-functional and management aspects. If required, each aspect could be spec-
ified in a different formal language, for example using different notations for the
functional (base) behaviour and the real-time or stochastic behaviour. Using a
common underlying semantic model of timed automata, it was then possible to
compose the aspects in order to perform analysis of either the interaction of
aspects (c.f. feature interaction) or the overall system behaviour.

Composition in this approach was analogous to aspect-weaving in aspect-
oriented programming and the multi-way synchronisation of events (either ex-
plicit or implicit) mirrored join-points. The composition process for the multi-
media stream example was demonstrated using the Composer toolkit (see Fig.
3). The resulting behaviour was analysed using the tool’s simulator and it was
shown how temporal logic properties could be proved over the system by model
checking.

Importantly, having checked the behaviour of the management aspects (i.e.
the monitors and controllers) in the formal world, these aspects have been in-
serted directly into a running system using a reflective platform. Used this way,
the management aspects described in the talk directly and dynamically monitor
and control the behaviour of an audio stream.



Aspect-Oriented Programming 297

Fig. 3. A screen-dump from the Composer toolkit described and demonstrated
by Lynne Blair.

4.2. Explicit Aspect Composition by Part-Whole State Charts
(Luca Pazzi)

Presentation of the position paper submitted by Luca Pazzi

Luca Pazzi examined the issue of aspect weaving from two different approaches.
As a working hypothesis, aspects were meant as specifications of generic and
separable parts of the behaviour of an object. For example joining the aspects
”being refillable” and ”being breakable” may specify the full behaviour of a
bottle, although both aspects are very generic and can be used to characterise
any other object that is either refillable or breakable. Aspect specification means
finding a suitable mechanism for both aspect specification and composition. The
Statecharts formalism [Harel 77] was proposed to: a) specify aspects by separate,
self-contained state Statecharts; b) compose aspects by the Statecharts AND
composition mechanism.

It was showed that aspect composition could be achieved by two different
approaches:

– Implicit weaving: A complex behaviour implicitly results by directly forward-
ing events from a Statechart to the another.

– Explicit weaving: A complex behaviour is explicitly depicted by a specific
state machine whose states are compound states drawn from the Cartesian



298 Lodewijk Bergmans and Cristina Videira Lopes

product of the sets of states of the component machines, and state transitions
are sequences of state transitions taken from the component machines.

Although the two approaches can be shown to be formally equivalent, they
really differ from a pragmatic, cognitive and ontological point of view. In fact,
it can be observed that the problem with the traditional implicit composition
approach is that we have to add exogenous details to the specifications in order to
make the global behaviour: this breaks the encapsulation of single aspects making
them less reusable and understandable. On the other hand, explicit weaving,
adopting a suitable formalism, such as Part-Whole Statecharts [Pazzi 97], allows
to leave the original state machines untouched and to have both high level states
and events denoting the resulting woven aspect. Fig. 4 shows these respective
approaches.

Openable

Closed

RunningOpen

closeopen [not in(Empty)]

Empty

Refilled

refill empty / close

Refillable

a) Example of implicit weaving.

Stopped

Regular Initial

restart: refill;open stop: <empty;close>

start: refill;open

Empty

Refilled

refill empty

Refillable Openable

Closed

RunningOpen

closeopen

b) Example of explicit weaving.

Fig. 4. Pictures in Pazzi’s presentation.

The implicit weaving of the two aspects ”being refillable” and ”being open-
able”, by traditional Statecharts AND composition mechanism (denoted by the
dotted line). Observe that the synchronisation of the two state machines requires
to add exogenous details (underlined features) to the component Statecharts.

The explicit weaving of the two aspects ”being refillable” and ”being open-
able”, by Part-Whole Statecharts [Pazzi 97]. The global woven aspect is denoted
by an explicit state machine (representing the whole behaviour) whose state
transitions denote high-level events and map to the lower-level events of the
component state machines.

Questions and Discussion

A discussion emerged about implicit vs. explicit and automatic vs. manual join
points. It was pointed out that these two are not the same. Implicit vs. ex-
plicit has to do with how much information is given to specify the join points.
Automatic vs. manual has to do with how the composition is done.



Aspect-Oriented Programming 299

4.3. Separating Concerns Throughout the Development Lifecycle
(Siobhán Clarke)

Presentation of the position paper submitted by Siobhán Clarke, William Harri-
son, Harold Ossher, and Peri Tarr

Siobhán Clarke presented an extension to the notion of separating concerns at
just the code level in a position paper called ”Separating Concerns throughout
the Development Lifecycle”. She discussed the need to separate the same con-
cerns across the lifecycle to ease both the initial development, and evolution
throughout the software’s life. With current object-oriented design methods, de-
signs are caught in the middle of a significant structural misalignment between
requirements and code.

This misalignment leads to the scattering of the design and code of individ-
ual requirements across multiple classes, and tangling, where individual classes
in the design and code may address multiple requirements. Addressing this mis-
alignment problem suggests that it must be possible to reify features within
the object-oriented paradigm to permit encapsulation of feature concerns, as
specified in the requirements, within designs and code.

In this talk, subject-oriented design was discussed, which is an outgrowth
of the subject-oriented programming model. Subject-oriented design supports
the decomposition of design models matching requirements specifications, and,
is an outgrowth of the work on subject-oriented programming. Subject-oriented
programming addressed misalignment and related problems at the code level,
and as such, subject-oriented design is the bridge between how requirements are
specified and how code can be successfully separated based on features.

The talk further described the subject-oriented design model. A full system
design model is divided into design subjects, each of which encapsulates some
concern in the object-oriented design. Composition relationships may be speci-
fied between design subjects, which specify which design elements in the different
subjects correspond, how differences between the specifications of corresponding
elements may be reconciled, and how they should be reconciled in a composition
process.

4.4. Extending UML with Aspects: Aspect Support in the Design
Phase (Junichi Suzuki)

Presentation of the position paper submitted by Junichi Suzuki and Yoshikazu
Yamamoto

This talk addressed the aspect support in the design level while it has been
focused mainly in the implementation/coding phase. The motivation is that
Aspect-Oriented Programming (AOP) has been considered a promising abstrac-
tion principle to reduce the problem of code tangling and make software structure
clean and configurable. Suzuki proposed an extension to the Unified Modeling
Language (UML) to support aspects properly without breaking the existing



300 Lodewijk Bergmans and Cristina Videira Lopes

UML specification. This allows developers to recognise and understand aspects
in the design phase explicitly. This is achieved mainly through the introduction
of new stereotypes.

Also, he proposed an XML-based aspect description language, UXF/a, to
achieve interchangeability of aspect model information between development
tools such as CASE tools and aspect weavers. The goal of the work presented here
is to facilitate aspect documentation and learning, and increase aspect reusability
and interchangeability.

5. Implementation

This session was prepared by Andrew Black, who could not attend the work-
shop. In this session there were presented a wide range of approaches towards
the implementation of aspects, targeted at different languages (e.g. Smalltalk,
Java), and adopting different approaches (e.g. reflection, first class aspects, de-
sign pattern/framework based aspects, pre-processor).

5.1. A Reflective Architecture for the Support of Aspect-Oriented
Programming in Smalltalk (Jane Pryor)

Presentation of the position paper submitted by Jane Pryor and Natalio Bastán
The presentation described a reflective architecture implemented in Smalltalk
that permits the incorporation of aspects to an object-oriented system. The re-
flective mechanism is supported by the Luthier MOPs framework, where reflec-
tion is implemented by means of message interception (by wrapping methods),
though other reflection and reification facilities can be added if necessary. The
functional objects of the system reside at the base level and the aspects at the
meta-level of the architecture. This permits not only a clean separation of con-
cerns, but also permits the dynamic manipulation of aspects in a completely
transparent fashion with no modification to the design or implementation of the
functional part of the system. An Aspect Manager at the meta-level associates
and activates the aspects at run-time, permitting a large degree of flexibility.
In particular, cross-cutting is permitted between one or many classes and/or
instances of base objects with one or many classes and/or instances of aspects,
previously defined by a composition method which associates the aspect/s to
the object methods.

In conclusion, this architecture which is now being implemented in Java, has
the advantage of dynamic weaving and a very clean separation of the aspect and
functional parts of a system. Additionally, the framework that supports it facili-
tates the incorporation of other facilities, such as the handling of constraints be-
tween aspects (the Aspect Manager is easily extended to incorporate additional
functionality), and eventually aspects of aspects (through extra meta-levels for
example). These considerations and the actual implementation of applications
with the incorporation of different types of aspects are the next steps to be taken.



Aspect-Oriented Programming 301

(1) (2) (3) sequence

(2)(3)

(1)

handleBeforeMsg:

handleAfterMsg:

reflectMessage:

an Aspect

(class or instance)

an Object

(class or instance)

AspectManager

messageX
aBeforeMethod

anAfterMethod

reference

messageX

method call

reference

reflectedMethodX:

Fig. 5. Picture in Jane Pryor’s presentation. Composition Mechanism: relation-
ship among basic objects, the weaver and aspects.

As to the discussion of implementation issues, the pros and cons of static vs.
dynamic weaving were mentioned, the problem with the latter mainly being a
question of efficiency: for how much longer will this be an issue? In addition,
the incorporation of constraints between aspects and the notion of aspects of
aspects, should be issues to be considered in future proposals.

Questions and Discussion

Q: [Gregor Kiczales]: why aren’t the before/after-method at the base-level?
A: This is possible, but it was not done for separating the aspect definitions

from the base level.

5.2. On Weaving Aspects (Kai Böllert)

Presentation of the position paper submitted by Kai Böllert

Today development of aspects is done either in several special aspect languages or
in one general-purpose aspect language (e.g., AspectJ). In contrast, Kai Böllert
took the position that it may be better to use the same (object-oriented) pro-
gramming language for writing both components (i.e., classes) and aspects. To
illustrate how such an approach could be realised, Böllert showed in his talk the
next version of the AOP/ST tool, which adds AOP extensions to the Smalltalk
development environment VisualWorks.

The three most important benefits of not writing aspects in one or more
special aspect languages are:

1. Significantly reduced implementation effort for AOP extensions, because no
aspect language compiler needs to be implemented.



302 Lodewijk Bergmans and Cristina Videira Lopes

2. Easier integration of AOP into commercial development environments, be-
cause existing tools like browsers and debuggers can be reused for aspect
development.

3. Facilitates adoption of AOP, because developers do not need to learn a new
language.

Regarding the implementation of Aspect Weavers, Kai Böllert pointed out
an open research question: is it possible for an Aspect Weaver to handle rela-
tionships between aspects automatically? In other words: How could the Weaver
determine in which order it should compose aspects that are to be woven into the
same component? How could the Weaver ensure that such aspect combinations
are valid?

5.3. An Aspect-Oriented Design Framework for Concurrent Systems
(Constantinos Constantinides)

Presentation of the position paper submitted by Constantinos Constantinides,
Atef Bader, and Tzilla Elrad

The work presented by Constantinides concentrates on the aspectual decompo-
sition of concurrent object-oriented systems. In his presentation, Constantinides
categorised aspects as intra-method, intra-object and intra-package according
to their hierarchical level of cross-cutting. He also identified certain restrictions
imposed by current technologies that use automatic weavers and domain-specific
as well as general-purpose aspect languages.

He proposed a design framework where the overall behaviour is made up of
the functional behaviour, the aspects of concern and a moderator class that co-
ordinates the interaction between aspects and components while observing the
overall semantics.

As aspects can cut across components at every level, the moderator is consid-
ered a recurring pattern from intra-method to intra-package. The design frame-
work provides an adaptable model and a component hierarchy using a design
pattern, and it allows for an open language where new aspects (specifications)
can be added and their semantics can be delivered to the compiler through the
moderator. The moderator is a program that extends the language itself.

The framework maintains an aspect bank which is a 2-dimensional composi-
tion of the system in terms of aspects and components that can be used to verify
the inter-relationships of the aspects and which the moderator will initially con-
sult in order to collect the required aspects.

The goal of the work presented is to achieve separation of concerns and
retain this separation without having to produce an intermingled source code.
The presenter and his co-authors view weaving as a general mechanism through
which one can achieve composition of concerns. As such, the framework performs
weaving at compile-time and the intermingled code exists only at the binary level.



Aspect-Oriented Programming 303

Questions and Discussion

Connected to this talk a discussion arose about the use of a manual design
pattern approach (as in the presented work) versus automatic weaving.

5.4. Runtime Implementation of Aspects using Kava (Ian Welch)

Presentation of the position paper submitted by Ian Welch and Robert J. Stroud

Kava allows runtime implementation of aspects where aspects are represented by
meta-objects. Kava implements runtime behavioural reflection by inserting meta-
level interceptions into compiled Java classes. The scope of the runtime meta-
object protocol is determined by the particular choice of meta-level interceptions
implemented at load-time. The meta-level interceptions switch computation from
the base to the meta-level. The meta-level is composed of co-operating meta-
objects. Each meta-object can be thought of as an aspect.

Kava falls between the poles of static and dynamic weaving. With static
weaving aspects are implemented directly into the base level. This increases
the efficiency of the system (no inefficient re-directions) and makes it easier to
validate the composed system. However it reduces the runtime adaptability of
the system. This can be achieved with dynamic weaving where aspects are kept
separate and their binding to the base level can be adjusted at runtime. However,
reduces efficiency and makes validation difficult. Kava manages to retain some
of the benefits of static weaving (efficiency and easier validation) while retaining
some of the benefits of dynamic weaving (adaptability). This is because the
meta-level interceptions are static and the meta-level is dynamic.

The separation between meta-level interceptions and the meta-layer eases
some of the problems of debugging intertwined aspect and base code. As the
aspects are implemented using standalone Java classes these can be developed
and debugged before being combined with the base level. What remains an open
issue is ensuring that the result of combining aspects and base level results in
the intended overall behaviour. This is a problem for formal validation as much
as a debugging problem.

The current version of Kava allows interception and redefinition of how meth-
ods are received, methods are sent, access to fields and interception of initial-
isation and finalisation. The authors are working on extending Kava to allow
self and non-self method invocations to be distinguished, to support inheritance
of meta-objects/aspects and interception of exception raising. More information
in: http://www.cs.ncl.ac.uk/people/i.s.welch/home.formal/kava.

Questions and Discussion

Q: [Cristina Lopes] Why not do weaving at load-time as well?
A: Because we also want to do dynamic weaving
!: [Gregor Kiczales/Jane Pryor] Inheriting aspects is difficult and not yet well

understood. This appears to be an open issue in general: how to reuse and
extend aspects (inside the aspect domain).



304 Lodewijk Bergmans and Cristina Videira Lopes

Q: [Jane Pryor] why distinguishing between base-level and aspect designers
!: [Cristina Lopes] The moment of weaving seems to depend on the -nature

of- the target language. This is reflected by the presentations that addressed
different languages such as Smalltalk and Java.

!: [general agreement] The term ’weaving’ refers to a general process, which is
not (necessarily) tied to e.g. code (pre-)processing, but to the collection of
activities that together cause the effective merging of aspect and base level
code.

6. Aspect Language Designs

This session was chaired by Crista Lopes. The four presentations in this ses-
sion dealt with various issues in the definition of aspect languages: respectively
about specification of join points, abstractions to improve aspect specifications,
aspect-oriented higher-order functional programming, formalisation of aspects
(and composition in a more general sense), and finally a presentation about the
link between AOP and the existing concept of super-imposition.

6.1. Aspect-Oriented Programming in BETA Using the Fragment
System (Jørgen Knudsen)

Presentation of the position paper submitted by Jørgen L. Knudsen

The presentation started out by giving a brief overview of the BETA program-
ming language. The language is a compiled, strong statically typed, object-
oriented language, designed to support industrial strengths system development
with emphasis on software engineering principles. The first public implementa-
tion dates back to approximately 1988.

The talk then turned the focus to the support of aspect-oriented program-
ming in the BETA language as supported by the Mjølner System. The corner-
stone to this support is the Fragment System, which is designed to support is-
sues like separate compilation, separation of concerns, information hiding, inter-
module dependencies, etc.

The core of the talk was a presentation of several examples of aspects as
programmed in BETA using the Fragment System. These examples illustrated
the basic concepts of the Fragment System, such as fragments, fragment groups,
slot, origin and dependency graph. The principle is, that source code is written
in the form of fragments (syntactically legal pieces of BETA code). Fragments
that are somehow related are placed in fragment groups (typically files on the
file system). In source code, parts may be left unspecified by inserting so-called
slots. A slot is the specification of a join point for source code to be specified
elsewhere and in the future. Slots and fragments are named and typed (by the
syntactic category of the source code). Source code (in the form of fragments)
is connected with slots through the origin specification in the fragment groups
(origin specifies the name of another fragment group). That is, a fragment is



Aspect-Oriented Programming 305

bound to a slot if (and only if) a corresponding slot is found either in the same
fragment group, in the fragment group referred to by origin, or in the origin
of the origin, etc. The origin specification is one of the ways to construct the
dependency graph.

After having presented how to augment classes with new aspects (such as
adding a colour aspect to an entire pre-existing class hierarchy of graphical
objects, the talk discussed issues like the support for inter-dependent aspects in
BETA, and how the Fragment System controls the visibility of aspects.

The final part of the talk was a presentation of the approach to statement
aspect weaving. Statement aspect weaving is done using exactly the same mech-
anisms as described above, namely fragments and slots. This implies that state-
ment join points are specified in the form of slots in the imperative part of the
program, implying that statement join points must be anticipated. This allows
insertion of statements at any point in the source code, and static specification
of statement join points. This approach follows the general design philosophy
of aspects in BETA, namely that the location of join points is a deliberate de-
sign decision to be made by the designers (following the general principles of
predictability of systems, even in the case of extensible systems).

The talk concluded by presenting the workings of the Fragment System
Weaver by illustrating how the source code of different aspects are woven into the
program source code to give the entire source code of the resulting executable.

Questions and Discussion

Q: [Yossi Gil] Can you use the same fragment in several places?
A: No. (this effectively means that crosscutting of fragments/aspects is not

possible)
Q: [Yossi Gil] So it is the same as literate programming?
A: The fragment system uses the same weaving structure, but it is strongly

typed.
Q: [Liz Kendall] Can you give examples that illustrate its industrial strength?
A: Apart from the Mjølner System itself, there are no large industrial applica-

tions.

6.2. On the Role of Method Families for Aspect-Oriented
Programming (Katharina Mehner)

Presentation of the position paper submitted by Katharina Mehner and Annika
Wagner

Katharina Mehner presented in her talk a language extension that aims at im-
proving the reusable definition of aspects. The starting point was the observation
that the building blocks of current aspect languages such as AspectJ are not
properly encapsulated and thus cannot be referred to by a name. Aiming at the
reusable definition of aspects, the possibility of factoring out common properties



306 Lodewijk Bergmans and Cristina Videira Lopes

within an aspect and between aspects assigned to classes in an inheritance hier-
archy is highly desirable. But it is impossible without a proper encapsulation of
their building blocks.

On the other hand, it was proposed in the talk that a solution for making
aspect definitions reusable has to fit with the connection technique, i.e. the join
points between classes and aspects. Since different methods either of the same
class or from super and sub classes show the same behaviour seen under the
perspective of an aspect, the building blocks of aspects are defined on a per
method basis, either for one method or for a list of methods. Hence methods
form the join points.

These requirements are ideally fulfilled with the concept of method families,
i.e. equivalence classes of methods. A method family consists of its name, a
method set and of attached behaviour. For the purpose of reuse method families
can be referred to by their name. Thus, a kind of encapsulation of and interface
to the building blocks of aspects is achieved, similar to the functional units of
classes, the methods. Moreover, the usual set theoretic operations allow for a
powerful, semi-automatic extension and restriction mechanism of method fami-
lies during reuse. It was shown that the concept of method families is applicable
to general aspect oriented languages as well as to domain specific languages.

Lessons learned: The main conclusion was, that method families are a useful
extension. Moreover, they are a contribution to the question how inheritance or
refinement can be carried out for aspects. While at the moment method families
are completely part of the aspect language, a future step brought to discussion
during the workshop was to make the assignment of sets to the building blocks
of aspects part of a connector language between the class code and the aspect
code. However, in the opinion of the speaker this cannot lead to more freedom
for the connectors as they still have to obey the same concepts for inheritance
as before.

6.3. Adaptation of Functional Object Programs (Ralf Lämmel)

Presentation of the position paper submitted by Ralf Lämmel, Günter Riedewald,
and Wolfgang Lohmann

The talk was concerned with aspect-oriented higher-order functional program-
ming. Certain operators for program transformation suitable to model aspects
were suggested. The program examples were based on functional program mod-
ules (i.e. components) implementing language interpreter fragments. Environ-
ment propagation, error handling and the introduction of the monadic style
were considered as aspects. The approach is based on previous work of Ralf
Lämmel, Günter Riedewald et al. on meta-programming and aspect-oriented
programming for first-order declarative languages.

In the 1997 ECOOP-AOP workshop Wolfgang De Meuter suggested monads
as a contribution to the theoretical foundation for AOP. Ralf Lämmel’s talk dis-
cussed several limitations and drawbacks of the monadic approach, e.g. the use



Aspect-Oriented Programming 307

of a single composed monad versus different conceptual layers of effects, or tan-
gling arising from the monadic style. One important conclusion of the talk was
that a more general instance of aspect-oriented programming can be obtained
based on a transformation-oriented approach. Monads still provide an impor-
tant tool in such a setting. The component programmer is no longer required to
code in the monadic style, but the monadic style is regarded as a kind of aspect
which can be incorporated in the component code by a corresponding transfor-
mation. It is clear that such a delayed installation of the monadic style improves
flexibility because the installation can pay attention to the actual context, that
is to say different layers of effects can be supported and the functions which
need to be computed in the different layers can be selected accordingly without
overspecification.

The talk mentioned different frameworks to formalise the program transfor-
mations, e.g. term rewriting, natural semantics and functional meta-programs. It
was supposed that the transformation operators operate on entire functional pro-
gram modules (i.e. components). This is in contrast to Fradet’s and Südholt’s
approach presented at the 1998 ECOOP-AOP workshop, were an additional
weaver applies given transformations until a fixpoint is reached. In other tech-
nical papers Ralf Lämmel et al. developed suitable preservation properties for
program transformations to facilitate formal reasoning.

The talk concluded with an overview on a kind of operator suite for program
transformation that is under development. The operators are meant to model
the basic roles in aspect code. There are for example operators addressing data
flow issues, the insertion of computations, the installation of sum domains etc.
In this sense, the talk also emphasised that program transformations provide a
sensible tool even in adapting higher-order functional programming. In contrast,
most previous work on program transformations for functional programs was
concerned with optimisation issues.

Besides the operator suite the most interesting problem for further investiga-
tion is the question how the transformation-based approach can be applied for
the common component languages rather than declarative languages.

6.4. Formalising Composition Oriented Programming (Mark Skipper)

Presentation of the position paper submitted by Mark Skipper and Sophia Dros-
sopoulou

Mark presented a snapshot of work in progress to make a formal model of the
kind of object-oriented composition mechanisms that underpin AOP and SOP.
He motivated the work by pointing out that there exists no way to give an
abstract description of the semantics of composition used in current AOP im-
plementations.

He introduced the language Ku: a small imperative OO language with classes
methods and attributes. The definition of Ku includes type rules, an operational
semantics and a soundness property which cross-checks these against one an-
other. It also includes a composition function that combines collections of classes



308 Lodewijk Bergmans and Cristina Videira Lopes

known as units. Composition attempts to merge classes methods and attributes
if they correspond. Merging is undefined for corresponding entities if they do not
also match.

Currently correspondence is defined as name equivalence for classes, at-
tributes and methods; matching is defined as signature equivalence for attributes
and methods; classes match if all their corresponding attributes and methods also
match. This framework allows various hypotheses concerning composition to be
formulated and tested. One such hypothesis: that composition preserves type
correctness of composed units, was presented and discussed in more detail.

Different kinds of composition can be investigated in the framework by, for
example, changing the definitions of correspondence and matching. Mark con-
cluded his presentation with a description of the many directions in which this
work can be taken in the future.

6.5. Aspects and Superimpositions (Joseph Gil)

Presentation of the position paper submitted by Shmuel Katz and Joseph Gil

The purpose of this presentation was to draw the attention of the AOP commu-
nity to an extensive line of research, which started at the eighties, on the topic
of superimposition. Joseph (Yossi) Gil, the presenter, pointed out the many
similarities between AOP and superimposition, which are both mechanisms for
separation of concerns in program design, orthogonal to the usual breakdown
into modules. Traditionally, the research on superimposition was motivated and
focused on the design of distributed algorithms. Properties such as liveliness,
robustness to failures, deadlock prevention, etc., are best dealt with as a su-
perimposition of a generic algorithm that insures them on the main distributed
computation algorithm. In contrast, AOP is more general purpose and does not
focus in any specific application domain. AOP can however, can, and should be
tested and demonstrated against the many examples used in superimposition.
On the other hand, there should be work on extending superimposition to other
application areas.

Yossi Gil called for researchers working on AOP to build upon some of
achievements of the work on superimposition. These include the syntax and
language design, as proposed in Katz’s 1993 TOPLAS paper which address the
problem of join points, the taxonomy of superimposers.

More importantly, superimposition enjoyed the blessings of formal methods,
and in particular program verification. There was research to show that the ap-
plication of a superimposer to any base algorithm is correct, provided that the
base algorithm satisfies certain conditions. Just as early work on superimpo-
sitions took a macro-like code implementation view of their meaning, aspects
have been described in this way. However, it was found more effective to view
superimpositions as separate entities, with various ways of combining them with
basic systems and with each other, using a binding operator. Treating aspects
in this way will also provide a firmer theoretical basis and clearer semantics for



Aspect-Oriented Programming 309

this important modularity concept. He stressed that there is a great potential
for a similar modular specification and verification techniques in AOP, however,
for this to happen, the notion of generic aspects, i.e., aspects that can take pa-
rameters must be properly introduced. A group lead by Prof. Katz is currently
doing research at the Technion along some of these lines.

Questions and Discussion

Q: [Lodewijk Bergmans]: What are the lessons learned by the superimposition
community?

A: At least three lessons have been learned: (a) you can prove properties (b)
how to apply parameterised aspects (c) many working examples exist and
can be studied.

!: [Mario Südholt] Aspects should be declarative, but proving properties re-
quires a lot of specification and proof effort

!: [Cristina Lopes] We can learn a lot about AOP by looking into work that has
been done in the past and that didn’t have the word ”aspect” in it explicitly.

7. Wrap-Up

Moderator: Gregor Kiczales

The purpose of this session was to revisit key issues from the day, while making
sure everyone contributed to the session. The set-up was the following:

”Imagine N years into the future, when aspects are in widespread use.
The dominant aspect language is called Port, and it builds on objects.
There are several Port Development Kits (PDKs) and design tools. What
properties do Port and PDKs have?”

The discussion was driven by a fixed list of issues that were addressed in
the previous sessions (but not all issues made it to this last session!). For each
issue, there were quick arguments pro/against, with the constraint that each
participant could speak in at most two issues of the list. So participants had to
chose their interventions wisely. At the end of each brief discussion there was a
vote, to have an idea of the most popular properties of Port. What follows is the
summary of the issues that were discussed.

Aspects in the Software Lifecycle

There was a consensus that there would be explicit support for aspects in all
phases of the software lifecycle.



310 Lodewijk Bergmans and Cristina Videira Lopes

Specification Systems

There was a consensus that specification systems with explicit support for as-
pects should be language independent.

As for the composition of aspect specifications, it was argued that automatic
composition (vs. manual composition) would be desirable, but that it was a
hard problem. The majority of participants agreed that it would be sufficiently
good to reach half-way between automatic and manual composition of aspect
specifications.

Re-engineering Support for Aspects

Would there be tools for crosscutting binary COTS software?
The position paper by Welch and Stroud suggested so, by describing one

particular technique for weaving aspects at load-time. Other possibilities include
using the APIs or using advisory tags. The contra-argument was that aspects
should apply only to source code, because they make serious assumptions about
the implementation.

At the end, 14 to 3 voted that there would be tools for supporting crosscutting
of binary code.

Design Support for Aspects

Will UML of the future support aspects? The consensus was yes. The partici-
pants agreed that there needs to standard notation, standard exchange format
and mechanisms for automatic code generation.

There was also a consensus that including the concept of aspect into the
UML of the future would be crucial for the success of aspects.

Weaving

When will weaving occur? Design-time, coding-time, compile-time, load-time,
JIT-time, run-time?

This issue generated quite a bit of discussion. The argument that got approval
of the majority of participants was that this issue is not specifically related to
aspects, but that it relates to many language features, and that different times
are desirable for different features. Another argument was that different weaving
times would be desirable or necessary for different design entities.

The votes at the end showed that the most popular weaving time would be
fairly static, so at or before compile-time (total of 14 votes). But there would also
be more dynamic weaving mechanisms, so at run-time, load-time and JIT-time
(total of 8 votes).



Aspect-Oriented Programming 311

Explicit Meta-programming

Several position papers gave different perspectives on this issue. For example,
DeVolder, Pryor and Bastán, Lämmel et al., Knudsen, Mehner and Wagner.

The argument for programming aspects at the meta-level was that it makes
the distinction clear between objects and aspects. The argument against was
that meta-programming is hard.

The votes at the end reflected the division of opinions among the participants.
15 participants voted that Port would be less meta; 10 participants voted that
Port would be more meta.

Means of Referring to Join Points

The space for referring to join points ranges from fixed points in the program (a
la BETA fragment system) to less fixed, property-driven specifications (e.g. ”the
public methods of this package”). Other possibilities in between are method iden-
tifiers (e.g. ”the add(Object) method of class Set”), maybe with a wildcarding
mechanism, and using syntactic elements of the programs.

18 participants voted that property-based join point specifications would be
more popular, and 3 participants voted that name-based or pre-identified join
points would be more popular.

Wrap-Up Summary

To conclude, the following list summarises the properties of Port and its PDKs
as estimated/voted upon by the workshop participants:

– Explicit support for aspects in all phases of the software lifecycle
– Specification of aspects is Port-independent; composition of aspect
– Specs is half-manual, half-automatic
– Aspects can affect binary code (important consequences for COTS)
– There is UML-ish support for aspects
– Aspect weaving is mostly static, but Port also supports more dynamic
– Weaving mechanisms that are used less often
– Join points are referred to by property-driven specifications

It should be noted that the approach that was taken to this session, col-
lecting issues and constraining the discussion, was considered rather successful:
because of the voting, everybody was involved, and because of the limitation to
participate in the discussion, people would wait to make real important points,
and the discussion was not dominated by a few people.



312 Lodewijk Bergmans and Cristina Videira Lopes

8. Participants and Position Papers

The following list shows the participants of the workshop, with their affiliation
and e-mail address. If applicable, the position papers and their co-authors are
given as well. Persons marked with an asterisk have presented their work during
the workshop.
1. Mehmet Aksit, University of Twente, aksit@cs.utwente.nl
2. Lodewijk Bergmans, University of Twente, bergmans@cs.utwente.nl
3. Anders Bjorvand, University of Oslo, torvill@trolldata.no
4. *Lynne Blair, Lancaster University, lb@comp.lancs.ac.uk
(with G. Blair), A tool suite to support aspect-oriented specification
5. *Kai Böllert, IC&C GmbH, Germany, kaib@acm.org On weaving aspects
6. *Siobhán Clarke, Dublin City University, sclarke@compapp.dcu.ie
(with H.Ossher, W. Harrisson, P. Tarr) Separating concerns throughout the de-
velopment lifecycle
7. *Constantinos A. Constantinides, Illinois Institute of Technology,
conscon@charlie.cns.iit.edu
(with Atef Bader & Tzilla Elrad) An aspect-oriented design framework for con-
current systems
8. Lutz Dominick, Siemens AG, Germany, Lutz.Dominick@mchp.siemens.de,
Aspect of lifecycle control in a C++ framework
9. Sophia Drossopoulou, Imperial College of Science, sd@doc.ic.ac.uk
(with M. Skipper) Formalising composition-oriented programming
10. *Yossi Gil, The Technion, yogi@cs.technion.ac.il
(with S. Katz) Aspects and superimpositions
11. *Maja D’Hondt, Brussels Free University, mjdhondt@vub.ac.be
(with Th. D’Hondt) Is domain knowledge an aspect?
12. Theo D’Hondt, Brussels Free University, tjdhondt@vub.ac.be
(with M. D’Hondt) Is domain knowledge an aspect?
13. *Elizabeth A. Kendall, Royal Melbourne Institute of Technology,
kendall@rmit.edu.au, Aspect-oriented programming for role models
14. Gregor Kiczales, Xerox PARC, gregor@parc.xerox.com
15. *Jørgen Lindskov Knudsen, University of Aarhus, jlk@daimi.au.dk
Aspect-oriented programming in BETA using the fragment system
16. *Ralf Lämmel, University of Rostock, rlaemmel@informatik.uni-rostock.de
(with G. Riedewald & W. Lohmann) Adaptation of functional object programs
17. *John Lamping, Xerox PARC, lamping@parc.xerox.com
The role of base in aspect-oriented programming
18. Cristina Lopes, Xerox PARC, lopes@parc.xerox.com
19. *Katharina Mehner, University of Paderborn, mehner@uni-paderborn.de
(with A. Wagner) On the role of method families in aspect-oriented programming
20. *Luca Pazzi, University of Modena, pazzi@unimo.it, Explicit aspect com-
position by part-whole state charts
21. *Jane Pryor, UNICEN, Argentina, jpryor@exa.unicen.edu.ar
(with N. Bastán) A reflective architecture for the support of AOP in Smalltalk



Aspect-Oriented Programming 313

22. *Lionel Seinturier, University Paris 6, Lionel.Seinturier@lip6.fr
JST: an object synchronisation aspect for Java
23. *Mark Skipper, Imperial College of Science, mcs@bcs.org.uk
(with S. Drossopoulou) Formalising composition-oriented programming
24. *Mario Südholt, Ecole des Mines de Nantes, Mario.Sudholt@emn.fr
(with P. Fradet) An aspect language for robust programming
25. *Junichi Suzuki, Keio University, suzuki@yy.cs.keio.ac.jp
(with Y. Yamamoto) Extending UML with aspects: aspect support in the design
phase
26. *Simon Thompson, BT Labs, Simon.2.Thompson@bt.com
(with B. Odgers) Aspect-oriented process engineering
27. *Ian Welch, University of Newcastle upon Tyne, i.s.welch@ncl.ac.uk
(with R. Stroud) Load-time application of aspects to Java COTS software
28. Edward D. Willink, Racal Research Limited, UK, Ed.Willink@rrl.co.uk
(with V. Muchnick) Weaving a way past the C++ One Definition Rule

References

[Bougé 88] L. Bougé and N. Francez. A compositional approach to superimposition. In

ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pages

240–249, Jan 1988.

[Harel 77] D. Harel. Statecharts: A visual formalism for complex systems. Science of

Computer Programming, 8:231–274, 1987.

[Katz 93] S. Katz. A superimposition control construct for distributed systems., ACM

Trans. on Programming Languages and Systems, 15:337–356, April 1993.

[Pazzi 97] L. Pazzi. Extending StateCharts for representing parts and wholes., In Pro-

ceedings of the EuroMicro-97 Conference, Budapest, 1997.


	1. Introduction
	2. Invited Talk
	3. Applications
	3.1. An Aspect Language for Robust Programming
	3.2. JST: An Object Synchronisation Aspect for Java
	3.3. Is Domain Knowledge an Aspect?
	3.4. Aspect-Oriented Programming for Role Models
	3.5. Aspect-Orientated Process Engineering

	4. Specification and Design
	4.1. A Tool Suite to Support Aspect-Oriented Specification
	4.2. Explicit Aspect Composition by Part-Whole State Charts
	4.3. Separating Concerns Throughout the Development Lifecycle
	4.4. Extending UML with Aspects: Aspect Support in the Design Phase

	5. Implementation
	5.1. A Reflective Architecture for the Support of Aspect-Oriented Programming in Smalltalk
	5.2. On Weaving Aspects
	5.3. An Aspect-Oriented Design Framework for Concurrent Systems
	5.4. Runtime Implementation of Aspects using Kava

	6. Aspect Language Designs
	6.1. Aspect-Oriented Programming in BETA Using the Fragment System
	6.2. On the Role of Method Families for Aspect-Oriented Programming
	6.3. Adaptation of Functional Object Programs
	6.4. Formalising Composition Oriented Programming
	6.5. Aspects and Superimpositions

	7. Wrap-Up
	8. Participants and Position Papers
	References

